高考数学基础知识汇总

合集下载

2024年高考数学知识点及公式整理汇总.doc

2024年高考数学知识点及公式整理汇总.doc

2024年高考数学知识点及公式整理汇总高中数学重点知识点全总结1、命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。

)原命题与逆否命题同真、同假;逆命题与否命题同真同假。

2、对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B中有元素无原象。

)3、函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域)4、反函数存在的条件是什么?(一一对应函数)求反函数的步骤掌握了吗?(①反解x;②互换x、y;③注明定义域)5、反函数的性质有哪些?①互为反函数的图象关于直线y=x对称;②保存了原来函数的单调性、奇函数性;6、函数f(x)具有奇偶性的必要(非充分)条件是什么?(f(x)定义域关于原点对称)1、抽样方法主要有:简单随机抽样(抽签法、随机数表法)常常用于总体个数较少时,它的特征是从总体中逐个抽取;系统抽样,常用于总体个数较多时,它的主要特征是均衡成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要用于总体中有明显差异,它们的共同特征是每个个体被抽到的概率相等,体现了抽样的客观性和平等性。

2、对总体分布的估计——用样本的频率作为总体的概率,用样本的期望(平均值)和方差去估计总体的期望和方差。

3、向量——既有大小又有方向的量。

在此规定下向量可以在平面(或空间)平行移动而不改变。

4、并线向量(平行向量)——方向相同或相反的向量。

规定零向量与任意向量平行。

1、三类角的求法:①找出或作出有关的角。

②证明其符合定义,并指出所求作的角。

③计算大小(解直角三角形,或用余弦定理)。

2、正棱柱——底面为正多边形的直棱柱正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。

正棱锥的计算集中在四个直角三角形中:3、怎样判断直线l与圆C的位置关系?圆心到直线的距离与圆的半径比较。

直线与圆相交时,注意利用圆的“垂径定理”。

新高考数学常用知识点归纳

新高考数学常用知识点归纳

新高考数学常用知识点归纳新高考数学作为高中数学教学的重要组成部分,其知识点广泛,涵盖了代数、几何、概率统计等多个领域。

以下是对新高考数学常用知识点的归纳总结:一、代数部分1. 集合与函数:集合的概念、运算,函数的定义、性质、图像以及应用。

2. 不等式:不等式的解法,包括一元一次不等式、一元二次不等式、绝对值不等式等。

3. 数列:等差数列、等比数列的概念、通项公式、求和公式,以及数列的极限。

4. 复数:复数的概念、运算、复平面上的表示,以及复数的几何意义。

5. 导数与微分:导数的定义、几何意义、基本导数公式,以及导数在函数中的应用。

6. 积分:定积分与不定积分的概念、计算方法,以及积分在实际问题中的应用。

二、几何部分1. 平面几何:直线、圆、椭圆、双曲线、抛物线等基本图形的性质和关系。

2. 立体几何:空间直线与平面的位置关系,多面体和旋转体的性质。

3. 解析几何:坐标系下的几何问题,包括直线、圆、椭圆等图形的方程和性质。

三、概率统计部分1. 概率论基础:事件的概率,条件概率,独立事件,以及概率的加法和乘法规则。

2. 随机变量及其分布:离散型随机变量和连续型随机变量,分布列、概率密度函数以及期望、方差等。

3. 统计学基础:数据的收集、整理和描述,包括均值、中位数、众数、标准差等统计量。

四、其他知识点1. 三角函数:正弦、余弦、正切等三角函数的性质、图像和应用。

2. 反三角函数:反正弦、反余弦、反正切等反三角函数的应用。

3. 逻辑推理:命题逻辑、演绎推理、归纳推理等逻辑推理方法。

结束语新高考数学的知识点繁多,但通过系统地学习和练习,可以逐步掌握并灵活运用。

希望以上的归纳能够帮助学生更好地理解和准备数学考试,同时也鼓励学生在数学学习中不断探索和创新。

2024年高考数学知识点总结整理

2024年高考数学知识点总结整理

2024年高考数学知识点总结整理一、函数与方程1. 函数的概念和性质- 函数的定义:函数是一个将一个集合的元素(称为自变量)映射到另一个集合的元素(称为因变量)的规则。

