示范手册plaxis
plaxis 3d tunnel 科学手册 Sci Man (UK)3DT

2.1 BASIC EQUATIONS OF CONTINUUM DEFORMATION
The static equilibrium of a continuum can be formulated as:
LTσ + p = 0
(2.1)
This equation relates the spatial derivatives of the six stress components, assembled in vector σ, to the three components of the body forces, assembled in vector p. LT is the
3.1 Basic equations of steady flow...............................................................3-1
3.2 Finite element discretisation ..................................................................3-2
This part of the manual still has the character of an early edition. Hence, it is not complete and extensions will be considered in the future. More information on backgrounds of theory and numerical methods can be found in the literature, as amongst others referred to in Chapter 6. For detailed information on stresses, strains, constitutive modelling and the types of soil models used in the PLAXIS program, the reader is referred to the Material Models Manual.
PLAXIS基本知识备忘

PLAXIS基本知识备忘提示: 即使不满意网格生成的结果,也必须使用<更新>按钮返回到几何模型。
输入模式。
提示:网格全局疏密度的默认设置为粗。
大多数情况下,这是合适的首选。
> 全局疏密度的设置可以在网格菜单中加以修改。
另外,可以整体或局部加密网格。
在这一输入阶段,还可以调整部分几何对象或增加几何对象。
如果做出调整,必须重新生成有限元网格。
从网格菜单中,选择全局疏密,选项,这时单元分布下拉菜单的默认选项为粗。
为,加密全局疏密,,我们可以从下,菜单中选择下一个选项:中等:,然后点击<生成>按钮。
另外,我们也可以从网格菜单中,选择全局加密选项。
随后,输出视窗出现一个较细的网格。
然后,点击<更新>按钮返回。
结构单元拐角处的点可能产生很大的位移梯,,因此最好在这些区域内划分相对于几何模型其他部分,细的网格。
点击:单击:地下连续墙下部的中间,所选几何直线变为红色。
从网格菜单中选择加密线选项,所选线周围局部加密后的网格呈现视窗中。
之后,点击<更新>按钮返回。
网格设置和输入的其他部分保存在一起。
当再次进入一个现存项目而不改变其几何轮廓和网格设置时,可以通过点击工具栏中的生成网格按钮重新生成同样的网格。
不过,几何模型的任何轻微变化将导致不同的网格。
网格菜单中的全部重置选项用来恢复生成网格的默认设置(全局疏密度=粗并且没有局部加密)。
点击工具栏中的生成初始应,按钮:红十字:或在生成菜单中选择初始应,选项,出现K0-过程对话框。
保持土体容重的总乘子:ΣMweight,等于1.0_这意味着土的全部重,应用于生成初始应,。
接受PLAXIS 建议的K0 默认值并点击<确认>按钮。
提示:K0-过程只能应用于地基水平分层且表面水平,地下水位也是水平的情况。
关于K0-过程的详细知识,参见附录A 或参考手册。
K0 的默认值基于Jaky 公式:K0,1-sinφ。
修改默认值以后,输入一个负值可以恢复其默认值。
中文参考手册-PLAXIS2D--岩土三维建模分析

中⽂参考⼿册-PLAXIS2D--岩⼟三维建模分析参考⼿册⽬录1简介 (7)2 ⼀般说明 (7)2.2 ⽂件处理 (9)2.3 帮助⼯具 (9)2.4 输⼊⽅法 (10)3 输⼊前处理 (10)3.1 输⼊程序 (10)3.5 荷载和边界条件 (28)4 材料属性和材料数据组 (33)4.1 模拟⼟体及界⾯⾏为 (35)4.1.1 ⼀般标签页 (35)4.1.2 参数标签页 (39)4.1.3 渗流参数标签页 (50)4.1.4 界⾯标签页 (56)4.1.5 初始标签页 (61)4.2 不排⽔⾏为模拟 (63)4.2.1 不排⽔(A) (64)4.2.2 不排⽔(B) (64)4.2.3 不排⽔(C) (64)4.3 ⼟⼯试验模拟 (64)4.3.1 三轴试验 (67)4.3.2 固结仪试验 (68)4.3.3 CRS (68)4.3.4 DDS (69)4.3.6 结果 (70)4.4 板的材料数据组 (70)4.4.1 材料数据组 (71)4.4.2 属性 (71)4.5.1 材料数据组 (74)4.5.2 属性 (74)4.6 锚杆的材料数据组 (75)4.6.1 材料数据组 (76)4.6.2 属性 (76)4.7 ⼏何构件的材料数据组赋值 (76)5 计算 (77)5.1 计算程序界⾯ (77)5.2 计算菜单 (78)5.3 计算模式 (79)5.3.1 经典模式 (80)5.3.2 ⾼级模式 (80)5.3.3 渗流模式 (81)5.4 定义计算阶段 (81)5.4.1 计算标签页 (81)5.4.2 插⼊或删除计算阶段 (82)5.4.3 计算阶段的标识和顺序 (82) 5.5 分析类型 (83)5.5.1 初始应⼒⽣成 (83)5.5.2 塑性计算 (85)5.5.3塑性(排⽔)计算 (85)5.5.4 固结(EPP)分析 (85)5.5.5 固结(TPP)分析 (86)5.5.6 安全性(PHI/C折减) (86) 5.5.7 动⼒分析 (87)5.5.8 ⾃由振动 (87)5.5.9 地下⽔渗流(稳态) (88)5.5.10 地下⽔渗流(瞬态) (88) 5.5.11 塑性零增长步 (88)5.6 加载步骤 (90)5.6.1 ⾃适应步长法 (90)5.6.2 加载终极⽔平法 (90)5.6.3 加载步数法 (91)5.6.4 ⾃适应步长(固结) (92)5.7 计算控制参数 (92)5.7.1 迭代过程控制参数 (93)5.7.2 孔压限定 (97)5.7.3 荷载输⼊ (97)5.7.4 控制参数 (100)5.8 分步施⼯‐⼏何定义 (102)5.8.1 改变⼏何模型 (102)5.8.2 激活或冻结类组或结构对象 (103) 5.8.3 激活或改变荷载 (103)5.8.4 应⽤指定位移 (104)5.8.5 材料数据组重新赋值 (105)5.8.6 在块类组上施加体积应变 (105) 5.8.7 施加锚杆预应⼒ (106)5.8.8 施加隧道衬砌收缩 (106)5.8.9 ΣMstage < 1 的分步施⼯ (107) 5.8.10 未完成的分步施⼯计算 (108) 5.9 分步施⼯‐⽔⼒条件 (109)5.9.1 ⽔的单位重度 (109)5.9.2 潜⽔位 (109)5.9.3 封闭边界 (113)5.9.4 降⽔ (113)5.9.5 类组⽔位分布 (114)5.9.6 渗流和固结边界条件 (115)5.9.7 特殊对象 (115)5.10 荷载乘⼦ (115)5.10.1 标准荷载乘⼦ (116)5.10.2 其它乘⼦和计算参数 (118)5.10.3 动⼒乘⼦ (119)5.11敏感性分析&参数变化 (120)5.11.1敏感性分析 (121)5.11.2参数变化 (121)5.11.3定义参数变化 (121)5.11.5 敏感度—查看结果 (123)5.11.6 参数变化 — 计算边界值 (125) 5.11.7 查看上下限 (125)5.11.8 查看变化结果 (125)5.11.9 删除结果 (126)5.12 执⾏计算 (126)5.12.1 预览施⼯阶段 (126)5.12.2 选定曲线点 (126)5.12.3 执⾏计算过程 (126)5.12.4 放弃计算 (127)5.12.5 计算过程中输出 (127)5.12.6 选择拟输出计算阶段 (130)5.12.7 重置分步施⼯设置 (130)5.12.8 计算过程中调整输⼊数据 (131)5.12.9 ⾃动误差检验 (131)6 输出程序‐概览 (133)6.1 输出程序的界⾯ (134)6.2 菜单栏中的菜单 (135)6.3 输出程序中的⼯具 (138)6.4绘图区 (144)6.5 输出的视图 (147)6.6报告⽣成 (148)6.7⽣成动画 (151)7 输出程序中的可⽤结果 (152)8曲线 (161)1简介PLAXIS 2D是⼀个专门⽤于各种岩⼟⼯程问题中变形和稳定性分析的⼆维有限元计算程序。
Plaxis 实例教程-03

