大学物理基础教程答案1-4力-4
大学物理基础教程答案1-2力-2
r α x = ±h tan θ = ±h tan ωt X ωt dx 2 2 h v= = ±hsec ωt ⋅ ω = ±hω / cos ωt dt π 0 0 2π t= 当α = 60 , ωt = θ = 30 , 60 6 3 2π v = ±5×10 / cos2 300 = ±698(m⋅ s−1 ) 60 2 sin ωt −2 & = ±2hω & a=x |α=600 = ±84.4(m⋅ s ) 3 4 cos ωt
r
r vθ
ωt
r v
r v
o
r
& = rωtan ωt, && = rω2 tan2 ωt + rω2tg2ωt Qr r & θ = ω, && = 0, θ && ∴ar = 2rω tan ωt, a0 = 2rθ = 2rω2 tan ωt
2 2
sinωt a = a + a = 2hω 2 cos ωt 注意: ωr = vθ ≠ v
&& = 2, && = 2 && + && = 2 2 (m/ s2 ) (3) Qx y ∴a = x y dv 16 t − 8 t = 2s aτ = = = 2 (m⋅ s-2 ) dt 2 8 t 2 − 8 t + 4
∴an = a − a = 2 (m/ s )
2 2 τ 2
9
一质点沿一圆周按下述规律运动: 式中s 2-10 一质点沿一圆周按下述规律运动:s=t3+2t2,式中s是沿圆周测 得的路程,以米为单位, 以秒为单位,如果当t=2 t=2秒时质点的加 得的路程,以米为单位,t 以秒为单位,如果当t=2秒时质点的加 求圆的半径。 速度为 16 2 米/秒2,求圆的半径。
大学基础物理学课后习题答案_含思考题(1)
大学基础物理课后答案主编:习岗高等教育出版社第一章 思考题:<1-4> 解:在上液面下取A 点,设该点压强为A p ,在下液面内取B 点,设该点压强为B p 。
对上液面应用拉普拉斯公式,得 A A R p p γ20=- 对下液面使用拉普拉斯公式,得 BB 02R p p γ=- 又因为 gh p p ρ+=A B 将三式联立求解可得 ⎪⎪⎭⎫ ⎝⎛-=B A 112R R g h ργ<1-5> 答:根据对毛细现象的物理分析可知,由于水的表面张力系数与温度有关,毛细水上升的高度会随着温度的变化而变化,温度越低,毛细水上升的高度越高。
在白天,由于日照的原因,土壤表面的温度较高,土壤表面的水分一方面蒸发加快,另一方面土壤颗粒之间的毛细水会因温度升高而下降,这两方面的原因使土壤表层变得干燥。
相反,在夜间,土壤表面的温度较低,而土壤深层的温度变化不大,使得土壤颗粒间的毛细水上升;另一方面,空气中的水汽也会因为温度下降而凝结,从而使得清晨时土壤表层变得较为湿润。
<1-6> 答:连续性原理是根据质量守恒原理推出的,连续性原理要求流体的流动是定常流动,并且不可压缩。
伯努利方程是根据功能原理推出的,它的使用条件是不考虑流体的黏滞性和可压缩性,同时,还要求流动是定常流动。
如果流体具有黏滞性,伯努利方程不能使用,需要加以修正。
<1-8> 答:泊肃叶公式适用于圆形管道中的定常流动,并且流体具有黏滞性。
斯托克斯公式适用于球形物体在黏滞流体中运动速度不太大的情况。
练习题:<1-6> 解:设以水坝底部作为高度起点,水坝任一点至底部的距离为h 。
在h 基础上取微元d h ,与之对应的水坝侧面面积元d S (图中阴影面积)应为坡长d m 与坝长l 的乘积。
练习题1-6用图d h d F由图可知 osin60d sin d d hh m ==θ 水坝侧面的面积元d S 为 d d d sin 60hS l m l °== 该面积元上所受的水压力为 0d d d [(5)]sin 60hF p S p ρg h l°==+-水坝所受的总压力为 ()[]N)(103.760sin d 5d 855o0⨯=-+==⎰⎰h l h g p F F ρ(注:若以水坝的上顶点作为高度起点亦可,则新定义的高度5h h ¢=-,高度微元取法不变,即d d h h ¢=,将h ¢与d h ¢带入水坝压力积分公式,同样可解出水坝所受压力大小。
大学物理第1-4章经典力学部分归纳总结
应用
机械能守恒定律可以用于解决一些简单的运动学问题, 如自由落体、抛体运动等。
05 万有引力定律
万有引力定律的发现与意义
发现
牛顿通过观察苹果落地等现象,发现 了万有引力定律。
意义
万有引力定律揭示了自然界中物体之 间的相互作用规律,为经典力学的发 展奠定了基础。
万有引力定律的内容与公式
内容
任意两个质点之间都存在相互吸引的力,大小与两质点质量的乘积成正比,与它们之间距离的二次方成反比。
经典力学与许多其他学科领域密切相关, 如材料科学、工程学和天文学等,鼓励学 生在跨学科应用中拓展知识。
关注前沿研究
实践与实验
了解经典力学在前沿科学研究中的应用, 关注最新研究成果和技术进展。
通过实验和实践巩固理论知识,提高动手 能力和实验技能。
THANKS FOR WATCHING
感谢您的观看
工作原理等。
04 能量与动量定理
能量定义与计算
要点一
定义
能量是物体做功的能力,可以表示为系统动能和势能之和 。
要点二
计算
能量可以用数学公式进行计算,如动能公式 (E_k = frac{1}{2}mv^2),势能公式 (E_p = mgh) 等。
动量定理与冲量
定理
动量 (p = mv) 是物体质量和速度的乘积,冲量 (I = Delta p) 是动量的变化量。
03
经典力学在日常生活和工程应用中有着广泛的应用,如车辆 运动、机械运转、天体运动等。
章节概览
第1章
牛顿运动定律
第3章
能量和力做功
第2章
动量和角动量
第4章
万有引力和相对论基础
02 牛顿运动定律
大学物理第四章习题答案
大学物理第四章习题答案大学物理第四章习题答案大学物理是一门让许多学生感到头疼的学科,尤其是对于那些对数学和计算不太擅长的学生来说。
而第四章是大学物理中的一个重要章节,涵盖了许多关于力学和运动的基本概念和原理。
在这篇文章中,我将为大家提供一些大学物理第四章习题的答案,希望能够帮助到那些正在学习这门课程的学生。
1. 一个物体以10 m/s的速度沿着水平方向运动,受到一个10 N的水平力的作用,求物体在2秒钟内的位移。
根据牛顿第二定律,物体的加速度可以通过力和质量的比值来计算。
在这个问题中,物体的质量未知,但我们可以通过已知的力和加速度来计算出质量。
由于力和加速度的关系是F = ma,我们可以将已知的力和加速度代入这个公式,解出物体的质量。
然后,我们可以使用物体的质量和已知的力来计算物体的加速度。
最后,我们可以使用物体的初始速度、加速度和时间来计算物体的位移。
2. 一个物体以5 m/s的速度沿着斜坡上升,斜坡的倾角为30度。
求物体在10秒钟内上升的高度。
在这个问题中,我们需要使用三角函数来计算物体在斜坡上升时的垂直位移。
首先,我们可以使用已知的速度和斜坡的倾角来计算物体在斜坡上的水平速度。
然后,我们可以使用已知的时间和水平速度来计算物体在斜坡上的水平位移。
最后,我们可以使用已知的斜坡的倾角和物体在斜坡上的水平位移来计算物体在斜坡上升时的垂直位移。
3. 一个物体以10 m/s的速度竖直向上抛出,求物体在2秒钟内的最大高度和总的飞行时间。
在这个问题中,我们需要使用物体的初速度和重力加速度来计算物体在竖直抛物线运动中的最大高度和总的飞行时间。
首先,我们可以使用已知的初速度和时间来计算物体在竖直方向上的位移。
然后,我们可以使用已知的初速度和重力加速度来计算物体在竖直方向上的最大高度。
最后,我们可以使用已知的重力加速度来计算物体在竖直方向上的总的飞行时间。
这些问题只是大学物理第四章中的一小部分,但它们涵盖了一些基本的概念和原理。
大学物理1-4
F ma mat et man en
上页 下页 返回 退出
三、牛顿第三定律
对于每一个作用,总有一 个相等的反作用与之相反;或F 21 者说,两个物体对各自的对方 的作用总是相等的,而且指向 相反的方向。 牛顿第三定律的数学表达式: F12 F21
F12 2 1
注意:1.作用力与反作用力同生同灭。
例题1-13 一重物m用绳悬起,绳的另一端系在天花板 上,绳长l=0.5m,重物经推动后,在一水平面内作匀 速率圆周运动,转速n=1r/s。这种装置叫做圆锥摆。 求这时绳和竖直方向所成的角度。 y 解:以小球为研究对象,对 FT 其进行受力分析: FT cos 小球的运动情况,竖直方 FT 向平衡,水平方向作匀速圆 O FT sin x 周运动,建立坐标系如图。 m mg 将拉力沿两轴进行分解 , 竖直方向的分量与重力平衡, g m 水平方向的分量提供向心力。 利用牛顿定律,列方程:
§1-4 牛顿运动定律
一、牛顿第一定律
任何物体都保持静止的或沿一条直线作匀速运动 状态,除非作用在它上面的力迫使它改变这种状态。
1.第一定律涉及了哪两个基本概念? 答:惯性和力。 2.第一定律定义了一个什么样的参考系? 答:惯性参考系。 3.一艘船在一个风平浪静的海面上匀速的航行,某人 站在船尾纵身向上一跃,问此人能否掉入海里?