- 函数的表示:函数可以用函数式表示、图像表示、数据表格表示等。

- 函数的性质:奇偶性、周期性、单调性、极值、零点等。

2. 平面直角坐标系- 坐标系的建立:确定坐标轴的正方向和原点的位置。

- 直角坐标的表示法:点在平面上的位置可以用有序数对表示。

- 直线的方程:点斜式、两点式、截距式等。

3. 一元二次方程- 一元二次方程的定义:形如ax^2 + bx + c = 0的代数方程,其中a、b、c都是已知的实数,a ≠ 0。

- 一元二次方程的解:实数解、复数解、无解等。

- 一元二次方程的求解方法:配方法、公式法、图解法等。

4. 不等式- 不等式的概念:比大小关系不是等号的代数式。

- 不等式的性质:加减、乘除等运算规则。

- 不等式的解集:解集可以用数轴图、区间表示等。

二、数列与数学归纳法1. 等差数列- 等差数列的定义:数列中相邻两项之差相等。

- 等差数列的通项公式:an = a1 + (n - 1)d,其中an是第n项,a1是首项,d是公差。

- 等差数列的性质:求和公式、前n项和等。

2. 等比数列- 等比数列的定义:数列中相邻两项之比相等。

- 等比数列的通项公式:an = a1 * r^(n - 1),其中an是第n项,a1是首项,r是公比。

- 等比数列的性质:求和公式、前n项和等。

3. 数列的求和- 等差数列的前n项和公式:Sn = n/2 * (a1 + an),其中Sn是前n项和,a1是首项,an是第n项。

- 等比数列的前n项和公式:Sn = (a1 * (1 - r^n))/(1 - r),其中Sn是前n项和,a1是首项,r是公比。

4. 数学归纳法- 数学归纳法的基本思想:证明某个命题对于一切自然数n 都成立,先证明对n=1成立,然后假设对n=k成立,再证明对n=k+1成立。

高考数学知识点大全

高考数学知识点大全

高考数学知识点大全1、一次函数的定义、图像和性质定义:一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数。

图像:一次函数的图像是一条直线性质:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

2、反比例函数的定义、图像和性质定义:一般地,形如y=k/x(k是常数,k≠0)的函数,叫做反比例函数。

图像:反比例函数的图像是双曲线。

性质:当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内y随x的增大而减小;当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内y随x的增大而增大。

3、正比例函数的定义、图像和性质定义:一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数。

图像:正比例函数的图像是一条直线。

性质:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

4、二次函数的定义、图像和性质定义:一般地,形如y=ax²+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数。

图像:二次函数的图像是一条抛物线。

性质:a>0时,抛物线开口向上,对称轴是直线x=-b/2a;a<0时,抛物线开口向下,对称轴是直线x=-b/2a。

二、常用公式及定理1、勾股定理:直角三角形两直角边的平方和等于斜边的平方。

如果直角三角形三条边分别为a、b和c(c为斜边),那么a²+b²=c²。

2、三角形的面积公式:如果一个三角形底边为a,高为h,那么该三角形的面积S=1/2ah。

3、平行四边形的面积公式:如果一个平行四边形底边为a,高为h,那么该平行四边形的面积S=ah。

4、梯形的面积公式:如果一个梯形上底为a,下底为b,高为h,那么该梯形的面积S=(a+b)÷2h。

5、圆的周长公式:如果一个圆的半径为r,那么该圆的周长C=2πr。

6、圆的面积公式:如果一个圆的半径为r,那么该圆的面积S=πr²。

高考数学重要知识点

高考数学重要知识点

高考数学重要知识点一、代数1. 集合与函数的概念- 集合的表示、运算及其性质- 函数的定义、性质和常见类型(如一次函数、二次函数、指数函数、对数函数、三角函数等)2. 代数式的运算- 整式的加减乘除、因式分解- 分式的运算和化简- 二次根式的运算及其性质3. 方程与不等式- 一元一次方程、一元二次方程的解法- 不等式的基本性质和解集表示- 系统方程组的解法(代入法、消元法等)4. 函数的图像与性质- 函数的单调性、奇偶性、周期性- 函数图像的平移、伸缩、对称变换5. 指数与对数- 指数运算法则、指数函数的性质- 对数运算法则、对数函数的性质- 指数与对数的互化二、几何1. 平面几何- 点、线、面的基本性质- 三角形、四边形的性质和计算- 圆的性质和相关公式2. 空间几何- 空间直线和平面的方程- 空间图形的体积和表面积计算- 空间向量及其运算3. 解析几何- 坐标系的建立和应用- 曲线的方程和性质- 圆锥曲线(圆、椭圆、双曲线、抛物线)的标准方程三、概率与统计1. 概率基础- 随机事件的概率- 条件概率、独立事件- 概率分布和数学期望2. 统计初步- 数据的收集和整理- 统计量(均值、方差、标准差等)的计算- 线性回归和相关系数四、数学分析1. 极限与连续- 数列的极限- 函数的极限和连续性2. 导数与微分- 导数的定义和计算- 微分的应用3. 积分基础- 不定积分和定积分的概念及计算- 积分的应用问题(如面积、体积的计算)五、数学解题技巧1. 逻辑推理与证明- 演绎推理、归纳推理- 常见证明方法(直接证明、间接证明、反证法等)2. 解题策略- 转化思想、分类讨论- 题目中的数学建模3. 常见题型解析- 选择题、填空题、解答题的解题技巧- 时间管理和检查策略以上是高考数学的重要知识点概要。

