人教版数学八年级下册课后习题参考答案
(完整版)人教版八年级数学下学期课后习题与答案
习题16.11、当a 是怎样的实数时,下列各式在实数范围内有意义? (1) .. rr ;( 2)、、戸;(3),5a ;( 4) .. 2a 1 . 解析:(1)由 a + 2 >0,得 a >- 2; (2) 由 3- a > 0,得 a w 3; (3) 由 5a >0,得 a >0;1(4) 由 2a + 1 > 0,得 a > -.22、计算:3、用代数式表示:(1) 面积为S 的圆的半径; (2) 面积为S 且两条邻边的比为(1)C.5)2 ; ( 2) ( 、.02)2 ; (3) ;(4) (5.5)2 ;(5) .(10)2 ; (6)( ⑺:(?2 ; (8)(2)2.解析: ⑴(、一5)2 (2)(02)2 ( 1)2 (、、0^)20.2;(4) (3) (5.5)252 (一 5)2125 ;.(10)2■■ 10210;(5)214 ;解析:(1)设半径为r (r>0),由r 2 S,得 r2 : 3的长方形的长和宽.2x, 3x (x>0),则有2x • 3x=S,得x J-S ,(2)设两条邻边长为4、利用a (、、a)2(a > 0),把下列非负数分别写成一个非负数的平方的形式:1(1)9;( 2)5;( 3)2.5;( 4)0.25;( 5) _; (6)0.2解析:(1) 9=32; (2) 5=(... 5)2; ( 3) 2.5=(云)2;1 斤2(4) 0.25=0.52; (5) § (,瑕)2; (6) 0=02.5、半径为r cm的圆的面积是,半径为2cm和3cm的两个圆的面积之和.求r的值.解析:r22232, r213 ,Q r 0, r 55 .6、A ABC的面积为12, AB边上的高是AB边长的4倍.求AB的长.答案:.6 .7、当x是怎样的实数时,下列各式在实数范围内有意义?(1)X2 1 ; (2) ,(X 1)2; (3) , 1; (4) 1.V X yj x 1答案:(1) x为任意实数;(2) x为任意实数;(3) x>0; (4) x>— 1 .8、小球从离地面为h (单位:m)的高处自由下落,落到地面所用的时间为t (单位:s).经过实验,发现h与t2成正比例关系,而且当h=20时,t=2 •试用h表示t,并分别求当h=10和h=25时,小球落地所用的时间.答案:h=5t2,,-、5 .9、(1)已知18 n是整数,求自然数n所有可能的值;(2)已知.24n是整数,求正整数n的最小值.答案:(1) 2, 9, 14, 17, 18 ; (2) 6.因为24n=22x 6X n,因此,使得莎为整数的最小的正整数n是6.⑵210、一个圆柱体的高为 10,体积为V •求它的底面半径r (用含V 的代数式表示),并 分别求当V=5n ,10n 和20 n 时,底面半径r 的大小.习题16.21、计算:(1) •, 24 ...27 ;( 2) 6 ( .. 15);(3) .18.. 20 , 75 ;( 4) , 32 43 5 •答案:(1) 18; (2) 3 10 ; ( 3) 30.30 ; (4) 24. 5 •2、计算:3、化简:(3) 誥;(4)宁;(5) y 怎;(6) 5 •(1),4 49 ;(2) (4)a 2b 4c 2答案:(1) 14 ; (2)10 '、3 ; (3) 37(4) 4、化简: (1) ; (2)23 (3)运6 ;( 3) 3质;(4) 卑;(5)辿;(6)•3、n .2x 3 5y(1) .181; 5 ;( 4) 2 也•6 3、xy答案:(1)2 ,3 ; (3)「2 ; (4)答案:(1) .3 ;5、根据下列条件求代数式b 、b 2 4ac2a的值;答案:11、已知长方体的体积V 4 3,高 h 3、2 ,求它的底面积S .(1) a=1, b=10, c=—15; (2) a=2, b= — 8, c=5 . 答案:(1)5 2.10 ;(2)4;6 26、设长方形的面积为 S,相邻两边分别为 a , b . (1) 已知 a .8 , b .12,求 S ; (2) 已知 a 2.,50 , b 3 32,求 S . 答案:(1) 4.6 ; (2) 240.7、设正方形的面积为 S,边长为a . (1) 已知 S=50,求 a ; (2) 已知 S=242,求 a . 答案:(1) 5、、2 ; (2) 112 •8、计算:.8 3、、40,5 ; (4) 27 ■- 50 \ 6 .9、已知 2 1.414 ,答案:0.707, 2.828.10、设长方形的面积为 S ,相邻两边长分别为 a , b •已知S 4;3,a、、15,求 b .(1) m 题;答案:(1) 1.2 ; ( 2)(3)15.12、如图,从一个大正方形中裁去面积为15cm2和24cm2的两个小正方形, 的面积.答案:12.10cm2.13、用计算器计算:(1) -.,9 9 19 ; (2)、一99 99 199 ;(3)、、999 999 1999 ; (4) 9999 9999 19999 .观察上面几题的结果,你能发现什么规律?用你发现的规律直接写出下题的结果:9些39 99L39 19匹39 ___________ .n个9 n个9 n个9答案:(1) 10 ; (2) 100; (3) 1000; (4) 10000. 100匕0 .n个0习题16.31、下列计算是否正确?为什么?(1) .2 .3 .,5 ;(2) 2 .2 2 2 ;(3) 32 ,2 3; (4)压8J 3 2 1 2答案: (1)不正确,,2与. 3不能合并;(2)不正确,2与不能合并;(3)不正确,3、. 2 .2 2,2 ;求留下部分12 (4) 不正确,邑空3 2 2辽2 .2 2 24、计算:(1) (、、12 5、、8八3 ; (2) (2、一 3 3. 2)(2 ,3 3、2); (3) ®3 2、、5)2 ; (4)^481、、6) ,27 •4答案:(1) 6 10 .6; (2)— 6; (3) 95 20.15; (4)-35、已知亏 2.236,求5 1 5 4*45的近似值(结果保留小数点后两位)(1)2、.-.27;(2).9;(3) 2、9X3X ;(4)a 2 , 8a 3a 50a 3 •答案: (1) 7、、3 ;⑵ \ 2 ; (3) 5 .. X ; (4)17a^. 2a23、计算:(1) .18 ,32 迈;(2) ,7554 ,96 .108 ;(3) C.45•18)(、、8 .125);(4)丄(42、3) 3(.2.27) 4•答案:(1) 0 ;(2) 、、6 . 3 ; (3) 8.. 5 . 2 ; (4)— I" •2、计算: 4(2)答案:7.83.6、已知x . 3 1,y ,3 1,求下列各式的值:(1) x 2+ 2xy + y 2; (2) x 2— y 2. 答案:(1) 12 ; (2) 4.3 .7、如图,在 Rt △ ABC 中,/ C=90° CB=CA=a .求 AB 的长.A8、已知a 1 ,10,求a -的值.aa答案:.6 .9、在下列各方程后面的括号内分别给出了一组数,从中找出方程的解: (1) 2x 2 — 6=0 , (、、3,、、6, J, 厨;(2) 2 (x + 5) 2=24, (5 2.3,5 2.3, 5 2 G, 5 2、3). 答案:(1)3 ; (2) 2.3 5 .复习题161、当x 是怎样的实数时,下列各式在实数范围内有意义? (1) r~x;12、化简:3、计算:(1) G24 J) (、1 ,6) ; (2) 2.12 乜 5、、2 ; V2 \8 4 (3) (2 ,3、、6)(2、、3 ,6) ; (4) (2 .一48 3. 27)、、6 ;(5)(2-2 3、3)2 ; (6)《J ; :1;)2 •4、正方形的边长为 a cm ,它的面积与长为 96cm ,宽为12cm 的长方形的面积相等.求 a 的值.答案:24、2 .5、已知x .5 1,求代数式x 2+ 5x — 6的值.答案:3,5 5 .6、已知x 2.3 ,求代数式(7 4 3)x 2(2 .3)x .3的值.(3):2 ;3x(4)r1:(X1)2 •答案: (1) x >— 3 ;(2) x 1 22 ;(3)%3 ;(4)乂工1-(1).500 ;(2) (3) (5)2x 2y 3 ;答案: (1) 10、5 ; (2) 2 '、3X ; ( 3)42; ;(4) 迁;(5) xy 2y ;(6) ‘五3a 答案:(1);(2);(3) 6; (4)4 10(5) 35 12.6 ; (6) 55_3 2; (4)亦;(6)5a 5答案:2 3 •7、电流通过导线时会产生热量,电流 I (单位:A )、导线电阻R (单位:Q )、通电时 间t (单位:s )与产生的热量 Q (单位:J )满足Q=l 2Rt •已知导线的电阻为 5Q, 1s 时间 导线产生30J 的热量,求电流I 的值(结果保留小数点后两位)•答案:2.45A •8、已知n 是正整数, "89n 是整数,求n 的最小值. 答案:21.9、(1)把一个圆心为点 0,半径为r 的圆的面积四等分•请你尽可能多地设想各种分 割方法. (2)如图,以点0为圆心的三个同心圆把以 0A 为半径的大圆0的面积四等分•求这 三个圆的半径 OB , 0C , 0D 的长.类比上述式子,再写出几个同类型的式子. 你能看出其中的规律吗?用字母表示这一规律,并给出证明.平方即可.答案:(1)例如,相互垂直的直径将圆的面积四等分;1(2)设 0A=r ,则 0D r , 0C20Bn n 2 1n 3 n 2 1,再两边开答案:规律是:•只要注意到习题17.11、设直角三角形的两条直角边长分别为 a 和b ,斜边长为c .(1) 已知 a=12, b=5,求 c ; (2) 已知 a=3, c=4,求 b ; (3) 已知 c=10,b=9,求 a . 答案:(1) 13; (2), 7 ; (3) J9 .2、一木杆在离地面 3m 处折断,木杆顶端落在离木杆底端 4m 处.木杆折断之前有多高?答案:8m .3、如图,一个圆锥的高 AO=2.4,底面半径 OB=0.7 . AB 的长是多少?答案:2.5.4、已知长方形零件尺寸(单位:mm)如图,求两孔中心的距离(结果保留小数点后一位).5、如图,要从电线杆离地面 5m 处向地面拉一条长 7m 的钢缆•求地面钢缆固定点 A到电线杆底部B 的距离(结果保留小数点后一位)•答案:4.9m •6、在数轴上作出表示 .20的点. 答案:略.8、在厶 ABC 中,/ C=90°, AC=2.1 , BC=2.8 .求: (1) △ ABC 的面积; (2) 斜边AB ; (3) 高 CD •7、在厶 ABC 中,/ C=90°, AB=c • (1) 如果/ (2) 如果/ A=30°,求 A=45 ,求 BC , BC , AC ; AC • 答案:(1) BC -c ,2AC(2) BCc , AC2答案:(1) 2.94; (2) 3.5; (3) 1.68.9、已知一个三角形工件尺寸(单位:mm)如图,计算高I的长(结果取整数)答案:82mm.10、有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面. 水的深度与这根芦苇的长度分别是多少?答案:12尺,13尺.11、如图,在AB的长.答案:12、有5个边长为1的正方形,排列形式如图.请把它们分割后拼接成一个大正方形.答案:分割方法和拼接方法分别如图(1)和图(2)所示.S半圆 ACD g因为/ ACD=90,根据勾股定理得 AC 2 + CD 2=AD 2, S 半圆AEC + S 半圆CFD =S 半圆ACD ,S 阴影=S ^ACD + S 半圆AEC + S 半圆CFD — S 半圆ACD , 即S 阴影=S ^ACD . 14、如图,△ ACB 和厶ECD 都是等腰直角三角形, △ ACB 的顶点A 在厶ECD 的斜边DE 上.求证:AE 2+ AD 2=2AC 2.证明:证法1:如图(1),连接BD .•••△ ECD 和△ ACB 都为等腰直角三角形,••• EC=CD , AC=CB ,/ ECD= / ACB=90 •••/ ECA= / DCB . • △ ACE ◎△ DCB . • AE=DB ,/ CDB= / E=45 . 又/ EDC=45 ,13、 月形图案 u如图,分别以等腰 AGCE 和 DHCF (1)Rt △ ACD 的边AD , AC , CD 为直径画半圆.求证:所得两个 的面积之和(图中阴影部分)等于Rt △ ACD 的面积. S半圆AECAB2 符 8 gAC 2,S 半圆CFD8 g CD 2 ,gAD 2 .所以H•••/ ADB=90 .在Rt△ ADB 中,AD 2+ DB2=AB2,得AD2+ AE2=AC2+ CB2, 即AE2+ AD 2=2AC2.<1)证法2:如图(2),作AF丄EC, AG丄CD,由条件可知,AG=FC . 在Rt△ AFC中,根据勾股定理得AF2+ FC2=AC 2.• AF2+ AG2=AC2.在等腰Rt△ AFE和等腰Rt△ AGD中,由勾股定理得AF2+ FE2=AE 2, AG 2+ GD2=AD2.又AF=FE , AG=GD ,••• 2AF2=AE2, 2AG 2=AD 而2AF2+ 2AG 2=2AC2,• AE2+ AD2=2AC2.习题17.21、判断由线段a, b, c组成的三角形是不是直角三角形:(1)a=7, b=24, c=25;(2) a .41 , b=4, c=5;5 3(3) a , b=1, c —;4 4(4)a=40, b=50, c=60.答案:(1)是;(2)是;(3)是;(4)不是.2、下列各命题都成立,写出它们的逆命题•这些逆命题成立吗?(1)同旁内角互补,两直线平行;(2)如果两个角是直角,那么它们相等;(3)全等三角形的对应边相等;(4)如果两个实数相等,那么它们的平方相等.答案:(1)两直线平行,同旁内角互补.成立.(2)如果两个角相等,那么这两个角是直角•不成立.(3)三条边对应相等的三角形全等.成立.(4)如果两个实数的平方相等,那么这两个实数相等.不成立.3、小明向东走80m后,沿另一方向又走了60m,再沿第三个方向走100m回到原地.小明向东走80m后是向哪个方向走的?答案:向北或向南.4、在厶ABC 中,AB=13 , BC=10, BC 边上的中线AD=12 .求AC .答案:13.5、如图,在四边形ABCD 中,AB=3 , BC=4 , CD=12 , AD=13,/ B=90° 求四边形ABCD的面积.答案:36.一一1 一6、如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF —CD .求4证/ AEF=90 .