初三数学圆地经典讲义85117
[中考]初三数学复习讲义
2
2 - 3 与3 � 0 1 )3( , 7
� 31
与5
� 5 1 ) 2 ( , 1 1 2 与5
3 ) 1( :小大较比.3
0
)1 � ( , 7 2
,
2
�
, 2� ,
4
3
1
, 4 :差的积的数理无与和的数理有算计,中数实个
2
6 列下在请.2
. 值 的a 数 实 求 , y � x 3 � y x a 若 , 0 � 9 � y 6 � y � 4 � x 3
。
则.
a 1
�值对绝�6� 为数倒的�0≠a�a 若。数倒为互数个两的 积乘�数倒�5�
。
。轴数做叫线直的 和 、 则�数反相为互 b、a 若。数反相为互数个两的同不
) (� �) (�
了定规�轴数�4� 有只�数反相�3�
) )
(� �) (�
� ) � (� ) � 0 � 数理有� ) � � (� � )
2
】析剖题考典经【 �二
④和③�D ④和①�C � �是的式根次二类同是
5. 0 . D 21 . C
5
③和②�B ③和①�A
, 21
3
和72
④�
3 2
③
3
2
②
①�式根次二在 .5
y x .B
2
1+ x
2
�A � �是的式根次二简最于属式各列下 .4
x- 2 = ) 2- x(
2
2�x .D 2≥ x .C 2� x .B
�数负非的要重个三.5
�区校道大城新�
义讲课授化性个育教文龙
-5-
�39213836 �话电询咨�校学导辅化性个业专的赖信得值您——育教文龙
人教版九年级数学上册讲义(全册)之欧阳与创编
人教版九年级数学上册讲义(全册)第二十一章二次根式教材内容1.本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.2.本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.教学目标1.知识与技能(1)理解二次根式的概念.(a≥0)是一个非负数,()2=a(2)理解(a≥0(a≥0).·=(a≥0,b≥0),(3)掌握;=(a≥0,b>0),=(a≥0,b>0).(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.2.过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.•再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,•并运用规定进行计算.(3)利用逆向思维,•得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(4)通过分析前面的计算和化简结果,抓住它们的共同特点,•给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.3.情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重点1.二次根式(a≥0)的内涵.(a≥0)是一个非负数;(2=a(a≥0);(a≥0)•及其运用.2.二次根式乘除法的规定及其运用.3.最简二次根式的概念.4.二次根式的加减运算.教学难点(a≥0)是一个非负数的理解;对等式1.对()2=a(a≥0)及=a(a≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.教学关键1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,•培养学生一丝不苟的科学精神.单元课时划分本单元教学时间约需11课时,具体分配如下:21.1 二次根式 3课时21.2 二次根式的乘法 3课时21.3 二次根式的加减 3课时教学活动、习题课、小结 2课时21.1 二次根式第一课时教学内容二次根式的概念及其运用教学目标a≥0)的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键(a≥0)的式子叫做二次根式的1.重点:形如概念;(a≥0)”解决具体问2.难点与关键:利用“题.教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y=3,那么它的图象在第x一象限横、•纵坐标相等的点的坐标是___________.问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.老师点评:问题1:横、纵坐标相等,即x=y ,所以x 2=3.因为点在第一象限,所以问题2:由勾股定理得问题3:由方差的概念得 二、探索新知很明显、、,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如(a ≥0)•(学生活动)议一议:1.-1有算术平方根吗?2.0的算术平方根是多少?3.当a<0有意义吗?老师点评:(略)例1.下列式子,哪些是二次根式,哪些不是二次根1x (x>0、、1x y+、x ≥0,y•≥0). 分析:二次根式应满足两个条件:第一,有二次根0.解:二次根式有:、(x>0)、、-、(x ≥0,y ≥0);不是二次根式的有:、1x 1x y+. 例2.当x在实数范围内有意义? 分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0, 解:由3x-1≥0,得:x ≥13当x ≥13在实数范围内有意义. 三、巩固练习教材P 练习1、2、3.四、应用拓展例3.当x11x +在实数范围内有意义?分析11x +在实数范围内有意义,必须同中的≥0和11x +中的x+1≠0. 解:依题意,得23010x x +≥⎧⎨+≠⎩由①得:x ≥-32 由②得:x ≠-1当x ≥-32且x ≠-111x +在实数范围内有意义.例4(1)已知,求x y 的值.(答案:2) (2)=0,求a 2004+b 2004的值.(答案:25)五、归纳小结(学生活动,老师点评)本节课要掌握:1.形如(a ≥0)的式子叫做二次根式,“”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业1.教材P 8复习巩固1、综合应用5.2.选用课时作业设计.3.课后作业:《同步训练》第一课时作业设计一、选择题 1.下列式子中,是二次根式的是( )A .BCD .x2.下列式子中,不是二次根式的是( )A.1x3.已知一个正方形的面积是5,那么它的边长是( )A .5 B.15 D .以上皆不对 二、填空题1.形如________的式子叫做二次根式.2.面积为a 的正方形的边长为________.3.负数________平方根.三、综合提高题1.某工厂要制作一批体积为1m 3的产品包装盒,其高为0.2m ,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x是多少时,+x 2在实数范围内有意义?3.4.x 有( )个.A .0B .1C .2D .无数5.已知a 、b为实数,且+2=b+4,求a 、b 的值.第一课时作业设计答案:一、1.A 2.D 3.B二、1a ≥0) 2.没有三、1.设底面边长为x ,则0.2x 2=1,解答:2.依题意得:2300x x +≥⎧⎨≠⎩,320x x ⎧≥-⎪⎨⎪≠⎩∴当x>-3且x≠0x2在实数范围2内没有意义.3.134.B5.a=5,b=-421.1 二次根式(2)第二课时教学内容a≥0)是一个非负数;12)2=a(a≥0).教学目标(a≥0)是一个非负数和()2=a(a≥理解0),并利用它们进行计算和化简.通过复习二次根式的概念,用逻辑推理的方法推出a≥0)是一个非负数,用具体数据结合算术平方根的意义导出(谨解题.教学重难点关键(a≥0)是一个非负数;()2=a1.重点:(a≥0)及其运用.(a≥2.难点、关键:用分类思想的方法导出0)是一个非负数;•用探究的方法导出(≥0).教学过程一、复习引入(学生活动)口答1.什么叫二次根式?a<0有意义2.当a≥0时,吗?老师点评(略).二、探究新知议一议:(学生分组讨论,提问解答)a ≥0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出()2=_______;()2=_______;()2=______)2=_______;()2=______;()2=_______;()2=_______.是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有2=4.同理可得:()2=2,()2=9)2=3,2=13,所以 例1 计算1.()2 2.(3)2 3.()24.(2)2分析2=a (a ≥0)的结论解题.解:()2 =32,(3)2 =32·()2=32·5=45,2=56,(2)2=22724 . 三、巩固练习计算下列各式的值:()2 ()2 ()2 ()2(2四、应用拓展例2 计算)2(x≥0)2.()21.(3242分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;(4)4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2≥0.所以上面的4)2=a(a≥0)的重要结论解题.解:(1)因为x≥0,所以x+1>02=x+1(2)∵a2≥02=a2(3)∵a2+2a+1=(a+1)2又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴2+2a+1(4)∵4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2又∵(2x-3)2≥0∴4x2-12x+9≥02=4x2-12x+9例3在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3分析:(略)五、归纳小结本节课应掌握:1a≥0)是一个非负数;2.(0).六、布置作业1.教材P8复习巩固2.(1)、(2) P9 7.2.选用课时作业设计.3.课后作业:《同步训练》第二课时作业设计一、选择题1.下列各式中、、、、).A.4 B.3 C.2 D.12.数a没有算术平方根,则a的取值范围是().A.a>0 B.a≥0 C.a<0 D.a=0二、填空题1.()2=________.2_______数.三、综合提高题1.计算(12(2)-)2(3)(12)2(4)()2(5)2.把下列非负数写成一个数的平方的形式:(1)5 (2)3.4 (3)16(4)x(x≥0)3=0,求x y的值.4.在实数范围内分解下列因式:(1)x2-2 (2)x4-9 3x2-5第二课时作业设计答案:一、1.B 2.C二、1.3 2.非负数三、1.(1)()2=9 (2)-()2=-3(3)(12)2=14×6=32(4)(2=9×23=6 (5)-62.(1)5=2 (2)3.4=2(3)16=2 (4)x=)2(x ≥0) 3.103304x y x x y -+==⎧⎧⎨⎨-==⎩⎩ x y =34=81 4.(1)x 2-2=()()(2)x 4-9=(x 2+3)(x 2-3)=(x 2+3)(x+)() (3)略21.1 二次根式(3) 第三课时教学内容a (a ≥0) 教学目标(a ≥0)并利用它进行计算和化简.通过具体数据的解答,探究(a ≥0),并利用这个结论解决具体问题. 教学重难点关键1a (a ≥0). 2.难点:探究结论.3.关键:讲清a ≥0a 才成立. 教学过程 一、复习引入老师口述并板收上两节课的重要内容;1a ≥0)的式子叫做二次根式; 2a ≥0)是一个非负数; 3.)2=a (a ≥0).那么,我们猜想当a ≥0是否也成立呢?下面我们就来探究这个问题. 二、探究新知 (学生活动)填空:=______;=________=_______.(老师点评):根据算术平方根的意义,我们可以得到:=2;=0.01;=110;=23;=0;37.例1 化简(1(2(3 (4分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32(a ≥0)•去化简.解:(1(2(3(4三、巩固练习 教材P 7练习2. 四、应用拓展例2 填空:当a ≥0;当a<0时,,•并根据这一性质回答下列问题.(1,则a 可以是什么数?(2,则a 可以是什么数?(3,则a 可以是什么数?分析(a ≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“( )2”中的数是正数,因为,当a ≤0那么-a ≥0.(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)可知│a │,而│a│要大于a,只有什么时候才能保证呢?a<0.解:(1,所以a≥0;(2,所以a≤0;(3)因为当a≥0,即使a>a所以a不存在;当a<0时,,即使-a>a,a<0综上,a<0例3当x>2分析:(略)五、归纳小结本节课应掌握:=a(a≥0)及其运用,同时理解当a<0时,a的应用拓展.六、布置作业1.教材P8习题21.1 3、4、6、8.2.选作课时作业设计.3.课后作业:《同步训练》第三课时作业设计一、选择题1).A.0 B.23 C.423D.以上都不对2.a≥0时,、、-,比较它们的结果,下面四个选项中正确的是().AC.二、填空题1..2是一个正整数,则正整数m的最小值是________.三、综合提高题1.先化简再求值:当a=9时,求a+的值,甲乙两人的解答如下:甲的解答为:原式=a+(1-a)=1;乙的解答为:原式=a+=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.,求a-19952的值.2.若│1995-a│3. 若-3≤x≤2时,试化简│x-2│答案:一、1.C 2.A二、1.-0.02 2.5三、1.甲甲没有先判定1-a是正数还是负数2.由已知得a-•2000•≥0,•a•≥2000所以a-1995+=a,=1995,a-2000=19952,所以a-19952=2000.3. 10-x21.2 二次根式的乘除第一课时教学内容=a≥0,b≥0(a≥0,b≥0)及其运用.教学目标理解·(a≥0,b≥0),=·(a≥0,b≥0),并利用它们进行计算和化简由具体数据,发现规律,导出·=(a≥0,b≥0)并运用它进行计算;•利用逆向思维,得出=(a≥0,b≥0)并运用它进行解题和化简.教学重难点关键·=(a≥0,b≥0),重点:(a≥0,b≥0)及它们的运用.难点:发现规律,导出0).