m1 m2 ar g m1 m2
将ar代入上面任一式FT,得到
2m1m2 FT = g m1 + m2
上页 下页 返回 退出
(2)电梯以加速度a上升时,A对地的加速度a-ar,B 的对地的加速度为a+ar ,根据牛顿第二定律,对A 和B分别有
FT m1 g m1 (a ar )
大学物理学基础教程力学部分习题详解
第一章 力学引论本章主要阐述了力学的研究内容(即物体的机械运动),以及矢量分析和量纲分析的方法。
习 题1-1 什么叫质点?太阳、地球是质点吗?分子、原子是质点吗?试举例说明。
分析:本题说明参考系选择的重要性。
对于相同的物体,如果参考系的选择不同,结果将完全不同。
选择某一参考系,可以看成质点;选择另一参考系,就不可以看成质点。
答:在某些问题中,物体的形状和大小并不重要,可以忽略,可看成一个只有质量、没有大小和形状的理想的点,这样的物体就称为质点。
关于太阳、地球、分子、原子是否是质点,要视具体研究的问题而定。
例如,如果我们考察银河系或者整个宇宙的运动,那么太阳和地球的大小可以忽略,而且我们没有必要去考察他们的转动,此时它们可以被看作质点。
但是,如果我们要研究人造卫星、空间站的话,太阳和地球的大小和形状以及其自转就不能被忽略,那么它们就不能被看作质点。
1-2 西部民歌:“阿拉木汗住在哪里,吐鲁番西三百六。
”从位矢定义分析之。
分析:本题是关于参考系和坐标系选择的问题。
遇到一个问题,首先要搞清楚研究对象,然后选择一个合适的参考系,在此参考系中选择一个点作为坐标原点,建立坐标系,然后才可以定量的分析问题。
本题中心意思是选择则吐鲁番作为参照点,来定义阿拉木汗所住的位置。
答:选择地面参照系,以吐鲁番作为原点,正东方向为x 轴正方向,正北方向为y 轴正向,在地面上建立直角坐标系。
那么阿拉木汗住址的位矢为:i ˆ360r −=v1-3 判断下列矢量表达式的正误:分析:本题考察矢量的运算问题。
矢量既有大小,又有方向,所以在进行矢量运算时,既要考虑矢量的大小,又要考虑矢量的方向。
(1)B A B A v v v v +=+答:× 矢量按平行四边形法则相加,而不是简单的数量相加(2)A B B A v v v v ×=×答:× 矢量相乘按右手定则,上式方程两边的矢量大小相同,方向相反。
大学物理基础教程答案1-3力-3
v = v +( + ) v ' mv mv m m v v ' = ( v − v ) /( + ) v mv mv m m
O f 1 2 C C O f 1 2
300 m1
x
v v 1 v 1 v −1 = m(2i − 1j) /(4 + 2) = i − j(m.s ) 6 12
( Vc’是子系统质心速度) 是子系统质心速度)
2
(2)绳中张力处处近似相等,如图: (2)绳中张力处处近似相等,如图: − 2F cos θ + mg = ma , 绳中张力处处近似相等
v l dv d v0 l a= )=− = (− 3 dt dt 2 x 16 x m 0l2 (x2 + l2 4)1/ 2 v2 F = (m + g ) 3 16x 2x
走了多远. 走了多远 水平方向合外力为零,故水平方向动量守恒 故水平方向动量守恒: 解: 水平方向合外力为零 故水平方向动量守恒 (M+m) xc=Mx1+mx2 Vc=0 △xc=0 m ∆x2 (M+m) △xc=M△x1+m△x2=0 ∆x1 = − △ △ M 由相对运动可知 △x1+ l =△x2 m M
(2)若用此绳提升箱子,则有 若用此绳提升箱子,
F−m = m g a
F ∴ m= = 92.6(kg) (g + a)
如题图所示, 使木箱上升,若绳端的下降速度不变, 3-2 如题图所示,用力F使木箱上升,若绳端的下降速度不变, 定滑轮和绳的固定端在同一高度上, 木箱质量为m,定滑轮和绳的固定端在同一高度上,且相距为l, 动滑轮、定滑轮和绳的质量以及绳的伸长量都忽略不及,(1)以 动滑轮、定滑轮和绳的质量以及绳的伸长量都忽略不及,(1)以x (2)求F(x)。 为变量表示m的速率v; (2)求F(x)。
大学物理课后习题及答案(1-4章)含步骤解
,根据流量守恒
,
(2)当
(3)当
时,
时,
−
,整理可得:
可得
,即
,
图1-34所示为输液的装置。设吊瓶的截面积为1 ,针孔的截面积为2 ,且1 ≫ 2 ,开始时( = 0),吊瓶内上下
液面距针孔的高度分别为ℎ1 和ℎ2 ,求吊瓶内药液全部输完时需要的时间。
,则针孔的流量为
液体总体积为
Ԧ =
= 2Ԧ − 2 Ԧ = −2Ԧ
1s末和2s末质点的速度为: 1 = 2Ԧ − 2Ԧ(m ∙ s−1 ),2 = 2Ԧ − 4Ԧ(m ∙ s −1 );
1s末和2s末质点的加速度相等:Ԧ = −2Ԧ (m ∙ s−2 )
已知一质点做直线运动,其加速度Ԧ = 4 + 3 m ∙ s−2 , 开始运动时,0 = 5 m,
= 0.06(m)
(2)设弹簧最大压缩量为∆′ , 与碰撞粘在一起的速度为 ′,0 = ( +
) ′,代入已知条件可得 ′ = 4Τ11, + 压缩弹簧的过程中,机械能守恒,则
1
(
2
1
+ ) 2 = 2 ∆′2 ,得∆′ =
+
≈ 0.04(m)
(1)角加速度 =
由 =
∆
∆
=
0−2×1500÷60
50
由 =
=
2×1500
60
= 50 (rad ∙ s −1 )
= − (rad ∙ s−2 )
= −,得 = −,两边进行积分
得到 − 50 = − − 0,
大学物理基础教程习题解答1,2,4,5答案
思 考 题1.1答:这个质点的速度j t i v)8.94(3-+=;加速度j a8.9-=;j dt t i dt r d)8.94(3-+=。
dt t ds 2)8.94(9-+=;它的速率2)8.94(9t v -+=。
1.2答:t 时刻的速度j t i t v5cos 505sin 50+-=;速率v=50,;加速度)5sin 5(cos 250j t i t a+-=;该质点作匀速圆周运动。
1.3(B )1.4(D )1.5(B )、(D )1.6(C )1.7答:质量大的物体转动惯量不一定比质量小的转动惯量大。
因为计算转动惯量的三个要素是总质量;质量分布;转轴的位置。
所以仅以质量的大小不能说明转动惯量的大小。
1.8答:刚体的动量矩等于刚体对该轴的转动惯量与角速度的乘积。
作前滚翻运动动作时应曲卷肢体使转动惯量变小,根据动量矩守恒定律,则能增加前滚翻的角速度。
1.9答:相对论中的高速和低速的区分是相对光速而言的,接近光速的速度为高速,远小于光速的速度为低速。
在相对论中质量与速度的关系为20)(1c v m m -=,0m 为静止质量,m 是物体相对参照系以速度v 运动时的质量,c 为光速。
高速列车的行驶速度远小于光速,由上式可计算出高速列车达到正常行驶速度时,其质量没有显著的变化。
习题1.1解:(1)速度表达式为:)1ln(bt dtdxv --==μ (2)t=0时, v=0. t=120s 时,31091.6⨯=v m/s (3)加速度表达式为:)1(bt b dt dv a -==μ(4)t=0时,2/5.22s m a = t=120s 时,2/225s m a =1.2证明:由:dt dx v =及2kv dt dv -=可得: 2⎪⎭⎫⎝⎛-=dt dx k dt dv∴ kvdx dx dt dx k dv -=-= ⇒ kdx vdv-= ∴⎰⎰-=x vv kdx v dv 00 ⇒ kxe v v -=0 得证1.3解:123282105.410210)103(⨯=⨯⨯⨯==gR v g a 倍1.4 答:推力的冲量t F I ∆= ,∵∑=0F∴0=∆P1.5解:两秒内冲量的变化值依据1221)(p p dt t F t t -=⎰有)(140)4030()(22秒牛•=+=⎰⎰dt t dt t F速度的变化值v ∆ 由v m p p dt t F t t ∆=-=⎰1221)(有140=10v ∆)/(14s m v =∆1.6 解:设链条质量为m ,单位长度的质量即线密度为lm;因为系统不受外力作用,因此机械能守恒,将势能零点选在光滑的桌面上,取坐标竖直向上为正方向。
大学物理试题及答案(1-4章)
第一章 质点运动学1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v .(1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故ts t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故tst d d d d =r ,即|v |=v .由此可见,应选(C).1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即(1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x .下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确 (C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解trd d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r表示速度矢量;在自然坐标系中速度大小可用公式tsd d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D).1 -3 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t. 下述判断正确的是( )(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的 (C) 只有(2)是对的 (D) 只有(3)是对的分析与解td d v表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;trd d 在极坐标系中表示径向速率v r (如题1 -2 所述);ts d d 在自然坐标系中表示质点的速率v ;而t d d v 表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D).1 -4 一个质点在做圆周运动时,则有( ) (A) 切向加速度一定改变,法向加速度也改变 (B) 切向加速度可能不变,法向加速度一定改变 (C) 切向加速度可能不变,法向加速度不变 (D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).