答案:设AB=4k,贝U BE=CE=2k , CF=k , DF=3k .•••/ B=90°,••• AE2= (4k) 2+( 2k) 2=20k2.同理,EF2=5k2, AF2=25k2.• AE2+ EF2=AF2.根据勾股定理的逆定理,△ AEF为直角三角形.•••/ AEF=90 .7、我们知道3, 4, 5是一组勾股数,那么3k, 4k , 5k ( k是正整数)也是一组勾股数吗?一般地,如果a, b, c是一组勾股数,那么ak, bk, ck (k是正整数)也是一组勾股数吗?答案:因为(3k) 2+( 4k) 2=9k2+ 16k2=25k2= (5k) 2,所以3k, 4k,5k( k是正整数)为勾股数.如果a , b , c 为勾股数,即a 2 + b 2=c 2,那么(ak ) 2+( bk ) 2=a 2k 2 + b 2k 2= (a 2+ b 2) k 2=c 2k 2= (ck ) 2 • 因此,ak , bk , ck (k 是正整数)也是勾股数.复习题171、两人从同一地点同时出发, 一人以20 m/min 的速度向北直行, 一人以30m/min 的速 度向东直行.10min 后他们相距多远(结果取整数)?答案:361m .2、如图,过圆锥的顶点S 和底面圆的圆心 0的平面截圆锥得截面△ SAB ,其中SA=SB , 答案: 6、5 cm 23、如图,车床齿轮箱壳要钻两个圆孔,两孔中心的距离是134mm ,两孔中心的水平距离是77mm •计算两孔中心的垂直距离(结果保留小数点后一位)答案:109.7mm .4、如图,要修一个育苗棚,棚的横截面是直角三角形,棚宽 a=3m ,高b=1.5m,长d=10m .求覆盖在顶上的塑料薄膜需多少平方米(结果保留小数点后一位)AB 是圆锥底面圆答案:33.5m2.5、一个三角形三边的比为1: .3:2,这个三角形是直角三角形吗?答案:设这个三角形三边为k…3k ,2k,其中k>0.由于k2(、、3k)2 4k2 (2k)2, 根据勾股定理的逆定理,这个三角形是直角三角形.6、下列各命题都成立,写出它们的逆命题.这些逆命题成立吗?(1)两条直线平行,同位角相等;(2)如果两个实数都是正数,那么它们的积是正数;(3)等边三角形是锐角三角形;(4)线段垂直平分线上的点到这条线段两个端点的距离相等.答案:(1)同位角相等,两直线平行.成立.(2)如果两个实数的积是正数,那么这两个实数是正数.不成立.(3)锐角三角形是等边三角形.不成立.(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.成立.7、已知直角三角形的两条直角边的长分别为2 3 1和2 3 1,求斜边c的长.答案:.26 .8、如图,在△ ABC 中,AB=AC=BC,高AD=h .求AB .答案:2 3h .39、如图,每个小正方形的边长都为1.(1)求四边形ABCD的面积与周长;(2)Z BCD是直角吗?答案:(1) 14.5, 3.5 、17 .. 26 ;(2)由BC 、20, CD . 5 , BD=5,可得BC2+ CD2=BD2•根据勾股定理的逆定理,△ BCD是直角三角形,因此/ BCD是直角.10、一根竹子高1丈,折断后竹子顶端落在离竹子底端3尺处.折断处离地面的高度是多少?(这是我国古代数学著作《九章算术》中的一个问题.其中的丈、尺是长度单位,1丈=10尺.)答案:4.55尺.11、古希腊的哲学家柏拉图曾指出, 如果m 表示大于1的整数,a=2m , b=m 2- 1, c=m 2 +1,那么a , b , c 为勾股数.你认为对吗?如果对, 你能利用这个结论得出一些勾股数吗?答案:因为a 2+b 2= (2m ) 2+( m 2- 1) 2=4m 2 + m 4- 2m 2+ 1=m 4+ 2m 2+ 1= (m 2+ 1) 2=c 2, 所以a , b , c 为勾股数.用 m=2, 3, 4 等大于 1 的整数代入 2m , m 2- 1, m 2 + 1,得 4, 3, 5; 6, 8, 10; 8, 15, 17;等等.12、如图,圆柱的底面半径为 6cm ,高为10cm ,蚂蚁在圆柱表面爬行,从点 A 爬到点B 的最短路程是多少厘米(结果保留小数点后一位)?答案:21.3cm .13、一根70cm 的木棒,要放在长、宽、高分别是50cm , 40cm , 30cm 的长方体木箱中, 能放进去吗?答案:能.习题18.11、如果四边形 3 ABCD 是平行四边形,AB=6,且AB 的长是口 ABCD 周长的,那么16BC 的长是多少?答案:10.14、设直角三角形的两条直角边长及斜边上的高分别为 a, b 及h .求证:a 21 h2 .答案:由直角三角形的面积公式,1 得- ab 2対厂,等式两边平方得抚窃(a2+ b 2),等式两边再同除以a 2b 2c 2,得 $h 2 a 22、如图,在一束平行光线中插入一张对边平行的纸板•如果光线与纸板右下方所成的 / 1是72° 15'那么光线与纸板左上方所成的/ 2是多少度?为什么?答案:72° 15 ',平行四边形的对角相等.3、如图,口ABCD的对角线AC , BD相交于点0,且AC + BD=36 , AB=11 .求厶0CD 的周长.答案:29.4、如图,在口ABCD中,点E, F分别在BC , AD上,且AF=CE .求证:四边形AECF 是平行四边形.答案: 提示:利用5、如图,口ABCD的对角线AC , BD相交于点0,且E, F, G, H分别是AO , B0 , CO, DO 的中点.求证:四边形EFGH是平行四边形.答案:提示:利用四边形EFGH的对角线互相平分.6、如图,四边形AEFD 和EBCF 都是平行四边形.求证:四边形ABCD 是平行四边形.7、如图,直线l i // |2,厶ABC 与厶DBC 的面积相等吗?为什么?你还能画出一些与△ ABC 面积相等的三角形吗?答案:相等•提示:在直线 l i 上任取一点P,A PBC 的面积与厶ABC 的面积相等(同 底等高).□ OABC 的顶点O , A , C 的坐标分别是(0, 0), (a , 0), (b , c ).求顶点9、如图,在梯形 ABCD 中,AB // DC .(1) 已知/ A= / B ,求证 AD=BC ; (2) 已知 AD=BC ,求证/ A= / B .答案: 8、如图, B 的坐标.答案:B 提示:利用(a + b ,答案:提示:过点AECD为平行四边形.10、如图,四边形ABCD是平行四边形,/ ABC=70°, BE平分/ ABC且交AD于点E, DF // BE且交BC于点F.求/ 1的大小.A E DB F C答案:35°11、如图,A' B BA , B'C'// CB , C ' /AC,/ ABC 与/ B'有什么关系?线段AB'与线段AC 呢?为什么?答案:由四边形ABCB是平行四边形,可知/ ABC= / B ', AB =BC ;再由四边形C BCA 是平行四边形,可知 C A=BC .从而AB =AC12、如图,在四边形ABCD 中,AD=12 , DO=OB=5 , AC=26 , / ADB=90°.求BC 的长和四边形ABCD的面积.答案: 的对角线互相平分,它是一个平行四边形•所以BC=AD=12,四边形ABCD的面积为120 .13、如图,由六个全等的正三角形拼成的图中,有多少个平行四边形?为什么?答案:6个,利用对边相等的四边形是平行四边形.14、如图,用硬纸板剪一个平行四边形,作出它的对角线的交点0,用大头针把一根平放在平行四边形上的直细木条固定在点0处,并使细木条可以绕点0转动.拨动细木条,使它随意停留在任意位置.观察几次拨动的结果,你发现了什么?证明你的发现.答案:设木条与口ABCD的边AD , BC分别交于点E, F,可以发现0E=0F , AE=CF ,DE=BF , △ A0E C0F , △ D0EB0F等.利用平行四边形的性质可以证明上述结论.15、如图,在□ABCD中,过对角线BD上一点P作EF // BC, GH // AB .图中哪两个平行四边形面积相等?为什么?答案:口AEPH 与□PGCF面积相等.利用△ ABD 与厶CDB , △ PHD与厶DFP, △ BEP 与厶PGB分别全等,从而口AEPH与口PGCF面积相等.习题18.21、如图,四边形ABCD是平行四边形,对角线AC, BD相交于点0,且/仁/2.它是一个矩形吗?为什么?答案:是.利用/ 1 = / 2,可知B0=C0,从而BD=AC , □ ABCD的对角线相等,它是一个矩形.2、求证:四个角都相等的四边形是矩形.答案:由于四边形的内角和为360°四个角又都相等,所以它的四个角都是直角.因此这个四边形是矩形.3、一个木匠要制作矩形的踏板•他在一个对边平行的长木板上分别沿与长边垂直的方向锯了两次,就能得到矩形踏板.为什么?答案:能.这时他得到的是一个角为直角的平行四边形,即矩形.4、在Rt△ ABC 中,/ C=90° AB=2AC .求/ A,/ B 的度数. 答案:/ A=60°,/ B=30°.5、如图,四边形ABCD是菱形,/ ACD=30°, BD=6 .求:(1)Z BAD,/ ABC 的度数;(2)AB , AC 的长.B答案:(1)Z BAD=60,/ ABC=120 ; (2) AB=6 , AC 6品-6、如图,AE // BF , AC平分/ BAD,且交BF于点C, BD平分/ ABC,且交AE于点D,连接CD •求证:四边形ABCD是菱形.答案:提示:由/ ABD= / DBC= / ADB,可知AB=AD,同理可得AB=BC .从而AD P BC,四边形ABCD是一组邻边相等的平行四边形,它是菱形.7、如图,把一个长方形的纸片对折两次,然后剪下一个角•要得到一个正方形,剪口与折痕应成多少度的角?答案:45°8、如图,为了做一个无盖纸盒,小明先在一块矩形硬纸板的四角画出四个相同的正方形,用剪刀剪下.然后把纸板的四边沿虚线折起,并用胶带粘好,一个无盖纸盒就做成了. 纸盒的底面是什么形状?为什么?答案:矩形,它的四个角都是直角.9、如图,在Rt△ ABC 中,/ ACB=90°, CD 丄AB 于点D,/ ACD=3 / BCD , E 是斜边AB的中点./ ECD是多少度?为什么?45°.提示:/ BCD= / EAC= / ECA=22.5答案:10、如图,四边形ABCD 是菱形,点M , N分别在AB , AD上,且BM=DN , MG // AD , NF // AB ;点F, G分别在BC , CD上,MG与NF相交于点E.求证:四边形AMEN , EFCG都是菱形.答案:提示:四边形AMEN , EFCG都是一组邻边相等的平行四边形.11、如图,四边形ABCD是菱形,AC=8 , DB=6 , DH丄AB于点H .求DH的长.B答案:DH=4.8 .提示:由AB • DH=2AO • OD=2S A ABD可得.12、(1)如下图(1),四边形OBCD是矩形,O, B , D三点的坐标分别是(0, 0),(b, 0), (0, d).求点C的坐标.(2) 如下图(2),四边形ABCD 是菱形,C , D 两点的坐标分别是(c , 0), (0, d ), 点A , B 在坐标轴上.求 A , B 两点的坐标.(3) 如下图(3),四边形OBCD 是正方形,O , D 两点的坐标分别是 (0, 0),(0, d ).求 B , C 两点的坐标.答案:正方形.提示: △ BFECMF DNM AEN ,证明四边形 EFMN 的四条 边相等,四个角都是直角.14、如图,将等腰三角形纸片 ABC 沿底边BC 上的高AD 剪成两个三角形.用这两个 三角形你能拼成多少种平行四边形?试一试,分别求出它们的对角线的长.(2)(3)答案:(1) C (b , (2) A ( — c , 0), B (0, — d );(3) B (d , 0), C (d , d ).13、如图,E , F , M , N 分别是正方形 ABCD 四条边上的点,且 判断四边形EFMN 是什么图形,并证明你的结论. AE=BF=CM=DN .试 B D n Cd );DB答案:3种.可以分别以 AD , AB (AC ), BD ( CD )为四边形的一条对角线,得到3B G C答案:提示:由△ ADE BAF ,可得 AE=BF ,从而 AF — BF=EF .16、如图,在△ ABC 中,BD ,CE 分别是边 AC , AB 上的中线,BD 与CE 相交于点 O. B0 与0D 的长度有什么关系? BC 边上的中线是否一定过点 0?为什么?答案:B0=20D , BC 边上的中线一定过点 0.利用四边形EMND 是平行四边形,可知B0=20D ;设BC 边上的中线和 BD 相交于点0',可知B0 =20'D ,从而0与0重合.17、如图是一块正方形草地, 要在上面修建两条交叉的小路, 使得这两条小路将草地分成的四部分面积相等,你有多少种方法?并与你的同学交流一下.种平行四边形,它们的对角线长分别为 h ,、.、4n 2 h 2 (或.3n 2 m 2) ; m , m ; n ,n 2 4h 2 (或.3h 2 m 2).15、如图,四边形ABCD 是正方形. 且交AG 于点F .求证:AF — BF=EF . G 是BC 上的任意一点, DE 丄 AG 于点 E , BF // DE ,答案:分法有无数种•只要保持两条小路互相垂直,并且都过正方形的中心即可.复习题181、选择题. (1)若平行四边形中两个内角的度数比为 1 : 2,则其中较小的内角是(A • 90 °B . 60 °C • 120 °D • 45 °(2)若菱形的周长为 8,高为1,则菱形两邻角的度数比为().A . 3 : 1B . 4 : 1C . 5 : 1D . 6 : 1(3) 如图,在正方形 ABCD 的外侧,作等边三角形 ADE ,则/ AEB 为(答案:(1) B ; (2) C ; (3) B .2、如图,将口ABCD 的对角线BD 向两个方向延长,分别至点E 和点F,且使BE=DF •求 证:四边形AECF 是平行四边形.)• A . 10答案:提示:连接AC,利用对角线互相平分的四边形是平行四边形.3、矩形对角线组成的对顶角中,有一组是两个少50。
人教版八下数学书习题答案
人教版八下数学书习题答案人教版八下数学书习题答案数学是一门重要的学科,也是我们日常生活中不可或缺的一部分。
而对于学生来说,数学课本中的习题是检验自己学习成果的重要途径之一。
人教版八下数学书中的习题也是如此,通过解答这些习题,可以帮助学生巩固知识,提高解题能力。
下面将给出一些人教版八下数学书习题的答案,希望对同学们的学习有所帮助。
第一章有理数1. 有理数的概念与运算【例1】(1) 有理数是指可以表示为两个整数之比的数。
例如,-2、0、1/2都是有理数。
(2) 有理数的加法、减法、乘法和除法运算规则与整数相同。
