(no.1)[原创]数学开放题的教学探讨
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本文为自本人珍藏 版权所有 仅供参考
开放题、策略开放题、结论开放题).当前数学开放题之所以引起我们中学数学教师的关注,我以为一是以实践能力、创新意识的培养为核心的素质教育的深入的需要.数学开放题对培养学生思维的发散性(结论开放)、聚敛性(条件开放)、创造性(策略开放),不失为好载体.二是高考命题的导向作用,数学开放题走进高考试卷的需要.三是数学走向应用的需要.我们的数学教育不仅要让学生学会继续深造所必需的数学基本知识,基本方法,基本技能,更重要的是让学生学会用数学的眼光看待世界,用数学的思维方式去观察分析现实社会,去解决现实生活中的问题.
为了满足上述三方面的需要,必需将开放题引进课堂教学.本文谈对数学开放题教学的一些认识,不当之处,谨请多多指教.
1、砸破篱笆,让学生展开想象的翅膀
青少年时代是一生中最富有活力、充满想象的时代.开放题往往形式活泼,供学生思考的角度众多,思维活动的空间宽阔,正好给青少年学生提供了一个展翅的舞台.而封闭题往往形式单一,要求学生在特定的范围内进行定向思维.长期作这类机械式的思维训练,学生的思维中将立起一道道难以逾越的篱笆.这样的教学活动,不仅没有促进学生进一步开放自己,反而束缚了他们的思想.通过开放式教学,可以让学生砸破这些禁锢思想的篱笆,展开想象的翅膀,自由地发挥自身才华.
根据我校搬迁前曾有一块操场需要改造这一实际,我们编拟:
开放题1 我校准备在长120米,宽100米的空地上建造操场,请同学们设计操场形状,思考能否造出满足以下条件的环形操场.
①每道跑道
宽1.22米;②跑道
用直线或圆弧吻
接;③跑道共八道
且内圈为300米. 本题有学生认为不能造出满足要求的操场,他认为操场应由两个半圆和一
个矩形构成(如图1),经计算,跑道内圈无论如何达不到300米的要求.也有学生认为能造出满足要求的操场,可将操场设计成如图2,由四个四分之一圆弧及五个矩形构成.还有学生将操场设计成如图3,弯道部分由三段圆弧组成,他们
ͼ
4ͼ
3ͼ
1
ͼ 2
认为这样才是操场.更有学生将操场设计成花园式(如图4),跑道全部由圆弧组成,他们认为这样的操场更美.
开放题2 用一块长2米,宽1.6米的玻璃加工出椭圆形镜子(镜面为完整的一体).①要使镜面面积最大,该如何设计加工镜子(注S 椭=ab π).
本题主要考察学生如何画出椭圆,培养学生的动手能力.可以用硬纸板代替玻璃,让学生亲手画一画,动手截一下.学生至少可从以下几个角度去思考:①建立坐标系,写出方程描点;②确定焦点,长轴长,由第一定义得到;③用解析几何课本P116椭圆参数方程的定义;④用椭圆规工作原理(P124).
2、传授定式,帮学生克服畏惧的心理
开放题引入课堂教学之初,学生的表现往往士为一是觉得好奇,感到有趣;二是感到畏惧,不知从何处入手.这就要求我们教师介绍一些典型开放题的求解思路,帮学生建立科学的思维定式.
⑴寻找充分条件型开放题.
开放题3 在直四棱柱ABCD D C B A -1111中(如图
5),当底面四边形ABCD 满足条件 时,有
111D B C A ⊥(填上你认为正确的一种条件即可,不必考虑所有可能的情形1998高考卷第18题).
这类题型,只需找到能使结论成立的一个充分条件即可,而不必去寻找结论成立的充要条件.这类问题的要求并不高,可考虑特殊值或极端情形,从而找出充分条件.这一点,学生一开始往往不习惯.
⑵“是否存在”型开放题.
开放题4 设{n a }是由正数组成的等比数列,n S 是其前n 项和.是否存在常
数C>0,使得)l g (2)
l g ()l g (12C S C S C S n n n -=-+-++成立?并证明你的结论
(1995高考卷第25题).
这类开放题的答案,不是肯定就是否定,开放度较小.若“存在”,就是具有适合条件的某种数学对象,无论用什么方法,只要找出一个就说明存在.若“不存在”,一般需要有严格的推理论证.故这类“是否存在”型开放题的解决思路一般为,先假设存在满足条件的数学对象,如果找出矛盾,说明假设不成立,进而否定假设,如果经过严格推理,没有找到矛盾,说明确实存在,找出满足条件的一个对象即可.
D
B 1
⑶猜想型开放题.
开放题5 已知数列{b n }是等差数列,b 1+b 2+……+b n=145, b 1=1.①求
数列{b n }的通项b n ;②设数列{a n }的通项a n =
)11(log n a b +其中a >0且a ≠1),s n 是数列{a n }的前n 项和,试比较s n 与1log 31
+n a b 的大小(1998高考理科第25题).
解答这类开放题,要求学生学会猜想.牛顿早就说过:“没有大胆的猜想,就做不出伟大的发现.”美国数学教育家彼利亚在1953年也大声疾呼:“让我们教猜测吧!”可我们在日常教学中,往往过分强调数学学科的严谨性和科学性,忽视实验猜想等合情推理能力的培养,让学生觉得数学枯燥、无趣、难学.
我们应该教会学生如何猜想.教学生通过实验、观察,进行猜想,教学生通过对特例(特殊值)的分析、归纳, 猜想一般的规律(共性),教学生通过比较、概括得到猜想,教学生对具体问题的特殊解从宏观上作出估算.先有猜想,再作严密的数学证明.这样“既教猜想,又教证明”,让学生体会到数学也是生动活泼,充满激情,并富有哲理的一门学科.不至于学生说“过了几十年,还做学习数学的恶梦”(徐利治语,见文5).
3、开展实验,用计算机辅助开放式教学
利用计算机强大的计算功能和作图功能辅助开放式教学,有利于改善课堂气氛,激发学生的学习兴趣;有利于“观察(实验)、猜想、证明(否定)”这一思想方法的运用,快捷方便地验证学生自己作出的猜想,从而充分利用课堂活动的时间.
开放题6 (荒岛寻宝)从前,有个年轻人在曾祖父的遗物中发现一张破羊皮纸,上面指明了一项宝藏,内容是这样的:
“在北纬**,西经**,有一座荒岛,岛的北岸有一片草地,草地上有一棵橡树,一棵松树和一座绞架.从绞架走到橡树,并记住所走的步数,到了橡树向左拐一个直角,再走相同的步数并在那里打个桩.然后回到绞架再朝松树走去,同时记住所走的步数,到了松树向右拐一个直角,再走相同的步数并在那里也打个桩,在两桩连线的正中挖掘,就可获得宝藏.”
年轻人欣喜万分,租船来到海岛上,找到了那片草地,也找到了橡树和松树,但绞架却不见了.长期的日晒雨淋,一切痕迹也不复存在.年轻人无从下手,