(a<0,b<0)=b,如关键:要讲清教学过程一、复习引入(学生活动)请同学们完成下列各题.1.填空=______;(1(2(3参考上面的结果,用“>、<或=”填空.×_____,_____,2.利用计算器计算填空×______,(2)×(1)×______,(4)×(3).(5老师点评(纠正学生练习中的错误)二、探索新知(学生活动)让3、4个同学上台总结规律.老师点评:(1)被开方数都是正数;(2)两个二次根式的乘除等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.一般地,对二次根式的乘法规定为×(2)×(3)×(1)(4(a≥0,b≥0)计算分析:即可.解:(1(2(3=(4例2 化简(1(2(3(4(5=·(a≥0,b≥0)直接化简分析:利用即可.×4=12解:(1(2(3(4=3xy(5三、巩固练习(1)计算(学生练习,老师点评)①②×(2) 化简教材P11练习全部四、应用拓展例3.判断下列各式是否正确,不正确的请予以改正:(1=(2)×=4××=4×解:(1)不正确.×3=6(2)不正确.改正:×=×=五、归纳小结==(a≥0,b≥本节课应掌握:(1)六、布置作业1.课本P15 1,4,5,6.(1)(2).2.选用课时作业设计.3.课后作业:《同步训练》第一课时作业设计一、选择题cm1.若直角三角形两条直角边的边长分别为,•那么此直角三角形斜边长是().cm B..9cm D.27cmA.2.化简)....-A311x-=)A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-14.下列各等式成立的是().B.A.C.二、填空题.12它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.三、综合提高题1.一个底面为30cm×30cm长方体玻璃容器中装满水,•现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?2.探究过程:观察下列各式及其验证过程.(1)验证:==(2)3验证:=同理可得:==通过上述探究你能猜测出:a=_______(a>0),并验证你的结论.答案:一、1.B 2.C 3.A 4.D2.12s二、1.三、1.设:底面正方形铁桶的底面边长为x,则x2×10=30×30×20,x2=30×30×2,.2.验证:====21.2 二次根式的乘除第二课时教学内容=(a≥0,b>0),反过来=(a≥0,b>0)及利用它们进行计算和化简.教学目标理解=(a≥0,b>0)和=(a≥0,b>0)及利用它们进行运算.利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.教学重难点关键1=a≥0,b>0),(a ≥0,b>0)及利用它们进行计算和化简.2.难点关键:发现规律,归纳出二次根式的除法规定.教学过程一、复习引入(学生活动)请同学们完成下列各题:1.写出二次根式的乘法规定及逆向等式.2.填空=________;(1=________;(2=________;(3(4=________.______;______;规律:3.利用计算器计算填空:=_________,(2=_________,(3)(1=______,(4.______;_______;规律:(老师点评)二、探索新知刚才同学们都练习都很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们可以得到:一般地,对二次根式的除法规定:例1.计算:(1(2(3)(4分析:上面4a≥0,b>0)便可直接得出答案.解:(1(2==×(3==2(4例2.化简:(1)(2)(3)(4)分析:直接利用=(a≥0,b>0)就可以达到化简之目的.解:(18=(2)8 3ba =(3)=(4)=三、巩固练习教材P14 练习1.四、应用拓展例3.=,且x 为偶数,求(1+x )的值.分析:a ≥0,b>0时才能成立.因此得到9-x ≥0且x-6>0,即6<x ≤9,又因为x 为偶数,所以x=8. 解:由题意得9060x x -≥⎧⎨->⎩,即96x x ≤⎧⎨>⎩∴6<x ≤9 ∵x 为偶数 ∴x=8∴原式=(1+x=(1+x=(1+x∴当x=8时,原式的值=6.五、归纳小结本节课要掌握=(a ≥0,b>0)和=(a≥0,b>0)及其运用. 六、布置作业1.教材P 15 习题21.2 2、7、8、9.2.选用课时作业设计. 3.课后作业:《同步训练》 第二课时作业设计 一、选择题1的结果是( ).A .27.27C .72.阅读下列运算过程:3==5== 数学上将这种把分母的根号去掉的过程称作“分母有理化”,那么,化简). A .2 B .6 C .13D二、填空题 1.分母有理化:(1)=_________;(2)=________;(3)=______.2.已知x=3,y=4,z=5是_______.三、综合提高题1.有一种房梁的截面积是一个矩形,且矩形的长1,•现用直径为3的一种圆木做原料加工这种房梁,那么加工后的房染的最大截面积是多少? 2.计算(1·(m>0,n>0)(2)(a>0)答案:一、1.A 2.C二、1.2==2 三、1.设:矩形房梁的宽为x (cm ),则长为,依题意,)2+x 2=(32,4x 2=9×15,x=32cm ),x ·x 2=135(cm 2).2.(1)原式==-22n n m m =-(2)原式=-2=-2=-a21.2 二次根式的乘除(3)第三课时教学内容最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算. 教学目标理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求. 重难点关键1.重点:最简二次根式的运用.2.难点关键:会判断这个二次根式是否是最简二次根式. 教学过程一、复习引入(学生活动)请同学们完成下列各题(请三位同学上台板书)1.计算(12,(3老师点评:2.现在我们来看本章引言中的问题:如果两个电视塔的高分别是h 1km ,h 2km ,•那么它们的传播半径的比是_________.。
初中数学讲义
第一章數與數線§1-1 正數與負數(1) 同類量可以比較大小,不同類量不能比較大小。
(2) 量的計算可以轉換為數的計算。
(3) 由意義相反的量,可以定出負數。
(4) 有了負數,小的數減大的數就有意義。
(5) 整數包含正整數、負整數和零。
(1)同一量的度量單位改變時,其度量隨著改變。
同一量的度量單位變小時,所得的數變大,但原來的量不變。
(2)“+”號與“-”號用於區別數的正數或負數稱為性質符號,“+”讀作“正”,“-”讀作“負”。
“+”號與“-”號用於加減法運算裡稱為運算符號,“+”讀作“加”,“-”讀作“減”。
(3) ○1正數> 0 >負數。
○2 0無正負之分,0是整數。
○3小數-大數 =負數,大數-小數 =正數。
【附註一】零是什麼時候、什麼地方,怎麼被發現的?〔解說〕古時候記數的方法並沒有定位的原則。
例如:埃及的記數法1 10 100▏∩ @23就寫成∩∩▏▏▏羅馬記數法1 5 10ⅠⅤⅩ27就寫成ⅩⅩⅤⅠⅠ由此可知,很早以前人們就用到10進位,但看不出定位的原理。
根據公元前200年,巴比倫的紀錄,他們為了填補數字的空位,已經用到相當於零的記號,可是計算上並沒有用它。
“0”這個記號和定位數的原則,是在公元876年在印度的紀錄中才有記載,後來經阿拉伯人傳到歐洲,因此歐洲人以為是阿拉伯人發現的。
所以零的出現和十進位的定位使用是分不開的。
【附註二】負數是怎樣發現的?〔解說〕埃及、巴比倫以及希臘的數學都沒有負數的想法,最初有負數想法的是印度人,印度把財產用正數來表示,負債就用負數表示。
負數的想法和其他數學一起由印度傳到歐洲,不過當時也很難在人們之間傳播開來。
負數被人們當成理所當然的接受下來,那是在笛卡爾(1596~1650)在直線上用刻度來表示負數才開始。
【附註三】為什麼十進位會被廣泛地使用?〔解說〕人類在記數的過程中,充分利用了手、腳上的指頭,首先將一隻手的手指數完就是到5為止,就把之後作為一個間隔,例如羅馬數字Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ這裡表示5的這個記號是把一隻手拇指和其他全并在一起 的四指,張開便得到Ⅴ的樣子。
初三数学总复习讲座七圆
初三数学总复习讲座(七)圆初三数学总复习讲座(七)——圆一、课程标准1、理解圆及其有关的概念,了解弧﹑弦﹑圆心角的关系,探索并了解点与圆﹑直线与圆以及圆与圆的位置关系.2、探索圆的性质,了解圆周角与圆心角的关系,直径所对圆周角的特征.3、了解三角形的内心和外心 .4、了解切线的概念,探索切线与过切点的半径之间的关系;能判定一条直线是否为圆的切线,会过圆上一点画圆的切线.5、会计算弧长及扇形的面积,会计算圆锥的侧面积和全面积.6、探索圆的轴对称性及其相关性质,了解圆是中心对称图形,探索图形之间的变换关系,灵活运用轴对称、平移和旋转的组合进行图案设计.二、09年中考考试说明▪C层次要求的知识点有:圆的性质,圆周角,直线与圆的位置关系.▪B层次要求的知识点有:圆的有关概念,垂径定理,切线长,弧长,扇形,圆锥的侧面积和全面积,圆与圆的位置关系.▪重点:圆的有关性质;圆周角的有关计算;直线与圆的位置关系.▪难点:综合运用所学知识解决有关问题.三、中考说明变化四、历年中考06—08中考分值圆锥侧面展开图 切线的证明908年中考 正多边形 切线的证明907年中考 圆锥侧面展开图 切线的证明1006年中考知识点分值年份五、知识结构点与圆的直线与圆的圆与圆的圆的扇形面积,弧长,六、复习过程(一)圆的基本性质1、圆的概念:理解圆及其有关概念;会过一点和不在同一直线上的三点作圆;能利用圆的有关概念解决简单问题.2、垂径定理:会在相应的图形中确定垂径定理的条件和结论;能运用垂径定理解决有关问题.3、圆心角:能运用弧、弦、圆心角的关系解决简单问题.4、圆周角:了解圆周角与圆心角的关系和直径所对圆周角的特征;会求圆周角的度数;能综合运用几何知识解决与圆周角有关的问题.5、中考题型:这部分题目变化灵活,在历年各地中考试题中均占有较大比例,就考查的内容和形式来看,不仅可以单独考查,而且往往与几何前几章知识以及方程、函数等知识相结合,1、(07山东).如图,已知:△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,DC=3,AB= 42,则⊙O的直径等于。
初三数学第一章讲学稿,
第一章 图形与证明(二)【知识回顾】【基础训练】1.(08,盐城)梯形的中位线长为3,高为2,则该梯形的面积为 。
2.(08,南京)若等腰三角形的一个外角为70°,则它的底角为 度。
3.(08,乌鲁木齐)某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为A .9cmB .12cmC .15cmD .12cm 或15cm4.已知梯形的上底长为3cm ,中位线长为5cm ,则此梯形下底长为__________cm .5.(08,梅州)如图,点P 到∠AOB 两边的距离相等,若∠POB =30°,则 ∠AOB =_____度.2.直角三角形全等的判定:HL4.等腰梯形的性质和判定5.中位线 三角形的中位线 梯形的中位线注意:若等边三角形的边长为a ,则:其高为: ,面积为: 。
1.等腰三角形等边三角形的性质和判定 等腰三角形的性质和判定 线段的垂直平分线的性质和判定角的平分线的性质和判定3.平行四边形 平行四边形的性质和判定:4个判定定理矩形的性质和判定:3个判定定理 菱形的性质和判定:3个判定定理 正方形的性质和判定:2个判定定理 注注意:(1)中点四边形 ①顺次连接任意四边形各边中点,所得的新四边形是 ; ②顺次连接对角线相等的四边形各边中点,所得的新四边形是 ; ③顺次连接对角线互相垂直的四边形各边中点,所得的新四边形是 ; ④顺次连接对角线互相垂直且相等的四边形各边中点,所得的新四边形是 。
ab S 21=b a ,注意:(1)解决梯形问题的基本思路:通过分割和拼接转化成三角形和平行四边形进行解决。
即需要掌握常作的辅助线。
(2)梯形的面积公式:()lh h b a S =+=21(l -中位线长)6.(08,梅州)如图,要测量A 、B 两点间距离,在O 点打桩,取OA 的中点 C ,OB 的中点D ,测得CD =30米,则AB =______米.7.(08,宁夏)平行四边形ABCD 中,AC ,BD 是两条对角线,如果添加一个条件,即可推出平行四边形ABCD 是矩形,那么这个条件是A .AB=BCB 。
初三数学讲义
暑假数学(九年级)教学具体授课计划备注:1.本授课计划的第一、二、五、六、九、十、十六是对七、八年级重点知识点的回顾与复习。
编排次序对应于九年级上册相应知识点,以便更加系统明了地做到知识点之间的融会贯通。
2. 教学进程大体按照该计划进行。
但在授课过程中,也会根据学生的实际情况,适当调整各知识板块的教学进度,或增补缩减相应的资料。
3. 不足之处敬请批评指正。
欢迎各位家长、老师提出更合理中肯的建议!第一讲 数与式的复习(一)【教学目标】1. 理解有理数的有关概念,能用数轴上的点表示有理数,会求倒数、相反数、绝对值.理解近似数和有效数字的概念,会将一个数表示成科学记数法的形式。
2. 了解算术平方根、平方根、立方根的概念,会求非负数的算术平方根和实数的立方根。
3. 了解整式的有关概念,理解去括号法则,能熟练进行整式的加减运算.掌握正整数指数幂的运算性质,能在运算中灵活运用各种性质。
4. 了解分式概念,会求分式有意义、无意义和分式值为0时,分式中所含字母的条件,掌握分式的基本性质和分式的变号法则,能熟练地进行分式的通分和约分。
【重点难点】重点:概念的理解与区分难点:易混淆,各概念的性质及条件 【知识梳理】 1.实数分类:实数⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数 2.数轴:规定了原点、正方向和单位长度的直线。
数轴上所有的点与全体实数是一一对应关系,即每个实数都可以用数轴上的一个点表示;反过来,数轴上的每一个点都表示一个实数。
3.实数大小的比较:在数轴上表示的两个数,右边的数总比左边的数大。
(1)正数大于零,零大于负数。
(2)两正数相比较绝对值大的数大,绝对值小的数小。
(3)两负数相比较绝对值大的数反而小,绝对值大小的数反而大。
(4)对于任意两个实数a 和b ,①a>b,②a=b,③a<b,这三种情况必有一种成立,而且只能有一种成立。
2015九年级下数学讲义教学-第十一讲
A.......