2. 有理数的比较【例2】(1) 两个有理数相等,当且仅当它们表示的小数相等。
(2) 两个有理数的大小关系可以通过比较它们的小数形式的大小来确定。
第二章代数式与方程1. 代数式的概念与运算【例3】(1) 代数式是由数、字母和运算符号组成的表达式。
例如,3x + 2y - 5是一个代数式。
(2) 代数式的运算规则与数的运算规则相同。
2. 一元一次方程【例4】(1) 一元一次方程是指未知数的最高次数为1的方程。
例如,2x + 3 = 7是一个一元一次方程。
(2) 解一元一次方程的方法可以通过移项、合并同类项和化简等步骤来完成。
第三章几何图形的认识1. 平面直角坐标系【例5】(1) 平面直角坐标系是由两条相互垂直的数轴组成的。
其中,横轴称为x轴,纵轴称为y轴。
(2) 在平面直角坐标系中,点的坐标可以表示为有序数对(x, y)的形式。
2. 长方形与正方形【例6】(1) 长方形是指四个角都是直角的四边形。
其中,相邻两边相等的长方形称为正方形。
(2) 长方形的周长等于两个相邻边的和的两倍,面积等于两个相邻边的乘积。
通过以上的习题答案,我们可以看到人教版八下数学书中的一些重要知识点和解题方法。
这些习题的答案不仅能够帮助同学们巩固所学的知识,还能够提高他们的解题能力和思维能力。
因此,同学们在学习数学时,应该认真对待课本中的习题,积极解答,并及时查看答案,以便及时纠正错误,提高学习效果。
八年级下册数学练习册答案人教版
(2)图略
(3)身高(cm)频数
154.5~159.52
159.5~164.54
164.5~169.56
169.5~174.510
174.5~179.55
179.5~184.53
(4)图略结论:只有少数人对自己工作不满。
(5)①200.16②略
填空
(1)1(2)y=2x+1-1(3)my1(5)y=-2x+10025
(6)9
3.解答题
(1)①Q=200+20t②(0≤t≤30)
(2)①y=80(0≤x≤50)
y=1.9x-15(50≤x≤100)
②y=1.6x
③选择方式一
(3)①在同一直线上y=25/72x
②当x=72时,y=25
当x=144时,y=50
20
(3)①-2≤x≤3
②当x=3,y有最小值为1/2
③当-2≤x≤0,y随x的增大而增大,当0≤x≤3,y随x的增大而减小
(4)①`v=800-50t
②0≤t≤16
③当t=8时,v=800-50x8=400
④当v=100时,100=800-50t
T=14
第5页—第7页
选择题
1B 2C 3C 4B 5B 6A 7B 8D
∴BE=DE
∵∠C=∠AED∠CAD=∠DAEAD=AD
∴△ACD≌△AED
∴AC=AE
∴AB=AE+BE=AC+CD
(2)∵OD平分AOB
∴∠1=∠2
∵OB=OA
∠1=∠2
OD=OD
∴△OBD≌△OAD(SAS)
∴∠3=∠4
人教版八年级下册数学配套练习册答案
人教版八年级下册数学配套练习册答案第17章 分式§17.1分式及其基本性质(一)一、选择题. 1.C 2.B二、填空题. 1. 31, 2.1,1 3. v320小时 三、解答题. 1. 整式:32-a ,51+x ,)(41y x -,x ; 分式:222y x x -,a 1,n m +-3,ab 6; 有理式:32-a ,51+x ,222yx x -,a 1,n m +-3,)(41y x -,ab b ,x 2. (1) 0≠x 时, (2)23-≠x 时, (3)x 取任意实数时,(4)3±≠x 时 §17.1分式及其基本性质(二)一、选择题. 1.C 2.D二、填空题. 1. 3312y x , 2. 22b a - 3. 1≠a三、解答题. 1.(1) ac 41,(2) xy -1,(3) 22-+a a ,(4) b 1 2.(1) z y x xyz 222121 , z y x z 222114,zy x x 222115;(2)))((y x y x x x -+ ,))(()(2y x y x x y x -+- 3.cm abc π §17.2分式的运算(一)一、选择题. 1.D 2.A二、填空题. 1. a 2, 2. 21x 3. 338ab - 三、解答题.1.(1)xy31,(2)1-,(3)c -,(4)22--x ; 2. 4--x , 6- §17.2分式的运算(二)一、选择题. 1.D 2.B二、填空题. 1. m nn m 22-, 2. 1, 3. 1-三、解答题. 1.(1) 21+a ,(2)222ba ,(3)x ,(4)a 4- 2. 1+x ,当2=x 时 ,31=+x17.3可化为一元一次方程的分式方程(一)一、选择题. 1.C 2.B二、填空题. 1. 162-x ,64=+x 2. 5=x , 3. 2=x三、解答题. 1.(1)21=x ,(2)2=x ,(3)10-=x ,(4)2=x ,原方程无解; 2. 32=x 17.3可化为一元一次方程的分式方程(二)一、选择题. 1.C 2.D二、填空题. 1. 3+x ,3-x ,360380-=+x x 2. 1.018040=+x , 3.%25160=-xx 三、解答题. 1.第一次捐款的人数是400人,第二次捐款的人数是800人2. 甲的速度为60千米/小时,乙的速度为80千米/小时17.4 零指数与负整数指数(一)一、选择题. 1.B 2.D二、填空题. 1.0.001,0.0028 , 2.3-, 3. 1≠a三、解答题. 1.(1)1,(2)1251,(3)2010,(4) 9, (5) 41, (6) 4- 2.(1)0.0001,(2)0.016,(3)0.,(4)00000702.0-17.4 零指数与负整数指数(二)一、选择题. 1.B 2.C二、填空题. 1.610,610- 2.0., 31007.8-⨯ 3.m 4103.6-⨯三、解答题. 1.(1)8107.5⨯,(2)21001.1-⨯,(3)5103.4-⨯-,(4)510003.2-⨯ 2. (1)21a ,(2)331b a ,(3)4x ,(4)a 1, (5) yx 2, (6) 1036x ; 3. 15.9 第18章 函数及其图象§18.1变量与函数(一)一、选择题. 1.A 2.B二、填空题. 1. 2.5,x 、y 2.x 210- 3. x y 8.0=三、解答题. 1. x y 6.31000+= 2. )(108.112-+=x y§18.1变量与函数(二)一、选择题. 1.A 2.D二、填空题. 1. 1≠x 2. 5 3. x y 436-=,90≤≤x三、解答题. 1. x y 5.015-=,300≤≤x 的整数 2. (1))(2010500-+=x y ,(2)810元§18.2函数的图象(一)一、选择题. 1.B 2.A二、填空题. 1. x ,三,四 2. (-1,-2) 3. -7,4三、解答题. 1. 作图(略),点A 在y 轴上,点B 在第一象限,点C 在第四象限,点D 在第三象限; 2. (1)A (-3,2),B (0,-1),C (2,1) (2)6§18.2函数的图象(二)一、选择题. 1.A 2.B二、填空题. 1. 5.99 2. 20 3. (1)100 (2)甲 (3)秒米/10,秒米/8三、解答题. 1. (1)40 (2)8,5 (3)x y 540-=,80≤≤x2. (1)时间与距离 (2)10千米,30千米 (3)10点半到11点或12点到13点§18.2函数的图象(三)一、选择题. 1.C 2.D二、填空题. 1. 3 2. 12分钟 3. 2)220(21t y -=三、解答题1. (1)体温与时间(2):2.(1)x y -=4,40<<x (2)作图略§18.3一次函数(一)一、选择题. 1.B 2. B二、填空题. 1. (1)、(4), (1) 2. 3≠m ,2=m 3. x y 6.2=三、解答题. 1. (1)x y 5240+=,(2)390元; 2. 3-或1-§18.3一次函数(二)一、选择题. 1.A 2. C 时间t (h ) 612 18 24 体温(℃) 39 36 38 36二、填空题. 1. 35+-=x y 2. 31- 3. 0, 3 三、解答题. 1.作图略 ;两条直线平行 2. 13--=x y§18.3一次函数(三)一、选择题. 1.C 2. D二、填空题. 1. -2,1 2. (-2,0) ,(0,-6) 3. -2三、解答题. 1. (1)(1,0) ,(0,-3),作图略 (2)23 2. (1) x y 318-=,60<≤x (2)作图略,y 的值为6§18.3一次函数(四)一、选择题. 1.B 2.B二、填空题. 1. 第四 2. > 3. 1>m三、解答题. 1. (1)1>m (2) -2 2. (1) 2<x ,(2)b a >(图略)§18.3一次函数(五)一、选择题. 1.D 2.C二、填空题. 1. 57-=x y 2. 答案不唯一,如:2+=x y 3. -2, 2三、解答题. 1. 5+-=x y 2. (1)(4,0) (2)623-=x y §18.4反比例函数(一)一、选择题. 1.D 2.B 二、填空题. 1. x y 6=2. 13. xy 20=,反比例 三、解答题. 1. (1)xy 3= (2)点B 在图象上,点C 不在图象上,理由(略) 2. (1)x y 3-= (2)§18.4反比例函数(二)一、选择题. 1.D 2.D二、填空题. 1. 第一、三;减小 2. 二,第四 3. 2三、解答题.1. (1)-2 (2)21y y < 2. (1)x y 2-= , 21§18.5实践与探索(一)一、选择题. 1.A 2.B二、填空题. 1. 4- 2. (1,-1) 3. (4,3)三、解答题. 1. 2+=x y 2.(1)①.甲,甲,2 ②.3小时和5.5小时(2)甲在4到7小时内,10 个§18.5实践与探索(二)一、选择题. 1.A 2.B二、填空题. 1. 2-<y 2. 2-≤x 3. 0≤m三、解答题. 1.(1)27=x (2)27<x (作图略)2. (1)1000 (2)5000300-=x y (3)40§18.5实践与探索(三)一、选择题. 1.B 2.C二、填空题. 1. 7 ,815 2. )115(87x x y -+= 3. 125.0+=x y 三、解答题. 1. (1)102-=x y (2) 27cm第19章 全等三角形§19.1命题与定理(一)一、选择题. 1.C 2.A二、填空题. 1.题设,结论 2.如果两条直线相交,只有一个交点 ,真 3. 如:平行四边形的对边相等三、解答题. 1.(1)如果两条直线平行,那么内错角相等 (2)如果一条中线是直角三角形斜边上的中线,那么它等于斜边的一半; 2.(1)真命题;(2)假命题,如:22=-,但22≠-; 3.正确,已知: c a b a ⊥⊥,,求证:b ∥c ,证明(略)§19.2三角形全等的判定(一)一、选择题. 1. A 2.A二、填空题. 1.(1)AB 和DE ;AC 和DC ;BC 和EC (2)∠A 和∠D ;∠B 和∠E ;∠ACB 和∠DCE ; 2.2 3. 0110三、解答题. 1. (1)△ABP ≌△ACQ, AP 和AQ, AB 和AC, BP 和QC ,∠ABP 和∠ACQ, ∠BAP 和∠CAQ,∠APB 和∠AQC , (2)90°§19.2三角形全等的判定(二)一、选择题. 1.D 2.B二、填空题. 1. △ABD ≌△ACD ,△ABE ≌△ACE 或△BDE ≌△CDE 2. ABD , CDB, S.A.S3. ACB ECF三、解答题.1.证明:∵AB ∥ED ∴∠B =∠E 又∵AB =CE ,BC =ED ∴△ABC ≌△CED∴AC =CD2.证明:(1)∵△ABC 是等边三角形 ∴AC =BC ,∠B =60° 又∵DC 绕C 点顺时针旋转60°到CE 位置 ∴EC =DC ,∠DCE =60° ∴∠BCA =∠DCE ∴∠DC E –∠DCA =∠ACB –∠DCA, 即∠ACE =∠BCD ,∴△ACE ≌△BCD(2)∵△ACE ≌△BCD ∴∠EAC =∠B =60° ∴∠EAC =∠BCA ∴AE ∥BC§19.2三角形全等的判定(三)一、选择题. 1.D 2.C二、填空题. 1.(1) S.A.S; (2)A.S.A; (3)A.A.S 2. AD =EF (答案不唯一)三、解答题. 1.证明:∵AB ∥DE ∴∠B =∠DEF 又∵AC ∥DF ∴∠F =∠ACB ∵BE =CF ∴BE +EC =CF +EC ∴BC =EF ∴△ABC ≌△DEF ∴AB =DE2.证明:在ABCD 中,AD =BC ,AD ∥BC ∴∠DAC =∠BCA 又∵BE ∥DF∴∠AFD =∠BEC ∵BC =AD ∴△BCE ≌△DAF ∴AF =CE§19.2三角形全等的判定(四)一、选择题. 1.B 2.D二、填空题. 1. ACD ,直角 2. AE =AC (答案不唯一) 3. 3; △ABC ≌△ABD , △ACE ≌△ADE , △BCE ≌△BDE三、解答题. 1.证明:∵BE =CF ∴BE+EC =CF+EC ∴BC =EF 又∵AB =D E ,AC =DF ∴△ABC ≌△DEF ∴∠B =∠DEF ∴AB ∥DE2.证明:∵AB =DC ,AC =DB ,BC =BC ∴△ABC ≌△DCB ∴∠DBC =∠ACB∴BM =CM ∴AC –MC =BD –MB ∴AM =DM§19.2三角形全等的判定(五)一、选择题. 1.D 2.B二、填空题. 1.3 ; △ABC ≌△ADC ,△ABE ≌△ADE ,△BCE ≌△DCE 2. AC =BD (答案不唯一)三、解答题. 1.证明:∵BF =CD ∴BF+CF =CD+CF 即BC =DF 又∵∠B =∠D=90°,AC =EF ∴△ABC ≌△EDF ∴AB =DE2.证明:∵CD ⊥BD ∴∠B +∠BCD=90° 又∵∠ACB=90°∴∠FCE =∠B 又∵FE ⊥AC , ∴∠FEC =∠ACB=90° ∵CE =BC ∴△FEC ≌△ACB ∴AB =FC§19.3尺规作图(一)一、选择题. 1.C 2.A二、填空题. 1.圆规, 没有刻度的直尺 2.第一步:画射线AB ;第二步:以A 为圆心,MN 长为半径作弧,交AB 于点C三、解答题. 1.(略) 2.(略) 3.提示:先画//B C BC =,再以B ′为圆心,AB 长为半径作弧,再以C ′为圆心,AC 长为半径作弧,两弧交于点A ′,则△A ′B ′C ′为所求作的三角形.§19.3尺规作图(二)一、选择题. 1. D二、解答题. 1.(略) 2(略)§19.3尺规作图(三)一、填空题. 1. C △CED 等腰三角形底边上的高就是顶角的平分线二、解答题. 1.(略) 2.