25. Assign Materials for the Footing
Beam Material Properties
Select “New…” beam material
Input material properties as with soil layer
26. Assign Materials cont.
Check that points are still selected for curves
Accept default for parameters
Apply a multiplier of 350* to the traction load A
*note: (350) x (1kN/m2) x (p)(1)2 ≈ 1200kN p
33. Generating a Load-Displacement Curve
Choose “Multiplier” Choose “Displacement”
Select point “A” assigned in the calculations phase Choose to plot the loading multiplier along the yaxis Select Uy and check “Invert sign” for negative vertical displacement of footing @ center
31. Output
Double click the beam in the out put program to view bending moments or displacements in the beam
32. Curves Program
PLAXIS在深基坑开挖与支护数值模拟中的应用

・
9 ・ 4
第3 3卷 第 3 5期 2007年 12月
山 西 建 筑
SHANXI ARCHI TECTURE
V0. 3 No. 5 13 3 De . 2 0 c o7
文章编号 :0 96 2 07 3 —0 40 10 —8 52 0 )509 —2 c
Байду номын сангаас
量增多 , 而且向着更大 、 更深的方 向发展 。
塑性模 型 , 土模型 , 软 硬化模 型和软土流变模 型。此类 模型可 以
基坑工 程的变形 主要 由围护结构位移 、 周围地表沉降及基坑 模拟施工步骤 , 进行多步计算 。 底部隆起 三部分组成。这三者之 间存 在耦合关系 , 用常规分析 采 该程序能够计算两类工程 问题 , 即平面应 变问题 和轴对称 问 方法很难反 映诸 多 因素 的影 响, 目前多 采用数 值 方法来 进行 研 题 , 能够模拟 包括 土体 、 、 、 墙 板 梁结 构 , 各种元 素 和土体 的接触 究 。文中正是基于这点 , 国际先进 的有限元计算软件 P A — 面, 采用 L X 锚杆 , 土工织物 , 隧道 以及桩 基础等 。P I S程序 能够分析 I S对基坑开挖过程 中的各种变 形进行 了分析计算 。 的计算类型有 :) 1变形 ; ) 2 固结 ; ) 3 分级加载 ; ) 定分 析 ;) 4稳 5 渗流
质量 ( 准确至 1g , )减去已知塑料袋 的质量后 即为试样的总质量 ; [ ] 2 江正荣. 建筑施 工手册 ( 第四版 )M] 北京 : [ . 中国建 筑工业 出 从挖 出的全部试样 中取有 代表性 的样 品, 放入铝 盒 , 酒精燃 烧 用
版 社 . 0 3 20 .
Plaxis 科学计算手册

3
2.3 塑性模型的隐式积分
应力增量Δσ是由应力率依据方程(2.7)积分而来。微分的塑性模型应力增量可以写为:
(2.14)
e
D 表示当前应力增量下的弹性矩阵。应变增量Δε是由位移增量Δv通过应变插值矩阵B计算得到 的,与方程(2.10)类似。对于弹性材料,塑性应变增量Δεp是0。对于塑性材料,塑性应变增量可以 依照Vermeer (1979)写成以下形式:
2.1 连续介质变形的基本方程 ................................................................................. 2 2.2 有限单元法 ......................................................................................................... 3 2.3 塑性模型的隐式积分 ......................................................................................... 4 2.4 全局迭代过程 ..................................................................................................... 5 3 地下水渗流理论 .......................................................................................................... 6 3.1 稳态流的基本方程 ............................................................................................. 6 3.2 有限元离散 ......................................................................................................... 6 3.3 界面单元中的渗流 ............................................................................................. 8 4 固结理论 ....................................................................................................................... 9 4.1 固结的基本方程 ................................................................................................. 9 4.2 有限单元离散 ..................................................................................................... 9 4.3 弹塑性固结 ........................................................................................................11 5 单元公式 ..................................................................................................................... 12 5.1 线单元的插值函数 ........................................................................................... 12 5.2 三角形单元的插值函数 ................................................................................... 13 5.3 线单元的数值积分 ........................................................................................... 14 5.4 三角形单元的数值积分 ................................................................................... 15 5.5 形函数的导数 ................................................................................................... 16 5.6 单元刚度矩阵的计算 ....................................................................................... 17 6 敏感性分析与参数变化理论 ..................................................................................... 18 6.1 敏感性分析 ....................................................................................................... 18
LabX Services 文档说明书

Installation, configuration and testing are essential for the correct operation of your LabX system. The ready-to-use App Pac method is implemented in LabX and a shortcut created on the instrument.
5
LabX Application Pacs
LabX Application Pacs Capturing Your Processes
Efficient processes are fundamental to the success of your business. Our App Pacs include comprehensive analysis, consultation, and optimization procedures to precisely understand and capture your application requirements. We can work with you on- or off-site according to your needs. Each App Pac delivers one method and one report template ready to use.
Beginner Training included
2
Validation
Integration
Support & Maintenance
You will receive official documents to verify that your LabX system has been installed according to its design specifications (IQ) and its performance is consistent with the defined functionalities (OQ).
PLAXIS软件及其在地下建筑工程中的应用

汇报:阮庆松 学号:LBYG20130011 导师:吴立 教授
內容
PLAXIS软件及其在地下工程中的应用
1 Plaxis 系列软件 1.1 Plaxis 8.2版 1.2 Plaxis 3D Tunnel 1.2 版 2 Plaxis 在地下工程中的应用 2.1 基坑开挖模拟 2.2 隧道施工模拟
2.2 隧道施工模拟
实例1:盾构法隧道施工
PLAXIS软件及其在地下工程中的应用
注浆 压力
管片
正面压力
图2 盾构机及主要压力 图1 计算模型
图3 盾构法隧道施工模拟
图4 地表变形
2.2 隧道施工模拟
实例2:公路双隧道
PLAXIS软件及其在地下工程中的应用
图2 围岩应力云图
图1 双隧道剖面建模
图3 开挖引起变形云图
PLAXIS软件及其在地下工程中的应用
谢谢大家!!!
Thank you for your attention !!!
2.1 基坑开挖模拟
PLAXIS软件及其在地下工程中的应用
基坑工程是一项综合技术性很强的复杂系统工程,它涉及岩 土、结构、水文地质、工程地质等多个学科,虽然它是一项临时 性工程,但其造价约占整个工程投资的三分之一。Plaxis 8.2版 能良好模仿基坑二维模型的支护结构、地下降水和开挖过程。基 坑模拟流程如下:
1. Plaxis 系列软件
Plaxis 是用于岩土工程的变形、稳定性以及地下水渗流等问题 的通用有限元系列软件。它计算功能强大、运算稳定、界面友好 ,是解决现在与未来复杂岩土工程问题的专业计算分析工具。 Plaxis 诞生于1987年荷兰的delft大学,最初的目的是为了在荷 兰特有的低地软土上建造河堤,开发一个易于使用的二维有限元 分析程序。经过20多年的发展,Plaxis已经成为能够高效解决大多 数岩土工程问题的通用有限元系列软件。Plaxis的主要应用领域包 括:基础工程、地质工程、地下工程、隧道工程、水利工程、近 海工程、采矿工程等。 最新的系列软件包括: - Plaxis 2D 2012 - Plaxis 3D 2012 - Plaxis 3D Foundation(三维基础)V2.2 - Plaxis 3D Tunnel(三维隧道)V2.4 在学习当中,地下建筑工程专业的大部分学生使用的软件为 Plaxis 8.2版和Plaxis 3D Tunnel 1.2版。
yantubbs-PLAXIS 8 参考手册