的图象经过直角三角形
分别切⊙O于点A、B,若∠P=70°,则∠C
AF=AC.(1)求证:直线
180=;(3602lR =
= B.62 例2. 如图,菱形ABCD 的对角线AC ,BD 相交于点O ,AC=8,BD=6,以AB 为直径作一个半圆,
则图中阴影部分的面积为________________
例3.如图,正六边形内接于圆O ,圆O 的半径为10,则圆中阴影部分的面积为 .
,小圆半径为1,大圆的直径与小圆相交于B 、C 两点,O
3.如图,两圆圆心相同,大圆的弦AB 与小圆相切,AB=8,则图中阴影部分的面积是__________ 分的面积为 cm
5.如图,△OAB 中,OA=OB=4,∠A=30°,AB 与⊙O 相切于点C ,则图中阴影部分的面积为________
_______(结果保留π).7.如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为__________
B
A C A
B
C
A
l。
初三数学圆地经典讲义
适用标准文档圆目录圆的定义及有关观点垂经定理及其推论圆周角与圆心角圆心角、弧、弦、弦心距关系定理圆内接四边形会用切线 ,能证切线切线长定理三角形的内切圆认识弦切角与圆幂定理〔选学〕圆与圆的地点关系圆的有关计算一.圆的定义及有关观点【考点速览】考点 1:圆的对称性:圆既是轴对称图形又是中心对称图形。
经过圆心的每一条直线都是它的对称轴。
圆心是它的对称中心。
考点 2:确立圆的条件;圆心和半径①圆心确立圆的地点,半径确立圆的大小;②不在同一条直线上的三点确立一个圆;考点 3:弦:连结圆上随意两点的线段叫做弦。
经过圆心的弦叫做直径。
直径是圆中最大的弦。
弦心距:圆心到弦的距离叫做弦心距。
弧:圆上随意两点间的局部叫做弧。
弧分为半圆,优弧、劣弧三种。
〔请务必注意区分等弧,等弦,等圆的观点〕弓形:弦与它所对应的弧所组成的关闭图形。
弓高:弓形中弦的中点与弧的中点的连线段。
〔请务必注意在圆中一条弦将圆切割为两个弓形,对应两个弓高〕固定的已经不可以再固定的方法:直角三角形。
如以下列图:考点 4:三角形的外接圆:锐角三角形的外心在,直角三角形的外心在,钝角三角形的外心在。
考点 5点和圆的地点关系设圆的半径为r ,点到圆心的距离为d,那么点与圆的地点关系有三种。
①点在圆外d> r ;②点在圆上d=r ;③点在圆内 d <r ;【典型例题】例 1 在⊿ABC中,∠ACB=90° , AC=2, BC=4,CM是AB边上的中线,以点C为圆心,以5为半径作圆,试确立 A,B,M 三点分别与⊙ C有如何的地点关系,并说明你的原因。
AMB C例 2.,如图, CD是直径,EOD84 ,AE交⊙O于B,且AB=OC,求∠A的度数。
EBDO C A例 3⊙ O平面内一点P 和⊙ O上一点的距离最小为3cm,最大为8cm,那么这圆的半径是_________cm。
例 4 在半径为 5cm的圆中,弦 AB∥ CD, AB=6cm, CD=8cm,那么 AB 和 CD的距离是多少?例 5如图,⊙ O的直径AB和弦CD订交于点E, AE=6cm,EB=2cm,CEA 30 ,求 CD的长.CA·E BOD例6.:⊙O的半径0A=1AB AC的长分别为2, 3,求BAC的度数.,弦、二.垂径定理及其推论【考点速览】考点 1垂径定理:垂直于弦的直径均分这条弦,而且均分弦所对的两条孤.推论 1:①均分弦〔不是直径〕的直径重直于弦,而且均分弦所对的两条孤.②弦的垂直均分线经过圆心,而且均分弦所对的两条孤.③均分弦所对的一条孤的直径, 垂直均分弦,而且均分弦所对的另一条孤.推论 2.圆的两条平行弦所夹的孤相等.垂径定理及推论1中的三条可归纳为:①经过圆心;②垂直于弦;③均分弦 ( 不是直径 ) ;④均分弦所对的优弧;⑤均分弦所对的劣弧.以上五点此中的随意两点,都能够推得其他两点适用标准文档例 1如图AB、CD是⊙ O的弦,M、N分别是AB、CD的中点,且AMN C NM .求证: AB=CD.A CM N·OB D例 2 ,可是圆心的直线l交⊙ O于 C、D两点, AB是⊙ O的直径, AE⊥l于 E,BF⊥l于F。
数学初三讲义T5Bcssx11
数学初三讲义T5Bcssx11科目:数学年级:初三教师:张立平2005——2006学年第二学期第十一周第四章统计与概率一、主要知识网络二、本周学习导航1. 注意结合本章知识的学习,回顾复习所学的统计与概率的相关知识,如统计一般应经过哪几个过程,在各个过程中又应注意些什么问题等。
2. 学会从统计图表中获取有用的信息,认识到不规范的统计图会给人们带来一定的“错觉”。
3. 注意体会估算的策略和方法,学会估的机会相同,即获胜的概率相同,则该游戏是公平的,否则不公平。
2. 得分的机会即是将分值的概率五、典型例题与分例1(2005年长沙市中考题)某校学生会在“暑假社会实践”活动中组织学生进行了社会调查,并组织评委会对学生写出的调查报告进行了评比.学生会随机抽取了部分评比后的调查报告进行统计,绘制了统计图如下,请根据该图回答下列问题:(1) 学生会共抽取了份调查报告;(2) 若等第A为优秀,则优秀率为;(3) 学生会共收到调查报告1000份,请估计该校有多少份调查报告的等第为E ?21000 解(1)50;(2)16%,(3)50= 40分例2(2005年济南市中考题)某区在改革学生学习方式的研究中,对某校七年级的600名学生进行了“你喜欢什么样的学习方式”的问卷调查(如下表),调查者根据统计的数据制作了如统计图,请你根据图中的有关信息回答下列问题:(1) 请将每种学习方式中选择“最喜欢”的人数填入下表:(2) 根据图中的信息,请你提出一个问题.解(1)30,60,120,90,300.(2) 提出的问题合理即可.例3(2005年河北省中考题)为了解甲、乙两名运动员的体能训练情况,对他们进行跟踪测试,并把连续十周的测试成绩绘制成如图所示的折线统计图.教练组规定:体能测试成绩70分以上(包括70分)为合格.(1)请根据图中所提供的信息填写下表:(2) 请从下面两个不同的角度对这两名运动员体能测试结果进行判断:①依据平均数和成绩合格的次数比较甲和乙,的体能测试成绩较好;②依据平均数和中位数比较甲和乙,的体能测试成绩较好.(2)依据折线统计图和成绩合格的次数,分析哪位运动员体能训练的效果较好.解(1)60,2,57 .5,4;(2)①乙;②甲(3) 从折线图上看,两名运动员体能测试成绩都呈上升的趋势,但是,乙的增长速度比甲快,并且后一阶段乙的成绩合格的次数比甲多,所以乙训练的效果较好.例4(2005年南宁市中考题)南宁市政府为了了解本市市民对首届中国一东盟博览会的总体印象,利用最新引进的“计算机辅助电话访问系统”(简称CATI系统),采取电脑随机抽样的方式,对本市年龄在16~65岁之间的居民,进行了300个电话抽样调查.并根据每个年龄段的调查人数和该年龄段对博览会总体印象感到满意的人数绘制了的图(1)和图(2) (部分).根据图中提供的信息回答下列问题:图(1) 图(2)(1) 被调查的居民中,人数最多的年龄段是岁;(2) 已知被抽查的300人中有83%的人对博览会总体印象感到满意,请你求出21~30岁年龄段的满意人数,并补全图(2);(3) 比较21~30岁和41~50岁这两个年龄段对博览会总体印象满意率的高低(四舍五入到1%)注:某年龄段的满意率= 该年龄段满意人数÷该年龄段被抽查人数×100%. 解(1)21~30岁;(2) 21~30岁满意的人数为:300 ×83%一(41+50+40+18+7)= 93(人),画图(略);(3) 21~30岁的满意率: 003930093⨯×100℅=11793×100℅≈79℅41~50岁的满意率:001530040⨯×100℅=4540×100℅≈89℅ 因此21~30岁年龄段比41~50岁年龄段的满意率低.例5(2005年宁夏回族自治区中考题)如图是某篮球队队员年龄结构直方图,根据图中信息解答下列问题:(1) 该队队员年龄的平均数;(3) 该队队员年龄的众数和中位数.解 从图中可以获取的信息有:17岁的队员有1人,21岁的队员有3人,18岁、23岁、24岁的队员均有2人.(1) 该队队员年龄的平均数为:=⨯+⨯+⨯+⨯+102242233212181721(岁).(2) 该队队员年龄的众数为21岁,中位数为21岁.例6(2005年甘肃省中考题)某商贸公司有10名销售员,去年完成的销售情况如下表:(1)求销售额的平均数、众数、中位数;(2) 今年公司为了调动员工的积极性,提高销售额,准备采取超额有奖的措施.请你根据(1)的计算结果,通过比较,帮助公司领导确定今年每个销售人员统一的销售标准应是多少万元?说说你的理由.解 (1) 平均数=++++++=101087610123x 5。
北师版九年级上册数学同步精品讲义(最新版;可直接打印)
使四边形 AEDF 称为菱形,还需添加一个条件,这个条件可以是
.