方法不唯一,如可以作点C 关于线段BD 的对称点C ′.§19.3尺规作图(四)一、填空题. 1.线段垂直平分线上的点到线段的两个端点的距离相等.二、解答题. 1.(略) 2.(略) 3. 提示:作线段AB 的垂直平分线与直线l 相交于点P ,则P 就是车站的位置.§19.4逆命题与逆定理(一)一、选择题. 1. C 2. D二、填空题.1.已知两个角是同一个角的补角,这两个角相等;若两个角相等,则这两个角的补角也相等.;2. 线段垂直平分线上的点到线段的两个端点的距离相等.3. 如果∠1和∠2是互为邻补角,那么∠1+∠2 =180 ° 真命题三、解答题. 1.(1)如果一个三角形的两个锐角互余,那么这个三角形是直角三角形,是真命题;(2)如果22,b a b a ==那么,是真命题; (3)平行四边形的对角线互相平分,是真命题. 2. 假命题,添加条件(答案不唯一)如:AC =DF 证明(略)§19.4逆命题与逆定理(二)一、选择题. 1. C 2. D二、填空题. 1. ①、②、③ 2.80 3.答案不唯一,如△BMD三、解答题. 1. OE 垂直平分AB 证明:∵AC =BD ,∠BAC =∠ABD ,BA =BA ∴△ABC ≌△BAD ∴∠OAB =∠OBA ∴△AOB 是等腰三角形 又∵E 是AB 的中点 ∴OE 垂直平分AB 2. 已知:①③(或①④,或②③,或②④) 证明(略)§19.4逆命题与逆定理(三)一、选择题. 1. C 2.D二、填空题. 1.15 2.50三、解答题1. 证明:如图,连结AP ,∵PE ⊥AB ,PF ⊥AC ,∴∠AEP =∠AFP = 90 又∵AE =AF ,AP =AP ,∴Rt △AEP ≌Rt △AFP ,∴∠EAP =∠F AP ,∴AP 是∠BAC 的角平分线,故点P 在∠BAC 的角平分线上2.提示:作EF ⊥CD ,垂足为F ,∵DE 平分∠ADC ,∠A = 90,EF ⊥CD ∴AE =FE ∵AE =BE ∴BE =FE 又∵∠B = 90,EF ⊥CD ∴点E 在∠DCB 的平分线上∴CE 平分∠DCB§19.4逆命题与逆定理(四)一、选择题. 1.C 2. B二、填空题. 1.60° 2.11 3.20°或70°三、解答题. 1.提示:作角平分线和作线段垂直平分线,两条线的交点P 为所求作. 第20章 平行四边形的判定§20.1平行四边形的判定(一)一、选择题. 1.D 2.D二、填空题. 1. AD =BC (答案不唯一) 2. AF =EC (答案不唯一) 3. 3三、解答题. 1.证明:∵DE ∥BC , EF ∥AB ∴四边形DEFB 是平行四边形 ∴DE =BF 又 ∵F 是BC 的中点 ∴BF =CF . ∴DE =CF2.证明:(1)∵四边形ABCD 是平行四边形 ∴AB =CD , AB ∥CD ∴∠ABD =∠BDC 又 ∵AE ⊥BD ,CF ⊥BD ∴⊿ABE ≌⊿CDF .(2) ∵⊿A BE ≌⊿CDF . ∴AE =CF 又 ∵AE ⊥BD ,CF ⊥BD ∴四边形AECF 是平行四边形§20.1平行四边形的判定(二)一、选择题. 1.C 2.C二、填空题. 1. 平行四边形 2. AE =CF (答案不唯一) 3. AE =CF (答案不唯一)三、解答题. 1.证明:∵∠BCA =180°-∠B -∠BAC ∠DAC =180°-∠D -∠DCA 且∠B =∠D ∠BAC =∠ACD ∴∠BCA =∠DAC ∴∠BAD =∠BCD∴四边形ABCD 是平行四边形2.证明:∵四边形ABCD 是平行四边形 ∴AO =CO ,BO =DO 又 ∵E 、F 、G 、H 分别为AO 、BO 、CO 、DO 的中点 ∴OE =OG ,OF =OH ∴四边形EFGH 是平行四边形§20.1平行四边形的判定(三)一、选择题. 1.A 2.C二、填空题. 1. 平行四边形 2. 3三、解答题. 1.证明:在□ABCD 中,AB =CD ,AB ∥CD ∵AE =CF ∴AB -AE =CD -CF即BE =DF ∴四边形EBFD 是平行四边形∴BD 、EF 互相平分2.证明:在□ABCD 中,AD =BC ,AD ∥BC ,AO =CO ∴∠DAC =∠BCA 又∵∠AOE = ∠COF ∴⊿AOE ≌⊿COF .∴AE =CF ∴DE =BF ∴四边形BEDF 是平行四边形§20.2 矩形的判定一、选择题. 1.B 2.D二、填空题. 1. AC =BD (答案不唯一) 2. ③,④三、解答题. 1.证明:(1)在□ABCD 中,AB =CD ∵BE =CF ∴BE+EF =CF +EF 即BF =CE 又∵AF =DE ∴⊿ABF ≌⊿DCE .(2)∵⊿ABF ≌⊿DCE .∴∠B =∠C 在□ABCD 中,∠B +∠C =180°∴∠B =∠C =90° ∴□ABCD 是矩形2.证明:∵AE ∥BD , BE ∥AC ∴四边形OAEB 是平行四边形 又∵AB =AD ,O 是BD 的中点∴∠AOB =90° ∴四边形OAEB 是矩形3.证明:(1)∵AF ∥BC ∴∠AFB =∠FBD 又∵E 是AD 的中点, ∠AEF =∠BED ∴⊿AEF ≌⊿DEB ∴AF =BD 又∵AF =DC ∴BD =DC ∴D 是BC 的中点(2)四边形ADCF 是矩形,理由是:∵AF =DC ,AF ∥DC ∴四边形ADCF 是平行四边形又∵AB =AC ,D 是BC 的中点 ∴∠ADC =90° ∴四边形ADCF 是矩形§20.3 菱形的判定一、选择题. 1.A 2.A二、填空题. 1. AB =AD (答案不唯一) 2. 332 3. 菱形 三、解答题. 1.证明:(1)∵AB ∥CD ,CE ∥AD ∴四边形AECD 是平行四边形 又∵AC 平分∠BAD ∴∠BAC =∠DAC ∵CE ∥AD ∴∠ECA =∠CAD∴∠EAC =∠ECA ∴AE =EC ∴四边形AECD 是菱形(2)⊿ABC 是直角三角形,理由是:∵AE =EC ,E 是AB 的中点 ∴AE =BE =EC ∴∠ACB =90°∴⊿ABC 是直角三角形2.证明:∵DF ⊥BC ,∠B =90°,∴AB ∥DF ,∵∠B =90°,∠A =60°, ∴∠C =30°, ∵∠EDF =∠A =60°,DF ⊥BC ,∴∠EDB =30°,∴AF ∥DE ,∴四边形AEDF 是平行四边形,由折叠可得AE =ED ,∴四边形AEDF 是菱形.3.证明:(1)在矩形ABCD 中,BO =DO ,AB ∥CD ∴AE ∥CF ∴∠E =∠F又∵∠BOE =∠DOF ,∴⊿BOE ≌⊿DOF .(2)当EF ⊥AC 时,以A 、E 、C 、F 为顶点的四边形是菱形 ∵⊿BOE ≌⊿DOF .∴EO =FO 在矩形ABCD 中, AO =CO ∴四边形AECF 是平行四边形 又∵EF ⊥AC , ∴四边形AECF 是菱形§20.4 正方形的判定一、选择题. 1.D 2.C二、填空题. 1. AB =BC (答案不唯一) 2. AC =BD (答案不唯一)三、解答题. 1.证明:(1)∵AB =AC ∴∠B =∠C 又∵DE ⊥AB ,DF ⊥AC ,D 是BC 的中点 ∴⊿BED ≌⊿CFD .(2)∵∠A =90°,DE ⊥AB ,DF ⊥AC ∴四边形AEDF 是矩形 又∵⊿BED ≌⊿CFD∴DE =DF ∴四边形DF AE 是正方形.2.证明:(1)在中,AO =CO 又∵⊿ACE 是等边三角形 ∴EO ⊥AC .∴四边形ABCD 是菱形.(2)∵⊿ACE 是等边三角形 ∴∠AED =21∠AEC =30°,∠EAC =60° 又∵∠AED =2∠EAD ∴∠EAD =15°∴∠DAC =45°∴∠ADO =45°∴AO =DO ∴四边形ABCD 是正方形.§20.5 等腰梯形的判定一、选择题. 1.B 2.D二、填空题. 1.等腰梯形 2. 4 3. ③,④三、解答题. 1.证明:(1)∵AB =AC ∴∠ABC =∠ACB 又∵BD ⊥AC ,CE ⊥AB , BC =BC ∴⊿BCE ≌⊿CBD ∴EB =CD ∴AE =AD ∴∠AED =∠ADB∵∠A+∠AED +∠ADE =∠A+∠ABC +∠ACB ∴∠AED =∠ABC ∴DE ∥BC∴四边形BCDE 是等腰梯形.2.证明:(1)在菱形ABCD 中,∠CAB =21∠DAB =30°,AD =BC , ∵CE ⊥AC , ∴∠E =60°, 又∵DA ∥BC , ∴∠CBE =∠DAB =60°∴CB =CE ,∴AD =CE , ∴四边形AECD 是等腰梯形.3.在等腰梯形ABCD 中,AD ∥BC , ∴∠B =∠BCD , ∵GE ∥DC ,∴∠GEB =∠BCD , ∴∠B =∠GEB , ∴BG =EG , 又∵GE ∥DC , ∴∠EGF =∠H , ∵EF =FC , ∠EFG =∠CFH , ∴⊿GEF ≌⊿HCF , ∴EG =CH , ∴BG =CH.第21章 数据的整理与初步处理§21.1 算术平均数与加权平均数(一)一、选择题. 1.C 2.B二、填空题. 1. 169 2. 20 3. 73三、解答题. 1. 82 2. 3.01§21.1 算术平均数与加权平均数(二)一、选择题. 1.D 2.C二、填空题. 1. 14 2. 1529.625三、解答题. 1.(1) 84 (2) 83.2§21.1 算术平均数与加权平均数(三)一、选择题. 1.D 2.C二、填空题. 1. 4.4 2. 87 3. 16三、解答题. 1. (1)41 (2)49200 2. (1)A (2)C§21.1算术平均数与加权平均数(四)一、选择题. 1.D 2.B二、填空题. 1. 1 2. 30% 3. 25180三、解答题. 1. (略) 2. (1)15 15 20 (2)甲 (3)丙§21.2平均数、中位数和众数的选用(一)一、选择题. 1.B 2.D二、填空题. 1. 1.5 2. 9, 9, 3. 2, 4三、解答题. 1.(1)8 (2)37.5 2.(1)260 240 (2)不合理,因为大部分工人的月加工零件数小于260个§21.2平均数、中位数和众数的选用(二)一、选择题. 1.C 2.B二、填空题. 1.众数 2. 中位数 3. 1.70米三、解答题. 1.(1)众数:0.03,中位数:0.03 (2)不符合,因为平均数为0.03>0.0252. (1)3,5,2,2 (2)26,25,24 (3)不能,因为众数为26,只有9个人达到目标,没有到一半.§21.3 极差、方差与标准差(一)一、选择题. 1.D 2.B二、填空题. 1. 70 2. 4 3.甲三、解答题. 1.甲:6 乙:4 2. (1) 甲:4 乙:4 (2) 甲的销售更稳定一些,因为甲的方差约为0.57,乙的方差约为1.14,甲的方差较小,故甲的销售更稳定一些。
人教版八年级数学下册《利用勾股定理解决折叠问题的技巧》练习题(附带答案)
人教版八年级数学下册《利用勾股定理解决折叠问题的技巧》练习题(附带答案)类型一 利用勾股定理解决三角形的折叠问题1.如图 △ABC 中 ∠ACB =90° AC =8 BC =6 将△ADE 沿DE 翻折使点A 与点B 重合 则CE 的长为 .思路引领:设CE =x 则AE =BE =8﹣x 在Rt △BCE 中 由勾股定理可得62+x 2=(8﹣x )2 即可解得答案.解:设CE =x 则AE =BE =8﹣x在Rt △BCE 中 BC 2+CE 2=BE 2∴62+x 2=(8﹣x )2解得x =74故答案为:74. 总结提升:本题考查直角三角形中的折叠问题 解题的关键是掌握折叠的性质 熟练应用勾股定理列方程解决问题.2.(2021秋•介休市期中)如图所示 有一块直角三角形纸片 ∠C =90° AC =8cm BC =6cm 将斜边AB 翻折 使点B 落在直角边AC 的延长线上的点E 处 折痕为AD 则CE 的长为 cm .思路引领:根据勾股定理可将斜边AB 的长求出 根据折叠的性质知 AE =AB 已知AC 的长 可将CE 的长求出.解:在Rt △ABC 中∵∠C=90°AC=8cm BC=6cm∴AB=√AC2+BC2=10cm根据折叠的性质可知:AE=AB=10cm∵AC=8cm∴CE=AE﹣AC=2cm即CE的长为2cm故答案为:2.总结提升:此题考查翻折问题将图形进行折叠后两个图形全等是解决折叠问题的突破口.3.(2020秋•金台区校级期末)如图在△ABC中∠ACB=90°点E F在边AB上将边AC沿CE翻折使点A落在AB上的点D处再将边BC沿CF翻折使点B落在CD的延长线上的点B′处(1)求∠ECF的度数;(2)若CE=4 B′F=1 求线段BC的长和△ABC的面积.思路引领:(1)由折叠可得∠ACE=∠DCE=12∠ACD∠BCF=∠B'CF=12∠BCB' 再根据∠ACB=90°即可得出∠ECF=45°;(2)在Rt△BCE中根据勾股定理可得BC=√41设AE=x则AB=x+5 根据勾股定理可得AE2+CE2=AB2﹣BC2即x2+42=(x+5)2﹣41 求得x=165得出AE的长和AB的长再由三角形面积公式即可得出S△ABC.解:(1)由折叠可得∠ACE=∠DCE=12∠ACD∠BCF=∠B'CF=12∠BCB'又∵∠ACB=90°∴∠ACD+∠BCB'=90°∴∠ECD+∠FCD=12×90°=45°即∠ECF=45°;(2)由折叠可得:∠DEC=∠AEC=90°BF=B'F=1 ∴∠EFC=45°=∠ECF∴CE=EF=4∴BE=4+1=5在Rt△BCE中由勾股定理得:BC=√BE2+CE2=√52+42=√41设AE=x则AB=x+5∵Rt△ACE中AC2=AE2+CE2Rt△ABC中AC2=AB2﹣BC2∴AE2+CE2=AB2﹣BC2即x2+42=(x+5)2﹣41解得:x=16 5∴AE=165AB=AE+BE=165+5=415∴S△ABC=12AB×CE=12×415×4=825.总结提升:本题主要考查了折叠变换的性质、勾股定理、三角形面积等知识;熟练掌握折叠变换的性质由勾股定理得出方程是解题的关键.4.(2022秋•安岳县期末)如图在△ABC中∠C=90°把△ABC沿直线DE折叠使△ADE与△BDE 重合.(1)若∠A=34°则∠CBD的度数为;(2)当AB=m(m>0)△ABC的面积为2m+4时△BCD的周长为(用含m的代数式表示);(3)若AC=8 BC=6 求AD的长.思路引领:(1)根据折叠可得∠1=∠A=34°根据三角形内角和定理可以计算出∠ABC=56°进而得到∠CBD=22°;(2)根据三角形ACB的面积可得12AC•BC=2m+4 进而得到AC•BC=4m+8 再在Rt△CAB中CA2+CB2=BA2再把左边配成完全平方可得CA+CB的长进而得到△BCD的周长;(3)根据折叠可得AD=DB设CD=x则AD=BD=8﹣x再在Rt△CDB中利用勾股定理可得x2+62=(8﹣x)2再解方程可得x的值进而得到AD的长.