*1 -5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v 0 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( )(A) 匀加速运动,θcos 0v v =(B) 匀减速运动,θcos 0v v = (C) 变加速运动,θcos 0v v =(D) 变减速运动,θcos 0v v = (E) 匀速直线运动,0v v =分析与解 本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l ,则小船的运动方程为22h l x -=,其中绳长l 随时间t 而变化.小船速度22d d d d hl t llt x -==v ,式中t l d d 表示绳长l 随时间的变化率,其大小即为v 0,代入整理后为θlh l cos /0220v v v =-=,方向沿x 轴负向.由速度表达式,可判断小船作变加速运动.故选(C).讨论 有人会将绳子速率v 0按x 、y 两个方向分解,则小船速度θcos 0v v =,这样做对吗?1 -6 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后4.0 s 内的位移的大小; (2) 质点在该时间内所通过的路程; (3) t =4 s 时质点的速度和加速度.分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =tx来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ∆+∆=,如图所示,至于t =4.0 s 时质点速度和加速度可用tx d d 和22d d t x两式计算. 解 (1) 质点在4.0 s 内位移的大小m 32Δ04-=-=x x x(2) 由 0d d =tx得知质点的换向时刻为s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x xm 40Δ242-=-=x x x所以,质点在4.0 s 时间间隔内的路程为m 48ΔΔ21=+=x x s(3) t =4.0 s 时1s0.4s m 48d d -=⋅-==t t xv 2s0.422m.s 36d d -=-==t t x a1 -7 一质点沿x 轴方向作直线运动,其速度与时间的关系如图(a)所示.设t =0 时,x =0.试根据已知的v -t 图,画出a -t 图以及x -t 图.分析根据加速度的定义可知,在直线运动中v-t曲线的斜率为加速度的大小(图中AB、CD 段斜率为定值,即匀变速直线运动;而线段BC 的斜率为0,加速度为零,即匀速直线运动).加速度为恒量,在a-t图上是平行于t轴的直线,由v-t图中求出各段的斜率,即可作出a-t图线.又由速度的定义可知,x-t曲线的斜率为速度的大小.因此,匀速直线运动所对应的x-t图应是一直线,而匀变速直线运动所对应的x–t 图为t的二次曲线.根据各段时间内的运动方程x=x(t),求出不同时刻t的位置x ,采用描数据点的方法,可作出x -t 图.解 将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为2s m 20-⋅=--=AB AB AB t t a v v (匀加速直线运动)0=BC a (匀速直线运动)2s m 10-⋅-=--=CD CD CD t t a v v (匀减速直线运动)根据上述结果即可作出质点的a -t 图[图(B)].在匀变速直线运动中,有2021t t x x ++=v由此,可计算在0~2s和4~6s时间间隔内各时刻的位置分别为用描数据点的作图方法,由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内, 质点是作1s m 20-⋅=v 的匀速直线运动, 其x -t 图是斜率k =20的一段直线[图(c)].1 -8 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求:(1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;*(4) 2 s 内质点所走过的路程s .分析 质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,可根据其定义计算.其中对s 的求解用到积分方法,先在轨迹上任取一段微元d s ,则22)d ()d (d y x s +=,最后用⎰=s s d 积分求s.解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为2412x y -=这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置. (3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r *(4) 如图(B)所示,所求Δs 即为图中PQ 段长度,先在其间任意处取AB 微元d s ,则22)d ()d (d y x s +=,由轨道方程可得x x y d 21d -=,代入d s ,则2s内路程为m 91.5d 4d 402=+==⎰⎰x x s s QP1 -9 质点的运动方程为23010t t x +-= 22015t t y -=式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为t t xx 6010d d +-==v t ty y 4015d d -==v当t =0 时, v o x =-10 m·s-1 , v o y =15 m·s-1 ,则初速度大小为120200s m 0.18-⋅=+=y x v v v设v o 与x 轴的夹角为α,则23tan 00-==xy αv vα=123°41′(2) 加速度的分量式为2s m 60d d -⋅==ta xx v , 2s m 40d d -⋅-==t a y y v则加速度的大小为222s m 1.72-⋅=+=y x a a a设a 与x 轴的夹角为β,则32tan -==x ya a β β=-33°41′(或326°19′)1 -10 一升降机以加速度1.22 m·s-2上升,当上升速度为2.44 m·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距2.74 m .计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y 1 =y 1(t )和y 2 =y 2(t ),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为20121at t y +=v20221gt t h y -+=v当螺丝落至底面时,有y 1 =y 2 ,即20202121gt t h at t -+=+v vs 705.02=+=ag ht (2) 螺丝相对升降机外固定柱子下降的距离为m 716.021202=+-=-=gt t y h d v解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有2)(210t a g h +-=s 705.02=+=ag ht (2) 由于升降机在t 时间内上升的高度为2021at t h +='v则 m 716.0='-=h h d1 -11 一质点P 沿半径R =3.0 m 的圆周作匀速率运动,运动一周所需时间为20.0s,设t =0 时,质点位于O 点.按(a )图中所示Oxy 坐标系,求(1) 质点P 在任意时刻的位矢;(2)5s时的速度和加速度.分析 该题属于运动学的第一类问题,即已知运动方程r =r (t )求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的O′x′y′坐标系,并采用参数方程x′=x′(t )和y′=y′(t )来表示圆周运动是比较方便的.然后,运用坐标变换x =x 0 +x ′和y =y 0 +y ′,将所得参数方程转换至Oxy 坐标系中,即得Oxy 坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解 (1) 如图(B)所示,在O′x′y′坐标系中,因t Tθπ2=,则质点P 的参数方程为t T R x π2sin =', t TR y π2cos -='坐标变换后,在O x y 坐标系中有t T R x x π2sin='=, R t T R y y y +-=+'=π2cos 0 则质点P 的位矢方程为j i r ⎪⎭⎫ ⎝⎛+-+=R t T R t T R π2cos π2sin j i )]π1.0(cos 1[3)π1.0(sin 3t t -+=(2) 5s时的速度和加速度分别为j j i r )s m π3.0(π2sin π2π2cos π2d d 1-⋅=+==t TT R t T T R t v i j i r a )s m π03.0(π2cos )π2(π2sin )π2(d d 222222-⋅-=+-==t TT R t T T R t 1 -12 地面上垂直竖立一高20.0 m 的旗杆,已知正午时分太阳在旗杆的正上方,求在下午2∶00 时,杆顶在地面上的影子的速度的大小.在何时刻杆影伸展至20.0 m ?分析 为求杆顶在地面上影子速度的大小,必须建立影长与时间的函数关系,即影子端点的位矢方程.根据几何关系,影长可通过太阳光线对地转动的角速度求得.由于运动的相对性,太阳光线对地转动的角速度也就是地球自转的角速度.这样,影子端点的位矢方程和速度均可求得.解 设太阳光线对地转动的角速度为ω,从正午时分开始计时,则杆的影长为s =h tg ωt ,下午2∶00 时,杆顶在地面上影子的速度大小为132s m 1094.1cos d d --⋅⨯===tωωh t s v 当杆长等于影长时,即s =h ,则 s 606034πarctan 1⨯⨯===ωh s ωt 即为下午3∶00 时.1 -13 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1 ,求质点的运动方程.分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =和tx d d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解 由分析知,应有⎰⎰=t t a 0d d 0v v v 得 03314v v +-=t t (1)由 ⎰⎰=t x x t x 0d d 0v 得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m·s-1代入(1) (2)得v 0=-1 m·s-1,x 0=0.75 m .于是可得质点运动方程为75.0121242+-=t t x 1 -14 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程.