3、如图,在△ABC 中,∠ACB=90°,BC 的垂直平分线 DE 交 BC 于 D,交 AB 于 E,F 在 DE 上, 并且 AF=CE. (1)求证:四边形 ACEF 是平行四边形; (2)当∠B 满足什么条件时,四边形 ACEF 是菱形?请回答并证明你的结论.
①菱形的面积等于底乘高; ②菱形的面积等于对角线乘积的一半,对角线互相垂直的四边形的面积都可以用 两条对角线乘积的一半来进行计算。
典例分析
例 1、菱形具有而一般平行四边形不具有的性质是( )
A.对边相等
B.对角相等
C.对角线互相平分
D.对角线互相垂直
例 2、如图,四边形 ABCD 是菱形,AC=8,DB=6,DH⊥AB 于 H,则 DH 等于( )
则线段 OE 的长等于( )
A.3cm
B.4cm
C.2.5cm
D.2cm
2、如图,在菱形 ABCD 中,∠BAD=120°,点 E、F 分别在边 AB、BC 上,△BEF 与△GEF 关于 直线 EF 对称,点 B 的对称点是点 G,且点 G 在边 AD 上.若 EG⊥AC,AB=6 ,则 FG 的长为 .
E,连接 DF,则∠CDF 等于( )
A.75°
B.70°
C.60°
D.55°
3、如图,菱形 ABCD 中,∠A=60°,周长是 16,则菱形的面积是( )
A.16
B.16
C.16
D.8
4、如图,等边△ABC 沿射线 BC 向右平移到△DCE 的位置,连接 AD,BD,则下列结论: ①AD=BC=CE; ②BD,AC 互相平分; ③四边形 ACED 是菱形; ④四边形 ABED 的面积为 AB2.
初三数学圆的经典讲义
圆令狐采学目录一.圆的定义及相关概念二.垂经定理及其推论三.圆周角与圆心角四.圆心角、弧、弦、弦心距关系定理五.圆内接四边形六.会用切线, 能证切线七.切线长定理八.三角形的内切圆九.了解弦切角与圆幂定理(选学)十.圆与圆的位置关系十一.圆的有关计算十二.圆的基础综合测试十三.圆的终极综合测试一.圆的定义及相关概念【考点速览】考点1:圆的对称性:圆既是轴对称图形又是中心对称图形。
经过圆心的每一条直线都是它的对称轴。
圆心是它的对称中心。
考点2:确定圆的条件;圆心和半径①圆心确定圆的位置,半径确定圆的大小;②不在同一条直线上的三点确定一个圆;考点3:弦:连结圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
直径是圆中最大的弦。
弦心距:圆心到弦的距离叫做弦心距。
弧:圆上任意两点间的部分叫做弧。
弧分为半圆,优弧、劣弧三种。
(请务必注意区分等弧,等弦,等圆的概念)弓形:弦与它所对应的弧所构成的封闭图形。
弓高:弓形中弦的中点与弧的中点的连线段。
(请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高)固定的已经不能再固定的方法:求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。
如下图:考点4:三角形的外接圆:锐角三角形的外心在,直角三角形的外心在,钝角三角形的外心在。
考点5点和圆的位置关系设圆的半径为r,点到圆心的距离为d,则点与圆的位置关系有三种。
①点在圆外⇔d>r;②点在圆上⇔d=r;③点在圆内⇔d<r;【典型例题】例1 在⊿ABC 中,∠ACB=90°,AC=2,BC=4,CM 是AB边上的中线,以点C为圆心,以5为半径作圆,试确定A,B,M三点分别与⊙C有怎样的位置关系,并说明你的理由。
例2.已知,如图,CD是直径,∠⊙O于B,且AB=OC,求∠A 例3 ⊙O平面内一点P和⊙O为3cm ,最大为8cm ,则这圆的半径是_________cm 。
例4 在半径为5cm 的圆中,弦AB∥CD,AB=6cm ,CD=8cm ,则AB 和CD 的距离是多少?例5 如图,⊙O 的直径AB 和弦CD 相交于点E ,已知AE=6cm ,EB=2cm, 30=∠CEA ,求CD 的长.例6.已知:⊙O 的半径0A=1,弦AB 、AC 的长分别为3,2,求BAC ∠的度数. 【考点速练】1.下列命题中,正确的是( )A .三点确定一个圆B .任何一个三角形有且仅有一个外接圆C .任何一个四边形都有一个外接圆D .等腰三角形的外心一定在它的外部2.如果一个三角形的外心在它的一边上,那么这个三角形一定是( )A .等腰三角形B .直角三角形C .等边三角形 D .钝角三角形3.圆的内接三角形的个数为( )A BDC O · EA.1个B.2 C.3个D.无数个4.三角形的外接圆的个数为()A.1个B.2 C.3个D.无数个5.下列说法中,正确的个数为()①任意一点可以确定一个圆;②任意两点可以确定一个圆;③任意三点可以确定一个圆;④经过任一点可以作圆;⑤经过任意两点一定有圆.A.1个B.2个C.3个D.4个6.与圆心的距离不大于半径的点所组成的图形是( )A.圆的外部(包括边界);B.圆的内部(不包括边界);C.圆; D.圆的内部(包括边界)7.已知⊙O的半径为6cm,P为线段OA的中点,若点P在⊙O上,则OA的长( )A.等于6cmB.等于12cm;C.小于6cm D.大于12cm8.如图,⊙O的直径为10cm,弦AB为8cm,P是弦AB上一点,若OP 的长为整数, 则满足条件的点P 有( )A.2个B.3个C.4个D.5个9.如图,A 是半径为5的⊙O 内一点,且OA=3,过点A且长小于8的弦有( )A.0条B.1条C.2条D.4条10.要浇铸一个和残破轮片同样大小的圆形轮片,需要知道它的半径,用圆规和直尺在图中作出它的一条半径.(要求保留作图痕迹)11.如图,已知在ABC ∆中,︒=∠90A ,AB=3cm ,AC=4cm ,以点A 为圆心,AC 长为半径画弧交CB的延长线于点D ,求CD 的长.12、如图,有一圆弧开桥拱,拱的跨度拱高CD =4cm m 。
初三数学基础知识讲义
初三数学基础知识讲义第一讲:数与式一、重点知识回顾1.实数分类(无理数)三个非负数 有效数字及科学记数法2.相反数 绝对值 倒数3.算术平方根 乘法公式 因式分解二、难点问题致疑非负数性质的应用;绝对值的化简;算术平方根的计算.三、例题分析:例1:在数轴上表示a 、b 、c 三个数的点的位置如图所示:化简:|c b ||c a ||b a |+--+-.分析:由图形可知:a>0,b<0,c<0得出:a -b>0,a -c>0,b +c<0.因此:原式)c b ()c a ()b a (++-+-==2a .归纳:见数轴,首先确定a 、b 、c 的符号由此判断出a -b ,a -c ,b +c 的正负根据)0a (a |a |≥=,)0a (a |a |<-=去掉绝对值符号.强化练习:1.当-1<x <2时,化简22)2()1(-++x x =32.当a <0时,化简||2a a -a 2-=例2:7.3896精确到0.01的近似值为____.保留四个有效数字的近似值为____.分析:一个数的近似值精确到0.01,就要对千分位的数字进行四舍五入,结果为7.39有效数字的概念是指一个数字从左边第一个不是零的数字起到某一位数字起,所有数字称为有效数字.结果为7.390.归纳:这类问题的解决,关键要弄清概念.强化练习:(2007.淮安)温家宝总理在2007年政府工作报告中指出,今年全国财政安排农村义务教育经费2235亿元,将2235亿元用科学记数法表示为____.310235.2⨯例3:已知:实数x 、y 满足0|2y 2x |1y 3x 2=+-+--则2x -34y +425算术平方根是________. 分析:∵0a ≥,|b |≥0.∴1y 3x 2--和|2y 2x |+-都是※※数. 又∵0|b |a =+,∴得出a=b=0.由此⎩⎨⎧=+-=--02y 2x 01y 3x 2解得⎩⎨⎧==3y 4x 代入原式=22433442=+⨯-⨯.22归纳:非负数,在实数中是一重要概念,常见的非负数有三个,|a|≥0,2b ≥0,c ≥0.应用非负数的性质时,通常需要进行配方、变形,这里提醒考生注意.强化练习:1.若|a -b +1|与4b 2a ++互为相反数,求2008)b a (-的值.(1)2.△ABC 的三边长分别为a ,b ,c 且a ,b 满足04b 4b 1a 2=+-+-.求c 的取值范围.(1<c <3)3.已知2x 44x y +-+-=.求3xy 的值.(24) 例4:已知:2008y1x 1=-.求y x y 2y x +-⨯+-的值. 分析:此类题从应两方面入手. 从已知加以变形2008x yx y =-.∴xy 2008x y =-. 另一方面从所求代数式入手,原式=x y y 2)x y (-⨯+-- 再将上面结果整体代入:原式10041003x y 2008x y 2x y 2008-=+-= 归纳:这类化简题目很多,常见方法是进行恒等变形,整体代入,变形的技巧是代数式的各种法则的应用.强化练习:1.如果3a 1a =+,则=+22a1a _______(7) 2.已知:01b a 2=-+,求)b a (1b a a )b a (22-÷⎪⎭⎫ ⎝⎛++-的值 (1)3.(2007.天津)已知:x +y=7.xy=12.当x <y 时,计算y 1x 1-的值. (2007·济南) 4.已知:21x 6=-,2y y 2=-.化简 )754()755(22x xy y x x xy y x -+--+ ⎪⎭⎫ ⎝⎛-2141或 ⎪⎭⎫ ⎝⎛21 例5:计算1121=-,3122=-,7123=-,15124=-,31125=-.……归纳各计算结果中28个位数字规律,猜测122008- 28个位数字是______.分析:对找规律的题目,关键在于认真观察题目所给已知条件,尽可能多的把过程写出来,并按顺序加以排列,发现每隔4个数,结果中的个位数字相同,抓住这个特色,用2008÷4=502,余数为0,说明22008-1的个数字为5.归纳:找规律的题目,最重要的是观察题目特色,对较复杂的题目,需要展示变化过程排序. 强化练习:1.(2007.山东)根据以下10个乘积,回答问题.11×29;12×28;13×27;14×26;15×25;16×24;17×23;18×22;19×21;20×20.(1)将以上各乘积分别写成一个“22-○ ”的形式,并写出其中一个的思考过程.(2)将以上10个乘积按照从小到大的顺序排列起来.(3)试由(1)(2)猜想一个一般性的结论(不要求证明). 402211=+==+=+n n b a b a b an n b a b a b a b a -≥-≥-≥- 332211n n b a b a b a b a ≤≤≤≤ 3322112.(2006·北京)用“”定义新运算,对于任意实数a 、b ,都有a b=1b 2+,例如74=24+1=17.那么53=__10__,当以为实数时. m (m 2)=________. (26)3.有一个数位转换器,原理如图当输入的x 为64时,输出的是_______)22(输入x 算术平方根输入y是有理数 是无理数例6:计算:221145cos )3.14(-⎪⎭⎫ ⎝⎛--︒+︒-π 分析:掌握各个概念0a =1(a≠0).2245cos =︒. 0122<-,422122==⎪⎭⎫ ⎝⎛-. 代入:原式22242211--=--+=. 强化练习:1.01)31()32(12+-+- )333(+=) 2.已知m=-2,求3m 29m 63m m 2-÷--+的值.(-5) 3.已知12x -=,12y +=,求xy y x +的值.(6) (一)、例7:已知:a 、b 互为相反数,c 、d 互为倒数. 