解:(1)∵把△ABC 沿直线DE 折叠 使△ADE 与△BDE 重合∴∠ABD =∠A =34°∵∠C =90°∴∠ABC =180°﹣90°﹣34°=56°∴∠CBD =56°﹣34°=22°故答案为:22°;(2)∵△ABC 的面积为2m +4∴12AC •BC =2m +4 ∴AC •BC =4m +8∵在Rt △CAB 中 CA 2+CB 2=BA 2 AB =m∴CA 2+CB 2+2AC •BC =BA 2+2AC •BC∴(CA +BC )2=m 2+8m +16=(m +4)2∴CA +CB =m +4∵AD =DB∴CD +DB +BC =m +4.即△BCD 的周长为m +4故答案为:m +4;(3)∵把△ABC 沿直线DE 折叠 使△ADE 与△BDE 重合∴AD =DB设CD =x 则AD =BD =8﹣x在Rt △CDB 中 CD 2+CB 2=BD 2x 2+62=(8﹣x )2解得:x =74AD =8−74=254.总结提升:此题主要考查了图形的翻折变换 以及勾股定理 完全平方公式 关键是掌握勾股定理 以及折叠后哪些是对应角和对应线段.5.(2021秋•章丘区期中)(1)如图① Rt △ABC 的斜边AC 比直角边AB 长2cm 另一直角边BC 长为6cm 求AC 的长.(2)拓展:如图②在图①的△ABC的边AB上取一点D连接CD将△ABC沿CD翻折使点B的对称点E落在边AC上.①AE的长.②求DE的长.思路引领:(1)在Rt△ABC中由勾股定理可求AB的长即可求解;(2)①由折叠的性质可得∠DEC=∠DBC=90°DE=DB EC=BC=6cm于是得到答案;②在Rt△ADE中由勾股定理可求DE的长.解:(1)设AB=xcm则AC=(x+2)cm∵AC2=AB2+BC2∴(x+2)2=x2+62解得x=8∴AB=8cm∴AC=8+2=10(cm);(2)①由折叠的性质可得∠DEC=∠DBC=90°DE=DB EC=BC=6cm∴∠AED=90°AE=AC﹣EC=4(cm);②设DE=DB=ycm则AD=AB﹣BD=(8﹣y)cm在Rt△ADE中AD2=AE2+DE2∴(8﹣y)2=42+y2解得:y=3∴DE=3(cm).总结提升:本题考查了翻折变换折叠的性质勾股定理利用勾股定理列出方程是本题的关键.类型二利用勾股定理解决长方形的折叠问题6.(2022•纳溪区模拟)如图在矩形ABCD中AB=5 AD=3 点E为BC上一点把△CDE沿DE翻折 点C 恰好落在AB 边上的F 处 则CE 的长为 .思路引领:利用勾股定理得出AF 的长度 再利用折叠的性质 在△BEF 中求解BE 的长 即可得出CE 的长度.解:在矩形ABCD 中 AB =5 AD =3 由折叠的性质可得:DF =DC =AB =5∴AF =√DF 2−AD 2=√52−32=4∴BF =AB ﹣AF =5﹣4=1设CE =x 则:EF =CE =x BE =BC ﹣CE =3﹣x在Rt △BEF 中 由勾股定理可得:12+(3﹣x )2=x 2解得:x =53∴CE =53故答案为:53. 总结提升:本题考查了折叠的性质、矩形的性质和勾股定理等知识点 解题的关键是利用AF 求出BF 的长度.7.(2021•郯城县校级模拟)如图 在长方形ABCD 中 AB =3cm AD =9cm 将此长方形折叠 使点D 与点B 重合 折痕为EF 则△ABE 的面积为( )cm 2.A .12B .10C .6D .15思路引领:由长方形的性质得BAE =90° 再由折叠的性质得BE =ED 然后在Rt △ABE 中 由勾股定理得32+AE2=(9﹣AE)2解得AE=4(cm)即可求解.解:∵四边形ABCD是长方形∴∠BAE=90°∵将此长方形折叠使点B与点D重合∴BE=ED∵AD=9=AE+DE=AE+BE∴BE=9﹣AE在Rt△ABE中由勾股定理得:AB2+AE2=BE2∴32+AE2=(9﹣AE)2解得:AE=4(cm)∴S△ABE=12AB•AE=12×3×4=6(cm2)故选:C.总结提升:本题考查了翻折变换的性质、矩形的性质以及勾股定理等知识;熟练掌握翻折变换的性质和矩形的性质由勾股定理得出方程是解题的关键.8.(2020春•余干县校级期末)如图把长方形纸片ABCD沿EF折叠使点B落在边AD上的点B'处点A落在点A'处.(1)试说明B'E=BF;(2)设AE=a AB=b BF=c试猜想a b c之间的关系并说明理由.思路引领:(1)根据折叠的性质、平行的性质及等角对等边即可说明;(2)根据折叠的性质将AE、AB、BF都转化到直角三角形△A'B'E中由勾股定理可得a b c之间的关系.(1)证明:由折叠的性质得:B'F=BF∠B'FE=∠BFE在长方形纸片ABCD中AD∥BC∴∠B'EF=∠BFE∴∠B'FE=∠B'EF∴B'F=B'E∴B'E=BF.(2)解:a b c之间的关系是a2+b2=c2.理由如下:由(1)知B'E=BF=c由折叠的性质得:∠A'=∠A=90°A'E=AE=a A'B'=AB=b.在△A'B'E中∵∠A'=90°∴A'E2+A'B'2=B'E2∴a2+b2=c2.总结提升:本题考查了翻折变换的性质、矩形的性质、等腰三角形的判定、勾股定理等知识;灵活利用折叠的性质进行线段间的转化是解题的关键.9.(2020秋•罗湖区校级期末)如图把一张长方形纸片ABCD折叠起来使其对角顶点A与C重合D 与G重合若长方形的长BC为8 宽AB为4 求:(1)DE的长;(2)求阴影部分△GED的面积.思路引领:(1)设DE=EG=x则AE=8﹣x在Rt△AEG中根据AG2+EG2=AE2构建方程即可解决问题;(2)过G点作GM⊥AD于M根据三角形面积不变性AG×GE=AE×GM求出GM的长根据三角形面积公式计算即可.解:(1)设DE=EG=x则AE=8﹣x在Rt△AEG中AG2+EG2=AE2∴16+x2=(8﹣x)2解得x=3∴DE=3.(2)过G 点作GM ⊥AD 于M则12•AG ×GE =12•AE ×GM AG =AB =4 AE =CF =5 GE =DE =3 ∴GM =125∴S △GED =12GM ×DE =185.总结提升:本题主要考查了折叠的性质、勾股定理以及三角形面积不变性 灵活运用折叠的性质、勾股定理等几何知识点来分析、判断、推理是解题的关键.类型三 利用勾股定理解决正方形的折叠问题10.(2019•黔东南州一模)如图 将边长为6cm 的正方形纸片ABCD 折叠 使点D 落在AB 边中点E 处 点C 落在点Q 处 折痕为FH 则线段AF 的长为( )A .32B .3C .94D .154思路引领:由正方形的性质和折叠的性质可得EF =DE AB =AD =6cm ∠A =90° 由勾股定理可求AF 的长.解:∵将边长为6cm 的正方形纸片ABCD 折叠 使点D 落在AB 边中点E 处∴EF =DE AB =AD =6cm ∠A =90°∵点E 是AB 的中点∴AE =BE =3cm在Rt △AEF 中 EF 2=AF 2+AE 2∴(6﹣AF )2=AF 2+9∴AF=9 4故选:C.总结提升:本题考查了翻折变换正方形的性质勾股定理利用勾股定理求线段的长度是本题的关键.11.如图将边长为8cm的正方形纸片ABCD折叠使点D落在BC边的中点E处点A落在点F处折痕为MN则线段CN的长是()A.3cm B.4cm C.5cm D.6cm思路引领:由折叠的性质可得DN=NE由中点的性质可得EC=4cm结合正方形的性质可得∠BCD=90°;设CN的长度为xcm则EN=DN=(8﹣x)cm接下来在直角△CEN中运用勾股定理就可以求出CN的长度.解:∵四边形MNEF是由四边形ADMN折叠而成的∴DN=NE.∵E是BC的中点且BC=8cm∴EC=4cm.∵四边形ABCD是正方形∴∠BCD=90°.设CN的长度为xcm则EN=DN=(8﹣x)cm由勾股定理NC2+EC2=NE2得x2+42=(8﹣x)2解得x=3.故选:A.总结提升:本题考查翻折变换的问题折叠问题其实质是轴对称对应线段相等对应角相等找到相应的直角三角形利用勾股定理求解是解决本题的关键.第二部分专题提优训练1.(2022秋•慈溪市校级期中)在Rt△ABC中∠B=90°AB=4 BC=8 D、E分别是边AC、BC上的点将△ABC沿着DE进行翻折点A和点C重合则EC=.思路引领:设EC =x 在Rt △ABE 中 由勾股定理得42+(8﹣x )2=x 2 即可解得答案.解:设EC =x 则BE =8﹣x∵将△ABC 沿着DE 进行翻折 点A 和点C 重合∴AE =EC =x在Rt △ABE 中 AB 2+BE 2=AE 242+(8﹣x )2=x 2解得x =5∴EC =5故答案为:5.总结提升:本题考查直角三角形中的翻折问题 解题的关键是掌握翻折的性质 能应用勾股定理列方程解决问题.2.(2021秋•靖江市期中)如图 在Rt △ABC 中 ∠C =90° D 是AB 的中点 AD =5 BC =8 E 是直线BC 上一动点 把△BDE 沿直线ED 翻折后 点B 落在点F 处 当FD ⊥BC 时 线段BE 的长为 .思路引领:分点F 在BC 下方 点F 在BC 上方两种情况讨论 由勾股定理可BC =4 由平行线分线段成比例可得BD AD =BP BC =DP AC =12 求出FP 由勾股定理可求BE 的长. 解:若点F 在BC 下方时 DF 与BC 交于点P 如图1所示:∵D 是AB 的中点∴BD =AD =5∴AB =2AD =10∵∠C =90° BC =8∴AC =√AB 2−BC 2=√102−82=6∵点D 是AB 的中点∵FD ⊥BC ∠C =90°∴FD ∥AC∴BD AD =BP BC =DP AC =12 ∴BP =PC =12BC =4 DP =12AC =3∵△BDE 沿直线ED 翻折∴FD =BD =5 FE =BE∴FP =FD ﹣DP =5﹣3=2在Rt △FPE 中 EF 2=FP 2+PE 2∴BE 2=22+(4﹣BE )2解得:BE =52;若点F 在BC 上方时 FD 的延长线交BC 于点P 如图2所示:FP =DP +FD =3+5=8在Rt △EFP 中 EF 2=FP 2+EP 2∴BE 2=64+(BE ﹣4)2解得:BE =10故答案为:52或10.总结提升:此题考查了折叠的性质、平行线的性质、直角三角形的性质以及勾股定理等知识 熟练掌握翻折变换的性质是解题的关键.3.如图 在Rt △ABC 中 AC =6 BC =8 D 为BC 上一点 将Rt △ABC 沿AD 折磨 点C 恰好落在AB 边上的E 点 求BD 的长.思路引领:由勾股定理求出AB=10 由折叠的性质得出CD=DE∠C=∠AED=90°AE=AC=6 得出BE=AB﹣AE=4 ∠BED=90°设CD=ED=x则BD=8﹣x在Rt△BDE中由勾股定理得出方程解方程即可.解:∵Rt△ABC中AC=6 BC=8∴AB=√62+82=10由折叠的性质得:CD=DE∠C=∠AED=90°AE=AC=6∴BE=AB﹣AE=4 ∠BED=90°设CD=ED=x则BD=8﹣x在Rt△BDE中由勾股定理得:x2+42=(8﹣x)2解得:x=3∴BD=8﹣3=5.总结提升:本题考查了翻折变换的性质、勾股定理等知识;熟练掌握翻折变换的性质由勾股定理得出方程是解题的关键.4.(2018秋•襄汾县校级月考)如图在Rt△ABC中∠C=90°AC=8 BC=6 按图中所示方法将△BCD沿BD折叠使点C落在边AB上的点C'处求AD的长及四边形BCDC′的面积.思路引领:利用勾股定理列式求出AB根据翻折变换的性质可得BC′=BC C′D=CD然后求出AC′设AD=x表示出C′D、AC′然后利用勾股定理列方程求解即可求出AD;然后根据三角形的面积公式计算即可求出四边形BCDC′的面积.解:∵∠C=90°AC=8 BC=6∴AB=√AC2+BC2=10由翻折变换的性质得BC′=BC=6 C′D=CD∴AC′=AB﹣BC′=10﹣6=4设CD=x则C′D=x AD=8﹣x在Rt△AC′D中由勾股定理得AC′2+C′D2=AD2即42+x2=(8﹣x)2解得x=3即CD=3∴AD=8﹣x=5;由折叠可知:S△BCD=S△BC′D∴四边形BCDC′的面积=2S△BCD=2×12×CD•BC=3×6=18.总结提升:本题考查了翻折变换的性质勾股定理此类题目熟记性质并利用勾股定理列出方程是解题的关键.5.(2021春•厦门期中)在矩形ABCD中AB=3 BC=4 E是AB上一个定点点F是BC上一个动点把矩形ABCD沿直线EF折叠点B的对应点B′落在矩形内部.若DB′的最小值为3 则AE=53.思路引领:连接DE则DB′+EB′≥DE由EB′=EB为定值故当D E B′三点共线时DB′最小利用勾股定理建立方程即可求解.解:如图1 连接DE由折叠性质可得:EB′=EB∵DB′+EB′≥DE∴DB′≥DE﹣EB′=DE﹣EB∵点E为定点∴EB为定值∴当D E B′三点共线时DB′最小且最小值为3∴DB′=3如图2∵四边形ABCD 为矩形∴∠A =90° AD =BC =4设AE =x 则:EB ′=EB =AB ﹣AE =3﹣x∴ED =EB ′+DB ′=3﹣x +3=6﹣x在Rt △AED 中 由勾股定理可得:x 2+42=(6﹣x )2解得:x =53∴AE =53故答案为:53. 总结提升:本题考查折叠的性质、矩形的性质、勾股定理等知识点 解题的关键是运用方程思想.6.(2021秋•城阳区校级月考)把一张矩形纸片(矩形ABCD )按如图方式折叠 使顶点B 和点D 重合 折痕为EF .若AB =3cm BC =5cm 则重叠部分△DEF 的面积是( )cm 2.A .2B .3.4C .4D .5.1思路引领:由矩形的性质得AD =BC =5cm CD =AB =3cm ∠A =90° 再由折叠的性质得A 'D =AB =3cm ∠A '=∠A =90° AE '=AE 设AE =xcm 则A ′E =xcm DE =(5﹣x )cm 然后在Rt △A 'DE 中 由勾股定理得出方程 解方程 进而得出DE 的长 即可解决问题.解:∵四边形ABCD 是矩形 AB =3cm BC =5cm∴AD=BC=5cm CD=AB=3cm∠A=90°由折叠的性质得:A'D=AB=3cm∠A'=∠A=90°AE'=AE 设AE=xcm则A′E=xcm DE=(5﹣x)cm在Rt△A'DE中由勾股定理得:A′E2+A′D2=ED2即x2+32=(5﹣x)2解得:x=1.6∴DE=5﹣1.6=3.4(cm)∴△DEF的面积=12DE•CD=12×3.4×3=5.1(cm2)故选:D.总结提升:此题考查了翻折变换的性质、矩形的性质、勾股定理以及三角形面积等知识熟练掌握翻折变换的性质和矩形的性质由勾股定理得出方程是解题的关键.7.(2017秋•金牛区校级月考)如图在矩形ABCD中E是AD的中点将△ABE沿BE折叠后得到△GBE 延长BG交CD于点F结果发现F点恰好是DC的中点若BC=2√6则AB的长为?