分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为t a d )(d =v v 后再两边积分. 解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v v B A ta -==d d (1) 用分离变量法把式(1)改写为 t B A d d =-vv (2) 将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v v v vv得石子速度 )1(Bt e BA --=v 由此可知当,t →∞时,BA →v 为一常量,通常称为极限速度或收尾速度. (2) 再由)1(d d Bt e BA t y --==v 并考虑初始条件有 t eB A y t Bt y d )1(d 00⎰⎰--= 得石子运动方程)1(2-+=-Bt e BA tB A y1 -15 一质点具有恒定加速度a =6i +4j ,式中a 的单位为m·s-2 .在t =0时,其速度为零,位置矢量r 0 =10 m i .求:(1) 在任意时刻的速度和位置矢量;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图.分析 与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量a x 和a y 分别积分,从而得到运动方程r 的两个分量式x (t )和y (t ).由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即20021t a t x x x x ++=v 和20021t a t y y y y ++=v ,两个分运动均为匀变速直线运动.读者不妨自己验证一下.解 由加速度定义式,根据初始条件t 0 =0时v 0 =0,积分可得⎰⎰⎰+==t t t t 000)d 46(d d j i a v v j i t t 46+=v 又由td d r =v 及初始条件t =0 时,r 0=(10 m)i ,积分可得 ⎰⎰⎰+==tt rr t t t t 00)d 46(d d 0j i r v j i r 222)310(t t ++=由上述结果可得质点运动方程的分量式,即x =10+3t 2y =2t 2消去参数t ,可得运动的轨迹方程3y =2x -20 m 这是一个直线方程.直线斜率32tan d d ===αx y k ,α=33°41′.轨迹如图所示.1 -16 一质点在半径为R 的圆周上以恒定的速率运动,质点由位置A 运动到位置B,OA 和OB 所对的圆心角为Δθ.(1) 试证位置A 和B 之间的平均加速度为)Δ(/)Δcos 1(22θR θa v -=;(2) 当Δθ分别等于90°、30°、10°和1°时,平均加速度各为多少? 并对结果加以讨论.分析 瞬时加速度和平均加速度的物理含义不同,它们分别表示为td d v =a 和tΔΔv =a .在匀速率圆周运动中,它们的大小分别为R a n 2v =,t a ΔΔv = ,式中|Δv |可由图(B)中的几何关系得到,而Δt 可由转过的角度Δθ 求出.由计算结果能清楚地看到两者之间的关系,即瞬时加速度是平均加速度在Δt →0 时的极限值.解 (1) 由图(b)可看到Δv =v 2 -v 1 ,故θΔcos 2Δ212221v v v v -+=v)Δcos 1(2θ-=v而vv θR s t ΔΔΔ==所以 θR θt a Δ)cos Δ1(2ΔΔ2v -==v (2) 将Δθ=90°,30°,10°,1°分别代入上式,得R a 219003.0v ≈,Ra 229886.0v ≈ R a 239987.0v ≈,Ra 24000.1v ≈ 以上结果表明,当Δθ→0 时,匀速率圆周运动的平均加速度趋近于一极限值,该值即为法向加速度R2v . 1 -17 质点在Oxy 平面内运动,其运动方程为r =2.0t i +(19.0 -2.0t 2 )j ,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t 1=1.0s 到t 2 =2.0s 时间内的平均速度;(3) t 1 =1.0s时的速度及切向和法向加速度;(4) t =1.0s 时质点所在处轨道的曲率半径ρ.分析 根据运动方程可直接写出其分量式x =x (t )和y =y (t ),从中消去参数t ,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即tΔΔr =v ,它与时间间隔Δt 的大小有关,当Δt →0 时,平均速度的极限即瞬时速度td d r =v .切向和法向加速度是指在自然坐标下的分矢量a t 和a n ,前者只反映质点在切线方向速度大小的变化率,即t t te a d d v =,后者只反映质点速度方向的变化,它可由总加速度a 和a t 得到.在求得t 1 时刻质点的速度和法向加速度的大小后,可由公式ρa n 2v =求ρ. 解 (1) 由参数方程x =2.0t , y =19.0-2.0t 2消去t 得质点的轨迹方程:y =19.0 -0.50x 2(2) 在t 1 =1.00s 到t 2 =2.0s时间内的平均速度j i r r 0.60.2ΔΔ1212-=--==t t t r v (3) 质点在任意时刻的速度和加速度分别为j i j i j i t ty t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 222220.4d d d d )(-⋅-=+=s m ty t x t 则t 1 =1.00s时的速度v (t )|t =1s=2.0i -4.0j切向和法向加速度分别为t t y x t t t tt e e e a 222s 1s m 58.3)(d d d d -=⋅=+==v v v n n t n a a e e a 222s m 79.1-⋅=-=(4) t =1.0s质点的速度大小为122s m 47.4-⋅=+=y x v v v 则m 17.112==na ρv 1 -18 飞机以100 m·s-1 的速度沿水平直线飞行,在离地面高为100 m 时,驾驶员要把物品空投到前方某一地面目标处,问:(1) 此时目标在飞机正下方位置的前面多远? (2) 投放物品时,驾驶员看目标的视线和水平线成何角度?(3) 物品投出2.0s后,它的法向加速度和切向加速度各为多少?分析 物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t 时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t ,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量v x 、v y 求出,这样,也就可将重力加速度g 的切向和法向分量求得.解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x =vt , y =1/2 gt 2飞机水平飞行速度v =100 m·s -1 ,飞机离地面的高度y =100 m,由上述两式可得目标在飞机正下方前的距离m 4522==gy x v(2) 视线和水平线的夹角为 o 5.12arctan ==xy θ (3) 在任意时刻物品的速度与水平轴的夹角为vv v gt αx yarctan arctan == 取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为2s m 88.1arctan sin sin -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a t 2s m 62.9arctan cos cos -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a n 1 -19 如图(a)所示,一小型迫击炮架设在一斜坡的底端O 处,已知斜坡倾角为α,炮身与斜坡的夹角为β,炮弹的出口速度为v 0,忽略空气阻力.求:(1)炮弹落地点P 与点O 的距离OP ;(2) 欲使炮弹能垂直击中坡面.证明α和β必须满足αβtan 21tan =并与v 0 无关. 分析 这是一个斜上抛运动,看似简单,但针对题目所问,如不能灵活运用叠加原理,建立一个恰当的坐标系,将运动分解的话,求解起来并不容易.现建立如图(a)所示坐标系,则炮弹在x 和y 两个方向的分运动均为匀减速直线运动,其初速度分别为v 0cos β和v 0sin β,其加速度分别为g sin α和gcos α.在此坐标系中炮弹落地时,应有y =0,则x =OP .如欲使炮弹垂直击中坡面,则应满足v x =0,直接列出有关运动方程和速度方程,即可求解.由于本题中加速度g 为恒矢量.故第一问也可由运动方程的矢量式计算,即20g 21t t +=v r ,做出炮弹落地时的矢量图[如图(B)所示],由图中所示几何关系也可求得OP (即图中的r 矢量).(1)解1 由分析知,炮弹在图(a)所示坐标系中两个分运动方程为αgt βt x sin 21cos 20-=v (1) αgt βt y cos 21sin 20-=v (2)令y =0 求得时间t 后再代入式(1)得)cos(cos sin 2)sin sin cos (cos cos sin 2220220βααg ββαβααg βx OP +=-==v v 解2 做出炮弹的运动矢量图,如图(b)所示,并利用正弦定理,有βgt αt βαsin 212πsin 2πsin 20=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛--v r 从中消去t 后也可得到同样结果.(2) 由分析知,如炮弹垂直击中坡面应满足y =0 和v x =0,则0sin cos 0=-=αgt βx v v (3)由(2)(3)两式消去t 后得αβsin 21tan = 由此可知.只要角α和β满足上式,炮弹就能垂直击中坡面,而与v 0 的大小无关.讨论 如将炮弹的运动按水平和竖直两个方向分解,求解本题将会比较困难,有兴趣读者不妨自己体验一下.1 -20 一直立的雨伞,张开后其边缘圆周的半径为R ,离地面的高度为h ,(1) 当伞绕伞柄以匀角速ω旋转时,求证水滴沿边缘飞出后落在地面上半径为g ωh R r /212+=的圆周上;(2) 读者能否由此定性构想一种草坪上或农田灌溉用的旋转式洒水器的方案?分析 选定伞边缘O 处的雨滴为研究对象,当伞以角速度ω旋转时,雨滴将以速度v 沿切线方向飞出,并作平抛运动.建立如图(a)所示坐标系,列出雨滴的运动方程并考虑图中所示几何关系,即可求证.由此可以想像如果让水从一个旋转的有很多小孔的喷头中飞出,从不同小孔中飞出的水滴将会落在半径不同的圆周上,为保证均匀喷洒对喷头上小孔的分布还要给予精心的考虑.