每个部分都需要通过大量的练习和复习来掌握。

建议学生结合具体的教材和辅导资料,对每个知识点进行深入学习和理解,并不断通过练习题来巩固和提高解题能力。

高考数学必考知识点归纳全

高考数学必考知识点归纳全

高考数学必考知识点归纳全高考数学是高中阶段学生面临的一次重要考试,它涵盖了多个数学领域的基础知识点。

以下是高考数学必考知识点的归纳:一、集合与函数- 集合的概念:集合的表示、子集、并集、交集、补集。

- 函数的概念:函数的定义、值域、定义域、单调性、奇偶性。

- 函数的表示:函数的图象、函数的解析式。

二、代数基础- 指数与对数:指数函数、对数函数、对数运算法则。

- 幂运算:幂的运算法则、根式。

- 代数方程:一元一次方程、一元二次方程、高次方程、方程组的解法。

三、不等式与不等式组- 不等式的基本性质:不等式的基本解法、不等式组的解集。

- 绝对值不等式:绝对值的定义、绝对值不等式的解法。

四、数列- 等差数列:等差数列的定义、通项公式、求和公式。

- 等比数列:等比数列的定义、通项公式、求和公式。

- 数列的极限:数列极限的概念、极限的运算。

五、三角函数与解三角形- 三角函数:正弦、余弦、正切等基本三角函数的性质和图像。

- 解三角形:正弦定理、余弦定理、三角形的面积公式。

六、解析几何- 直线:直线的方程、直线的位置关系。

- 圆:圆的方程、圆与直线的位置关系。

- 椭圆、双曲线、抛物线:圆锥曲线的性质和方程。

七、立体几何- 空间直线与平面:空间直线的方程、平面的方程、线面关系。

- 多面体与旋转体:多面体的体积、旋转体的表面积和体积。

八、概率与统计初步- 随机事件的概率:概率的定义、概率的计算方法。

- 统计初步:数据的收集、整理、描述。

九、导数与微分- 导数的概念:导数的定义、几何意义。

- 基本导数公式:常见函数的导数公式。

- 微分的概念:微分的定义、微分的应用。

十、积分与应用- 不定积分:不定积分的概念、基本积分公式。

- 定积分:定积分的概念、定积分的计算方法。

- 积分的应用:面积、体积、物理量等的计算。

十一、复数- 复数的概念:复数的定义、复数的运算。

- 复数的几何表示:复平面、复数的模和辐角。

十二、逻辑推理与证明方法- 逻辑推理:命题逻辑、逻辑运算。

高考数学基础知识点整理

高考数学基础知识点整理

高考数学基础知识点整理高考数学基础知识点一、正余弦定理正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径余弦定理:a2=b2+c2-2bc__cosA二、两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)三、倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a四、半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))五、和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB理科数学的考点1.【数列】【解三角形】数列与解三角形的知识点在解答题的第一题中,是非此即彼的状态,近些年的特征是大题第一题两年数列两年解三角形轮流来, 2014、2015年大题第一题考查的是数列,2016年大题第一题考查的是解三角形,故预计2017年大题第一题较大可能仍然考查解三角形。