思路引领:连接EF由折叠性质得AE=EG∠A=∠EGB=90°BG=AB则∠EGF=90°易证EG=DE由矩形的性质得AB=CD∠C=∠D=90°推出∠EGF=∠D=90°由HL证得Rt△EGF≌Rt△EDF得出FG=FD求得CF=DF=FG=12CD=12AB BF=BG+FG=32AB由勾股定理得出BC2+CF2=BF2即可得出结果.解:连接EF如图所示:由折叠性质得:AE=EG∠A=∠EGB=90°BG=AB ∴∠EGF=90°∵点E是AD的中点∴AE=DE∴EG=DE∵四边形ABCD是矩形∴AB=CD∠C=∠D=90°∴∠EGF =∠D =90°在Rt △EGF 与Rt △EDF 中 {EG =ED EF =EF∴Rt △EGF ≌Rt △EDF (HL )∴FG =FD∵F 点恰好是DC 的中点∴CF =DF =FG =12CD =12AB∴BF =BG +FG =AB +12AB =32AB在Rt △BCF 中 BC 2+CF 2=BF 2即:(2√6)2+(12AB )2=(32AB )2 解得:AB =2√3.总结提升:本题考查了折叠的性质、矩形的性质、全等三角形的判定与性质、勾股定理等知识 熟练掌握折叠的性质 证明三角形全等是解题的关键.8.(2018春•新抚区校级期中)如图 在矩形ABCD 中 已知AD =10 AB =8 将矩形ABCD 沿直线AE 折叠 顶点D 恰好落在BC 边上的F 处 求CE 的长.思路引领:先根据矩形的性质得AD =BC =10 AB =CD =8 再根据折叠的性质得AF =AD =10 EF =DE 在Rt △ABF 中 利用勾股定理计算出BF =6 则CF =BC ﹣BF =4 设CE =x 则DE =EF =8﹣x 然后在Rt △ECF 中根据勾股定理得到x 2+42=(8﹣x )2 再解方程即可得到CE 的长.解:∵四边形ABCD 为矩形∴AD =BC =10 AB =CD =8∵矩形ABCD 沿直线AE 折叠 顶点D 恰好落在BC 边上的F 处∴AF=AD=10 EF=DE在Rt△ABF中∵BF=√AF2−AB2=6∴CF=BC﹣BF=10﹣6=4设CE=x则DE=EF=8﹣x在Rt△ECF中∵CE2+FC2=EF2∴x2+42=(8﹣x)2解得x=3即CE=3.总结提升:本题考查了折叠的性质:折叠是一种对称变换它属于轴对称折叠前后图形的形状和大小不变位置变化对应边和对应角相等.也考查了矩形的性质和勾股定理.9.(2018秋•通川区校级期中)将一张边长为2的正方形纸片ABCD对折设折痕为EF(如图(1));再沿过点D的折痕将∠A翻折使得点A落在线段EF上的点H处(如图(2))折痕交AE于点G则EG 的长度是()A.8﹣4√3B.4√3−6C.4﹣2√3D.2√3−3思路引领:由于正方形纸片ABCD的边长为2 所以将正方形ABCD对折后AF=DF=1 由折叠的性质得出AD=DH=2 AG=GH在Rt△DFH中利用勾股定理可求出HF的长进而求出EH的长再设EG=x在Rt△EGH中利用勾股定理即可求解.解:∵正方形纸片ABCD的边长为2∴将正方形ABCD对折后AE=DF=1∵△GDH是△GDA沿直线DG翻折而成∴AD=DH=2 AG=GH在Rt△DFH中HF=√HD2−DF2=√22−12=√3∴EH=2−√3在Rt△EGH中设EG=x则GH=AG=1﹣x∴GH2=EH2+EG2即(1﹣x)2=(2−√3)2+x2解得x=2√3−3.∴EG=2√3−3.故选:D.总结提升:本题考查了正方形的性质折叠的性质勾股定理关键是学会用方程的思想方法解题.10.(2020秋•新都区校级月考)如图AD是△ABC的中线∠ADC=45°把△ADC沿着直线AD对折点C落在点E的位置.如果BC=6 那么以线段BE为边长的正方形的面积为()A.6B.72C.12D.18思路引领:由题意易得BD=CD=DE=3 再求出∠BDE=90°然后根据勾股定理求出BE最后由正方形的面积进行求解即可.解:∵D是BC中点BC=6∴BD=CD=3由折叠的性质得:CD=DE=3 ∠ADC=∠ADE=45°即∠CDE=90°∴BD=DE=3 ∠BDE=90°在Rt△BDE中由勾股定理得:BE=√BD2+DE2=√32+32=3√2∴以BE为边的正方形面积为:(3√2)2=18故选:D.总结提升:本题考查了折叠的性质、勾股定理、正方形的面积计算等知识熟练掌握勾股定理及折叠的性质是解题的关键.。
人教版】八年级数学下册课后习题参考答案
教材练习答案95枷一答案全解全析一一教材练习答案第十六章二次根式16.1 二次根式当V'-20过.,=J 尽.fi .I 案长方形的长为3打a m,宽为2.ff CIII. 3 16.2 二次根式的乘除;线习I , 案(l )a ,;,:l.(2)a 云-一.(3).,=e:0.(4)吓至52 : I . 答案(I) ./io.(2)6.(3)2/3.(4)2. 2 !2答案(1)77.(2)15.(3)2尔(4)41,c尽案(1)3.(2)18.I I !3答案长方形的面积为./iox2.fi =2 ,/20 =4./5. 案(I )0.3.(2)一.(3)-1r.(4)一.7 10 ;讼习2r 16.1 .fJ ; L答案(1)3.(2)打.(3)—.(4)2a . 巩囚3 t : 岛2./3累(1)(1;.,-2,(2)咚3.(3)心0.(4)u,"-一·,: 2, 答案(I)4./i , (2) 2 ./i飞(3)一.(4)一一.2 :2 3 2 案(1)5.(2)0.2.(3)一.(4)125.(5) 10, . : 3答案8项7 a =一·2 2 ) 14. (7)一.(8)一一;习题16.23 5 :妇邓民(I)设圆的半径为r,r=乒'TT 1 1. 答案(I) 18./f. (2)-3项(3)30顶.(4)24./5.3 2 )长方形的两条邻边长分别为2Jf 和3ff .: : 2-答案(I )一.(2)2打(3).fi .(4)一石.2 3 ; 3. 答案(1)./4可可=14.(2)./3丙=10扛足(1)9=(./9)2.(2)5=(苏忱i 刊行),(6)0•(而)! 4答案:'.,�(2)二'.;,)五""石(6).../i 心=(平)'.(4)0.25=(./o.2汀.白m 乒2..(4)工王运川 2 30·3 4+, 斥良r =邓.J 5. 答案(I)2 /i 百(2)一一.2 尽AB=./6.良(I ).t'取任恁实数(2)人,取任戏实数.!综合运)”I心0.(4)"">一I.! 6. 答案(l )S丑尽(2)S=240.! 7. 答案(l )a =S 丘(2)ri =l l ./i 尽l "J了,当I 户10和h =25时,小球格地所用的时间; 6 3 I ; &答案(I)一.(2)一.(3)一.(4)IS. 5 2 3 111为汇,汇深索l?. 答案乒=-E... 旦旦=0.707售良(l )自然数I I 的位为2或9或14或17或J S.: 2 2 2 正整数n的记小伉应处6.: ./8 = 2.fi•2x 1.414立2.828.厂."丐10石案,=-; 10答案当S=4.ff ,": ./IT时心=-.5尸/1'=玩时户一=一·JO'!T 2' 哼: 11答案当V=4打.I,=3.fi 时S =-.2./6 , 3 i 拓广探索=I 阮时,r ='I 尼心l ;; 12.答案彷下部分的面积为12.Ji万c ni '.-.. _.一,,.I --C 令迈颈拐嘈吝JJ i./事2二S J 1J【人教版】八年级数学下册课后习题参考答案式加S0%+75x 30%+45x 20%寸6.5,=SOxS0%+60心0%+85X20%:60,;问5甲云乙,:.应该录取乙.案(I )这个月中午]2时的平均气温约是2尸C .)频数分布表如下·气温x划记驳数12云王<16正T ? !6�s <20if 4 叨!!f,x<:24正下s 凶云.1:<28订: 4 28-. 工<32正T 7 合汁30 30 据柲数分布x7+!8x4+22X8立6x4+30X730=22('C). 个结果与(1)中的结果相差不大.平均数反映的是一组数据平均水平,是一个统计估计扯案(1)出售时这些鸡的平均质址约是1.5挫g.,)质让在1.5k g 的鸡朵牛)中间的应址是1.5kg.案平均速度为52千米I时多数车以笠千米I时的速度行驶:速的中位数:IJ:52于米I吐探索案平均数为4.6;众数为4.9;中位数为4.位从20.2 数据的波动程度I d 案条形图略.)平均数为6,方差为O;4 )平均数为6,方差为-;7 44 )平均数为6,方差为一飞7 54 )平均数为6,方必为一.7 疫越大,数据的波动起大.方差越小.数据的波动越小案方必心大.'·2 案甲运动员的成绩更栳定,应该选择甲运动员参赛.i 20.2 巩冈案(l )甲lO 天中平均每天出的次品数为I.S,10天中平均每天出的次品数为1立10天内次品数的方这为斗..1.65, 10天内次品数的方边为立..0. 76. )在10天中.乙机床出次品的早均数较小`且出次品的波 较小谝案 (1)甲包装机包装的佣果平均每袋的顶从为沁t 8 g , 包装机包装的糖果平均每袋的职址为5凶8 g. 教材练习答案105 甲包装机包装的捎果屈111:的方差斗=15.76,乙包装机包装的糖果屈址的方差斗=S .56.(2)由斗>&1.可知乙台包装机包装的IO袋耕果的质批比较稳定.!综合运川!3. 答案(L )甲种小安的平均苗环为"ll t n l ,} 乙种小友的平均苗科为13cm. r <2)甲种小麦苗高的方必:心=3.6.} 乙种小麦苗商的方差:心=15.8.: ,It : 2 5平<.1乙可知甲种小麦的长势比较整齐.1 l 4答案(l):i =一cM+S .9+s.s+s .9+S.6+s . 7) ... s .s s,, 6 i =一[{9.4-8.88,)'-t (8.9-8.88),><21-(8.8-8.88)1 + (8.6-6 8.88:)'+(8. 7-8心8)')... 0.06圈I (2)云.,,_一(8暮9+8.8+8.9+8妯7)-S.83.4 i =一((8.9-8.83)'+(&.8一8.83)1 + (8, 9一8,83)'书·(:B.7一4 8.83)'] .... 0.01. (3)去掉一个朵祁分和一个见低分统计平均分的方法更合理拓广探索5路.复习题20红习巩固L 答案样本平均数约为1.17k g , 估计水库中这种鱼的平均攸址为1.17k g . 2答案这四个小组平均正确回答约12道题目.3答案在该时段中,平均约有195辆汽车通过这个路口.4, 答案(,))平均数为6003.S;中位数为4300; 众数为2550.(2)14名员工的月平均工资足6003.5元;有一半员工的月饼在4300元以下.月薪为2550元的员工攸多s . 答案(l )A城市的年平均气温为4'C ;B城市的年平均气温为20'C .('2) ,\城市四季平均气沮的方差为s;= 127.5;B城市四季平均气温的方差为$�.,53,25.由$!>.斗可知B 城市四季的平均气温较为接近良坎合运用6答案A股菜某周收盘价格的平均数为11.53;B 股栗某周收盘价柲的平均数为13.95;A股踝某周收盘价格的方必为0.07.l B 股栗某周收盘价格的方差为0.23.! 由$:心;可知在这段时间内B 种股票的涨跌幅度较大i 1答案(I)甲炮所发射的炮弹落点与目标的距离的平均数为3.2 Iii ; 乙炮所发射的炮评路点与目标的距离的平均数为4皿: (2)斗=45. 76,51 = 92. 因为斗<主,所以甲炮射击的准确! 性好;拓广探索; 8略.�9. 略.。
人教版八年级数学下册 19.1 变量与函数 课后练习(含答案)
2019年八年级数学下册变量与函数课后练习一、选择题:1、变量x,y有如下关系:①x+y=10;②y=;③y=|x-3;④y2=8x.其中y是x的函数的是( ).A.①②②③④B.①②③C.①②D.①2、在圆的周长C=2πr中,常量与变量分别是( ).A.2是常量,C、π、r是变量B.2是常量,C、r是变量C.C、2是常量,r是变量D.2是常量,C、r是变量3、小明在书上看到了一个实验:如右图,一个盛了水的圆柱形容器内,有一个顶端拴了一根细绳的实心铁球,将铁球从水面下沿竖直方向慢慢地匀速向上拉动.小明将此实验进行了改进,他把实心铁球换成了材质相同的别的物体,记录实验时间t以及容器内水面的高度h,并画出表示h与t的函数关系的大致图象.如图所示.小明选择的物体可能是()4、下列曲线中,不能表示y是x的函数的是( )5、下列四幅图像近似刻画了两个变量之间的关系,图像与下列四种情景对应排序正确的是( )①一辆汽车在公路上匀速行驶 (汽车行驶的路程与时间的关系);②向锥形瓶中匀速注水 (水面的高度与注水时间的关系);③将常温下的温度计插入一杯热水中 (温度计的读数与时间的关系);④一杯越来越凉的水 (水温与时间的关系).A.①②④③B.③④②①C.①④②③D.③②④①6、根据如图的程序,计算当输入值x=-2时,输出结果y为()A.1;B.5;C.7;D.以上都有可能;7、小明同学准备从家打车去南坪,出门后发现到了拥堵使得车辆停滞不前,等了几分钟后他决定步行前往地铁站乘地铁直达南坪站(忽略中途等站和停靠站的时间),在此过程中,他离南坪站的距离y(km)与时间x(h)的函数关系的大致图象是()8、小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿,接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会儿,小华继续录入并加快了录入速度,直至录入完成,设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x 之间的关系的大致图象是()9、小丽的父亲饭后去散步,从家中走20分钟到离家1000米的报亭看了10分钟的报纸后,用15分钟返回家里,下列各图中表示小丽父亲离家的时间与距离之间的关系是()10、清清从家步行到公交车站台,等公交车去学校.下公交车后又步行了一段路程才到学校.图中的折线表示清清的行程s(米)与所花时间t (分)之间的函数关系.下列说法错误的是()A.清清等公交车时间为3分钟B.清清步行的速度是80米/分C.公交车的速度是500米/分D.清清全程的平均速度为290米/分二、填空题:11、在函数y=中,自变量x的取值范围是.12、小明根据某个一次函数关系式填写了下面的这张表, 其中有一格不慎被墨迹遮住了,想想看,表中空格原来填的数是 .13、一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧剩下的高度h(cm)随燃烧时间t(时)变化,请写出函数关系式14、明星中学计划投资8万元购买学生用电脑,则所购电脑的台数n(台)与单价x(万元)之间的关系是,其中________是常量,_______是变量.15、随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势:(1)上表中_____是自变量,_____是因变量.