参考手册
目录 1 2 简介...................................................... 1-1 一般说明 .................................................. 2.1 单位和符号规定 ........................................ 2.2 文件处理 .............................................. 2.3 输入方法 .............................................. 2.4 帮助工具 .............................................. 2-1 2-1 2-3 2-3 2-4
ii
4.7.3 激活或改变荷载.................................. 4.7.4 应用指定位移.................................... 4.7.5 材料数据组重新赋值.............................. 4.7.6 在块类组上施加体积应变.......................... 4.7.7 施加锚杆预应力.................................. 4.7.8 施加隧道衬砌收缩................................ 4.7.9 修改水压分布.................................... 4.7.10 塑性零增量步 ................................. 4.7.11...................................... 3-1 3.1 输入程序 .............................................. 3-1 3.2 输入菜单 .............................................. 3-3 3.2.1 读入现有工程项目................................. 3-6 3.2.2 一般设置 ........................................ 3-6 3.3 几何图形 ............................................. 3-10 3.3.1 点和线 ......................................... 3-10 3.3.2 板 ............................................. 3-11 3.3.3 铰和转动弹簧.................................... 3-12 3.3.4 土工格栅 ....................................... 3-14 3.3.5 界面 ........................................... 3-15 3.3.6 点对点锚杆...................................... 3-17 3.3.7 锚锭杆 ......................................... 3-18 3.3.8 隧道 ........................................... 3-18 3.4 荷载和边界条件 ....................................... 3-22 3.4.1 指定位移 ....................................... 3-22 3.4.2 约束 ........................................... 3-23 3.4.3 标准固定边界.................................... 3-24 3.4.4 分布荷载 ....................................... 3-24 3.4.5 集中荷载 ....................................... 3-25 3.4.6 转动约束 ....................................... 3-26 3.4.7 排水线 ......................................... 3-26 3.4.8 排水点 ......................................... 3-27 3.5 材料性质 ............................................. 3-27 3.5.1 岩土性状模拟.................................... 3-29 3.5.2 土和界面材料数据组.............................. 3-30 3.5.3 材料模型 ....................................... 3-31 3.5.4 板的材料数据组.................................. 3-45 3.5.5 土工格栅的材料数据组............................ 3-47 3.5.6 锚杆的材料数据组................................ 3-48 3.5.7 几何组分的材料数据组赋值........................ 3-48
yantubbs-动力模块手册

动力模块手册Plaxis BV北京金土木软件技术有限公司北京海淀区首体南路9号主语国际中国建筑标准设计研究院 100044目 录1 简介 (1)1.1关于手册 (1)1.2 V8版本动力荷载特性 (1)2、指导 (3)2.1 弹性地基上振动装置振动分析 (3)2.1.1输入 (3)2.1.2 初始条件 (5)2.1.3 计算 (6)2.1.4 输出 (7)2.2 打桩 (9)2.2.1 初始条件 (11)2.2.2计算 (11)2.2.3输出 (13)2.3 建筑物经受地震 (14)2.3.1 初始条件 (16)2.3.2 计算 (16)2.3.3 输出 (17)3参考手册 (19)3.1输入 (19)3.1.1一般设置 (20)3.1.2荷载和边界条件 (20)3.1.3吸收边界 (21)3.1.4外部荷载和指定位移 (21)3.1.5模型参数 (22)3.2计算 (24)3.2.1选择动力分析 (24)3.2.2动力分析参数 (24)3.2.3迭代过程手动设置 (25)3.2.4动力荷载 (26)3.2.5激活动力荷载 (27)3.2.6简谐荷载 (27)3.2.7数据文件中的荷载乘子时间数列 (28)3.2.8模型基本荷载 (30)3.3输出 (30)3.4曲线 (31)4 动力模块的校验 (33)4.1单向波的传播 (33)4.2简支梁 (35)4.3雷利波速的确定 (37)4.4LAMB的问题 (38)4.5表面波:与边界元的对比 (41)4.6施加在多层系统上的脉冲荷载:与波谱单元比较 (43)5理论 (46)5.1动力特性的基本方程 (46)5.2时间积分 (47)5.2.1波速 (48)5.2.2临界时间步 (48)5.3模型边界 (48)5.3.1吸收边界 (49)5.4初始应力和应力增量 (49)6 参考文献 (51)1 简介土体与结构不仅承受地表建筑物的静荷载,通常还会承受动力荷载。
Plaxis-实例教程-01

3. Modeling with the Mohr-Coulomb default requires the following five variables to be input: 1. Young’s modulus, (E) 2. Poisson’s ratio, (n) 3. cohesion, (c) 4. friction angle, (f) and 5. dilatancy angle, (y)
• Water Conditions mode
1. Water Weight: In projects that involve pore pressures, the input of water weight in necessary to distinguish
between effective stresses and pore pressures. PLAXIS default water weight is set to 10kN/m3
• Modeling of Soil Behavior
1. There exist three types of soil models that PLAXIS supports: 1. Mohr-Coulomb model 2. Hardening-Soil model & 3. Soft-Soil-Creep model
The Program and its Applications
by Ari Cohen
Plaxis 实例教程-02

For “Loading input” accept default and select “Define…”
14. Calculation Multipliers
Apply a displacement factor of 0.1 to the prescribed displacement
*see section 4.6 of the PLAXIS reference manual for info on Multipliers &
A successful calculation is noted by a green check mark, while a red “x” implies an error was encountered
17. Checking Reached Values
Moving back to the Multipliers tab, select “Reached Values” to view corresponding Fy
13. Calculation Parameters
Accept default values for control parameters and iterative procedure
*see section 4.4.3-8 of the PLAXIS reference manual for load stepping applications
Default Calculation Interface
12. General Calculations cont.
Phases can be named for clarification
*
*see section 4.4.1&2 of the PLAXIS reference manual for info on calculation types and phastate
示范手册plaxis.

示范手册 也更费时。除了一般用于模拟土体的三角形单元,软件包也可以产生变形协调的 板单元、土工隔栅单元和界面单元。这些单元可用来模拟结构的反应以及土体与 结构的相互作用。
节点:
一个 15 节点单元包括 15 个节点,一个 6 节点单元由 6 个节点组成。节点在单元 中的分布见图 2.1。相邻单元通过它们的公共节点连接。在有限元计算中,位移 (ux 和 uy)的计算集中在节点。可以预先选择节点,生成荷载-位移关系曲线。
单元:
在有限元网格的生成过程中,类组被划分为三角型单元。其中有 15 和 6 节点单元 可供选择。强大的 15 节点单元用来精确计算应力和失效荷载,而 6 节点单元可以 快速计算正常使用状态。考虑同样一个单元分布(例如生成一个默认粗网格), 用户应该意识到 15 节点单元网格比 6 节点单元网格更精细而且更灵活,不过计算 2-1
应力点:
与位移不同,应力和应变在 Gauss 积分点(或应力点)而不是在节点上计算。图 2.1a、b 分别显示了一个包含 12 个应力点的 15 节点三角形单元和包含 3 个应力 点的 6 节点三角形单元。可以预先选择应力点,产生应力路径和应力-应变关系 图表。
节点
(a)
应力点
节点
(b)
应力点 图 2.1 节点和应力点
线:
线用来定义几何对象的物理边界,模型边界,和几何对象的不连续处(如墙体或 壳体),或不同土层及施工阶段的分界线。同一条线可以有多项功能或特性。
类组:
类组是由线完全包围起来的区域。PLAXIS 基于几何直线的输入自动识别类组。同 一类组内土体的特性是均匀一致的。因此,类组可以看成部分土层。对类组的操 作对类组内所有单元有效。 在几何模型生成之后,基于其中的线和类组的组成程序会自动生成有限元模型。 一个有限元网格包括三个组成部分,其描述如下。
Plaxis 3D 2010 介绍