高考数学知识点总结与归纳

高考数学知识点总结与归纳

高考数学知识点总结与归纳高考数学作为高考必考科目之一,占有相当重要的地位。

在应对高考数学时,如果能够对一些数学知识点进行深入的掌握和理解,那么在高考中取得优异成绩就不成为难题。

因此,今天我们就来对高考数学中的一些重要知识点进行总结和归纳,希望能够对考生们有所帮助。

一. 函数基本知识函数是高中数学必学的重要知识点之一,也是高考重点考察内容之一。

在这部分内容中,需要学习和掌握的知识点包括函数定义、函数图像、函数性质、函数的运算、反函数等。

1. 函数的定义在数学中,函数是指一个数集到另一个数集的一种对应关系。

其中,第一个数集叫做函数的定义域,第二个数集叫做函数的值域。

一般来说,函数可以用公式、图像、表格等形式进行表示。

2. 函数图像函数图像是指在直角坐标系上,将函数中的所有点用连续线段连接起来所形成的线条。

对于一些形式简单的函数,学生们可以手工绘制其函数图像,比较常见的函数图像包括直线、双曲线、抛物线等。

3. 函数性质函数性质是指函数在运算中所具有的一些特殊性质。

其中,比较重要的函数性质包括奇偶性、单调性、周期性等。

这些性质在高考中经常会被考察。

4. 函数的运算函数的运算主要是指四则运算、复合运算、反函数等运算。

这些运算可以通过一些基本规则和定理进行处理和简化,需要考生们掌握这些运算的基本方法。

二. 解析几何解析几何是高考数学中的另一个重要知识点,它主要涉及到平面直角坐标系、空间直角坐标系等内容。

需要学习和掌握的知识点包括点、直线、圆、曲线的解析表示和相关属性,以及空间中的直线、平面等几何体的相关性质。

1. 平面直角坐标系平面直角坐标系由横、纵坐标轴构成,常用于平面几何的研究。

其中,坐标轴的单位一般为长度单位,比如说米、厘米等。

2. 空间直角坐标系空间直角坐标系是三维空间中的坐标系。

它由三条两两垂直的坐标轴确定,常用于空间几何的研究。

3. 直线、圆的解析表示和相关属性直线和圆是解析几何中比较重要的概念,在高考数学中经常会被考察。

高考数学的知识点大全总结

高考数学的知识点大全总结

高考数学的知识点大全总结一、数学基础知识点1.数学符号与运算:加减乘除、等于号、大于小于号等基本符号运算规则。

2.集合:包括集合的概念、集合的表示方法、集合的运算等。

3.数与代数:整数、分数、小数、根号等数的性质及运算规则;代数式的基本概念与展开运算。

4.函数关系:函数的概念与性质,函数图像的绘制与分析,函数的运算与复合函数。

二、平面几何知识点1.线段与角:线段的性质,垂直角、平行线、相交线等角的特性。

2.三角形与四边形:三角形的分类与性质,四边形的性质及特殊四边形(矩形、平行四边形等)的性质。

3.圆与圆周角:圆的性质,圆周角的计算与弧长的关系。

4.相似与全等:相似三角形与全等三角形的判定与性质,相似形的面积比例。

三、立体几何知识点1.平面与直线:平面的性质、直线与平面的关系及直线间的位置关系。

2.立体图形:立体图形的种类、性质及计算立体图形的体积与表面积。

3.投影与截面:平面图形在不同位置的投影,立体图形的截面形状。

四、概率统计知识点1.样本与总体:样本的概念,总体的概念及样本与总体之间的关系。

2.概率:基本概率公式,事件的概率计算,概率与统计的应用。

3.统计分析:频数统计表、频数分布图的绘制和数据的分析与解读。

五、数学建模知识点1.模型的构建:问题抽象化,模型的建立与求解。

2.模型的评价:模型的优劣评价,结果分析与有效性验证。

六、解题技巧与方法1.代数运算技巧:因式分解、配方法、分式的化简等。

2.几何推理技巧:利用画图、构造辅助线等几何图形推理方法。

3.数据分析技巧:利用图表和统计学方法分析问题。

4.解题策略:快速解题技巧、试错法等解题策略的使用。

总结:以上是高考数学的知识点大全总结,包括数学基础知识、平面几何、立体几何、概率统计、数学建模等各个方面。

掌握这些知识点,对于高考数学的备考和应试都会起到很大的帮助。

在学习中,要注重理解概念,掌握相关的运算规则和定理,并灵活运用解题技巧和方法。

持续的练习和复习是提高数学成绩的关键。

新高考数学基础知识点总结

新高考数学基础知识点总结

新高考数学基础知识点总结一、函数与方程1. 函数的概念函数指的是一种特殊的关系,它将一个或多个自变量的取值映射到一个因变量的取值上。

函数通常用f(x)或者y来表示。

2. 常见的函数类型常见的函数类型包括线性函数、二次函数、指数函数、对数函数、正弦函数、余弦函数等。

3. 函数的图像特征不同类型的函数有着不同的图像特征,例如线性函数的图像是一条直线,二次函数的图像是一个抛物线等。

4. 方程与不等式方程是两个表达式的相等关系,不等式指的是两个表达式的大小关系。

解方程和不等式是数学中的基础操作。

二、平面几何1. 平面几何基本概念平面几何主要包括点、线、面等基本概念,以及直线、角、三角形、四边形等基本图形的性质。

2. 平行线与垂直线平行线指的是在同一平面内不相交的两条直线,垂直线指的是两条直线相交时互相垂直的关系。

3. 三角形的性质三角形是平面几何中的重要图形,它有着各种独特的性质,如角的和为180度、三边关系、三角形的内切圆和外接圆等。

4. 四边形的性质四边形是指有四个边的封闭图形,有着各种特殊的性质,如平行四边形的性质、直角梯形的性质等。

三、立体几何1. 立体几何基本概念立体几何是研究三维空间中的图形和物体的几何学分支,包括球体、圆柱体、圆锥体、棱柱体、棱锥体等基本图形。

2. 球面与球体球面是以一条直线为轴旋转一周所得到的曲面,球体则是球面所包围的立体。

3. 圆柱体与圆锥体圆柱体是由一个矩形绕其一条边旋转一周所得到的立体,圆锥体则是圆锥所包围的立体。

4. 棱柱体与棱锥体棱柱体是由多边形绕其一条边旋转一周所得到的立体,棱锥体则是多边形所包围的立体。

四、解析几何1. 坐标系与坐标解析几何是利用代数方法研究几何问题的方法,它主要依赖于坐标系和坐标的概念。

2. 直线的方程在坐标系中,直线可以用点斜式、截距式、一般式等不同的方程形式来表示。

3. 圆的方程圆可以用标准方程或一般方程来表示,在坐标系中可以通过方程的形式来描述圆的位置和大小。

新高考数学必考知识点归纳

新高考数学必考知识点归纳

新高考数学必考知识点归纳新高考数学作为高中数学教育的重要组成部分,其必考知识点覆盖了基础数学的多个领域。

以下是对新高考数学必考知识点的归纳:一、函数与导数- 函数的定义、性质、图像- 一次函数、二次函数、幂函数、指数函数、对数函数、三角函数- 函数的单调性、奇偶性、周期性- 导数的定义、几何意义、运算法则- 基本导数公式、复合函数的求导法则- 高阶导数、隐函数求导、参数方程求导二、三角函数与解三角形- 三角函数的定义、图像、性质- 正弦定理、余弦定理、正切定理- 三角恒等变换、和差化积、积化和差- 三角函数的反函数、同角三角函数关系三、不等式与方程- 不等式的基本性质、解法- 一元一次不等式、一元二次不等式- 分式不等式、绝对值不等式- 线性方程组、非线性方程组的解法- 一元高次方程的解法四、数列- 数列的概念、分类- 等差数列、等比数列的定义、通项公式、求和公式- 数列的极限、无穷等比数列的求和- 数列的单调性、有界性五、解析几何- 点、线、面的基本性质- 直线的方程、圆的方程、椭圆、双曲线、抛物线的方程- 直线与圆的位置关系、圆与圆的位置关系- 圆锥曲线的参数方程、极坐标方程六、立体几何- 空间直线、平面的基本性质- 空间向量、向量积- 空间直线与平面的位置关系- 多面体、旋转体的体积、表面积七、概率与统计初步- 随机事件的概率、概率的加法公式、乘法公式- 条件概率、独立事件- 离散型随机变量及其分布列、期望、方差- 统计数据的收集、整理、描述八、复数- 复数的概念、复数的运算- 复数的几何意义、复平面- 复数的共轭、模、辐角九、逻辑推理与证明- 逻辑推理的基本形式、演绎推理- 直接证明、反证法、数学归纳法十、数学思想与方法- 数学建模、数学思维- 解题策略、数学方法论新高考数学的备考需要对这些知识点有深入的理解和熟练的运用能力。