求b a cd b a b a +-+-2222的值. 分析: a -b 互为相反数,∴0b a =+.∴22b a =,1ba -=. 又c 、d 互为倒数,∴1cd =.因式原式=2)1(10-=-+-.强化练习:1.已知:x 、y 是实数,且2)1y x (-+与4y x 2+-互为相反数.求x y 的负倒数. (-2) 2.已知m 是满足3-<a <6的所有实数a 的和.N 是满足不等式2237x -≤的最大整数解.求m +N 的平方根. (±2).3.13.甲、乙两人两次同时在同一粮店购买粮食(假设两次购买粮食的单价不同),甲每次买100kg ,乙每次购买粮食用去100元.设甲、乙两人第一次购买粮食的单价为x 元/kg ,第二次单价为y 元/kg .(1)用含x 、y 的代数式表示甲两次购买粮食共需付款_____元,乙两次共购买______kg 粮食.(2)若甲两次购买粮食的平均单价为每千克1Q 元,乙两次购粮的平均单价为每千克2Q 元,则1Q =_______,则2Q =______.(3)若规定谁两次购粮的平均价格低,谁的购粮方式就更合算,请你判断甲、乙两个的购粮方式哪一个更合算些,并说明理由.答案: (1))y 100x 100(+ ⎪⎪⎭⎫ ⎝⎛+y 100x 100 (2)29x Q 1+=,y x 2x y Q 2+= (3)0Q Q 21>- ∴二次购粮方式全合并.(二)、练习4:有一道题“先化简、再求值”.4x 14x x 42x 2x 22-÷⎪⎭⎫ ⎝⎛--+-,其中3x -=.小玲做题时把“3x -=”错抄成了“3x =”,但她的计算结果也是正确的,请你解释这是怎么回事?提示:化简得4x 2+,无论3x =或3-结果都一样. 练习5:课堂上,李老师给出大家这样一道题,当x=3,225-,37+时. 求代数式1x 2x 21x 1x 2x 22+-÷-+-的值. 小明一看“太复杂了,怎么弄呢?”.你能帮助小明解决这个问题吗?请你写出具体过程. 提示:化简得21,与x 无关. (三)、例8:阅读下列材料并解决有关问题:我们知道⎪⎩⎪⎨⎧-==)0()0(0)0(||<>x x x x x x 现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x +1|+|x -2|时,可令x +1=0和x -2=0,分别求得x=-1,x=2(称-1,2分别为|x +1|与|x -2|的零点值).在实数范围内,零点值x=-1和x=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)x <-1;(2)-1≤x <2;(3)x ≥2.从而化简代数式|x +1|+|x -2|可分以下3种情况:(1)当x <-1时,原式=-(x +1)-(x -2)=-2x +1;(2)当-1≤x <2时,原式=x +1-(x -2)=3;(3)当x ≥2时,原式=x +1+x -2=2x -1.综上讨论,原式=⎪⎩⎪⎨⎧---+-.)2x (1x 2)2x 1(3)1x (1x 2≥,<≤,<通过以上阅读,请你解决以下问题:(1)分别求出|x +2|和|x -4|的零点值;(2)化简代数式|x +2|+|x -4|.提示:(1)求|x +2|和|x -4|的零点值.x=-2和x=4.(2)化简|x +2|+|x -4|当x <-2时,原式=-(x +2)-(x -4)=2-2x当-2≤x <4时,原式=(x +2)-(x -4)=6当x ≥4时,原式=(x +2)+(x -4)=2x -2.概括:遇到几个绝对值的和的化简,应按照上例所说,取零点,分段化简,这是解这类题的基本方法.强化练习:1.化简:|x -1|-|2x +6|提示: 当x <-3时,原式=x+7当-3≤x <1时,原式=-3x-5当x ≥1时,原式=-x-72.观察下列各式及其验证过程:322322+=. 验证:322122)12(2122223232222233+=-+-=-+-==. 833833+=. 验证:833133)13(3133)33(8383322233+=-+-=-+-==. (1)按照上述两等式及其验证过程的基本思路猜想1544的变形结果,并进行验证; (2)针对上述各式反映的规律,写出用n(n 为自然数,且n ≥2)表示的等式,并给予证明. 提示:(1)15441544+=(验证:略) (2)1n n n 1n n n22-+=-.(证明略)第二讲:方程(组)及不等式(组)一、重点知识回顾:1.方程、方程解的概念.2.一元二次方程的四种解法及根的判别式.3.分式方程及增根的判断.4.不等式性质(3)的应用.5.列方程(组)、不等式(组)解应用题.二、难点问题致疑1.方程解的应用.2.增根的判断.3、解应用题.三、例题分析:例1:(2007·兰州)已知关于x 的方程mx +2=2(m -x)的解满足0121x =--.求m 值. 分析:方程的解满足方程.由0121x =--,求出x 的值.21x 23x 21-==,,代入原方程,求出10m 1=,52m 2= 强化练习:1、(2007·青海)已知二元一次方程组⎩⎨⎧=-=-.3n m 4n 2m 则m +n=_____(-1) 2、(2007·杭州)专项P16=10.(略)3、若⎩⎨⎧=-=3y 2x 且方程3x -3y=m 和5x +y=n 的公共解.求n 3m 2-的值.(246) 例2:如图,是一个正方体的展开图,标注字母“a ”的面是正方体的正面.如正方体相对的两个面上的代数式的值相等.求x 、y 的值.分析:首先要弄清正方体的展开图中哪两个面是相对的面.再根据题意相对两个面的代数式的值相等.列出方程组⎪⎩⎪⎨⎧-=-=+=5x 2y x 51y 3a 解为⎩⎨⎧==1y 3x 强化练习:1.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °, ∠2=y °,则可得到方程组为( D )A .⎩⎨⎧=+-=180y x 50y xB .⎩⎨⎧=++=180y x 50y xC .⎩⎨⎧=+-=90y x 50y xD .⎩⎨⎧=++=90y x 50y x 2、如下图所示,在3×3的方格内,填写了一些代数式和数.(1)图①中各行、各列及对角线上三个数之和都相等,请你求出x 、y 的值;(2)把满足①的其他6个数填入图②中的方格内.提示: 2x+3+2=2+(-3)+4y=2x+y+4y ⎩⎨⎧=-=1y 1x3、(2007·北京)在五环图案内,分别填写五个数a ,b ,c ,d ,e ,如图,,其中a ,b ,c ,是三个连续偶数(a<b),d ,e 是两个连续奇数(d <e),且满足a +b +c=d +e ,例如.请你在0到20之间选择另一组符合条件的数填入下图: . 答案:结果不唯一,可以是6,8,10,11,13 ; 还可以是10,12,14,17,19.例3:已知不等式组⎪⎩⎪⎨⎧--6m x 2m 21x 31<<的解集为3m 6x +<,求m 的取值范围.分析:不等式组的解集是不等式组中每个不等式解集的公共部分,解不等式组⎪⎩⎪⎨⎧++2m3x 3m 6x <<,∵解集为3m 6x +<,如图,∴6m +3≤3+2m ,解得:m ≤0.值得注意的是:2336m m +=+,也是m 范围中的值. 强化练习:1.已知关于x 的不等式(a +1)x >a +1的解集为x <1.求a 的取值范围.(a <-1).2.不等式组⎩⎨⎧-+1x 42x 3a x <>的解集为x >3,求a 的取值范围.(a <3).3.关于x 的不等式组⎩⎨⎧---0a x 1x 25>≥无解.求a 的取值范围.(a >3) 例4:某校初三(2)班40名同学为“希望工程”捐款,共捐款100元,捐款情况如下表:表格中捐款2元和3元的人数不小心被墨水污染已看不清楚.若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意,可得方程组( )A .⎩⎨⎧=+=+66y 3x 227y x B .⎩⎨⎧=+=+100y 3x 227y x C .⎩⎨⎧=+=+66y 2x 327y x D .⎩⎨⎧=+=+100y 2x 327y x 分析:列方程解应用题,最重要的了解题意,寻找相等的系列方程,题目中给出两个已知条件.一是学生总数为40人,二是40人共捐款100元.其它条件在一被墨水污染看不清楚的表格中,分析其中条件发现:捐一元钱的人数是6人,捐4元钱的有7人,那么可没捐2元钱的人数为x ,捐3元钱的人数为y 人.则总人数40=6+x +y +7,总钱数100=1×6+2x +3y +4×7.化简得⎩⎨⎧=+=+66y 3x 227y x 此题可解. 概括:解应用题过程中,若遇到的问题比较复杂,一般可采取列代数式,列表和图示法进行分析,只要把题目中的已知是未知量及隐含在题目中的相等关系找出来,应用题就不难解决了.强化练习:1.2006年“五·一”节,小华、小颖、小明相约到“心连心”超市调查“农夫山泉”矿泉水的日销售情况.图2-3-1是调查后三位同学进行交流的情景.请你根据上述对话,解答下列问题:(1)该超市的每瓶“农夫山泉”矿泉水的标价为多少元;(2)该超市今天销售了多少瓶“农夫山泉”矿泉水.(温馨提示:利润=售价-进价 利润率= 进价利润100%) 解: 设每瓶矿泉水的标价为x, 根据对话易得: 80%x-1=20%*1解得x=1.5(元) 售价=80%*1.5=1.2(元) ,则共销售了360/1.2=300(瓶).2.右图是一个数表,现用一个矩形在数表中任意框出4个数,则(1)a ,c 的关系是:_______,(2)当a +b +c +d=32时,a=_______.(c=a +5,a=5)例5:某学校计划组织385名师生租车去旅游,现知道出租公司有42座和60座两种客车,42座客车的租金为每辆320元,60座客车的租金为每辆460元。
人教版数学九年级上册必备数学第一部分第五章第1节-课件
4. (2014广东)如图1-5-1-20,在 ⊙O中,已知半径为5,弦AB的长 为8,那么圆心O到AB的距离为__3___. 5. (2013广州)如图1-5-1-21,在 平面直角坐标系中,点O为坐标原 点,点P在第一象限,⊙P与x轴交 于O,A两点,点A的坐标为(6,0), ⊙P的半径为 13 ,则点P的坐标为 __(_3_,__2_)__.
广东中考
1. (2017广东)如图1-5-1-17,四边形ABCD内接于⊙O,DA=DC,
∠CBE=50°,则∠DAC的大小为
(C)
A. 130° B. 100° C. 65° D. 50°
2.(2017广州)如图1-5-1-18,在⊙O中,
AB是直径,CD是弦,AB⊥CD,垂足为
E,连接CO,AD,∠BAD=20°,则下
6. (2013佛山)如图1-5-1-22中圆心 角∠AOB=30°,弦CA∥OB,延长CO 与圆交于点D,则∠BOD=__3_0_°_. 7. (2014茂名)如图1-5-1-23, 小丽荡秋千,秋千链子的长OA 为2.5 m,秋千向两边摆动的 角度相同,摆动的水平距离AB 为3 m,则秋千摆至最高位置 时与最低价位置时的高度之差 (即CD)为__0_._5__m__.
边形ABCD内接⊙O,AC平分∠BAD,
则下列结论正确的是 ( B )
A. AB=AD
B. BC=CD
C.
D. ∠BCA=∠DCA
4. 如图1-5-1-4,在△ABC中,
∠C=90°,∠A=25°,以点C
为圆心,BC为半径的圆交AB于
点D,交AC于点E,则 的度
数为_5_0_°__.