(2)你预计该地区从_____年起入学儿童的人数不超过1 000人.16、如图所示表示“龟兔赛跑”时路程与时间的关系,已知龟、兔上午8:00从同一地点出发,请你根据图中给出的信息,算出乌龟在点追上兔子.三、解答题:17、科学家研究发现,声音在空气中传播的速度y(米/秒)与气温x(℃)有关,当气温是0 ℃时,音速是331米/秒;当气温是5 ℃时,音速是334米/秒;当气温是10 ℃时,音速是337米/秒;当气温是15 ℃时,音速是340米/秒;当气温是20 ℃时,音速是343米/秒;当气温是25 ℃时,音速是346米/秒;当气温是30 ℃时,音速是349米/秒.(1)请你用表格表示气温与音速之间的关系;(2)表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(3)当气温是35 ℃时,估计音速y可能是多少?(4)能否用一个式子来表示两个变量之间的关系?18、写出下列各问题中的关系式中的常量与变量:(1)分针旋转一周内,旋转的角度n(度)与旋转所需要的时间t(分)之间的关系式n=6t;(2)某市居民用电价格是0.58元/度,居民生活应付电费y(元)与用电量x(度)之间满足y=0.58x.19、在一次实验中,小明把一根弹簧的上端固定.在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应值.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂物体重量为3千克时,弹簧多长?不挂重物时呢?(3)若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?20、已知如图,一天上午6点钟,言老师从学校出发,乘车上市里开会,8点准时到会场,中午12点钟回到学校,他这一段时间内的行程s(km)(即离开学校的距离)与时间(时)的关系可用图中的折线表示,根据图中提供的有关信息,解答下列问题:(1)开会地点离学校多远?(2)请你用一段简短的话,对言老师从上午6点到中午12点的活动情况进行描述.21、周六上午8:00小明从家出发,乘车1小时到郊外某基地参加社会实践活动,在基地活动2.2小时后,因家里有急事,他立即按原路以4千米/时的平均速度步行返回.同时爸爸开车从家出发沿同一路线接他,在离家28千米处与小明相遇。
数学八年级下册课本习题答案
数学八年级下册课本习题答案【篇一:最新人教版初二数学下学期课后习题与答案】a是怎样的实数时,下列各式在实数范围内有意义?(1(2(3;(4.解析:(1)由a+2≥0,得a≥-2;(2)由3-a≥0,得a≤3;(3)由5a≥0,得a≥0;(4)由2a+1≥0,得a≥?12.2、计算:(1)2;(2)(2;(3)2;(4)2;(5(6)(?2;(7(8)解析:(1)2?5;(2)(2?(?1)2?2?0.2;(3)2?2;(4)2?52?27?125;(5??10;(6)(?2?(?7)2?2?14;(7??23;(8)???25.3、用代数式表示:(1)面积为s的圆的半径;(2)面积为s且两条邻边的比为2︰3的长方形的长和宽.解析:(1)设半径为r(r0),由?r2?s,得r?;,得x?,所以两条邻边长为 4、利用a?2(a≥0),把下列非负数分别写成一个非负数的平方的形式:(1)9;(2)5;(3)2.5;(4)0.25;(5)12;(6)0.解析:(1)9=32;(2)5=2;(3)2.5=2;(4)0.25=0.52;(5)12?2;(6)0=02. 5、半径为r cm的圆的面积是,半径为2cm和3cm的两个圆的面积之和.求r的值.解析:?r2???22???32,??r2?13?,?r?0,?r.6、△abc的面积为12,ab边上的高是ab边长的4倍.求ab的长.7、当x是怎样的实数时,下列各式在实数范围内有意义?(1(2(3(4.答案:(1)x为任意实数;(2)x为任意实数;(3)x>0;(4)x>-1.8、小球从离地面为h(单位:m)的高处自由下落,落到地面所用的时间为t(单位:s).经过实验,发现h与t2成正比例关系,而且当h=20时,t=2.试用h表示t,并分别求当h=10和h=25时,小球落地所用的时间.答案:h=5t29、(1n所有可能的值;1 / 33(2n的最小值.答案:(1)2,9,14,17,18;(2)6.为整数的最小的正整数n是6.10、一个圆柱体的高为10,体积为v.求它的底面半径r(用含v 的代数式表示),(1);(2(3;(4(5;(6.2答案:(1(2(3(4(5)(6).答案:r?习题16.21、计算:(1(2(;(3(4.答案:(1)(2)?(3)(4) 2、计算:(1(2;(3(4.答案:(1)32;(2)(3(43、化简:(1(2)(3(4答案:(1)14;(2)(3)37;(4. 4、化简:5(1)a=1,b=10,c=-15;(2)a=2,b=-8,c=5.答案:(1)?5?(26、设长方形的面积为s,相邻两边分别为a,b.(1)已知a?b?s;(2)已知a?b?,求s.答案:(1);(2)240;7、设正方形的面积为s,边长为a.(1)已知s=50,求a;(2)已知s=242,求a.答案:(1)(2) 8、计算:(1;(2(3;(4答案:(1)1.2;(2)312;(3)3;(4)15.9?1.4140.707,2.828. 10、设长方形的面积为s,相邻两边长分别为a,b .已知s?a?b.2 / 3311、已知长方体的体积v?h?s.12、如图,从一个大正方形中裁去面积为15cm2和24cm2下部分的面积.答案:2.13、用计算器计算:(1(2(3;(4观察上面几题的结果,你能发现什么规律?用你发现的规律直接写出下题的结果:?________. 答案:(1)10;(2)100;(3)1000;(4)10000..100??????0 n个0习题16.31、下列计算是否正确?为什么?(1? (2)2? (3)?3;(4??3?2?1.答案:(1(2)不正确,2(3)不正确,? (4?2?2. 2、计算:(1)(2;(3 (4)a3 答案:(1)(2(3);(4)17a 3、计算:(1(2(3)?;(4)132?4.答案:(1)0;(2(3)(4)?4 4、计算:(1)(2);(3)2;(4)答案:(1)6?(2)-6;(3)95?;(4)43?12.5?2.236,求.答案:7.83.6、已知x1,y1,求下列各式的值:(1)x2+2xy+y2;(2)x2-y2.答案:(1)12;(2)3 / 33. 8、已知a?1a?a?1a的值.答案:9(1)2x2-6=0,;(2)2(x+5)2=24,(5???5??5?.答案:(1)(2)?5.复习题161、当x是怎样的实数时,下列各式在实数范围内有意义?(1 (2;(3;(4 答案:(1)x≥-3;(2)x?12;(3)x?23;(4)x≠1. 2、化简:(1 (2 (3 (4 5 (6(答案:(1)(2);(33;(4(5)(63、计算:(1)?;(2)(3);(4)(5)2;(6)2.答案:(1(2;(3)6;(4)?2;(5)35?;(6)5?2.4、正方形的边长为a cm,它的面积与长为96cm,宽为12cm的长方形的面积相等.求a的值.答案:25、已知x?1,求代数式x2+5x-6的值.答案:5.答案:2.45a.8、已知n是正整数,n的最小值.答案:21.9、(1)把一个圆心为点o,半径为r的圆的面积四等分.请你尽可能多地设想各种分割方法.(2)如图,以点o为圆心的三个同心圆把以oa为半径的大圆o的面积四等分.求这三个圆的半径ob,oc,od的长.答案:(1)例如,相互垂直的直径将圆的面积四等分;4 / 33(2)设oa=r,则od?12r,oc?2r,ob?.10、判断下列各式是否成立:??? 类比上述式子,再写出几个同类型的式子.你能看出其中的规律吗?用字母表示这一规律,并给出证明.答案:规律是:?n?nn2?1?n3n2?1,再两边开平方即可.习题17.11、设直角三角形的两条直角边长分别为a和b,斜边长为c.(1)已知a=12,b=5,求c;(2)已知a=3,c=4,求b;(3)已知c=10,b=9,求a.答案:(1)13;(2(32、一木杆在离地面3m处折断,木杆顶端落在离木杆底端4m处.木杆折断之前有多高?答案:8m.3、如图,一个圆锥的高ao=2.4,底面半径ob=0.7.ab的长是多少?答案:2.5.4、已知长方形零件尺寸(单位:mm)如图,求两孔中心的距离(结果保留小数点后一位).答案:43.4mm.5、如图,要从电线杆离地面5m处向地面拉一条长7m的钢缆.求地面钢缆固定点a到电线杆底部b的距离(结果保留小数点后一位).答案:4.9m.6 答案:略.答案:(1)bc?12c,ac?;(2)bc?2,ac?2.(1)△abc的面积;(2)斜边ab;(3)高cd.答案:(1)2.94;(2)3.5;(3)1.68.9、已知一个三角形工件尺寸(单位:mm)如图,计算高l的长(结果取整数).5 / 33【篇二:新人教版八年级下册数学教案(包括每节课后练习及答案)】1分式16.1.1从分数到分式一、教学目标1.了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.三、课堂引入1.让学生填写p4[思考],学生自己依次填出:10,s,200,v.7a33s2.学生看p3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程.设江水的流速为x千米/时.20?v20?v20?v20?v20?v20?v轮船顺流航行100千米所用的时间为100小时,逆流航行60千米所用时间60小时,所以100=60. 3. 以上的式子100,60,s,v,有什么共同点?它们与分数有什么相同点和不同点? as五、例题讲解p5例1. 当x为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围.[提问]如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m为何值时,分式的值为0? 2(1m?1(2)m?1m?3的公共部分,就是这类题目的解.[答案] (1)m=0 (2)m=2(3)m=1六、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, 7 , 9?y, m?4,8y?3,1 xx?9205y22. 当x取何值时,下列分式有意义?(1)(2)(3)x2?43?2xx?23. 当x为何值时,分式的值为0?七、课后练习 3x?5mm?2m?11分母不能为零;○2分子为零,这样求出的m的解集中[分析] 分式的值为0时,必须同时满足两个条件:○..2x?5x2?1x?77x(1)(2)x2?x5x21?3x1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x个零件,则他8小时做零件个,做80个零件需小时.(2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是千米/时,轮船的逆流速度是千米/时.(3)x与y的差于4的商是 .x?12.当x取何值时,分式无意义? 3x?2x?1的值为0? 3. 当x为何值时,分式x2?x八、答案:六、1.整式:9x+4,9?y, m?4 分式: 7 , 8y?3,1 xx?9520y23.(1)x=-7 (2)x=0(3)x=-180七、1.1s,x?y; 整式:8x, a+b, x?y; xa?b44分式:80, s a?bx2. 3. x=-1 3课后反思: 2316.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形.三、例、习题的意图分析1.p7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.p9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.p11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变. “不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.四、课堂引入15313与9与相等吗?为什么?4202482.说出与之间变形的过程,并说出变形依据? 4与202483.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解p7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.p11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.p11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.?6b, ?x, 2m??n?5a3y, ??7m, ??3x。
人教版数学八年级下册教材习题课件-复习题19(含答案)
y=x+3 3
2 1
–6 –5 –4 –3 –2 –1O 1 2 x
12. A,B两地相距25 km.甲8:00由A地出发骑自行车去B 地,速度为10 km/h;乙9:30由A地出发乘汽车也去B 地,速度为40 km/h. (1) 分别写出两个人的行程关于时刻的函数解析式;
解:(1)设甲的出发时刻为x时,甲、乙行驶的路程 分别为y甲 km,y乙 km,则有 y甲=10(x-8) (8≤x≤10.5), y乙=40(x-9.5) (9.5≤x≤10.125).
2
×8×(10-x)=40-4x.
即S=40-4x.
(2)求x的取值范围; (3)当S=12时,求P点坐标;
(2)由题意得,x>0,y=10-x>0, ∴0<x<10.
(3)当S=12时,12=40-4x,解得x=7,∴P(7,3)
(4)画出函数S的图象.
(4)函数图象如图所示.
S 40 30 20 S=40-4x 10
∴点(-5,-4)在直线上;
当x=-7时,y=2x+6=2×(-7)+6=-8,
∴点(-7,20)不在直线上; Nhomakorabea当不x在=直 72线时上,;y=2x+6=2×
7 2
+6=-1,∴点
7 2
,1
当x= 2 线上.3
时,y=2x+6=2×
2 3
+6=
7
1 3
,∴点
2 3
,7
1 3
在直
当x=0时,y=6;当y=0时,x=-3. 故直线y=2x+6与x
轴交于点(-3,0),与y轴交于点(0,6).