通过不断的练习和总结,考生可以提高解题速度和准确率,为高考取得优异成绩打下坚实的基础。

高考数学知识点归纳(完整版)

高考数学知识点归纳(完整版)

高考数学知识点归纳(完整版)高考数学知识点归纳第一,函数与导数主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。

是高考的重点和难点。

第五,概率和统计这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析主要是证明平行或垂直,求角和距离。

主要考察对定理的熟悉程度、运用程度。

第七,解析几何高考的难点,运算量大,一般含参数。

高考数学知识点高考数学必考知识点归纳必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解) 高考数学必考知识点归纳必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。

这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。

这部分知识高考占22---27分2、直线方程:高考时不单独命题,易和圆锥曲线结合命题3、圆方程高考数学必考知识点归纳必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。

高考数学必考知识点归纳必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。

2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。

09年理科占到5分,文科占到13分。

高考数学必考知识点归纳必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。

高考数学知识点总结整理(精选15篇)

高考数学知识点总结整理(精选15篇)

高考数学知识点总结整理(精选15篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、合同协议、心得体会、条据书信、规章制度、礼仪常识、自我介绍、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, contract agreements, personal experiences, normative letters, rules and regulations, etiquette knowledge, self introduction, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高考数学知识点总结整理(精选15篇)高考数学知识点总结整理(精选15篇)高考数学知识点总结整理篇1两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a+bi=c+dia=c,b=d。

高考数学知识点总结(最新11篇)

高考数学知识点总结(最新11篇)

高考数学知识点总结(最新11篇)高考数学知识点总结篇一1.“集合”与“常用逻辑用语”:强调了集合在表述数学问题时的工具性作用,突出了“韦恩图”在表示集合之间的关系和运算中的作用。

需要特别注意能够对含有一个量词的全称命题进行否定。

2.函数:对分段函数提出了明确的要求,要求能够简单应用;反函数问题只涉及指数函数和对数函数;注意函数零点的概念及其应用。

3.立体几何:第一部分强调对各种图形的识别、理解和运用,尤其是新课标高考新增加的三视图一定会重点考查。

第二部分的位置关系侧重于利用空间向量来进行证明和计算。

4.解析几何:初步了解用代数方法处理几何问题的思想,加强对椭圆和抛物线的理解和综合应用,重点掌握椭圆和抛物线与其他知识相结合的解答题。

5.三角函数:本部分的重点是“基本三角函数关系”、“三角函数的图象和性质”和“正、余弦定理的应用”。

6.平面向量:掌握向量的四种运算及其几何意义,理解平面向量数量积的物理意义以及会用向量方法解决某些简单的平面几何问题。

我们应注意平面向量与平面几何、解析几何、三角函数等知识的综合。

7.数列:了解数列是自变量为正整数的一类函数和等差数列与一次函数、等比数列与指数函数的关系。

能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题。

8.不等式:要求会解一元二次不等式,用二元一次不等式组表示平面区域,会解决简单的线性规划问题。

会用基本不等式解决简单的最大(小)值问题。

9.导数:理解导数的几何意义,要求关注曲线的切线问题;能利用导数求函数的'单调性、单调区间;函数的极值;闭区间上函数的最大值、最小值。

10.算法:侧重“算法”的三种基本逻辑结构与“程序框图”的复习。

11.计数原理:强调对计数原理的“理解”,避免抽象地讨论计数原理,而且强调计数原理在实际中的应用,尤其是要注意与概率的综合。

要想成功就必须付出汗水。

12.概率与统计:高考对概率与统计的考查越来越趋向综合型、交汇型。

高考数学基础函数知识点汇总

高考数学基础函数知识点汇总

高考数学基础函数知识点汇总函数是高考数学中的重要内容,也是数学学习中的基础和核心。

掌握好函数的相关知识,对于解决数学问题、提高数学素养至关重要。

下面为大家详细汇总高考数学中基础函数的知识点。

一、函数的定义函数是一种特殊的对应关系,设集合 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数。

其中,集合 A 叫做函数的定义域,集合{f(x)|x∈A}叫做函数的值域。

需要注意的是,定义域、值域和对应关系是函数的三要素,当且仅当定义域、对应关系都相同时,两个函数才是相同的函数。

二、函数的表示方法1、解析法:用数学表达式表示两个变量之间的对应关系,如 y =f(x)。

2、列表法:通过列出表格来表示两个变量之间的对应关系。

3、图象法:用图象表示两个变量之间的对应关系,形象直观。

三、常见函数类型1、一次函数形如 y = kx + b(k,b 为常数,k≠0)的函数称为一次函数。

当 b = 0 时,y = kx 是正比例函数,其图象是过原点的直线。

一次函数的图象是一条直线,k 决定直线的倾斜程度,b 决定直线与 y 轴的交点位置。

2、二次函数一般式:y = ax²+ bx + c(a≠0)顶点式:y = a(x h)²+ k(a≠0,顶点坐标为(h, k))交点式:y = a(x x₁)(x x₂)(a≠0,x₁,x₂为函数与 x 轴交点的横坐标)二次函数的图象是一条抛物线,对称轴为 x = b/2a,顶点坐标为(b/2a, (4ac b²)/4a) 。