解 (1) 如图(a)所示坐标系中,雨滴落地的运动方程为t ωR t x ==v (1)h gt y ==221 (2) 由式(1)(2)可得 g h ωR x 2222= 由图(a)所示几何关系得雨滴落地处圆周的半径为22221ωgh R R x r +=+= (2) 常用草坪喷水器采用如图(b)所示的球面喷头(θ0 =45°)其上有大量小孔.喷头旋转时,水滴以初速度v 0 从各个小孔中喷出,并作斜上抛运动,通常喷头表面基本上与草坪处在同一水平面上.则以φ角喷射的水柱射程为gR 2sin 0v = 为使喷头周围的草坪能被均匀喷洒,喷头上的小孔数不但很多,而且还不能均匀分布,这是喷头设计中的一个关键问题.1 -21 一足球运动员在正对球门前25.0 m 处以20.0 m·s-1 的初速率罚任意球,已知球门高为3.44 m .若要在垂直于球门的竖直平面内将足球直接踢进球门,问他应在与地面成什么角度的范围内踢出足球? (足球可视为质点)分析 被踢出后的足球,在空中作斜抛运动,其轨迹方程可由质点在竖直平面内的运动方程得到.由于水平距离x 已知,球门高度又限定了在y 方向的范围,故只需将x 、y 值代入即可求出.解 取图示坐标系Oxy ,由运动方程θt x cos v =, 221sin gt θt y -=v 消去t 得轨迹方程222)tan 1(2tan x θg θx y +-=v以x =25.0 m,v =20.0 m·s-1 及3.44 m≥y ≥0 代入后,可解得71.11°≥θ1 ≥69.92°27.92°≥θ2 ≥18.89°如何理解上述角度的范围?在初速一定的条件下,球击中球门底线或球门上缘都将对应有两个不同的投射倾角(如图所示).如果以θ>71.11°或θ <18.89°踢出足球,都将因射程不足而不能直接射入球门;由于球门高度的限制,θ 角也并非能取71.11°与18.89°之间的任何值.当倾角取值为27.92°<θ <69.92°时,踢出的足球将越过门缘而离去,这时球也不能射入球门.因此可取的角度范围只能是解中的结果.1 -22 一质点沿半径为R 的圆周按规律2021bt t s -=v 运动,v 0 、b 都是常量.(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b ?(3)当加速度达到b 时,质点已沿圆周运行了多少圈?分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s (t ),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加速度的法向分量为a n =v 2 /R .这样,总加速度为a =a te t+a n e n .至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs =s t -s 0.因圆周长为2πR,质点所转过的圈数自然可求得.解 (1) 质点作圆周运动的速率为bt ts -==0d d v v 其加速度的切向分量和法向分量分别为b t s a t -==22d d , Rbt R a n 202)(-==v v 故加速度的大小为R )(402222bt b a a a a t tn -+=+=v 其方向与切线之间的夹角为⎥⎦⎤⎢⎣⎡--==Rb bt a a θt n 20)(arctan arctan v (2) 要使|a |=b ,由b bt b R R=-+4022)(1v 可得 bt 0v = (3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为bs s s t 2200v =-= 因此质点运行的圈数为bRR s n π4π220v == 1 -23 一半径为0.50 m 的飞轮在启动时的短时间内,其角速度与时间的平方成正比.在t =2.0s 时测得轮缘一点的速度值为4.0 m·s-1.求:(1) 该轮在t′=0.5s的角速度,轮缘一点的切向加速度和总加速度;(2)该点在2.0s内所转过的角度.分析 首先应该确定角速度的函数关系ω=kt 2.依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k ,ω=ω(t )确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移.解 因ωR =v ,由题意ω∝t 2 得比例系数322s rad 2-⋅===Rtt ωk v 所以 22)(t t ωω==则t ′=0.5s 时的角速度、角加速度和切向加速度分别为12s rad 5.02-⋅='=t ω2s rad 0.24d d -⋅='==t tωα 2s m 0.1-⋅==R αa t总加速度n t t n R ωR αe e a a a 2+=+= ()()2222s m 01.1-⋅=+=R ωR αa 在2.0s内该点所转过的角度 rad 33.532d 2d 203202200====-⎰⎰t t t t ωθθ 1 -24 一质点在半径为0.10 m 的圆周上运动,其角位置为342t θ+=,式中θ 的单位为rad,t 的单位为s.(1) 求在t =2.0s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到.解 (1) 由于342t θ+=,则角速度212d d t tθω==.在t =2 s 时,法向加速度和切向加速度的数值分别为 22s 2s m 30.2-=⋅==ωr a t n2s 2s m 80.4d d -=⋅==t ωr a t t(2) 当22212/t n t a a a a +==时,有223n t a a =,即 ()()422212243t r rt = 得 3213=t此时刻的角位置为 rad 15.3423=+=t θ(3) 要使t n a a =,则有()()422212243t r rt = t =0.55s1 -25 一无风的下雨天,一列火车以v 1=20.0 m·s-1 的速度匀速前进,在车内的旅客看见玻璃窗外的雨滴和垂线成75°角下降.求雨滴下落的速度v2 .(设下降的雨滴作匀速运动)分析 这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为动参考系S′.v 1 为S′相对S 的速度,v 2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解 以地面为参考系,火车相对地面运动的速度为v 1 ,雨滴相对地面竖直下落的速度为v 2 ,旅客看到雨滴下落的速度v 2′为相对速度,它们之间的关系为1'22v v v += (如图所示),于是可得1o 12s m 36.575tan -⋅==v v 1 -26 如图(a)所示,一汽车在雨中沿直线行驶,其速率为v 1 ,下落雨滴的速度方向偏于竖直方向之前θ 角,速率为v 2′,若车后有一长方形物体,问车速v 1为多大时,此物体正好不会被雨水淋湿?分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v 2′的方向)应满足hl αarctan ≥.再由相对速度的矢量关系122v v v -=',即可求出所需车速v 1.解 由122v v v -='[图(b)],有θθαcos sin arctan 221v v v -= 而要使hl αarctan ≥,则 hl θθ≥-cos sin 221v v v ⎪⎭⎫ ⎝⎛+≥θh θl sin cos 21v v 1 -27 一人能在静水中以1.10 m·s-1 的速度划船前进.今欲横渡一宽为1.00 ×103 m 、水流速度为0.55 m·s-1 的大河.(1) 他若要从出发点横渡该河而到达正对岸的一点,那么应如何确定划行方向? 到达正对岸需多少时间? (2)如果希望用最短的时间过河,应如何确定划行方向? 船到达对岸的位置在什么地方?分析 船到达对岸所需时间是由船相对于岸的速度v 决定的.由于水流速度u 的存在, v 与船在静水中划行的速度v ′之间有v =u +v ′(如图所示).若要使船到达正对岸,则必须使v 沿正对岸方向;在划速一定的条件下,若要用最短时间过河,则必须使v 有极大值.解 (1) 由v =u +v ′可知v '=u αarcsin,则船到达正对岸所需时间为 s 1005.1cos 3⨯='==αd d t v v (2) 由于αcos v v '=,在划速v ′一定的条件下,只有当α=0 时, v 最大(即v =v ′),此时,船过河时间t ′=d /v ′,船到达距正对岸为l 的下游处,且有m 100.52⨯='='=v d u t u l 1 -28 一质点相对观察者O 运动, 在任意时刻t , 其位置为x =vt , y =gt 2 /2,质点运动的轨迹为抛物线.若另一观察者O′以速率v 沿x 轴正向相对于O 运动.试问质点相对O′的轨迹和加速度如何?分析 该问题涉及到运动的相对性.如何将已知质点相对于观察者O 的运动转换到相对于观察者O′的运动中去,其实质就是进行坐标变换,将系O 中一动点(x ,y )变换至系O′中的点(x ′,y ′).由于观察者O′相对于观察者O 作匀速运动,因此,该坐标变换是线性的.解 取Oxy 和O′x′y′分别为观察者O 和观察者O′所在的坐标系,且使Ox 和。
大学基础物理学课后习题答案_含思考题(1)
大学基础物理课后答案主编:习岗高等教育出版社第一章 思考题:<1-4> 解:在上液面下取A 点,设该点压强为A p ,在下液面内取B 点,设该点压强为B p 。
对上液面应用拉普拉斯公式,得 A A R p p γ20=- 对下液面使用拉普拉斯公式,得 BB 02R p p γ=- 又因为 gh p p ρ+=A B 将三式联立求解可得 ⎪⎪⎭⎫ ⎝⎛-=B A 112R R g h ργ<1-5> 答:根据对毛细现象的物理分析可知,由于水的表面张力系数与温度有关,毛细水上升的高度会随着温度的变化而变化,温度越低,毛细水上升的高度越高。
在白天,由于日照的原因,土壤表面的温度较高,土壤表面的水分一方面蒸发加快,另一方面土壤颗粒之间的毛细水会因温度升高而下降,这两方面的原因使土壤表层变得干燥。
相反,在夜间,土壤表面的温度较低,而土壤深层的温度变化不大,使得土壤颗粒间的毛细水上升;另一方面,空气中的水汽也会因为温度下降而凝结,从而使得清晨时土壤表层变得较为湿润。
<1-6> 答:连续性原理是根据质量守恒原理推出的,连续性原理要求流体的流动是定常流动,并且不可压缩。
伯努利方程是根据功能原理推出的,它的使用条件是不考虑流体的黏滞性和可压缩性,同时,还要求流动是定常流动。
如果流体具有黏滞性,伯努利方程不能使用,需要加以修正。
<1-8> 答:泊肃叶公式适用于圆形管道中的定常流动,并且流体具有黏滞性。
斯托克斯公式适用于球形物体在黏滞流体中运动速度不太大的情况。
练习题:<1-6> 解:设以水坝底部作为高度起点,水坝任一点至底部的距离为h 。
在h 基础上取微元d h ,与之对应的水坝侧面面积元d S (图中阴影面积)应为坡长d m 与坝长l 的乘积。