考点演练
5. 如图1-5-1-5,AB是⊙O的直
浙教版 初中数学培优讲义 九年级 教师版 第三章 《圆的基本性质》全章复习与巩固—知识讲解(提高)
《圆的基本性质》全章复习与巩固(提高)【学习目标】1.理解圆及其有关概念,了解点与圆的位置关系.2. 认识图形的旋转,理解图形的旋转的性质.3. 理解圆的性质,垂径定理,圆心角定理,圆周角定理.4. 理解圆内接四边形的性质.5.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积.6. 会初步综合应用圆的有关知识,解决一些简单的实际问题.【知识网络】【要点梳理】要点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.(3)不在同一条直线上的三个点确定一个圆.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.点与圆的位置关系判定一个点P是否在⊙O上设⊙O的半径为,OP=,则有点P在⊙O 外;点P在⊙O 上;点P在⊙O 内.要点诠释:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.定理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.定理2:平分弧的直径垂直平分弧所对的弦.4.与圆有关的角圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.在同圆或者等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对量相等,那么它们所对应的其余各对量都相等.圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半.90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.在同圆或者等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等.5. 圆内接四边形圆内接四边形的对角互补.要点二、图形的旋转在平面内,一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转.这个定点叫做旋转中心,转过的角叫做旋转角.图形经过旋转所得的图形和原图形全等.对应点到旋转中心的距离相等.任何一对对应点与旋转中心连线所成的角度等于旋转的角度.要点三、正多边形各边相等,各内角也相等的多边形是正多边形.要点诠释:判断一个多边形是否是正多边形,必须满足两个条件:(1)各边相等;(2)各角相等;缺一不可.如菱形的各边都相等,矩形的各角都相等,但它们都不是正多边形(正方形是正多边形).正多边形的外接圆和圆的内接正多边形正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.要点四、弧长及扇形的面积圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、圆的基础知识1. 如图,已知⊙O是以数轴的原点O为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若过点P且与OA平行(或重合)的直线与⊙O有公共点, 设OP=x,则x的取值范围是().≤x≤2C.0≤x≤2 D.x>2 A.-1≤x≤1 B.2【答案】C;【解析】如图,平移过P点的直线到P′,使其与⊙O相切,设切点为Q,连接OQ,由切线的性质,得∠OQP′=90°,∵OA∥P′Q,∴∠OP′Q=∠AOB=45°,∴△OQP′为等腰直角三角形,在Rt△OQP′中,OQ=1,OP′=2,∴当过点P且与OA平行的直线与⊙O有公共点时,0≤OP≤,当点P在x轴负半轴即点P向左侧移动时,结果相同.故答案为:0≤OP≤2.【总结升华】本题考查了直线与圆的位置关系问题.关键是通过平移,确定直线与圆相切的情况,求出此时OP的值.举一反三:【变式】如图,已知⊙O是以数轴的原点为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若过点P且与OB平行的直线于⊙O有公共点,设P(x,0),则x的取值范围是().A.-1≤x<0或0<x≤1 B.0<x≤1 C.-2≤x<0或0<x≤2 D.x>1【答案】∵⊙O是以数轴的原点为圆心,半径为1的圆,∠AOB=45°,∴过点P′且与OB平行的直线与⊙O相切时,假设切点为D,∴OD=DP′=1,OP′=2,∴0<OP≤2,同理可得,当OP与x轴负半轴相交时,-2≤OP<0,∴-2≤OP<0,或0<OP≤2.故选C.类型二、弧、弦、圆心角、圆周角的关系及垂径定理=,2.如图所示,已知在⊙O中,AB是⊙O的直径,弦CG⊥AB于D,F是⊙O上的点,且CF CB BF交CG于点E,求证:CE=BE.【答案与解析】证法一:如图(1),连接BC,=.∵ AB是⊙O的直径,弦CG⊥AB,∴CB GB∵ CF BC =,∴ CF GB =.∴ ∠C =∠CBE .∴ CE =BE .证法二:如图(2),作ON ⊥BF ,垂足为N ,连接OE .∵ AB 是⊙O 的直径,且AB ⊥CG ,∴ CB BG =.∵ CB CF =,∴ CF BC BG ==.∴ BF =CG ,ON =OD .∵ ∠ONE =∠ODE =90°,OE =OE ,ON =OD ,∴ △ONE ≌△ODE ,∴ NE =DE .∵ 12BN BF =,12CD CG =, ∴ BN =CD ,∴ BN-EN =CD-ED ,∴ BE =CE .证法三:如图(3),连接OC 交BF 于点N .∵ CF BC =,∴ OC ⊥BF .∵ AB 是⊙O 的直径,CG ⊥AB ,∵ BG BC =,CF BG BC ==.∴ BF CG =,ON OD =.∵ OC =OB ,∴ OC-ON =OB-OD ,即CN =BD .又∠CNE =∠BDE =90°,∠CEN =∠BED ,∴ △CNE ≌△BDE ,∴ CE =BE .【总结升华】上述各种证明方法,虽然思路各异,但都用到了垂径定理及其推论.在平时多进行一题多解、一题多证、一题多变的练习,这样不但能提高分析问题的能力,而且还是沟通知识体系、学习知识,使用知识的好方法.举一反三:【变式】如图所示,在⊙O 内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC 的长为( )A .19B .16C .18D .20【答案】如图,延长AO交BC于点D,过O作OE⊥BC于E.则三角形ABD为等边三角形,DA=AB=BD=12,OD=AD-AO=4在Rt△ODE中,∠ODE=60°,∠DOE=30°,则DE=12OD=2,BE=BD-DE=10OE垂直平分BC,BC=2BE=20. 故选D类型三、图形的旋转3.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A.4,30°B.2,60°C.1,30°D.3,60°【思路点拨】利用旋转和平移的性质得出,∠A′B′C=60°,AB=A′B′=A′C=4,进而得出△A′B′C是等边三角形,即可得出BB′以及∠B′A′C的度数.【答案】B;解:∵∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等边三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6-4=2,∴平移的距离和旋转角的度数分别为:2,60°.【总结升华】此题主要考查了平移和旋转的性质以及等边三角形的判定等知识,得出△A′B′C是等边三角形是解题关键.类型四、圆中有关的计算4.如图,AB为⊙O直径,C为⊙O上一点,点D是的中点,DE⊥AC于E,DF⊥AB于F.(1)判断DE与⊙O的位置关系,并证明你的结论;(2)若OF=4,求AC的长度.【思路点拨】(1)先连接OD、AD,根据点D是的中点,得出∠DAO=∠DAC,进而根据内错角相等,判定OD∥AE,最后根据DE⊥OD,得出DE与⊙O相切;(2)先连接BC交OD于H,延长DF交⊙O于G,根据垂径定理推导可得OH=OF=4,再根据AB是直径,推出OH是△ABC的中位线,进而得到AC的长是OH长的2倍.【答案与解析】解:(1)DE与⊙O相切.证明:连接OD、AD,∵点D是的中点,∴=,∴∠DAO=∠DAC,∵OA=OD,∴∠DAO=∠ODA,∴∠DAC=∠ODA,∴OD∥AE,∵DE⊥AC,∴DE⊥OD,∴DE与⊙O相切.(2)连接BC交OD于H,延长DF交⊙O于G,由垂径定理可得:OH⊥BC,==,∴=,∴DG=BC,∴弦心距OH=OF=4,∵AB是直径,∴BC⊥AC,∴OH∥AC,∴OH是△ABC的中位线,∴AC=2OH=8.【点评】本题主要考查了直线与圆的位置关系,在判定一条直线为圆的切线时,当已知条件中明确指出直线与圆有公共点时,通常连接过该公共点的半径,证明该半径垂直于这条直线.本题也可以根据△ODF与△ABC相似,求得AC的长.举一反三:【变式】如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)【答案】解:(1)∵OF⊥AB,∴∠BOF=90°,∵∠B=30°,FO=2,∴OB=6,AB=2OB=12,又∵AB为⊙O的直径,∴∠ACB=90°,∴AC=AB=6;(2)∵由(1)可知,AB=12,∴AO=6,即AC=AO,在Rt△ACF和Rt△AOF中,∴Rt△ACF≌Rt△AOF,∴∠FAO=∠FAC=30°,∴∠DOB=60°,过点D作DG⊥AB于点G,∵OD=6,∴DG=3,∴S△ACF+S△OFD=S△AOD=×6×3=9,即阴影部分的面积是9.类型五、圆与其他知识的综合运用5..【答案与解析】延长DB至点E,使BE=DC,连结AE∵△ABC是等边三角形∴∠ACB=∠ABC=60°,AB=AC∴∠ADB=∠ACB=60°∵四边形ABDC是圆内接四边形∴∠ABE=∠ACD在△AEB和△ADC中,∴△AEB≌△ADC∴AE=AD∵∠ADB=60°∴△AED是等边三角形∴AD=DE=DB+BE∵BE=DC∴DB+DC=DA.【总结升华】由已知条件,等边△ABC可得60°角,根据圆的性质,可得∠ADB=60°,利用截长补短的方法可得一个新的等边三角形,再证两个三角形全等,从而转移线段DC.本例也可以用其他方法证明.如:(1)延长DC至F,使CF=BD,连结AF,再证△ACF≌△ABD,得出AD=DF,从而DB+CD=DA.(2)在DA上截取DG=DC,连结CG,再证△BDC≌△AGC,得出BD=AG,从而DB+CD=DA.6.如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是().A. 3πB. 6πC. 5πD. 4π【答案】B;【解析】阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB为直径的半圆的面积=扇形ABB′的面积.则阴影部分的面积是:=6π故选B.【总结升华】根据阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB为直径的半圆的面积=扇形ABB′的面积.即可求解.举一反三:【变式】某中学举办校园文化艺术节,小颖设计了同学们喜欢的图案“我的宝贝”,图案的一部分是以斜边长为12cm的等腰直角三角形的各边为直径作的半圆,如图所示,则图中阴影部分的面积为( ).A. B.72 C.36 D.72【答案】本题解法很多,如两个小半圆面积和减去两个弓形面积等.但经过认真观察等腰直角三角形其对称性可知,阴影部分的面积由两个小半圆面积与三角形面积的和减去大半圆面积便可求得,所以由已知得直角边为,小半圆半径为(cm),因此阴影部分面积为.故选C.《圆的基本性质》全章复习与巩固—巩固练习(提高)【巩固练习】一、选择题1.对于下列命题:①任意一个三角形一定有一个外接圆,并且只有一个外接圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;③任意三角形一定有一个内切圆,并且只有一个内切圆;④任意一个圆一定有一个外切三角形,并且只有一个外切三角形.其中,正确的有( ).A.1个 B.2个 C.3个 D.4个2.圆锥的底面半径为4cm,高为5cm,则它的表面积为()A.12πcm2B.26πcm2C.