a 的正负决定抛物线的开口方向,a > 0 时开口向上,a < 0 时开口向下。

3、反比例函数形如 y = k/x(k 为常数,k≠0)的函数称为反比例函数,其图象是双曲线。

当 k > 0 时,图象在一、三象限;当 k < 0 时,图象在二、四象限。

高考数学基础知识点

高考数学基础知识点

高考数学基础知识点高考数学作为一门重要科目,是考生进入大学的关键之一。

在备战高考数学时,我们需要掌握一系列的基础知识点,本文将为大家整理一些常见的高考数学基础知识点。

一、代数与函数1. 整式与分式:整式是只含有非负整数次幂的单项式或多项式,分式是两个整式相除的结果。

2. 四则运算与整式的因式分解:四则运算包括加法、减法、乘法和除法,整式的因式分解是将一个整式分解成几个整式的乘积。

3. 一次、二次函数及其图像:一次函数的函数表达式为y = kx+ b,二次函数的函数表达式为y = ax^2 + bx + c。

它们的图像分别是直线和抛物线。

4. 幂函数、对数函数与指数函数:幂函数的函数表达式为y =x^a,对数函数的函数表达式为y = loga(x),指数函数的函数表达式为y = a^x。

5. 复数与向量的基本概念:复数的表示形式为a + bi,其中a 和b分别为实数部分和虚数部分;向量具有大小和方向,可以表示为有向线段。

二、几何与图形1. 几何常识与图形的性质:几何常识包括平行、垂直、相似、全等等概念,图形的性质包括对称性、平移不变性等。

2. 直线与曲线的方程:直线的方程可以表示为一次方程,曲线的方程可以表示为二次方程或更高次的方程。

3. 三角形与其相似性质:三角形根据边长和角度可以分为等边三角形、等腰三角形等,相似性质表示在形状相似的两个三角形中,对应角相等,对应边成比例。

4. 圆的性质与方程:圆具有唯一的圆心和半径,圆的方程可以表示为(x-a)^2 + (y-b)^2 = r^2,其中(a, b)为圆心坐标,r为半径长度。

5. 空间几何与立体图形:空间几何关注三维空间中的图形,立体图形包括球体、正方体、长方体等。

三、数据与概率统计1. 统计图表的制作与解读:常用的统计图表包括条形图、折线图、饼图等,通过解读图表可以获取相关的数据信息。

2. 数据的分析与解释:对于给定的数据集合,可以进行数据的整理、分析和解释,包括求平均值、中位数、众数等。

高考数学全部章节基础知识点汇总(很完整,收藏)

高考数学全部章节基础知识点汇总(很完整,收藏)
②{(x,y)|xy<0,x∈R,y∈R 二、四象限的点集.
③{(x,y)|xy>0,x∈R,y∈R} 一、三象限的点集.
[注]:①对方程组解的集合应是点集.
例:
x y 3 2x 3y 1
解的集合{(2,1)}.
②点集与数集的交集是 . (例:A ={(x,y)| y =x+1} B={y|y =x2+1} 则 A
“非”的真值判
原命题 若 p则 q
互 否
否命题 若 ┐p则 ┐q
互逆


否 逆
逆命题 若 q则 p


逆 否互互逆否源自逆否命题 若 ┐q则 ┐p
断 (1)“非 p”形式复合命题的真假与 F 的真假相反; (2)“p 且 q”形式复合命题当 P 与 q 同为真时为真,其他情况时为假; (3)“p 或 q”形式复合命题当 p 与 q 同为假时为假,其他情况时为真.
x 1且y 2 x y 3,故 x y 3是 x 1且y 2 的既不是充分,又不是必要条件.
⑵小范围推出大范围;大范围推不出小范围.
3. 例:若 x 5, x 5或x 2 .
4. 集合运算:交、并、补. 交:A B {x | x A,且x B} 并:A B {x | x A或x B} 补:CU A {x U ,且x A}
高考数学全部章节基础知识点汇总(很完整,收藏)
高中数学第一章-集合 考试内容: 集合、子集、补集、交集、并集. 逻辑联结词.四种命题.充分条件和必要条件. 考试要求: (1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了 解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示 一些简单的集合. (2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关 系;掌握充分条件、必要条件及充要条件的意义.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学基础知识汇总第一部分集合(1)含n个元素的集合的子集数为2^n,真子集数为2^n-1;非空真子集的数为2^n-2;(2)注意:讨论的时候不要遗忘了的情况。