练习题1-6用图d h d F由图可知 osin60d sin d d hh m ==θ 水坝侧面的面积元d S 为 d d d sin 60hS l m l °== 该面积元上所受的水压力为 0d d d [(5)]sin 60hF p S p ρg h l°==+-水坝所受的总压力为 ()[]N)(103.760sin d 5d 855o0⨯=-+==⎰⎰h l h g p F F ρ(注:若以水坝的上顶点作为高度起点亦可,则新定义的高度5h h ¢=-,高度微元取法不变,即d d h h ¢=,将h ¢与d h ¢带入水坝压力积分公式,同样可解出水坝所受压力大小。
京江学院大学物理练习一二三四答案
2 v vx v2 y 58 (m / s) vy 7 arctan 与 x 轴夹角 arctan vx 3 dv d [3i (t 3) j ] (4) a j dt dt
a 1(m / S 2 )
沿y方向
上页 下页 返回 退出 上页 下页 返回 退出
一
a
B
(
B B
c
B
)
C
A
C
A
a
A a
C
a
A
C
(A)
(B)
(C)
(D)
上页 下页 返回 退出
上页 下页 返回 退出
练习一选择题
练习一选择题
2 3. 一质点沿x轴运动的规律是 x t 4t 5(SI 制)。则前三秒内它的 ( c )
2.一质点沿x轴作直线运动,其v-t曲线如图所示, 如t=0时,质点位于坐标原点,则t=4.5s时,质点在x 轴上的位置为 (A)5m; (B) 2m; (
v 5 3t t 2 3 0
v 5 3 3 3 2 0 23( m s 1 )
上页 下页 返回 退出 上页 下页 返回 退出
3
2
练习一填充题
练习一填充题
5.质点作直线运动时,a、v符号一致, 质点速率 是增加的 质点速率 是减小的 ; a、v符号相反, 。
上页 下页 返回 退出
上页 下页 返回 退出
3
练习一计算题
练习一计算题1
1.一质点沿x轴运动,其运动学方程为 x 1 4t t 2 (SI制),试计算 (1)第三末质点的位置; (2)前3s内的位移大小; (3)前3s内的经过的路程。
大学_大学物理教程上册(范仰才著)课后答案_1
大学物理教程上册(范仰才著)课后答案大学物理教程上册(范仰才著)内容提要绪论第一篇力学第1章质点运动学1.1 参考系和坐标系质点1.2 质点运动的描述1.3 自然坐标系中的速度和加速度1.4 不同参考系中速度和加速度的变换关系思考题习题第2章质点动力学2.1 牛顿运动定律2.2 惯性系与非惯性系2.3 力的空间积累效应2.4 保守力的功势能机械能守恒定律2.5 力的时间积累效应动量守恒定律__2.6 质心质心运动定理阅读材料(1)混沌及其特征思考题习题第3章刚体的定轴转动3.1 刚体及刚体定轴转动的描述3.2 刚体定轴转动定律3.3 定轴转动的功和能3.4 角动量定理和角动量守恒定律__3.5 进动阅读材料(2)对称性与守恒律思考题习题第二篇热学第4章气体动理论4.1 平衡态态参量理想气体物态方程 4.2 理想气体的压强公式4.3 理想气体的`温度公式4.4 能量按自由度均分理想气体的内能 4.5 麦克斯韦速率分布律__4.6 玻耳兹曼分布律4.7 分子的平均碰撞频率和平均自由程__4.8 气体内的输运过程__4.9 范德瓦尔斯方程真实气体阅读材料(3)低温与超导思考题习题第5章热力学基础5.1 准静态过程功热量和内能5.2 热力学第一定律及其在理想气体等值过程的应用 5.3 绝热过程多方过程5.4 循环过程卡诺循环5.5 热力学第二定律5.6 热力学第二定律的统计意义熵阅读材料(4)热学熵与信息熵思考题习题第三篇振动和波动第6章振动学基础6.1 简谐振动的运动学旋转矢量表示法6.2 简谐振动的动力学特征6.3 简谐振动的能量6.4 简谐振动的合成6.5 阻尼振动受迫振动共振思考题习题第7章波动学基础7.1 机械波的形成和传播7.2 平简谐波的波函数7.3 波的能量声波大学物理教程上册(范仰才著)目录《21世纪高等学校规划教材:大学物理教程(上)》可作为本科院校理工科各专业的大学物理教材,也可作为各类普通高等学校非物理类专业、各类成人高校物理课程的教材或教学参考书。
大学物理基础教程答案1-6力-6
a b − 5 r r
求:(1)用a和b表示平衡位置;(2)证明其振动圆频率 = 8b ( b )3/ 4 :(1)用 表示平衡位置;(2)证明其振动圆频率 ;(2) ω
m 5a
保守力平衡点f=0 解:(1)保守力平衡点 保守力平衡点
5a b f =− 6 + 2 =0 r r
5a 1 / 4 r0 = ( ) b
ρgas = mg ⇒ m = ρas mg − ρg(a + x)s = m&& x ρgs g x ρgxs+ m&& = 0∴ω = = m a
2
b
a
2π a T= = 2π g ω
6-2一质量为1.0x10-3 千克的质点,作简谐振动,其振幅为2.0x10-4 一质量为1.0x10 千克的质点,作简谐振动,其振幅为2.0x10 米,质点在离平衡位置最远处的加速度为8.0 x103米/秒.(1) 试计 质点在离平衡位置最远处的加速度为8.0 算质点的振动频率;(2) 质点通过平衡位置的速度;(3) 算质点的振动频率;(2) 质点通过平衡位置的速度;(3) 质点位移 米时的速度;(4) ;(4)写出作用在这质点上的力作为位置 为1.2 0x10-4 米时的速度;(4)写出作用在这质点上的力作为位置 的函数合作为时间的函数. 的函数合作为时间的函数.
定滑轮的质量为m 半径为R, R,转动 6-6 如图弹簧的倔强系数为k,定滑轮的质量为m’,半径为R,转动 物体的质量为m 轴处摩擦不计, 惯量为k,物体的质量为m。轴处摩擦不计,弹簧和绳的质量也不 绳与滑轮间无相对滑动,(1)试求这一振动系统的振动频率,(2) ,(1)试求这一振动系统的振动频率 计,绳与滑轮间无相对滑动,(1)试求这一振动系统的振动频率,(2) 如果在弹簧处于原长时由静止释放物体m, m向下具有最大速度时 如果在弹簧处于原长时由静止释放物体m, m向下具有最大速度时 的正坐标, 振动表达式。 开始计时, 开始计时,并令m向下运动为x的正坐标,试写出m振动表达式。 解:(1)设弹簧原长l0平衡时伸长x0 (1)设弹簧原长l 平衡时伸长x 设弹簧原长 为坐标原点,运动中,有: 为坐标原点,运动中, mg以 伸长时m kx0= mg以x0伸长时m所在点
大学物理学第四版课后习题答案(赵近芳)上册
大学物理学第四版课后习题答案(赵近芳)上册大学物理学第四版课后习题答案(赵近芳)上册I. 力学基础1.1 物理量、单位和量纲1.2 一维运动1.3 二维运动1.4 多维运动1.5 动力学定律1.6 四个基本定律的应用II. 力学进阶2.1 万有引力定律2.2 物体的机械平衡2.3 力的合成和分解2.4 刚体的平衡条件2.5 动力学定律的矢量形式2.6 力的合成与分解在动力学中的应用III. 力学应用3.1 动量和冲量3.2 动量定理和动量守恒定律3.3 质心运动3.4 矩和对称性3.5 碰撞和动能IV. 振动与波动4.1 简谐振动的基本概念4.2 简谐振动的物理规律4.3 简谐振动的叠加4.4 波的基本概念4.5 机械波的传播4.6 声波的特性V. 热学基础5.1 温度和热量5.2 热学平衡5.3 理想气体状态方程5.4 热力学第一定律5.5 热力学第二定律5.6 热力学循环VI. 热学进阶6.1 热传导6.2 理想气体的物态方程6.3 热机的工作原理6.4 理想气体的热力学过程6.5 热力学第三定律6.6 热力学中的熵VII. 光学基础7.1 几何光学的基本假设7.2 反射和折射7.3 薄透镜的成像7.4 光的衍射7.5 光的干涉与衍射VIII. 光学进阶8.1 光的波动性8.2 波动光学中的衍射现象8.3 干涉与衍射的应用8.4 偏振光的特性和产生8.5 偏振的应用IX. 电学基础9.1 电荷和电场9.2 电场中的电荷9.3 静电场中的电势能9.4 电介质中的电场9.5 电容器和电容9.6 电容器在电场中的应用X. 电学进阶10.1 电流和电阻10.2 欧姆定律和电功率10.3 理想电源和内阻10.4 串联和并联电路10.5 微观电流与输运过程10.6 磁场和电流的相互作用XI. 磁学基础11.1 磁场的基本概念11.2 安培力和磁场的作用11.3 安培环路定理和比奥-萨伐尔定律11.4 磁场中的磁矩和磁矢势11.5 磁场中的电荷和电流XII. 电磁感应12.1 法拉第电磁感应定律12.2 电磁感应的应用12.3 洛伦兹力和电磁感应的关系12.4 电磁感应中的能量转换XIII. 光学和电磁波13.1 光的多普勒效应13.2 光的全反射和光导纤维13.3 电磁波的基本特性13.4 电磁波的干涉和衍射13.5 电磁波的产生和传播XIV. 原子物理14.1 原子的组成和结构14.2 原子能级和辐射14.3 布拉格衍射和X射线的产生14.4 原子谱和拉曼散射14.5 布居和粒子统计XV. 物质内部结构15.1 固体的晶体结构15.2 固体的导电性15.3 半导体的性质和应用15.4 介质的极化和磁化15.5 核能和放射性以上是《大学物理学第四版课后习题答案(赵近芳)上册》的大纲,根据各个章节的内容进行详细解答可帮助学生更好地掌握物理学知识。
大学物理1-4
6
1.4 牛顿运动定律
三. 牛顿第三定律
两个物体之间的作用力和反作用力沿同一直线,大小相等, 方向相反。分别作用在两个物体上。
F F
说明: 1. 作用力和反作用力的性质相同;
2. 同时出现同时消失,没有先后、主次之分; 3.作用力与反作用分别作用于两个不同的物体,各产 生其效果。
举例:压力与支持力;磁力;电力;摩擦力,万有引力等。
前页 后页 目录
7
1.4 牛顿运动定律
牛顿定律的几点说明 1.牛顿定律只适用于惯性系 2.牛顿第二定律只适用于质点或可看作质点的物体
3.
ma
只是数值上等于合外力,它本身不是力。外
力改变时,它也同时改变,它们同时存在,同时改
变,同时消失
前页 后页 目录
例2 一重物m用绳悬起,绳的另一端系在天花板上 ,绳长 l=0.5m ,重物经推动后,在一水平面内作匀 速率圆周运动,转速 n=1r/s 。这种装置叫做圆锥摆 。求绳和竖直方向所成的角度。P38例题11 解:以小球为研究对象,分 析受力,画出受力图,并建 立图示自然坐标系。由牛顿 运动定律
y
T cos
前页 后页 目录
18
1.4 牛顿运动定律
例4 小球在水中由静止释放后下沉,求小球下沉的速 度。已知小球的质量为m,水对小球的浮力为Fb,水 对小球的粘性力为 Fv=k ,其中 k 是与水的粘性和小 球的半径有关的常量。P38例题12
解:以小球为研究对象,受力分析,建立图示坐 标系。由牛顿运动定律
前页 后页 目录
20
1.4 牛顿运动定律
两边积分,得
d t k 0 dt 0 T m T k ln t T m
大学物理基础教程答案力
I
I
K
补充6.1 一质量为m细杆状米尺,将其一端悬挂起来,轴处摩擦 不计,求其振动周期.