Plaxis 3D介绍主要内容 PLAXIS 定位与发展 PLAXIS 产品与服务 PLAXIS 3D功能介绍定位与目标• • • 2D、3D齐头并进的高端有限元程序 将PLAXIS发展为广大岩土工程师乐于接受和使用的程序 为客户提供各种便利条件,包括软件培训、技术支持及特殊项目的模拟、计算发展理念• • • • 供日常使用,稳定、可靠的岩土工程软件 “稳定”、“用户友好”、“高品质” 针对土体本构模型的持续改进与完善(模型参数的简便获得) 三维动力、渗流分析PLAXIS产品及服务 PLAXIS 2D主模块 渗流模块 动力模块 PLAXIS 3D3DF 3DT3DPLAXIS技术服务技术服务之—— ——PLAXIS PLAXIS期刊: 期刊/Training/datum/plaxis2008082901.htm金土木官网>软件 金土木官 培训>技术资料技术服务之—— ——PLAXIS PLAXIS网络培训: 网络培训/Training/datum/wlpx20090701.asp1、PLAXIS在边坡 边坡工程中的应用 2、PLAXIS在隧道 隧道工程中的应用 3、PLAXIS在基坑 基坑工程中的应用 4、PLAXIS应用举例-地基处理 地基处理 5、PLAXIS应用举例-基坑 基坑工程实例 6、PLAXIS在桩基 桩基工程中的应用 7、PLAXIS 2D应用中的几个问题 8、PLAXIS 3DF在路基工程 路基工程中的应用 9、PLAXIS 三维基坑 基坑工程 10、PLAXIS 三维基础 基础工程金土木官网>软件 培训>课程安排> 网络培训技术服务之—— ——PLAXIS PLAXIS教学录像: 教学录像金土木官网>软件 培训>教学录像z 《PLAXIS岩土工程软件使用指南 岩土工程软件使用指南》 》理论篇第一章 基本理论 第二章 材料模型 第三章 结构单元教程篇第四章 二维主模块教程 维主模块教程 第五章 二维动力模块教程 第六章 二维渗流模块教程 第七章 三维模块教程工程实例篇第八章 典型工程案例分析PLAXIS 3D• • • • • • 真实、便捷分析三维空间相互作用 高效 灵活 高效、灵活 实用性更强 无限制 DXF, DWG, 3DS, STL, VRML 文件导入 地形图导入工具PLAXIS 3D PLAXIS3Dz土层定义–多钻孔–Plaxis材料模型Pl i¾针对土:硬化模型小应变硬化模型¾针对岩石-霍克布朗准则PLAXIS 3D PLAXIS3D命令流每步操作行命令–=一行命令–模型修改功能–模型重现z Excel 表格-PLAXIS 3DPLAXIS 3DPLAXIS3D计算–便捷定义施工步–施工步自动重生成–64-位计算内核–并行计算–批处理15万单元耗时约3h(8G内存)z 并行计算z 批处理PLAXIS 3DPLAXIS3D输出任剖面输出–任一剖面输出–实时信息框–框选、动态剖面输出–输出文字(导入Excel)–计算报告(pdf、rtf、HTML)–动画PLAXIS 3D PLAXIS3D 输出PLAXIS 3D 应用案例-路基加固PLAXIS 3D 应用案例-路基加固PLAXIS 3D应用案例-深基坑开挖及支护PLAXIS 3D应用案例-隧道开挖&已有桩基PLAXIS 3D 应用案例-隧道开挖&已有桩基PLAXIS 3D应用案例-隧道&土&基础相互作用PLAXIS 3D 应用案例-支锚隧道THANKS !更多信息敬请联系北京金土木软件技术有限公司欢迎访问金土木知识库: 更多信息敬请联系北京金土木软件技术有限公司:•Website: •E-mail: support@ 电话010********/3766/5466/6366•电话:010-8838 3866/3766/5466/6366•Plaxis 用户群:27209809/43676779。
plaxis 3d tunnel 材料手册 Mat Man (UK)3DT