(3)第二部分函数与导数1.映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。

2.函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性;⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、、等);⑨导数法3.复合函数的有关问题(1)复合函数定义域求法:①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。

(2)复合函数单调性的判定:①首先将原函数分解为基本函数:内函数与外函数;②分别研究内、外函数在各自定义域内的单调性;③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。

注意:外函数的定义域是内函数的值域。

4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

5.函数的奇偶性⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;⑵是奇函数;⑶是偶函数;⑷奇函数在原点有定义,则;⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;6.函数的单调性⑴单调性的定义:①在区间上是增函数当时有;②在区间上是减函数当时有;⑵单调性的判定1 定义法:注意:一般要将式子化为几个因式作积或作商的形式,以利于判断符号;②导数法(见导数部分);③复合函数法(见2 (2));④图像法。

注:证明单调性主要用定义法和导数法。

7.函数的周期性(1)周期性的定义:对定义域内的任意,若有(其中为非零常数),则称函数为周期函数,为它的一个周期。

所有正周期中最小的称为函数的最小正周期。

如没有特别说明,遇到的周期都指最小正周期。

(2)三角函数的周期①;②;③;④;⑤;⑶函数周期的判定①定义法(试值)②图像法③公式法(利用(2)中结论)⑷与周期有关的结论①或的周期为;②的图象关于点中心对称周期为2 ;③的图象关于直线轴对称周期为2 ;④的图象关于点中心对称,直线轴对称周期为4 ;8.基本初等函数的图像与性质⑴幂函数:(;⑵指数函数:;⑶对数函数: ;⑷正弦函数: ;⑸余弦函数:;(6)正切函数:;⑺一元二次函数:;⑻其它常用函数:1 正比例函数:;②反比例函数:;特别的2 函数;9.二次函数:⑴解析式:①一般式:;②顶点式:,为顶点;③零点式:。

⑵二次函数问题解决需考虑的因素:①开口方向;②对称轴;③端点值;④与坐标轴交点;⑤判别式;⑥两根符号。

⑶二次函数问题解决方法:①数形结合;②分类讨论。

10.函数图象:⑴图象作法:①描点法(特别注意三角函数的五点作图)②图象变换法③导数法⑵图象变换:1 平移变换:ⅰ,2 ———“正左负右”ⅱ———“正上负下”;3 伸缩变换:ⅰ,(———纵坐标不变,横坐标伸长为原来的倍;ⅱ,(———横坐标不变,纵坐标伸长为原来的倍;4 对称变换:ⅰ;ⅱ;ⅲ;ⅳ;5 翻转变换:ⅰ———右不动,右向左翻(在左侧图象去掉);ⅱ———上不动,下向上翻(| |在下面无图象);11.函数图象(曲线)对称性的证明(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明函数与图象的对称性,即证明图象上任意点关于对称中心(对称轴)的对称点在的图象上,反之亦然;注:①曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a -x,2b-y)=0;②曲线C1:f(x,y)=0关于直线x=a的对称曲线C2方程为:f(2a-x, y)=0;③曲线C1:f(x,y)=0,关于y=x+a(或y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);④f(a+x)=f(b-x) (x∈R)y=f(x)图像关于直线x= 对称;特别地:f(a+x)=f(a-x) (x∈R)y=f(x)图像关于直线x=a对称;⑤函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;12.函数零点的求法:⑴直接法(求的根);⑵图象法;⑶二分法.13.导数⑴导数定义:f(x)在点x0处的导数记作;⑵常见函数的导数公式: ①;②;③;④;⑤;⑥;⑦;⑧。

⑶导数的四则运算法则:⑷(理科)复合函数的导数:⑸导数的应用:①利用导数求切线:注意:ⅰ所给点是切点吗?ⅱ所求的是“在”还是“过”该点的切线?②利用导数判断函数单调性:ⅰ是增函数;ⅱ为减函数;ⅲ为常数;③利用导数求极值:ⅰ求导数;ⅱ求方程的根;ⅲ列表得极值。

④利用导数最大值与最小值:ⅰ求的极值;ⅱ求区间端点值(如果有);ⅲ得最值。

14.(理科)定积分⑴定积分的定义:⑵定积分的性质:①(常数);②;③(其中。

⑶微积分基本定理(牛顿—莱布尼兹公式):⑷定积分的应用:①求曲边梯形的面积:;3 求变速直线运动的路程:;③求变力做功:。

第三部分三角函数、三角恒等变换与解三角形1.⑴角度制与弧度制的互化:弧度,弧度,弧度⑵弧长公式:;扇形面积公式:。

2.三角函数定义:角中边上任意一点为,设则:3.三角函数符号规律:一全正,二正弦,三两切,四余弦;4.诱导公式记忆规律:“函数名不(改)变,符号看象限”;5.⑴对称轴:;对称中心:;⑵对称轴:;对称中心:;6.同角三角函数的基本关系:;7.两角和与差的正弦、余弦、正切公式:①②③。

8.二倍角公式:①;②;③。

9.正、余弦定理:⑴正弦定理:(是外接圆直径)注:①;②;③。

⑵余弦定理:等三个;注:等三个。

10。

几个公式:⑴三角形面积公式:;⑵内切圆半径r= ;外接圆直径2R=11.已知时三角形解的个数的判定:第四部分立体几何1.三视图与直观图:注:原图形与直观图面积之比为。