解: 复摆(物理摆)小角度振动时方程为:
m sg i n h m g I h m g 0h
I
mg
2 m , I g 1 h m 2 , h l l,T 2 2 I 1 .6(S ) 4
解:
1q21L2iC 2c 2
1 2q c21 2L (d d)2 q tC q cd d q tLd dd d q t2q 2t0
d2q 1
1
1
d2tLqC 0
LC 2LC
补充6.6假定有两个质量均为m离子,它们之间的势能为:Ep
a r5
b r
求:(1)用a和b表示平衡位置;(2)证明其振动圆频率
第六章
振动和波
6-1 用一根金属丝把一均匀圆盘悬挂起来,悬线OC通过圆盘质心, 圆盘呈水平状态,这个装置称扭摆,使圆盘转过一个角度时,金属 线受到扭转,从而产生一个扭转的回复力矩.若扭转角度很小,扭 转力矩与扭转角度成正比:M=k.求扭摆的振动周期.
解:由转动方程
M k I , k 0 , 2 k , T 2 2 I
8b (
b)3/4
m 5a
解:(1)保守力平衡点f=0
5 a b fr6r20
r 0(5 b a)1/4
10
(2)作微振动f可写成
fd dp E r5 ra 6rb 2
将f作一级近似: f k (r r 0 ) r ( m m 11 m m 22 m 2 )
f(r)f(r0)f'(1r!0)(rr0)0(3r07a02r0b 3)r(r0)
ห้องสมุดไป่ตู้知圆柱体的质量为m,半径为R,弹簧的倔强系数为k,并且弹簧
大学物理基础教程全一册答案
大学物理基础教程全一册答案1. 光的干涉和衍射不仅说明了光具有波动性,还说明了光是横波。
[单选题] *对错(正确答案)2. 拍摄玻璃橱窗内的物品时,往往在镜头前加一个偏振片以增加透射光的强度。
[单选题] *对错(正确答案)3. 爱因斯坦提出的光子说否定了光的波动说。
[单选题] *对错(正确答案)4. 太阳辐射的能量主要来自太阳内部的裂变反应。
[单选题] *对错(正确答案)5. 全息照片往往用激光来拍摄,主要是利用了激光的相干性。
[单选题] *对(正确答案)错6. 卢瑟福的α粒子散射实验可以估测原子核的大小。
[单选题] *对(正确答案)错7. 紫光光子的能量比红光光子的能量大。
[单选题] *对(正确答案)错8. 对于氢原子,量子数越大,其电势能也越大。
[单选题] *对(正确答案)错9. 雨后天空出现的彩虹是光的衍射现象。
[单选题] *对错(正确答案)10. 光的偏振现象说明光是横波。
[单选题] *对(正确答案)错11. 爱因斯坦提出光是一种电磁波。
[单选题] *对错(正确答案)12. 麦克斯韦提出光子说,成功地解释了光电效应。
[单选题] *对错(正确答案)13. 不同色光在真空中的速度相同但在同一介质中速度不同。
[单选题] *对(正确答案)错14. 当原子处于不同的能级时,电子在各处出现的概率是不一样的。
[单选题] *对(正确答案)错15. 同一种放射性元素处于单质状态或化合物状态,其半衰期相同 [单选题] *对(正确答案)错16. 原子核衰变可同时放出α、β、「射线,它们都是电磁波。
[单选题] *对错(正确答案)17. 治疗脑肿瘤的“「刀”是利用了r射线电离本领大的特性。
[单选题] *对错(正确答案)18. β射线的电子是原子核外电子释放出来而形成的。
[单选题] *对错(正确答案)19. 玻尔理论是依据α粒子散射实验分析得出的。
[单选题] *对错(正确答案)20. 氢原子核外电子从小半径轨道跃迁到大半径轨道时,电子的动能减小,电势能增大,总能量增大。
大学物理基础教程答案1-4力-4-PPT
31
(m2 2 m 2 m1)
T1'
r
Hale Waihona Puke m 1T 2'
T2
m2
m2g
3 T1 2 ma 35(N)
T2 m2(g a) 37.3(N)
12
4-13 一根长为 l 、质量为m的均匀细杆可绕其一端的水平轴O 自由摆动。当被一发质量为m’的子弹在离O点的a处水平方向击
中后,子弹埋入杆内,杆的最大偏转角为 ,求子弹的初速度。 已知 l =1.0米,m =2千克,m’ =20千克,a=0.7米, =60o
v
2 0
2
3
m'2 a2
v0 186(m s1 )
13
4-14 质量为m长为l的匀质细杆,可绕端点O的固定水平轴转动,
把杆抬平后无初速地释放,当杆摆至竖直位置时刚好和光滑水平 桌面上的小球相碰。小球的转动不计,它的质量和杆相同,并且
碰撞是完全弹性的,轴上摩擦也忽略不计,求碰后小球的速度v。
解:下摆(定轴转动)能量守恒,
上缀一个质量m2=0.51千克的物体。试计算施在圆盘上的力矩从
静止开始,在2秒之内所作的功和2秒时物体m2的动能。
5
解: mgRdt mgRt L mRv 1 MR2 v
2
R
mgt
v m M 2
R m1
Ek ,m
1 mv2 2
1 mgt 2 m(m M
)2
8.2J
m2
2
RT W 1 I2 1 ( 1 MR2 )( v )2 M( mgt )2 20.2(J)
mg l 1 ( 1 ml 2 )2 2 23
( 1 ml2 ) ( 1 ml2 )'m' vl
大学高等物理课后答案 第一章 力学基本定律
第1章习题答案1-1 解:竖直上抛运动 gH 2max20v = ()s m gH /849102008.1223max 0=⨯⨯⨯==v1-2 解:匀变速直线运动 ()()g s m t a t 259.24680.103600/1000160020<⋅=-⨯=∆-=-v v (不超过) ()()m t s t 4008.1036001000160021210=⨯⎪⎭⎫ ⎝⎛+⨯⨯=∆⨯+=v v 1-3 解:以喷嘴作为坐标原点,竖直向上作为y 轴的正向 竖直上抛运动 ()m g v H 5.348.92262220max=⨯== ()gy v y v 220-=连续性方程 ()()gyv qy v q y S 220-==任一瞬间空间上升的水流体积 ()()l gy v g q dy gy v qdy y S V H H 38.1222maxmax020020=⎥⎦⎤⎢⎣⎡--=-==⎰⎰上升下降上升V V =()l V V V 7.24=+=下降上升总1-4 解:()()bt u bt u btbt b u u dt dx v --=----⎪⎭⎫ ⎝⎛-+==1ln 1ln 11 ()()btub bt b u dt dv a -=---==11 ()00=v()()()s m v /1091.6120105.71ln 100.3120333⨯=⨯⨯-⨯-=-1-5 解:()2122212R R N rNdr s R R -==⎰ππ ()()()()m in 6939416364132256650222122==-⨯⨯=-==∆s v R R N v s t ππ()s rad r v /26.00.53.1===ω ()222/338.00.53.1s rad r v ===α1-6 解: ()s m v /37430344=+=东()s m v /31430344=-=西()s m v /3433034422=-=北N F μθ≥cos1-7 解: 因θs i nF mg N += 故 θμμθsin cos F mg F +≥ (1) θμθμs i n c o s s s mgF -≥静(2) θμθμs i n c o s k k mgF -≥动(3) 0s i n c o s ≤-θμθs sμθ1tan ≥1-8 解:()()()()()()()N a g m M F am M g m M F 676006.08.915005000=+⨯+=++=+=+-桨桨()()()N a g m F mamg F 156006.08.91500=+⨯=+==-桨绳1-9 解: r m rMm G22ω= ()()()Kg G r T G rM 261138232321069.51067.61036.136002.142/2⨯=⨯⨯⨯⎪⎭⎫ ⎝⎛⨯===-ππω1-10 解: ⎰⎰⎰-=-==ωπω20c o s td t kA kxdt Fdt I ωωωωπkAt kA -=⎥⎦⎤⎢⎣⎡-=20sin1-11 解: ()s m /500i v-=()()s m t /45sin 8045cos 800j i v +=()()s N m m t ⋅+=-=j i v v I92.778.140()215278.1492.7arctan 89.160'=-=⋅=πϕs N I ()6168.914.084584502.089.16=⨯===∆=mg F N t I F1-12 一辆停在直轨道上质量为m 1的平板车上站着两个人,当他们从车上沿同方向跳下后,车获得了一定的速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
h
8