πcm2 D.(4+16)πcm23.设计一个商标图案,如图所示,在矩形ABCD中,AB=2BC,且AB=8cm,以A为圆心、AD的长为半径作半圆,则商标图案(阴影部分)的面积等于( ).A.(4π+8)cm2B.(4π+16)cm2C.(3π+8)cm2D.(3π+16)cm24.如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是()A.0 B.1 C.2 D.35. “圆材埋壁”是我国古代著名的数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表示为:如图所示,CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD的长为( )A.12.5寸 B.13寸 C.25寸D.26寸6.如图,在Rt△ABC中,∠BAC=90°.如果将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处.那么旋转的角度等于()A.55°B.60°C.65°D.80°7.一条弦的两个端点把圆周分成4:5两部分,则该弦所对的圆周角为( ).A.80° B.100° C.80°或100° D.160°或200°8.如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为()A.22.4 C.42 D.8二、填空题9.如下左图,是的内接三角形,,点P在上移动(点P不与点A、C重合),则的变化范围是__ ________.10.如图,⊙0中,弦AB与弦CD交于E,连接AC,OE,BD,若AE=BE,AC∥0E,则∠CDB=.11.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为______cm.12.如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为_______.13.如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE=_______.14.已知正方形ABCD2a,截去四个角成一正八边形,则这个正八边形EFGHIJLK的边长为____ ____,面积为_____ ___.15.如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出以下五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧是劣弧的2倍;⑤AE=BC,其中正确的序号是.16.如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为_______.三、解答题17.(二模)如图,已知四边形ABCD内接于圆,对角线AC与BD相交于点E,F在AC上,AB=AD,∠BFC=∠BAD=2∠DFC.(1)若∠DFC=40°,求∠CBF的度数;(2)求证:CD⊥DF.18.已知:如图,∠PAQ=30°,在边AP上顺次截取AB=3cm,BC=10cm,以BC为直径作⊙O交射线AQ于E、F两点,求:(1)圆心O到AQ的距离;(2)线段EF的长.19.如图,相交两圆的公共弦长为120cm,它分别是一圆内接正六边形的边和另一圆内接正方形的边.求两圆相交弧间阴影部分的面积.20.如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB;(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.【答案与解析】一、选择题1.【答案】B;【解析】任意一个圆的内接三角形和外切三角形都可以作出无数个.①③正确,②④错误,故选B.2.【答案】D.【解析】底面半径为4cm,则底面周长=8πcm,底面面积=16πcm2;由勾股定理得,母线长=cm,圆锥的侧面面积=×8π×=4πcm2,∴它的表面积=16π+4π=(4+16)πcm2,故选D.3.【答案】A.;【解析】对图中阴影部分进行分析,可看做扇形、矩形、三角形的面积和差关系.∵矩形ABCD中,AB=2BC,AB=8cm,∴ AD=BC=4cm,∠DAF=90°,,,又AF=AD=4cm,∴,∴.4.【答案】B.【解析】设OP与⊙O交于点N,连结MN,OQ,如图,∵OP=4,ON=2,∴N是OP的中点,∵M为PQ的中点,∴MN为△POQ的中位线,∴MN=OQ=×2=1,∴点M在以N为圆心,1为半径的圆上,当点M在ON上时,OM最小,最小值为1,∴线段OM的最小值为1.故选B.5.【答案】D;【解析】因为直径CD垂直于弦AB,所以可通过连接OA(或OB),求出半径即可.根据“垂直于弦的直径平分弦,并且平分弦所对的两条弧”,知(寸),在Rt△AOE中,,即,解得OA=13,进而求得CD=26(寸).故选D.6.【答案】B;【解析】∵在Rt△ABC中,∠BAC=90°,将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处,∴AB1=12BC,BB1=B1C,AB=AB1,∴BB1=AB=AB1,∴△ABB1是等边三角形,∴∠BAB1=60°,∴旋转的角度等于60°.7.【答案】C;【解析】圆周角的顶点在劣弧上时,圆周角为5136010092⨯⨯=°°;圆周角的顶点在优弧上时,圆周角为413608092⨯⨯=°°.注意分情况讨论.8.【答案】C;【解析】∵∠A=22.5°,∴∠BOC=2∠A=45°,∵圆O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.二、填空题9.【答案】;10.【答案】90°;【解析】∵AE=BE,∴OE⊥AB,即∠OEB=90°,∵AC∥OE,∴∠CAE=∠OEB=90°,∴∠CDB=∠CAE=90°.11.【答案】45;【解析】连接OD,OC,作DE⊥AB于E,OF⊥AC于F,∵∠CAD=∠BAD(角平分线的性质),∴D=BDC,∴∠DOB=∠OAC=2∠BAD,∴△AOF≌△ODE,∴OE=AF=AC=3(cm),在Rt△DOE中,DE==4(cm),在Rt△ADE中,AD==4(cm).12.【答案】2;【解析】将△DAF绕点A顺时针旋转90度到△BAF′位置,根据旋转的性质得出∠EAF′=45°,进而得出△FAE≌△EAF′,即可得出EF+EC+FC=FC+CE+EF′=FC+BC+BF′=4,得出正方形边长即可.13.【答案】50°;【解析】∵BC为,⊙O的直径,∴∠CEB=∠AEB=90°,∵∠A=65°,∴∠ABE=25°,∴∠DOE=2∠ABE=50°.14.【答案】21)a;2(222)a;【解析】正方形ABCD外接圆的直径就是它的对角线,由此求得正方形边长为a.如图所示,设正八边形的边长为x.在Rt△AEL中,LE=x,AE=AL=22x,∴222x x a⨯+=,21)x a =,即正八边形的边长为(21)a -.222224[(21)](222)AEL S S S a x a a a =-=-=--=-△正方形正八边形.15.【答案】①②④;【解析】连接AD ,AB 是直径,则AD⊥BC,又∵△ABC 是等腰三角形,故点D 是BC 的中点,即BD=CD ,故②正确; ∵AD 是∠BAC 的平分线,由圆周角定理知,∠EBC=∠DAC=∠BAC=22.5°,故①正确; ∵∠ABE=90°﹣∠EBC﹣∠BAD=45°=2∠CAD,故④正确; ∵∠EBC=22.5°,2EC≠BE,AE=BE ,∴AE≠2CE,③不正确; ∵AE=BE,BE 是直角边,BC 是斜边,肯定不等,故⑤错误. 综上所述,正确的结论是:①②④.16.【答案】72;【解析】连接OA ,OB ,OC ,作CH 垂直于AB 于H .根据垂径定理,得到BE=12AB=4,CF=12CD=3, 由勾股定理∴OE=3,OF=4,∴CH=OE+OF=3+4=7,BH=BE+EH=BE+CF=4+3=7,在直角△BCH 中根据勾股定理得到BC=72,则PA+PC 的最小值为72.三、解答题 17.【解析】解:(1)∵∠ADB=∠ACB ,∠BAD=∠BFC ,∴∠ABD=∠FBC,又∵AB=AD,∴∠ABD=∠ADB,∴∠CBF=∠BCF,∵∠BFC=2∠DFC=80°,∴∠CBF==50°;(2)令∠CFD=α,则∠BAD=∠BFC=2α,∵四边形ABCD是圆的内接四边形,∴∠BAD+∠BCD=180°,即∠BCD=180°﹣2α,又∵AB=AD,∴∠ACD=∠ACB,∴∠ACD=∠ACB=90°﹣α,∴∠CFD+∠FCD=α+(90°﹣α)=90°,∴∠CDF=90°,即CD⊥DF.18.【解析】解:(1)过点O作OH⊥EF,垂足为点H,∵OH⊥EF,∴∠AHO=90°,在Rt△AOH中,∵∠AHO=90°,∠PAQ=30°,∴OH=AO,∵BC=10cm,∴BO=5cm.∵AO=AB+BO,AB=3cm,∴AO=3+5=8cm,∴OH=4cm,即圆心O到AQ的距离为4cm.(2)连接OE,在Rt△EOH中,∵∠EHO=90°,∴EH 2+HO 2=EO 2, ∵EO=5cm ,OH=4cm , ∴EH===3cm ,∵OH 过圆心O ,OH ⊥EF , ∴EF=2EH=6cm .19.【解析】解:∵公共弦AB =120r R a 6624222212060603=-⎛⎝ ⎫⎭⎪=-=.20.【答案与解析】 证明:(1)∵四边形ABCD 是⊙O 的内接四边形, ∴∠A+∠BCD=180°, ∵∠DCE+∠BCD=180°, ∴∠A=∠DCE, ∵DC=DE,∴∠DCE=∠AEB, ∴∠A=∠AEB;(2)∵∠A=∠AEB, ∴△ABE 是等腰三角形, ∵EO⊥CD, ∴CF=DF,∴EO是CD的垂直平分线,∴ED=EC,∵DC=DE,∴DC=DE=EC,∴△DCE是等边三角形,∴∠AEB=60°,∴△ABE是等边三角形.。
九年级数学专题讲义
九年级数学讲义1.已知:如图,在梯形ABCD中,AD // BC,AB = CD,BC = 2AD.DE⊥BC,垂足为点F,且F是DE的中点,联结AE,交边BC于点G.(1)求证:四边形ABGD是平行四边形;(2)如果AD,求证:四边形DGEC是正方形.2.(2012上海)己知:如图,在菱形ABCD中,点E、F分别在边BC、CD,∠BAF=∠DAE,AE与BD交于点G.(1)求证:BE=DF;(2)当DF ADFC DF=时,求证:四边形BEFG是平行四边形.AB CDEFG(第23题图)3.已知:如图7,在梯形ABCD 中,AD // BC ,AB = DC .点E 、F 、G 分别在边AB 、BC 、CD 上,AE = GF = GC .(1)求证:四边形AEFG 是平行四边形;(2)当∠FGC = 2∠EFB 时,求证:四边形AEFG 是矩形.4.如图,在梯形ABCD 中,AD //BC ,AB =DC ,过点D 作DE ⊥BC ,垂足为E ,并延长DE 至F ,使EF =DE .联结BF 、CD 、AC .(1)求证:四边形ABFC 是平行四边形;(2)如果DE 2=BE ·CE ,求证四边形ABFC 是矩形.AB C DE FG 图75.(2012上海)如图,在平面直角坐标系中,二次函数26y a x x c=++的图象经过点A(4,0)、B(﹣1,0),与y轴交于点C,点D在线段OC上,OD=t,点E在第二象限,∠ADE=90°,1tan2DAE∠=,EF⊥OD,垂足为F.(1)求这个二次函数的解析式;(2)求线段EF、OF的长(用含t的代数式表示);(3)当∠ECA=∠OAC时,求t的值.6.如图8,在直角坐标系中,O为原点.点A在x轴的正半轴上,点B在y轴的正半轴上,tg∠OAB = 2.二次函数22y x m x=++的图象经过点A、B,顶点为D.(1)求这个二次函数的解析式;(2)将△OAB绕点A顺时针旋转90︒后,点B落到点C的位置.将上述二次函数图象沿y轴向上或向下平移后经过点C.请直接写出点C的坐标和平移后所得图象的函数解析式;(3)设(2)中平移后所得二次函数图象与y轴的交点为点B,顶点为D1.点P在平移后的二次函数图象上,且满足△PBB1的面积是△PDD1面积的2倍,求点P的坐标.图87.已知平面直角坐标系xOy (如图1),一次函数334y x =+的图 像与y 轴交于点A ,点M 在正比例函数32y x =的图像上,且MO =MA .二次函数y =x 2+bx +c 的图像经过点A 、M .(1)求线段AM 的长;(2)求这个二次函数的解析式;(3)如果点B 在y 轴上,且位于点A 下方,点C 在上述二次函数的图像上,点D 在一次函数334y x =+的图像上,且四边形ABCD 是菱形,求点C 的坐标.图18.已知9023ABC AB BC AD BC P ∠===°,,,∥,为线段BD 上的动点,点Q 在射线AB 上,且满足PQ AD PC AB=(如图8所示). (1)当2AD =,且点Q 与点B 重合时(如图9所示),求线段PC 的长;(2)在图8中,联结AP .当32AD =,且点Q 在线段AB 上时,设点B Q 、之间的距离为x ,APQ PBCS y S =△△,其中APQ S △表示APQ △的面积,PBC S △表示PBC △的面积,求y关于x 的函数解析式,并写出函数定义域;(3)当A D A B <,且点Q 在线段AB 的延长线上时(如图10所示),求QPC ∠的大小.ADPCBQ 图8DAPCB(Q ) 图9图10CADPBQ9.(2012上海)如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=1时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆目录一.圆的定义及相关概念二.垂经定理及其推论三.圆周角与圆心角四.圆心角、弧、弦、弦心距关系定理五.圆接四边形六.会用切线, 能证切线七.切线长定理八.三角形的切圆九.了解弦切角与圆幂定理(选学)十.圆与圆的位置关系十一.圆的有关计算十二.圆的基础综合测试十三.圆的终极综合测试一.圆的定义及相关概念【考点速览】考点1:圆的对称性:圆既是轴对称图形又是中心对称图形。