P LAXIS 3D T UNNEL Material ModelsManualversion 2TABLE OF CONTENTS TABLE OF CONTENTS1Introduction..................................................................................................1-11.1On the use of different models...............................................................1-11.2Limitations.............................................................................................1-2 2Preliminaries on material modelling..........................................................2-12.1General definitions of stress...................................................................2-12.2General definitions of strain...................................................................2-32.3Elastic strains.........................................................................................2-52.4Undrained analysis with effective parameters.......................................2-72.5Undrained analysis with undrained parameters...................................2-102.6The initial preconsolidation stress in advanced models.......................2-112.7On the initial stresses...........................................................................2-12 3The Mohr-Coulomb model (perfect-plasticity)........................................3-13.1Elastic perfectly-plastic behaviour.........................................................3-13.2Formulation of the Mohr-Coulomb model.............................................3-33.3Basic parameters of the Mohr-Coulomb model.....................................3-53.4Advanced parameters of the Mohr-Coulomb model..............................3-8 4The Jointed Rock model (anisotropy).......................................................4-14.1Anisotropic elastic material stiffness matrix..........................................4-24.2Plastic behaviour in three directions......................................................4-44.3Parameters of the Jointed Rock model...................................................4-7 5The Hardening-Soil model (isotropic hardening)....................................5-15.1Hyperbolic relationship for standard drained triaxial test......................5-25.2Approximation of hyperbola by the Hardening-Soil model...................5-35.3Plastic volumetric strain for triaxial states of stress...............................5-55.4Parameters of the Hardening-Soil model...............................................5-65.5On the cap yield surface in the Hardening-Soil model........................5-10 6Soft-Soil-Creep model (time dependent behaviour).................................6-16.1Introduction............................................................................................6-16.2Basics of one-dimensional creep............................................................6-26.3On the variables τc and εc.......................................................................6-46.4Differential law for 1D-creep.................................................................6-66.5Three-dimensional-model......................................................................6-86.6Formulation of elastic 3D-strains.........................................................6-106.7Review of model parameters................................................................6-116.8Validation of the 3D-model.................................................................6-14iMATERIAL MODELS MANUAL7Applications of advanced soil models.........................................................7-17.1Modelling simple soil tests....................................................................7-17.1.1Oedometer test...........................................................................7-17.1.2Standard triaxial test..................................................................7-27.2HS model: response in drained and undrained triaxial tests..................7-47.3Application of the Hardening-Soil model on real soil tests...................7-77.4SSC model: response in one-dimensional compression test................7-127.5Jointed Rock model: failure at different sliding directions..................7-15 8References....................................................................................................8-1 Appendix A – Symbolsii P LAXIS 3D T UNNELINTRODUCTION 1INTRODUCTIONThe mechanical behaviour of soils may be modelled at various degrees of accuracy. Hooke's law of linear, isotropic elasticity, for example, may be thought of as the simplest available stress-strain relationship. As it involves only two input parameters, i.e. Young's modulus, E, and Poisson's ratio, ν, it is generally too crude to capture essential features of soil and rock behaviour. For modelling massive structural elements and bedrock layers, however, linear elasticity tends to be appropriate.1.1ON THE USE OF DIFFERENT MODELSMohr-Coulomb model (MC)The elastic-plastic Mohr-Coulomb model involves five input parameters, i.e. E and ν for soil elasticity; φand c for soil plasticity and ψ as an angle of dilatancy. This Mohr-Coulomb model represents a 'first-order' approximation of soil or rock behaviour. It is recommended to use this model for a first analysis of the problem considered. For each layer one estimates a constant average stiffness. Due to this constant stiffness, computations tend to be relatively fast and one obtains a first impression of deformations. Besides the five model parameters mentioned above, initial soil conditions play an essential role in most soil deformation problems. Initial horizontal soil stresses have to be generated by selecting proper K0-values.Jointed Rock model (JR)The Jointed Rock model is an anisotropic elastic-plastic model, especially meant to simulate the behaviour of rock layers involving a stratification and particular fault directions. Plasticity can only occur in a maximum of three shear directions (shear planes). Each plane has its own strength parameters φand c. The intact rock is considered to behave fully elastic with constant stiffness properties E and ν. Reduced elastic properties may be defined for the stratification direction.Hardening-Soil model (HS)The Hardening-Soil model is an advanced model for the simulation of soil behaviour. As for the Mohr-Coulomb model, limiting states of stress are described by means of the friction angle, φ, the cohesion, c, and the dilatancy angle, ψ. However, soil stiffness is described much more accurately by using three different input stiffnesses: the triaxial loading stiffness, E50, the triaxial unloading stiffness, E ur, and the oedometer loading stiffness, E oed. As average values for various soil types, we have E ur≈ 3 E50 and E oed≈E50, but both very soft and very stiff soils tend to give other ratios of E oed / E50.In contrast to the Mohr-Coulomb model, the Hardening-Soil model also accounts for stress-dependency of stiffness moduli. This means that all stiffnesses increase with pressure. Hence, all three input stiffnesses relate to a reference stress, being usually taken as 100 kPa (1 bar).1-1MATERIAL MODELS MANUALSoft-Soil-Creep model (SSC)The above Hardening-Soil model is suitable for all soils, but it does not account for viscous effects, i.e. creep and stress relaxation. In fact, all soils exhibit some creep and primary compression is thus followed by a certain amount of secondary compression. The latter is most dominant in soft soils, i.e. normally consolidated clays, silts and peat, and we thus implemented a model under the name Soft-Soil-Creep model. Please note that the Soft-Soil-Creep model is a relatively new model that has been developed for application to settlement problems of foundations, embankments, etc. For unloading problems, as normally encountered in tunnelling and other excavation problems, the Soft-Soil-Creep model hardly supersedes the simple Mohr-Coulomb model. As for the Mohr-Coulomb model, proper initial soil conditions are also essential when using the Soft-Soil-Creep model. For the Hardening-Soil model and the Soft-Soil-Creep model this also includes data on the preconsolidation stress, as these models account for the effect of overconsolidation.Analyses with different modelsIt is advised to use the Mohr-Coulomb model for a relatively quick and simple first analysis of the problem considered. When good soil data is lacking, there is no use in further more advanced analyses.In many cases, one has good data on dominant soil layers, and it is appropriate to use the Hardening-Soil model in an additional analysis. No doubt, one seldomly has test results from both triaxial and oedometer tests, but good quality data from one type of test can be supplemented by data from correlations and/or in situ testing.Finally, a Soft-Soil-Creep analysis can be performed to estimate creep, i.e. secondary compression in very soft soils. The above idea of analysing geotechnical problems with different soil models may seem costly, but it tends to pay off. First of all due to the fact that the Mohr-Coulomb analysis is relatively quick and simple and secondly as the procedure tends to reduce errors.1.2LIMITATIONSThe P LAXIS code and its soil models have been developed to perform calculations of realistic geotechnical problems. In this respect P LAXIS can be considered as a geotechnical simulation tool. The soil models can be regarded as a qualitative representation of soil behaviour whereas the model parameters are used to quantify the soil behaviour. Although much care has been taken for the development of the P LAXIS code and its soil models, the simulation of reality remains an approximation, which implicitly involves some inevitable numerical and modelling errors. Moreover, the accuracy at which reality is approximated depends highly on the expertise of the user regarding the modelling of the problem, the understanding of the soil models and their limitations, the selection of model parameters, and the ability to judge the reliability of the computational results.1-2 P LAXIS 3D T UNNELINTRODUCTION Both the soil models and the P LAXIS code are constantly being improved such that each new version is an update of the previous ones. Some of the present limitations are listed below:HS-modelIt is a hardening model that does not account for softening due to soil dilatancy and de-bonding effects. In fact, it is an isotropic hardening model so that it models neither hysteresis and cyclic loading nor cyclic mobility. In order to model cyclic loading with good accuracy one would need a more complex model. Last but not least, the use of the Hardening Soil model generally results in significantly longer calculation times, since the material stiffness matrix is formed and decomposeed in each calculation step.SSC-modelAll above limitations also hold true for the Soft-Soil-Creep model. In addition this model tends to overpredict the range of elastic soil behaviour. This is especially the case for excavation problems, including tunnelling.InterfacesInterface elements are generally modelled by means of the bilinear Mohr-Coulomb model. When a more advanced model is used for the corresponding cluster material data set, the interface element will only pick up the relevant data (c, φ, ψ, E, ν) for the Mohr-Coulomb model, as described in Section 3.5.2 of the Reference Manual. In such cases the interface stiffness is taken to be the elastic soil stiffness. Hence, E = E ur where E ur is stress level dependent, following a power law with E ur proportional to σm. For the Soft-Soil-Creep model, the power m is equal to 1 and E ur is largely determined by the swelling constant κ*.1-3MATERIAL MODELS MANUAL1-4 P LAXIS 3D T UNNELPRELIMINARIES ON MATERIAL MODELLING 2-12 PRELIMINARIES ON MATERIAL MODELLINGA material model is a set of mathematical equations that describes the relationshipbetween stress and strain. Material models are often expressed in a form in whichinfinitesimal increments of stress (or 'stress rates') are related to infinitesimal incrementsof strain (or 'strain rates'). All material models implemented in the P LAXIS 3D Tunnel program are based on a relationship between the effective stress rates, ’σ&, and the strain rates, ε&. In the following section it is described how stresses and strains are defined inP LAXIS . In subsequent sections the basic stress-strain relationship is formulated and theinfluence of pore pressures in undrained materials is described. Later sections focus oninitial conditions for advanced material models.2.1 GENERAL DEFINITIONS OF STRESSStress is a tensorial quantity which can be represented by a matrix with Cartesian components:xx xy xz yxyy yz zx zy zz σσσσσσσσσσ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦(2.1) In the standard deformation theory, the stress tensor is symmetric, so σxy = σyx , σyz = σzyand σzx = σxz . In this situation, stresses are often written in vector notation, which involve only six different components:()T xx yy zz xy yz zx σσσσσσσ= (2.2) According to Terzaghi's principle, stresses in the soil are divided into effective stresses, σ', and pore pressures, σ w :'w σσσ=+ (2.3) Water is considered not to sustain any shear stresses. As a result, effective shear stressesare equal to total shear stresses. Positive normal stress components are considered torepresent tension, whereas negative normal stress components indicate pressure (orcompression).Material models for soil and rock are generally expressed as a relationship betweeninfinitesimal increments of effective stress and infinitesimal increments of strain. Insuch a relationship, infinitesimal increments of effective stress are represented by stress rates (with a dot above the stress symbol):()''''T xx yy zz xy yz zx σσσσσσσ=&&&&&&& (2.4)MATERIAL MODELS MANUAL2-2 P LAXIS 3D T UNNELxx σzzxzFigure 2.1 General three-dimensional coordinate system and sign convention for stressesIt is often useful to use principal stresses rather than Cartesian stress components whenformulating material models. Principal stresses are the stresses in such a coordinatesystem direction that all shear stress components are zero. Principal stresses are, in fact,the eigenvalues of