2.表(侧)面积与体积公式:⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧= ;③体积:V=S底h⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧= ;③体积:V= S底h:⑶台体:①表面积:S=S侧+S上底S下底;②侧面积:S侧= ;③体积:V= (S+ )h;⑷球体:①表面积:S= ;②体积:V= 。

3.位置关系的证明(主要方法):⑴直线与直线平行:①公理4;②线面平行的性质定理;③面面平行的性质定理。

⑵直线与平面平行:①线面平行的判定定理;②面面平行线面平行。

⑶平面与平面平行:①面面平行的判定定理及推论;②垂直于同一直线的两平面平行。

⑷直线与平面垂直:①直线与平面垂直的判定定理;②面面垂直的性质定理。

⑸平面与平面垂直:①定义---两平面所成二面角为直角;②面面垂直的判定定理。

注:理科还可用向量法。

4.求角:(步骤-------Ⅰ。

找或作角;Ⅱ。

求角)⑴异面直线所成角的求法:1 平移法:平移直线,2 构造三角形;3 ②补形法:补成正方体、平行六面体、长方体等,4 发现两条异面直线间的关系。

注:理科还可用向量法,转化为两直线方向向量的夹角。

⑵直线与平面所成的角:①直接法(利用线面角定义);②先求斜线上的点到平面距离h,与斜线段长度作比,得sin 。

注:理科还可用向量法,转化为直线的方向向量与平面法向量的夹角。

⑶二面角的求法:①定义法:在二面角的棱上取一点(特殊点),作出平面角,再求解;②三垂线法:由一个半面内一点作(或找)到另一个半平面的垂线,用三垂线定理或逆定理作出二面角的平面角,再求解;③射影法:利用面积射影公式:,其中为平面角的大小;注:对于没有给出棱的二面角,应先作出棱,然后再选用上述方法;理科还可用向量法,转化为两个班平面法向量的夹角。

5.求距离:(步骤-------Ⅰ。

找或作垂线段;Ⅱ。

求距离)⑴两异面直线间的距离:一般先作出公垂线段,再进行计算;⑵点到直线的距离:一般用三垂线定理作出垂线段,再求解;⑶点到平面的距离:①垂面法:借助面面垂直的性质作垂线段(确定已知面的垂面是关键),再求解;5 等体积法;理科还可用向量法:。

⑷球面距离:(步骤)(Ⅰ)求线段AB的长;(Ⅱ)求球心角∠AOB的弧度数;(Ⅲ)求劣弧AB的长。

6.结论:⑴从一点O出发的三条射线OA、OB、OC,若∠AOB=∠AOC,则点A在平面∠BOC上的射影在∠BOC的平分线上;⑵立平斜公式(最小角定理公式):⑶正棱锥的各侧面与底面所成的角相等,记为,则S侧cos =S 底;⑷长方体的性质①长方体体对角线与过同一顶点的三条棱所成的角分别为则:cos2 +cos2 +cos2 =1;sin2 +sin2 +sin2 =2 。

②长方体体对角线与过同一顶点的三侧面所成的角分别为则有cos2 +cos2 +cos2 =2;sin2 +sin2 +sin2 =1 。

⑸正四面体的性质:设棱长为,则正四面体的:1 高:;②对棱间距离:;③相邻两面所成角余弦值:;④内切2 球半径:;外接球半径:;第五部分直线与圆1.直线方程⑴点斜式:;⑵斜截式:;⑶截距式:;⑷两点式:;⑸一般式:,(A,B不全为0)。

(直线的方向向量:(,法向量(2.求解线性规划问题的步骤是:(1)列约束条件;(2)作可行域,写目标函数;(3)确定目标函数的最优解。

3.两条直线的位置关系:4.直线系5.几个公式⑴设A(x1,y1)、B(x2,y2)、C(x3,y3),⊿ABC的重心G:();⑵点P(x0,y0)到直线Ax+By+C=0的距离:;⑶两条平行线Ax+By+C1=0与Ax+By+C2=0的距离是;6.圆的方程:⑴标准方程:①;②。

⑵一般方程:(注:Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆A=C≠0且B=0且D2+E2-4AF>0;7.圆的方程的求法:⑴待定系数法;⑵几何法;⑶圆系法。

8.圆系:⑴;注:当时表示两圆交线。

⑵。

9.点、直线与圆的位置关系:(主要掌握几何法)⑴点与圆的位置关系:(表示点到圆心的距离)①点在圆上;②点在圆内;③点在圆外。

⑵直线与圆的位置关系:(表示圆心到直线的距离)①相切;②相交;③相离。

⑶圆与圆的位置关系:(表示圆心距,表示两圆半径,且)①相离;②外切;③相交;④内切;⑤内含。

10.与圆有关的结论:⑴过圆x2+y2=r2上的点M(x0,y0)的切线方程为:x0x+y0y=r2;过圆(x-a)2+(y-b)2=r2上的点M(x0,y0)的切线方程为:(x0-a)(x-a)+(y0-b)(y-b)=r2;⑵以A(x1,y2)、B(x2,y2)为直径的圆的方程:(x-x1)(x-x2)+(y -y1)(y-y2)=0。

相关文档
最新文档