两个飞轮A 可以接合起来, 4-10 两个飞轮A和B可以接合起来,使它们以相同的转速一起转 以知AB两飞轮的轴在同一直线上, AB两飞轮的轴在同一直线上 动。以知AB两飞轮的轴在同一直线上,A轮的转动惯量为 I1=10 千克·米 =20千克 千克·米 开始时A 千克 米2 ,B轮的转动惯量为 I2=20千克 米2,开始时A以转速 两轮接合后的转速: n1=600 转·分-1 匀速转动,B轮静止.求(1)两轮接合后的转速: 分 匀速转动, 轮静止. 结合过程中机械能的损耗。 (2)结合过程中机械能的损耗。 =2π 接合过程中,摩擦属内力, 解:以知 ω 1=2πn接合过程中,摩擦属内力,又 无其他外力矩,角动量守恒I 无其他外力矩,角动量守恒I1ω = (I1+I2)ω A B I1 ω n= = n1 = 200 (转/分) 所以
1 1 2 2 W = m = m = m(2a) ω gh ga 2 3
细杆脱落后,质心满足: 细杆脱落后,质心满足:
vc = aω
A
1 2
而棒绕质心转动,角动量守恒, 而棒绕质心转动,角动量守恒,所以ω 不变
1 2 h = gt 2
C C’
B
∆θ = ωt = 2πN
1 3h 解得: N = 解得: ( ) 2π a
m (RA − RB ) = (mA + mB )gRB g
圆盘向上加速运动
T (mA+mB)g
当m (RA − RB ) > (mA + mB )gRB g
圆盘向下加速运动
g 当m (RA − RB ) < (mA + mB )gRB T
m
在静止条件下将圆盘和物体m视为一整体, (2) 在静止条件下将圆盘和物体m视为一整体,则: T’=(m+mA+mB)g =(m+m 物体m静止则有: 物体m静止则有: T=mg mg
第四章
刚体的运动规律
4-1 证明适用于薄的平面刚体的垂直轴定理 一个平面刚体薄板 证明适用于薄的平面刚体的垂直轴定理:一个平面刚体薄板 一个平面刚体薄板, 对于垂直板面的某轴的转动惯量,等于绕平面内与该垂直轴相交 对于垂直板面的某轴的转动惯量 等于绕平面内与该垂直轴相交 的任意两个相互垂直的轴的转动惯量之和,即 的任意两个相互垂直的轴的转动惯量之和 即 Iz=Ix+Iy 证明: 证明 依题意作右图所示,由定义求得 依题意作右图所示 由定义求得: 由定义求得 y dm r x x z y
I1 = 1 m 2 l 3 I2 = m l
1 3 2
O
l
A
2 3 2
1 2 3 2 5 2 I3 = m + m( l) = m l l 12 2 4
总的转动惯量为: 总的转动惯量为:
3 2
l
l
B
I = I1 + I2 + I3 = ml
l
4-3
一半圆形均匀细杆,其半径为R 质量为m 如图所示, 一半圆形均匀细杆,其半径为R,质量为m,如图所示,试
4-5解: (1)如图所示分为三个隔离体求解。 (1)如图所示分为三个隔离体求解。 如图所示分为三个隔离体求解
m2
T2
m1g − T = m1a 1 T = m2a 2 a (T − T )R = I 1 2 R (2)
I a = m1 g ( R2 + m1 + m2 ) T1 I T2 = m1m2 g ( 2 + m1 + m2 ) R m1 I I 1 T = m1g( R2 + m2 ) ( R2 + m1 + m2 )
动脱落,棒变为抛体,在以后的运动中, 动脱落,棒变为抛体,在以后的运动中,棒的质心轨迹为一抛 物线, 转动, 物线,而棒本身则绕质心C转动,试求当它的质心从C’位置下 距离时(如图所示),棒共转了多少转? ),棒共转了多少转 降h距离时(如图所示),棒共转了多少转? 解:细杆从水平位置无摩擦地转至竖直位置时,重力作功,有 细杆从水平位置无摩擦地转至竖直位置时,重力作功,
求细杆对过圆形圆心和端点的轴AA 的转动惯量 求细杆对过圆形圆心和端点的轴AA’的转动惯量. AA 的转动惯量. 解:
QdI = r dm = (Rsinθ)ρRdθ
2
dl = Rdθ
ρR3 1 2 3 2 I = ∫ dI = ρR ∫ sin θdθ = = mR 0 2 2
π
A R
'
dθ
θ
r A
Iz = ∫ r2dm = ∫ (x2 + y2 )dm = ∫ x2dm + ∫ y2dm = Ix + Iy
计算由三根质量均为m长为l 4-2 计算由三根质量均为m长为l的均匀细杆组成的正三角形 绕通过一顶点并垂直于三角形平面的轴的转动惯量.
1
OA相对于 点的转动惯量: 相对于O 解: OA相对于O点的转动惯量: OB相对于O点的转动惯量: OB相对于O点的转动惯量: 相对于 AB相对于O点的转动惯量: AB相对于O点的转动惯量: 相对于
2π
1 2 1 I2 2 2 2 − ∆E = I1ω1 − (I1 + I2 )ω = 2I1π n1 ≈ 1.32×104 (J) 2 2 I1 + I2
质量为m 半径为R 的两个圆盘同心地粘在一起, 4-11 质量为mA和mB,半径为RA和RB的两个圆盘同心地粘在一起,小 圆盘边缘绕有绳子,上端固定在天花板上,大圆盘也绕有绳子, 圆盘边缘绕有绳子,上端固定在天花板上,大圆盘也绕有绳子,下 端挂以质量为m的物体,如图所示. (1)要使圆盘向上加速 要使圆盘向上加速、 端挂以质量为m的物体,如图所示.求(1)要使圆盘向上加速、向下 加速,静止或匀速运动的条件?(2)在静止条件下两段绳中的张力. ?(2)在静止条件下两段绳中的张力 加速,静止或匀速运动的条件?(2)在静止条件下两段绳中的张力. 轴处摩擦和绳的质量忽略.绳与滑轮之间没有相对滑动发生. 轴处摩擦和绳的质量忽略.绳与滑轮之间没有相对滑动发生. 9
F 解: dN = 2πrdr dM = rµdN 2 πR R 2 M = ∫ dM = µFR 0 3 1 R 又 M = Iβ = ( m 2 )β ω0 = βt 2 3m ω0 R 1 2 R ω0 M = ∴ t= m 2 4µF
ω0
R r dr
如图, 4-5 如图,两物体的质量分别为m1 和m2,滑轮的转动惯量为I, (1)如果 与桌面之间为光滑接触, 半径为R。(1)如果m2与桌面之间为光滑接触,求系统的加速度a .(2)如果 及绳中张力T1和T2 .(2)如果m2与桌面之间的摩擦系数为µ ,求系 3 统的加速度和及绳中张力 绳子与滑轮间没有相对滑动。 统的加速度和及绳中张力T1和T2 .绳子与滑轮间没有相对滑动。
I
I m1g − T = m1a 1 a = (m1 − µm2 )g ( R2 + m1 + m2 ) (m1g ≥ µm2g时) I I T − µm2g = m2a T2 = (m1 + µm2 + µ 2 )m2 g ( 2 + m1 + m2 ) 2 R R I I (T − T )R = I a 2 1 R T1 = m1g( R2 + m1 + µm2 ) ( R2 + m1 + m2 ) 4
动能和质心速度? 动能和质心速度? 解: 质心运动定理 质心系中的角动量定理
1 2 dω QTR = m R 2 dt
m −T= m C g a
6
角量、线量的关系张力的作用点是瞬时不动点 角量、
dω ω 2 β= aC = Rβ vC = Rω aC = g dt 3 1 vC 2 1 4 EkC = I( ) = mgh vC = gh 2 R 3 3
I1 + I2
解:圆盘的运动属于纯滚动.小圆盘与绳的切 圆盘的运动属于纯滚动. 为 瞬时轴,则有: 点O’为 瞬时轴,则有:
T(RA − RB ) = (mA + mB )gRB
圆盘静止或匀速运动, (1) 圆盘静止或匀速运动,则m也匀速运动或 则有T 静止 ,则有T = mg
T’ RA O O’ RB
解法2: : Q
R
m
v T
v mg
∑∫
i
末
初
v 末v v v Fi外 ⋅ driC = ∫ T⋅ dr边C = ∑(Eik内末 − Eik内初)
初 i
1 2 1 2 1 = ( IωC末 − IωC初) () 2 2 末 末r 末r r r r r Q∑∫ migdriC = ∫ g ⋅ d(∑miriC) = ∫ g ⋅ mdrCC = 0
2
以垂直于盘面的力F 将一粗糙平面紧压在一飞轮的盘面上, 4-4 以垂直于盘面的力F 将一粗糙平面紧压在一飞轮的盘面上, 使其制动,如图所示.飞轮可以看作是质量为m 半径为R 使其制动,如图所示.飞轮可以看作是质量为m、半径为R的匀质圆 盘面与粗糙平面间的摩擦系数为µ,轴的粗细可略, 盘,盘面与粗糙平面间的摩擦系数为 ,轴的粗细可略,飞轮的初始 角速度为ω.(1)求摩擦力矩.(2)经过多长时间飞轮才停止转动 求摩擦力矩.(2)经过多长时间飞轮才停止转动? 角速度为ω.(1)求摩擦力矩.(2)经过多长时间飞轮才停止转动?
5
1 2 v gRdt = m gRt = ∆L = m + MR Rv 解: Q∫ m 2 R
m gt ∴ v= M m+ 2
R m1 m2
1 1 m gt 2 2 Ek,m = m = m( v ) = 8.2J M 2 2 m+ 2
1 2 1 1 v 2 m gt 2 2 RT∆θ = W = Iω = ( MR )( ) = M( ) = 20.2(J) 2 2 2 R M + 2m 在其重量作用下滚落, 4-8 有一线绕圆盘半径为R、质量为m在其重量作用下滚落,显 得上端固定在天花板上。 得上端固定在天花板上。求圆盘中心从静止下落h高度时的转动