the stress tensor. Principal effective stresses can be determined in the following way:()''0Det I σσ−= (2.5) where I is the identity matrix. This equation gives three solutions for σ', i.e. the principaleffective stresses (σ'1, σ'2, σ'3). In P LAXIS the principal effective stresses are arranged inalgebraic order: 123σσσ≤≤′′′ (2.6) Hence, σ'1 is the largest compressive principal stress and σ'3 is the smallest compressiveprincipal stress. In this manual, models are often presented with reference to theprincipal stress space, as indicated in Figure 2.2.Figure 2.2 Principal stress space-σ'3-σ'2σ'3In addition to principal stresses it is also useful to define invariants of stress, which arestress measures that are independent of the orientation of the coordinate system. Twouseful stress invariants are:p' = ()13'''xx yy zz -σσσ++ (2.7a)q = (2.7b)where p ' is the isotropic effective stress, or mean effective stress, and q is the equivalentshear stress. Note that the convention adopted for p ' is positive for compression incontrast to other stress measures. The equivalent shear stress, q , has the importantproperty that it reduces to q = │σ1'-σ3'│ for triaxial stress states with σ2' = σ3'.Principal stresses can be written in terms of the invariants:()22133''sin p q σθπ−=+− (2.8a)()223''sin p q σθ−=+ (2.8b) ()22333''sin p q σθπ−=++ (2.8c) in which θ is referred to as Lode's angle (a third invariant), which is defined as:313327arcsin 2J q θ⎛⎞=⎜⎝⎠(2.9) with ()()()()()()2223''''''''''''2xx yy zz xx yz yy zx zz xy xy yz zx J -p -p -p -p -p -p σσσσσσσσσσσσ=−−−+(2.10)2.2 GENERAL DEFINITIONS OF STRAIN Strain is a tensorial quantity which can be represented by a matrix with Cartesiancomponents:xx xy xz yxyy yz zx zy zz εεεεεεεεεε⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦(2.11)Strains are the derivatives of the displacement components, i.e. εij = ∂u i / ∂j , where i andj are either x , y or z . According to the small deformation theory, only the sum ofcomplementing Cartesian shear strain components εij and εji results in shear stress. Thissum is denoted as the shear strain γ. Hence, instead of εxy , εyx , εyz , εzy , εzx and εxz theshear strain components γxy , γyz and γzx are used respectively. Under the aboveconditions, strains are often written in vector notation, which involve only six different components:()T xx yy zz xy yz zx εεεεγγγ= (2.12)x xx u x ε∂=∂ (2.13a) yyy u y ε∂=∂ (2.13b) z zz u zε∂=∂ (2.13c) y x xy xy yx u u y x γεε∂∂=+=+∂∂ (2.13d) y z yz yz zy u u z y γεε∂∂=+=+∂∂ (2.13e) x z zx zx xz u u x zγεε∂∂=+=+∂∂ (2.13f) Similarly as for stresses, positive normal strain components refer to extension, whereasnegative normal strain components indicate compression.In the formulation of material models, where infinitesimal increments of strain areconsidered, these increments are represented by strain rates (with a dot above the strain symbol).()T xx yy zz xy yz zx γγγεεεε=&&&&&&& (2.14)In analogy to the invariants of stress, it is also useful to define invariants of strain. Astrain invariant that is often used is the volumetric strain, εν, which is defined as the sumof all normal strain components:123v xx yy zz εεεεεεε=++=++ (2.15) The volumetric strain is defined as negative for compaction and as positive fordilatancy.For elastoplastic models, as used the P LAXIS 3D Tunnel program, strains are decomposed into elastic and plastic components:e p εεε=+ (2.16) Throughout this manual, the superscript e will be used to denote elastic strains and thesuperscript p will be used to denote plastic strains.2.3 ELASTIC STRAINSMaterial models for soil and rock are generally expressed as a relationship betweeninfinitesimal increments of effective stress ('effective stress rates') and infinitesimal increments of strain ('strain rates'). This relationship may be expressed in the form:M σε=′&& (2.17) M is a material stiffness matrix. Note that in this type of approach, pore-pressures areThe simplest material model in the 3D Tunnel program is Hooke's law for isotropiclinear elastic behaviour. This model is available in the Plaxis 3D Tunnel program underthe name Linear Elastic model, but it is also the basis of other models. Hooke's law canbe given by the equation: ()()121211'''000''1''000'''1'000''000'00'12'1'0000'0'00000''xx xx yy yy zz zz xy xy yz yz zx zx εεεE γγγνννσνννσνννσνσνννσνσ−⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥−⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−=⎢⎥⎢⎥⎢⎥−−+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−⎢⎥⎢⎥⎢⎥−⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦&&&&&&&&&&&& (2.18) The elastic material stiffness matrix is often denoted as D e . Two parameters are used inthis model, the effective Young's modulus, E ν'. In theremaining part of this manual effective parameters are denoted without dash ('), unless adifferent meaning is explicitly stated. The symbols E and ν are sometimes used in thismanual in combination with the subscript ur to emphasize that the parameter isexplicitly meant for unloading and reloading. A stiffness modulus may also be indicatedwith the subscript ref to emphasize that it refers to a particular reference level (y ref ) (seefurther).The relationship between Young's modulus E and other stiffness moduli, such as theshear modulus G , the bulk modulus K , and the oedometer modulus E oed , is given by:()21E G ν=+ (2.19a) ()312E K ν=− (2.19b) ()()()1121oed - E E ννν=−+ (2.19c) During the input of material parameters for the Linear Elastic model or the Mohr-Coulomb model the values of G and E oed are presented as auxiliary parameters(alternatives), calculated from Eq. (2.19). Note that the alternatives are influenced by theinput values of E and ν. Entering a particular value for one of the alternatives G or E oedresults in a change of the E modulus.Figure 2.3 Parameters tab for the Linear Elastic modelIt is possible for the Linear Elastic model to specify a stiffness that varies linearly withdepth. This can be done by entering the advanced parameters window using theAdvanced button, as shown in Figure 2.3. Here one may enter a value for E increment whichis the increment of stiffness per unit of depth, as indicated in Figure 2.4.Figure 2.4 Advanced parameter windowTogether with the input of E increment the input of y ref becomes relevant. Above y ref thestiffness is equal to E ref . Below the stiffness is given by:() actual ref ref increment ref E E y y E y y =+−< (2.20)The Linear Elastic model is usually inappropriate to model the highly non-linearbehaviour of soil, but it is of interest to simulate structural behaviour, such as thickconcrete walls or plates, for which strength properties are usually very high comparedwith those of soil. For these applications, the Linear Elastic model will often be selectedtogether with Non-porous type of material behaviour in order to exclude pore pressuresfrom these structural elements.2.4 UNDRAINED ANALYSIS WITH EFFECTIVE PARAMETERSIn the P LAXIS 3D Tunnel program it is possible to specify undrained behaviour in aneffective stress analysis using effective model parameters. This is achieved byidentifying the Type of material behaviour (Material type ) of a soil layer as Undrained .In this Section, it is explained how P LAXIS deals with this special option. The presenceof pore pressures in a soil body, usually caused by water, contributes to the total stresslevel. According to Terzaghi's principle, total stresses σ can be divided into effectivestresses σ' and pore pressures σw (see also Eq. 2.3). However, water is supposed not tosustain any shear stress, and therefore the effective shear stresses are equal to the totalshear stresses:'xx xx w σσσ=+ (2.21a) 'yy yy w σσσ=+ (2.21b) 'zz zz w σσσ=+ (2.21c) 'xy xy σσ= (2.21d) 'yz yz σσ= (2.21e) 'zx zx σσ= (2.21f)Note that, similar to the total and the effective stress components, σw is considerednegative for pressure.A further distinction is made between steady state pore stress, p steady , and excess porestress, p excess :w steady excess p p σ=+ (2.22)Steady state pore pressures are considered to be input data, i.e. generated on the basis ofphreatic levels. This generation of steady state pore pressures is discussed in Section 3.8of the Reference Manual. Excess pore pressures are generated during plastic calculationsfor the case of undrained material behaviour. Undrained material behaviour and thecorresponding calculation of excess pore pressures is described below.Since the time derivative of the steady state component equals zero, it follows:w excess p σ=&& (2.23) Hooke's law can be inverted to obtain:'1''000''1'000'''1000100022'00'000022'00000022'e xx xx e yy yy e zz zz e xy xy e yz yz e zx zx E σννεσννεσννεσνγσνγσνγ−−⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥−−⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−=⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦&&&&&&&&&&&& (2.24) Substituting Eq. (2.21) gives:1''000'1'000''1000100022'00'000022'00000022'e xx w xx e yy w yy e zz w zz e xy xy e yz yz e zx zx E σσννεσσννεσσννεσνγσνγσνγ−−−⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥−−−⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−=⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦&&&&&&&&&&&&&&& (2.25) Considering slightly compressible water, the rate of pore pressure is written as:()w e e e xx yy zz w K + + nσεεε=&&&& (2.26) in which K w is the bulk modulus of the water and n is the soil porosity.The inverted form of Hooke's law may be written in terms of the total stress rates andthe undrained parameters E u and νu :1000'1000'1000'1000220000002200000022e u u xx xx e u u yy yy e u u zz zz e u xy u xy e u yz yz e u zx zx E ννσεννσεννσενσγνσγνσγ−−⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥−−⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−=⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦&&&&&&&&&&&& (2.27) where: ()21u u EG + ν=()()'1'121'u νµννµν++=++ (2.28) µ = 13'w Kn K ()'312E K ν=′−′ (2.29) Hence, the special option for undrained behaviour in P LAXIS is such that the effectiveparameters G and ν are transferred into undrained parameters E u and νu according to Eq.(2.28) and (2.29). Note that the index u is used to indicate auxiliary parameters forundrained soil. Hence, E u and νu should not be confused with E ur and νur as used todenote unloading / reloading.Fully incompressible behaviour is obtained for νu = 0.5. However, taking νu = 0.5 leadsto singularity of the stiffness matrix. In fact, water is not fully incompressible, but arealistic bulk modulus for water is very large. In order to avoid numerical problemscaused by an extremely low compressibility, νu is taken as 0.495, which makes theundrained soil body slightly compressible. In order to ensure realistic computationalresults, the bulk modulus of the water must be high compared with the bulk modulus ofthe soil skeleton, i.e. K w >>n K '. This condition is sufficiently ensured by requiring ν' ≤0.35. Users will get a warning as soon as larger Poisson's ratios are used in combinationwith undrained material behaviour.Consequently, for undrained material behaviour a bulk modulus for water is automatically added to the stiffness matrix. The value of the bulk modulus is given by:()()()30.495300301121u w u K K K K n νννννν−′−′==>′′′+′−+′ (2.30) at least for ν' ≤ 0.35.The rate of excess pore pressure is calculated from the (small) volumetric strain rate, according to:w w v K nσε=&& (2.31) The type of elements used in the P LAXIS 3D Tunnel program are sufficiently adequate toavoid mesh locking effects for nearly incompressible materials.This special option to model undrained material behaviour on the basis of effectivemodel parameters is available for all material models in the P LAXIS 3D Tunnel program.This enables undrained calculations to be executed with effective input parameters, withexplicit distinction between effective stresses and (excess) pore pressures.Such an analysis requires effective soil parameters and is therefore highly convenientwhen such parameters are available. For soft soil projects, accurate data on effectiveparameters may not always be available. Instead, in situ tests and laboratory tests mayhave been performed to obtain undrained soil parameters. In such situations measuredundrained Young's moduli can be easily converted into effective Young's moduli by:()21'3u E E ν+=′ (2.32) Undrained shear strengths, however, cannot easily be used to determine the effectivestrength parameters φ and c . For such projects the P LAXIS 3D Tunnel program offers thepossibility of an undrained analysis with direct input of the undrained shear strength(c u or s u ) and φ = φu = 0°. This option is only available for the Mohr-Coulomb modeland the Hardening-Soil model, but not for the Soft Soil Creep model. Note thatwhenever the Material type parameter is set to Undrained , effective values must beentered for the elastic parameters E and ν!2.5 UNDRAINED ANALYSIS WITH UNDRAINED PARAMETERSIf, for any reason, it is desired not to use the Undrained option in the P LAXIS 3D Tunnelprogram to perform an undrained analysis, one may simulate undrained behaviour byselecting the Non-porous option and directly entering undrained elastic properties E = E uand ν=νu =0.495 in combination with the undrained strength properties c = c u andφ = φu = 0°. In this case a total stress analysis is performed without distinction betweeneffective stresses and pore pressures. Hence, all tabulated output referring to effectivestresses should now be interpreted as total stresses and all pore pressures are equal tozero. In graphical output of stresses the stresses in Non-porous clusters are not plotted. Ifone does want graphical output of stresses one should select Drained instead of Non-porous for the type of material behaviour and make sure that no pore pressures aregenerated in these clusters.Note that this type of approach is not possible when using the Soft Soil Creep model. Ingeneral, an effective stress analysis using the Undrained option in P LAXIS to simulateundrained behaviour is preferable over a total stress analysis.。
yantubbs-Plaxis 校验手册