经过圆心的每一条直线都是它的对称轴。
圆心是它的对称中心。
考点2:确定圆的条件;圆心和半径①圆心确定圆的位置,半径确定圆的大小;②不在同一条直线上的三点确定一个圆;考点3:弦:连结圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
直径是圆中最大的弦。
弦心距:圆心到弦的距离叫做弦心距。
弧:圆上任意两点间的部分叫做弧。
弧分为半圆,优弧、劣弧三种。
(请务必注意区分等弧,等弦,等圆的概念)弓形:弦与它所对应的弧所构成的封闭图形。
弓高:弓形中弦的中点与弧的中点的连线段。
(请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高)固定的已经不能再固定的方法:求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。
如下图:考点4:三角形的外接圆:锐角三角形的外心在 ,直角三角形的外心在 ,钝角三角形的外心在 。
考点5点和圆的位置关系 设圆的半径为r ,点到圆心的距离为d , 则点与圆的位置关系有三种。
①点在圆外⇔d >r ;②点在圆上⇔d=r ;③点在圆⇔ d <r ;【典型例题】例1 在⊿ABC 中,∠ACB =90°,AC =2,BC =4,CM 是AB 边上的中线,以点C 为圆心,以5为半径作圆,试确定A,B,M 三点分别与⊙C 有怎样的位置关系,并说明你的理由。
例2.已知,如图,CD 是直径,︒=∠84EOD ,AE 交⊙O 于B ,且AB=OC ,求∠A 的度数。
例3 ⊙O 平面一点P 和⊙O 上一点的距离最小为3cm ,最大为8cm ,则这圆的半径是_________cm 。
例4 在半径为5cm 的圆中,弦AB ∥CD ,AB=6cm ,CD=8cm ,则AB 和CD 的距离是多M AB C DOEBC少?例5 如图,⊙O 的直径AB 和弦CD 相交于点E ,已知AE=6cm ,EB=2cm, 30=∠CEA , 求CD 的长.例6.已知:⊙O 的半径0A=1,弦AB 、AC 的长分别为3,2,求BAC ∠的度数.【考点速练】1.下列命题中,正确的是( ) A .三点确定一个圆B .任何一个三角形有且仅有一个外接圆C .任何一个四边形都有一个外接圆D .等腰三角形的外心一定在它的外部AB DCO· E2.如果一个三角形的外心在它的一边上,那么这个三角形一定是( ) A .等腰三角形B .直角三角形 C .等边三角形 D .钝角三角形 3.圆的接三角形的个数为( ) A .1个 B .2 C .3个 D .无数个4.三角形的外接圆的个数为( ) A .1个 B .2 C .3个 D .无数个 5.下列说法中,正确的个数为( )①任意一点可以确定一个圆;②任意两点可以确定一个圆;③任意三点可以确定一个圆;④经过任一点可以作圆;⑤经过任意两点一定有圆. A .1个 B .2个 C .3个D .4个6.与圆心的距离不大于半径的点所组成的图形是( )A.圆的外部(包括边界);B.圆的部(不包括边界);C.圆;D.圆的部(包括边界) 7.已知⊙O 的半径为6cm,P 为线段OA 的中点,若点P 在⊙O 上,则OA 的长( ) A.等于6cm B.等于12cm ; C.小于6cm D.大于12cm 8.如图,⊙O 的直径为10cm,弦AB 为8cm,P 是弦AB 上一点,若OP 的长为整数, 则满足条件的点P 有( )A.2个B.3个C.4个D.5个 9.如图,A 是半径为5的⊙O 一点,且OA=3,过点A 且长小于8的弦有( ) A.0条 B.1条 C.2条 D.4条10.要浇铸一个和残破轮片同样大小的圆形轮片,需要知道它的半径,用圆规和直尺在图中作出它的一条半径.(要求保留作图痕迹)11.如图,已知在ABC ∆中,︒=∠90A ,AB=3cm ,AC=4cm ,以点A 为圆心,AC 长为半径画弧交CB 的延长线于点D ,求CD 的长.12、如图,有一圆弧开桥拱,拱的跨度AB =16cm ,拱高CD =4cm ,那么拱形的半径是__m 。
13、 △ABC 中,AB=AC=10,BC=12,则它的外接圆半径是__。
14、如图,点P 是半径为5的⊙O 一点,且OP =3,在过点P 的所有的⊙O 的弦中,弦长为整数的弦的条数为__。
15.思考题如图所示,已知⊙O 的半径为10cm ,P 是直径AB 上一点,弦CD 过点P,CD=16cm,过点A 和B 分别向CD 引垂线AE 和BF,求AE-BF 的值.CBDA·AB DCEP FO【作业】日期 完成时间 成绩1、在半径为2的圆中,弦长等于的弦的弦心距为 ____2. △ABC 的三个顶点在⊙O 上,且AB=AC=2,∠BAC=120º,则⊙O 的半径= __, BC= ___.3. P 为⊙O 一点,OP=3cm ,⊙O 半径为5cm ,则经过P 点的最短弦长为_________;•最长弦长为_______.4. 如图,A,B,C 三点在⊙O 上,且AB 是⊙O 的直径,半径OD ⊥AC,垂足为F,若∠A=30º,OF=3, 则OA=______ , AC=______ , BC= _________ .5.如图5,为直径是52cm 圆柱形油槽,装入油后,油深CD 为16cm,那么油面宽度AB= ____6.如图6, ⊙O 中弦AB ⊥AC,D,E 分别是AB,AC 的中点. ⑴若AB=AC,则四边形OEAD 是 形;⑵若OD=3,半径5 r ,则AB= _cm, AC= ___ _ cm7.如图7,⊙O 的直径AB 和弦CD 相交于点E ,已知AE=8cm ,EB=4cm ,∠CEA=30°,则CD 的长为_________.(5) (6) (7)二.垂径定理及其推论【考点速览】考点1垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条孤. 推论1:①平分弦(不是直径)的直径重直于弦,并且平分弦所对的两条孤. ②弦的垂直平分线经过圆心,并且平分弦所对的两条孤.③平分弦所对的一条孤的直径,垂直平分弦,并且平分弦所对的另一条孤. 推论2.圆的两条平行弦所夹的孤相等. 垂径定理及推论1中的三条可概括为:① 经过圆心;②垂直于弦;③平分弦(不是直径);④平分弦所对的优弧;⑤平分弦所对的劣弧.以上五点已知其中的任意两点,都可以推得其它两点【典型例题】例1 如图AB 、CD 是⊙O 的弦,M 、N 分别是AB 、CD 的中点,且CNM AMN ∠=∠. 求证:AB=CD .A BDC O· NM例2已知,不过圆心的直线l 交⊙O 于C 、D 两点,AB 是⊙O 的直径,AE ⊥l 于E ,BF ⊥l 于F 。
求证:CE=DF .l•问题一图3OH FE D C BA例3 如图所示,⊙O 的直径AB =15cm ,有一条定长为9cm 的动弦CD 在弧AmB 上滑动(点C 与点A ,点D 与B 不重合),且CE ⊥CD 交AB 于E ,DF ⊥CD 交AB 于F 。
(1)求证:AE =BF(2)在动弦CD 滑动的过程中,四边形CDEF 的面积是否为定值?若是定值,请给出证明,并求出这个定值,若不是,请说明理由。
例4 如图,在⊙O ,弦CD 与直径AB 交成045角,若弦CD 交直径AB 于点P ,且⊙O 半径为1,试问:22PD PC + 是否为定值?若是,求出定值;若不是,请说明理由.A B CDPO。
【考点速练】1.已知⊙O 的半径为2cm ,弦AB 长cm 32,则这条弦的中点到弦所对劣孤的中点的距离为( ).A .1cm B.2cm C.cm 2 D.cm 3cm3.如图1,⊙O 的半径为6cm ,AB 、CD 为两弦,且AB ⊥CD ,垂足为点E ,若CE=3cm ,DE=7cm ,则AB 的长为( )A .10cm B.8cm C.cm 24 D.cm 284.有下列判断:①直径是圆的对称轴;②圆的对称轴是一条直径;③直径平分弦与弦所对的孤;④圆的对称轴有无数条.其中正确的判断有( ) A .0个 B.1个 C.2个 D.3个5.如图2,同心圆中,大圆的弦交AB 于C 、D 若AB=4,CD=2,圆心O 到AB 的距离等于1,那么两个同心圆的半径之比为( )A .3:2 B.5:2 C.5:2 D.5:4 6.等腰三角形腰长为4cm,底角为 30,则外接圆直径为( ) A .2cm B.4cm C.6cm D.8cm7.如图,⊙O 的直径为10,弦AB=8,P 是弦AB 上的一个动点,那么OP 长的取值围是 .8.如图,已知有一圆弧形拱桥,拱的跨度AB=16cm,拱高CD=4cm,那么拱形的半径是_ ___m.9.如图,直径为1000mm 的圆柱形水管有积水(阴影部分),水面的宽度AB 为800mm ,求水的最大深度CD .A D EC B ·图1A ·O C D B图210.如图,已知△ABC 中,∠ACB=90°,AC=6cm ,BC=8cm ,以C 为圆心,CA 为半径作圆交斜边AB 于D ,则AD 的长为 。
11.已知:如图,在⊙O 中,弦AB 的长是半径OA,C 为弧AB 的中点,AB 、OC 相交于点M.试判断四边形OACB 的形状,并说明理由.12.如图所示,在⊙O 中,弦AB ⊥AC ,弦BD ⊥BA ,AC 、BD 交直径MN 于E 、F.求证:ME=NF.13.(思考题)如图,1o Θ与2o Θ交于点A ,B ,过A 的直线分别交1o Θ,2o Θ于M,N ,C 为MN 的中点,P 为21O O 的中点,求证:PA=PC.·OA BDC E F MN1O A2OMNC P【作业】日期 完成时间 成绩1.已知⊙O 的直径AB=10cm ,弦CD ⊥AB ,垂足为M 。
且OM=3cm ,则CD= .2.D 是半径为5cm 的⊙O 的一点,且D0=3cm ,则过点D 的所有弦中,最小的弦AB= cm. 3.若圆的半径为2cm ,圆中一条弦长为32cm ,则此弦所对应弓形的弓高是 . 4.已知⊙O 的弦AB=2cm,圆心到AB 的距离为n,则⊙O 的半径R= ,⊙O 的周长为 . ⊙O 的面积为 .5.在⊙O 中,弦AB=10cm ,C 为劣孤AB 的中点,OC 交AB 于D ,CD=1cm ,则⊙O 的半径是 .6.⊙O 中,AB 、CD 是弦,且AB ∥CD ,且AB=8cm ,CD=6cm ,⊙O 的半径为5cm ,连接AD 、BC ,则梯形ABCD 的面积等于 .7.如图,⊙O 的半径为4cm ,弦AB 、CD 交于E 点,AC=BC ,OF ⊥CD 于F ,OF=2cm ,则 ∠BED= .8.已知⊙O 的半径为10cm ,弦MN ∥EF ,且MN=12cm ,EF=16cm ,则弦MN 和EF 之间的距离为 .·AE FB C DO三.圆周角与圆心角【考点速览】考点1圆心角:顶点在圆心的角叫圆心角,圆心角的度数等于它所对的弧的度数。