Plaxis Version 8校验手册Plaxis BV北京金土木软件技术有限公司北京车公庄大街19号中国建筑标准设计研究院 100044目录1 绪论 (1)2已知理论解的弹性问题 (2)2.1 弹性土上的光滑刚性条形基础 (2)2.2 条形荷载下的吉布森弹性土 (3)2.3 梁的弯曲 (4)2.4 板的弯曲 (5)2.6 考虑网格更新的悬臂构件分析 (8)3 理论破坏荷载下的塑性问题 (10)3.1 圆形基础承载能力 (10)3.2条形基础的承载能力 (11)3.3 用于测试界面的滑块模型 (13)3.4 圆孔的扩孔 (14)4 固结与地下水渗流 (17)4.1 一维固结 (17)4.2 通过沙层的自由渗流 (18)4.3 隔水墙下的渗流 (20)5 参考文献 (22)1 绪论通过与解析解的仔细对比和校验,Plaxis的性能与精确性已得到验证。
第二章至第四章将有选择的阐述一些基准分析。
作为精确度和性能的附加验证,Plaxis已经对整体结构性能进行了预算与验算。
弹性基准问题:有许多已知精确解析解的问题可用来作为基准问题。
弹性计算的选择将在第二章中讲述;所选用的特定分析案例,都类似于Plaxis可能遇到的实际工程问题。
塑性基准问题:第三章将讲述关于塑性材料特性的塑性基准问题。
它们包括破坏荷载计算和滑动分析。
至于弹性基准问题,只考虑已知精确解。
地下渗流与固结:第四章将讲述关于地下水渗流基准问题,这些问题验证了地下水渗流和固结计算的正确性。
这一章也包含一些固结分析的校验例题。
个案研究:Plaxis已经广泛地应用于全尺寸岩土工程的预测和验算。
如果输入的土体模型参数和结构元件的参数是合理的,这类计算可用于进一步验证Plaxis的性能。
一些这样的工程项目可在官方网站和Plaxis 报告出版物获得。
更多模型标准数据的验证实例和对照,尤其是高级土体模型的应用,可参考材料模型手册的第九章。
2已知理论解的弹性问题本章将讲述几个弹性基准问题。
示范手册plaxis.pdf

3.3 实例B:柔性基础 ...................................... 3-18
4
水下土体开挖施工 (第二课) ................................. 4-1
4.1 几何形状 .............................................. 4-2
3.2.1 建立输入 ........................................ 3-2
3.2.2 执行计算 ....................................... 3-13
Байду номын сангаас
3.2.3 显示输出结果.................................... 3-16
3
砂土层上圆形基础的沉降 (第一课) ........................... 3-1
3.1 几何形状 .............................................. 3-1
3.2 实例A:刚性基础 ....................................... 3-2
7.5 更新网格分析 ........................................... 7-9
8
隧道施工导致的地面沉降 (第六课)............................ 8-1
8.1 几何形状 ............................................... 8-2
6
拉锚地连墙支护下的降水开挖(第四课) ...................... 6-1
PLAXIS 3D ppt课件

ppt课件
4
2. 基坑开挖例题
• 模拟在粘土和砂土中开挖基坑过程.
• 图2.1 基坑开挖
ppt课件
5
• 图形范围: 50m*80m;
• 开挖范围: • 12m*20m, 位于图形范围中部。 基坑北侧有地面 超载。
ppt课件
6
开挖剖面图
• 图2-2 开挖剖面图
• 赋值-20m;
• 土分为四层,因而增加另外3层土层边界。
• 选择底层边界(y=-20 m)三次单击插入键 加入另外三个土层边界。
• 单击y 方向第二层土边界,输入-1.0 m建立 本层边界。
• 以同样方式变换其他层从-9.5m 到-11.0m.边
界信息图示于图2.3
ppt课件
12
图2.3 钻孔窗口
ppt课件
25
梁特性
• 从材料菜单选择梁元或打开材料窗选择梁 设置:
• 钢支撑和钢围檩材料特性见图2.6:
ppt课件
26
• 钢支撑和钢围檩材料特性均设置在y=-1.0m
图2.6 梁材料特性
ppt课件
27
土锚杆特性
• 打开材料设置窗选择锚杆设置:单击”new” 建立新的材料设置。
• 锚杆材料特性见图2.7:
输入题目 ( Input of text (e.g. entering a project name)
输入参数 (Input of values (e.g. entering the soil unit weight)
输入选择的模型 (Input of selections (e.g. choosing a soil model)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
砂土层上圆形基础的沉降 (第一课) ........................... 3-1
3.1 几何形状 .............................................. 3-1
3.2 实例A:刚性基础 .................................................................. 2-3
2.3.3 选择输入 ........................................ 2-3
2.3.4 结构化输入....................................... 2-4
6
拉锚地连墙支护下的降水开挖(第四课) ...................... 6-1
6.1 输入 .................................................. 6-1
6.2 计算 .................................................. 6-4
1 绪论
PLAXIS 是一个专门用于岩土工程变形和稳定性分析的有限元计算程序。通过简单 的输入过程可以生成复杂的有限元模型,而强大的输出功能可以提供详尽的计算 结果。计算过程以稳定的数值方法为基础,本身完全自动。用户能够在几小时培训 后使用此计算程序。 通过对广泛实际问题的处理,本手册内的辅导课程涵盖了程序的大部分特征,旨 在帮助用户熟悉 PLAXIS,但这些课程不是实际项目。 用户应具有土力学的基本知识,能够在 Windows 视窗下工作。特别建议用户按照 示范手册的顺序学习这些课程。辅导课程也列在 PLAXIS 程序目录的实例文件夹下 ,可以用来检查计算结果。 本示范手册既不提供有限元方法的理论背景知识,也不解释程序中多种土力学模 型的具体情况。后者可以在材料模型手册中得到,而理论背景则由科学手册给出 。对于程序特征的详细信息,用户可以参见参考手册。除了整套手册,短期学习 班也在世界范围内定期举行用来提供给用户使用程序的操作经验和背景知识。
2-1
示范手册
也更费时。除了一般用于模拟土体的三角形单元,软件包也可以产生变形协调的 板单元、土工隔栅单元和界面单元。这些单元可用来模拟结构的反应以及土体与 结构的相互作用。
节点:
一个 15 节点单元包括 15 个节点,一个 6 节点单元由 6 个节点组成。节点在单元 中的分布见图 2.1。相邻单元通过它们的公共节点连接。在有限元计算中,位移 (ux 和 uy)的计算集中在节点。可以预先选择节点,生成荷载-位移关系曲线。
7.2 计算 ................................................... 7-3
7.3 输出 ................................................... 7-4
7.4 安全性分析 ............................................. 7-6
PLAXIS 版本 8 示范手册
目录
目录
1
绪论...................................................... 1-1
2
开始...................................................... 2-1
2.1 安装 .................................................. 2-1
3.2.1 建立输入 ........................................ 3-2
3.2.2 执行计算 ....................................... 3-13
3.2.3 显示输出结果.................................... 3-16
线:
线用来定义几何对象的物理边界,模型边界,和几何对象的不连续处(如墙体或 壳体),或不同土层及施工阶段的分界线。同一条线可以有多项功能或特性。
类组:
类组是由线完全包围起来的区域。PLAXIS 基于几何直线的输入自动识别类组。同 一类组内土体的特性是均匀一致的。因此,类组可以看成部分土层。对类组的操 作对类组内所有单元有效。 在几何模型生成之后,基于其中的线和类组的组成程序会自动生成有限元模型。 一个有限元网格包括三个组成部分,其描述如下。
2.2 一般模拟知识
对于新项目,首先要建立几何模型。该模型是一个真实三维问题的二维体现,它 由点、线、类组构成。一个几何模型应该包括地基各个土层的代表性分划、结构 物体、施工阶段和荷载。这个模型必须足够大,以便其边界不会影响研究问题的 结果。几何模型的三个组成部分详细描述如下。
点:
点是线的起点和终点。点也被用来设置锚杆、集中力和固定端,或供有限元网格 的局部加密。
7.5 更新网格分析 ........................................... 7-9
8
隧道施工导致的地面沉降 (第六课)............................ 8-1
8.1 几何形状 ............................................... 8-2
8.2 计算 ................................................... 8-6
8.3 输出 ................................................... 8-7
8.4 使用HS模型 ............................................. 8-8
应力点:
与位移不同,应力和应变在 Gauss 积分点(或应力点)而不是在节点上计算。图 2.1a、b 分别显示了一个包含 12 个应力点的 15 节点三角形单元和包含 3 个应力 点的 6 节点三角形单元。可以预先选择应力点,产生应力路径和应力-应变关系 图表。
节点 (a) 应力点
节点 (b)
应力点 图 2.1 节点和应力点
4.2 计算 .................................................. 4-9
4.3 显示输出结果 ......................................... 4-12
5
不排水条件下河堤的建造 (第三课) ........................... 5-1
8.5 HS模型案例输出结果 .................................... 8-10
8.6 与摩尔-库仑模型案例的比较 ............................. 8-10
附录 A-菜单目录 附录 B-初始自重应力计算流程图
ii
PLAXIS 版本 8
绪论
6.3 输出 .................................................. 6-9
6.4 使用HS模型 ........................................... 6-11
6.5 HS示例的输出 ......................................... 6-13
2.4 启动程序 .............................................. 2-5
2.4.1 一般设置 ........................................ 2-5
2.4.2 建立几何模型..................................... 2-7
i
示范手册
6.6 与摩尔-库仑示例的比较 ................................. 6-13
7
路基建造(第五课) ........................................... 7-1
7.1 输入 ................................................... 7-1
3.3 实例B:柔性基础 ...................................... 3-18
4
水下土体开挖施工 (第二课) ................................. 4-1
4.1 几何形状 .............................................. 4-2
2.2 一般模拟知识 .......................................... 2-1
2.3 输入过程 .............................................. 2-2
2.3.1 几何对象的输入................................... 2-3
5.1 几何模型 .............................................. 5-2
5.2 计算 .................................................. 5-3