3.填空: (1) 直线 y 1 2 x 经过第_一__、__二__、__四___象限,y随x的增
人教版八年级数学下学期课后习题与答案
习题16.11、解析:(1)由a+2≥0,得a≥-2;(2)由3-a≥0,得a≤3;(3)由5a≥0,得a≥0;(4)由2a+1≥0,得.2、计算:解析:(1);(2);(3);(4);(5);(6);(7);(8).3、解析:(1)设半径为r(r>0),由;(2)设两条邻边长为2x,3x(x>0),则有2x·3x=S,得,所以两条邻边长为. 4、解析:(1)9=32;(2)5=;(3)2.5=;(4)0.25=0.52;(5);(6)0=02.5、解析:.6、答案:. 7、答案:(1)x为任意实数;(2)x为任意实数;(3)x>0;(4)x>-1.8、答案:h=5t2,,. 9、答案:(1)2,9,14,17,18;(2)6.因为24n=22×6×n,因此,使得为整数的最小的正整数n是6.10、答案:习题16.21.、答案:(1);(2);(3);(4). 2、答案:(1);(2);(3);(4). 3、答案:(1)14;(2);(3);(4). 4、答案:(1);(2);(3);(4);(5);(6). 5、答案:(1);(2). 6、答案:(1);(2)240. 7、答案:(1);(2). 8、答案:(1)1.2;(2);(3);(4)15. 9、答案:0.707,2.828.10、答案:. 11、答案:.12、答案:13、答案:(1)10;(2)100;(3)1000;(4)10000..习题16.31、.答案:(1)不正确,与不能合并;(2)不正确,2与不能合并;(3)不正确,;(4)不正确,.2、答案:(1);(2);(3);(4).’3、答案:(1)0;(2);(3);(4).4、答案:(1);(2)-6;(3);(4).5、答案:7.83.6、答案:(1)12;(2).7、答案:.8、答案:.9、答案:(1);(2).复习题161、答案:(1)x≥-3;(2);(3);(4)x≠1.2、答案:(1);(2);(3);(4);(5);(6).3、答案:(1);(2);(3)6;(4);(5);(6).4.答案:.5、答案:.6、答案:7答案:2.45A.8、答案:21.9、答案:(1)例如,相互垂直的直径将圆的面积四等分;(2)设OA=r,则,,.10、答案:规律是:.只要注意到,再两边开平方即可.习题17.11、答案:(1)13;(2);(3).2、答案:8m.3、答案:2.5.4、答案:43.4mm.5、答案:4.9m.7、答案:(1),;(2),.8、答案:(1)2.94;(2)3.5;(3)1.68.9、答案:82mm.10、答案:12尺,13尺.11、答案:.12、答案:分割方法和拼接方法分别如图(1)和图(2)所示.13、答案:,,.因为∠ACD=90°,根据勾股定理得AC2+CD2=AD2,所以S半圆AEC+S半圆CFD=S半圆ACD,S阴影=S△ACD+ S半圆AEC+S半圆CFD-S半圆ACD,即S阴影=S△ACD.14、证明:证法1:如图(1),连接BD.∵△ECD和△ACB都为等腰直角三角形,∴EC=CD,AC=CB,∠ECD=∠ACB=90°.∴∠ECA=∠DCB.∴△ACE≌△DCB.∴AE=DB,∠CDB=∠E=45°.又∠EDC=45°,∴∠ADB=90°.在Rt△ADB中,AD2+DB2=AB2,得AD2+AE2=AC2+CB2,即AE2+AD2=2AC2.证法2:如图(2),作AF⊥EC,AG⊥CD,由条件可知,AG=FC.在Rt△AFC中,根据勾股定理得AF2+FC2=AC2.∴AF2+AG2=AC2.在等腰Rt△AFE和等腰Rt△AGD中,由勾股定理得AF2+FE2=AE2,AG2+GD2=AD2.又AF=FE,AG=GD,∴2AF2=AE2,2AG2=AD2.而2AF2+2AG2=2AC2,∴AE2+AD2=2AC2.习题17.21、答案:(1)是;(2)是;(3)是;(4)不是.2、答案:(1)两直线平行,同旁内角互补.成立.(2)如果两个角相等,那么这两个角是直角.不成立.(3)三条边对应相等的三角形全等.成立.(4)如果两个实数的平方相等,那么这两个实数相等.不成立.3、答案:向北或向南.4、答案:13.5、答案:36.6、答案:设AB=4k,则BE=CE=2k,CF=k,DF=3k.∵∠B=90°,∴AE2=(4k)2+(2k)2=20k2.同理,EF2=5k2,AF2=25k2.∴AE2+EF2=AF2.根据勾股定理的逆定理,△AEF为直角三角形.∴∠AEF=90°.7、答案:因为(3k)2+(4k)2=9k2+16k2=25k2=(5k)2,所以3k,4k,5k(k是正整数)为勾股数.如果a,b,c为勾股数,即a2+b2=c2,那么(ak)2+(bk)2=a2k2+b2k2=(a2+b2)k2=c2k2=(ck)2.因此,ak,bk,ck(k是正整数)也是勾股数.复习题171、答案:361m.2、答案:.3、答案:109.7mm.4 ,答案:33.5m2.5、答案:设这个三角形三边为k,,2k,其中k>0.由于,根据勾股定理的逆定理,这个三角形是直角三角形.6、答案:(1)同位角相等,两直线平行.成立.(2)如果两个实数的积是正数,那么这两个实数是正数.不成立.(3)锐角三角形是等边三角形.不成立.(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.成立.7、答案:.8、答案:.9、答案:(1)14.5,;(2)由,,BD=5,可得BC2+CD2=BD2.根据勾股定理的逆定理,△BCD是直角三角形,因此∠BCD是直角.10、答案:4.55尺.11、答案:因为a2+b2=(2m)2+(m2-1)2=4m2+m4-2m2+1=m4+2m2+1=(m2+1)2=c2,所以a,b,c为勾股数.用m=2,3,4等大于1的整数代入2m,m2-1,m2+1,得4,3,5;6,8,10;8,15,17;等等.12、答案:21.3cm.13、答案:能.14、答案:由直角三角形的面积公式,得,等式两边平方得a2b2=h2(a2+b2),等式两边再同除以a2b2c2,得,即.习题18.11、答案:10.2、答案:72°15′,平行四边形的对角相等.3、答案:29.4、答案:提示:利用AFCE.5、答案:提示:利用四边形EFGH的对角线互相平分.6、答案:提示:利用ADEFBC.7、答案:相等.提示:在直线l1上任取一点P,△PBC的面积与△ABC的面积相等(同底等高).8、答案:B(a+b,c).9、答案:提示:过点C作CE∥AD,交AB于点E,可得四边形AECD为平行四边形.10、答案:35°.11、答案:由四边形ABCB′是平行四边形,可知∠ABC=∠B′,AB′=BC;再由四边形C′BCA是平行四边形,可知C′A=BC.从而AB′=AC′.12、答案:因为AD=12,DO=5,利用勾股定理可得AO=13,从而四边形ABCD 的对角线互相平分,它是一个平行四边形.所以BC=AD=12,四边形ABCD的面积为120.13、答案:6个,利用对边相等的四边形是平行四边形.14、答案:设木条与□ABCD的边AD,BC分别交于点E,F,可以发现OE=OF,AE=CF,DE=BF,△AOE≌△COF,△DOE≌△BOF等.利用平行四边形的性质可以证明上述结论.15、答案:□AEPH与□PGCF面积相等.利用△ABD与△CDB,△PHD与△DFP,△BEP与△PGB分别全等,从而□AEPH与□PGCF面积相等.习题18.21、答案:是.利用∠1=∠2,可知BO=CO,从而BD=AC,□ABCD的对角线相等,它是一个矩形.2、答案:由于四边形的内角和为360°,四个角又都相等,所以它的四个角都是直角.因此这个四边形是矩形.3答案:能.这时他得到的是一个角为直角的平行四边形,即矩形.4、答案:∠A=60°,∠B=30°.5、答案:(1)∠BAD=60°,∠ABC=120°;(2)AB=6,.6、答案:提示:由∠ABD=∠DBC=∠ADB,可知AB=AD,同理可得AB=BC.从而ADBC,四边形ABCD是一组邻边相等的平行四边形,它是菱形.7答案:45°.8答案:矩形,它的四个角都是直角.9、答案:45°.提示:∠BCD=∠EAC=∠ECA=22.5°.10、答案:提示:四边形AMEN,EFCG都是一组邻边相等的平行四边形.11、答案:DH=4.8.提示:由AB·DH=2AO·OD=2S△ABD可得.12、答案:(1)C(b,d);(2)A(-c,0),B(0,-d);(3)B(d,0),C(d,d).13、答案:正方形.提示:△BFE≌△CMF≌△DNM≌△AEN,证明四边形EFMN 的四条边相等,四个角都是直角14、答案:3种.可以分别以AD,AB(AC),BD(CD)为四边形的一条对角线,得到3种平行四边形,它们的对角线长分别为h,;m,m;n,.15、答案:提示:由△ADE≌△BAF,可得AE=BF,从而AF-BF=EF.16、答案:BO=2OD,BC边上的中线一定过点O.利用四边形EMND是平行四边形,可知BO=2OD;设BC边上的中线和BD相交于点O′,可知BO′=2O′D,从而O 与O′重合.17、答案:分法有无数种.只要保持两条小路互相垂直,并且都过正方形的中心即可.习题181、答案:(1)B;(2)C;(3)B.2、答案:提示:连接AC,利用对角线互相平分的四边形是平行四边形.。
八年级下册数学课本答案人教版答案(28页)
八年级下册数学课本答案人教版答案(28页)第110页:1. 解答:题目:解方程 $2x + 3 = 7$解答思路:将方程两边减去3,得到 $2x = 4$,然后除以2得到 $x = 2$。
题目:解不等式 $3x 5 > 10$解答思路:将不等式两边加上5,得到 $3x > 15$,然后除以3得到 $x > 5$。
题目:求三角形面积,已知底边为6cm,高为8cm。
解答思路:使用三角形面积公式 $A = \frac{1}{2} \times\text{底边} \times \text{高}$,代入数值计算得到 $A = 24\text{cm}^2$。
题目:解比例 $\frac{x}{5} = \frac{10}{2}$解答思路:将比例两边乘以5,得到 $x = 25$。
题目:求正方形的面积,已知边长为7cm。
解答思路:使用正方形面积公式 $A = \text{边长}^2$,代入数值计算得到 $A = 49 \text{cm}^2$。
题目:解方程 $4x 3 = 11$解答思路:将方程两边加上3,得到 $4x = 14$,然后除以4得到 $x = 3.5$。
题目:解不等式 $2x + 7 \leq 15$解答思路:将不等式两边减去7,得到 $2x \leq 8$,然后除以2得到 $x \leq 4$。
题目:求矩形面积,已知长为12cm,宽为6cm。
解答思路:使用矩形面积公式 $A = \text{长} \times\text{宽}$,代入数值计算得到 $A = 72 \text{cm}^2$。
题目:解比例 $\frac{x}{9} = \frac{3}{4}$解答思路:将比例两边乘以9,得到 $x = 27$。
题目:求梯形面积,已知上底为8cm,下底为12cm,高为5cm。
解答思路:使用梯形面积公式 $A = \frac{1}{2} \times(\text{上底} + \text{下底}) \times \text{高}$,代入数值计算得到 $A = 50 \text{cm}^2$。
人教版八年级数学下册第十八章(第一节)课后习题答案
∴AO= AD2 DO2 =13,又∵AC=26. ∴OC=AC-AO=13,即AO=OC, 又∵DO=OB=5,∴四边形ABCD是平行四边形. ∴BC=AD=12,∴S ABCD=10×12=120
13.如图,由六个全等的正三角形拼成的图中,有多少个平行四边形?为什么?
(2)由(1)知DE=CF,又∵AD=BC,
E
∴Rt△DAE≌Rt△CBF,∴∠A=∠B.
10. 如图,四边形ABCD是平行四边形,∠ABC=70°,BE平分∠ABC且交AD于点E,
DF∥BE且交BC于点F. 求∠1的大小.
D
E
F
解:∵四边形ABCD是平行四边形,∠ABC=70°∴∠ADC=∠ABC=70°,AD∥BC,
2.如图,在一束平行光线中插入一张对边平行的纸板.如果光线与纸板右下方所成的∠1是75°15',
那么光线与纸板左上方所成的∠2是多少度?为什么?
解:∠2=∠1= 75°15'。 理由:因为光线AD∥BC,纸板对边AB∥CD,所以光线与
纸板所形成的四边形ABCD是平行四边形,而平行四边形对角相等,所以∠2=∠1.
图中哪两个平行四边形面积相等?为什么?
解:(1)平行四边形AEPH的面积与平行四边形PGCF的面积相等.
理由:∵四边形ABCD、四边形EBGP、四边形PFDH都是平行四边形,
且BD、BP、DP分别是它们的对角线.
∴S△ABD=S△CDB,S△EPB=S△GBP,S△PHD=S△DFP, ∴S△ABD-S△EPB-S△PHD=S△CDB-S△ GBP -S△ DFP ,即S 同理还有:(2)S ABGH=S BEFC (3)S AEFD=S CDHG.
人教版八年级数学下册特殊平行四边形课后练习及详解
第十九章特殊平行四边形练习题题一:下列说法中,正确的是()A.对角线互相垂直且相等的四边形是正方形B.对角线相等的四边形是平行四边形C.四条边相等的四边形是菱形D.矩形的对角线一定互相垂直题二:如图,四边形ABCD中,AB∥CD.则下列说法中,不正确的是()A.当AB=CD,AO=DO时,四边形ABCD为矩形B.当AB=AD,AO=CO时,四边形ABCD为菱形C.当AD∥BC,AC=BD时,四边形ABCD为正方形D.当AB≠CD,AC=BD时,四边形ABCD为等腰梯形题三:如图,已知四边形ABCD中,E、F、G、H分别为AB、BC、CD、DA的中点,①求证:四边形EFGH是平行四边形.②探索下列问题,并选择一个进行证明.a.原四边形ABCD的对角线AC、BD满足________时,四边形E FGH是矩形.b.原四边形ABCD的对角线AC、BD满足________时,四边形EFGH是菱形.c.原四边形ABCD的对角线AC、BD满足________时,四边形EFGH是正方形.题四:如图所示,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD,等边△ACE、等边△BCF.(1)求证:四边形DAEF是平行四边形;(2)探究下列问题:(只填满足的条件,不需证明)①当△ABC满足_________条件时,四边形DAEF是矩形;②当△ABC满足_________条件时,四边形DAEF是菱形;③当△ABC满足_________条件时,以D、A、E、F为顶点的四边形不存在.题五:如图所示,在四边形ABCD中,点E、F是对角线BD上的两点,且BE=FD.(1)若四边形AECF是平行四边形,求证:四边形ABCD是平行四边形;(2)若四边形AECF是菱形,那么四边形ABCD也是菱形吗?为什么?(3)若四边形AECF是矩形,试判断四边形ABCD是否为矩形,不必写理由.题六:如图,任意四边形ABCD,对角线AC、BD交于O点,过各顶点分别作对角线AC、BD的平行线,四条平行线围成一个四边形EFGH.试想当四边形ABCD的形状发生改变时,四边形EFGH 的形状会有哪些变化?完成以下题目:(1)①当ABCD为任意四边形时,EFGH为___________;②当ABCD为矩形时,EFGH为___________;③当ABCD为菱形时,EFGH为___________;④当ABCD为正方形时,EFGH为___________;(2)请对(1)中①②你所写的结论进行证明.(3)反之,当用上述方法所围成的平行四边形EFGH分别是矩形、菱形时,相应的原四边形ABCD必须满足怎样的条件?题七:如图,在矩形ABCD中,M、N分别是AD、BC的中点,P、Q分别是BM、DN的中点.(1)求证:△MBA≌△NDC;(2)四边形MPNQ是什么样的特殊四边形?请说明理由.题八:在折纸这种传统手工艺术中,蕴含许多数学思想,我们可以通过折纸得到一些特殊图形.把一张正方形纸片按照图①~④的过程折叠后展开.(1)猜想四边形ABCD是什么四边形;(2)请证明你所得到的数学猜想.题九:如图,在梯形ABCD中,AD∥BC,AD=5cm,BC=8cm,M是CD的中点,P是BC边上的一动点(P与B,C不重合),连接PM并延长交AD的延长线于Q.(1)试说明△PCM≌△QDM;(2)当P在B、C之间运动到什么位置时,四边形ABPQ是平行四边形?并说明理由.题十:如图,矩形ABCD中,AB=5cm,BC=10cm,动点M从点D出发,按折线D-C-B方向以2cm/s 的速度运动,动点N从点D出发,沿DA方向以1cm/s的速度向点A运动.动点M、N同时出发,当一个点到达终点时,另一个点也随即停止运动.(1)若点E在线段BC上,且BE=4cm,经过几秒钟,点A、E、M、N组成平行四边形?(2)动点M、N在运动的过程中,线段MN是否经过矩形ABCD的两条对角线的交点?如果线段MN 过此交点,请求出运动的时间;如果线段MN不过此交点,请说明理由.题十一:如图,已知,在四边形ABCD中,AD∥BC,BD平分∠ABC,∠A=120°,CD= 4,∠ABC=∠DCB,求BC的长.题十二:已知:如图,四边形ABCD中,AD∥BC,AB= 4,BC=6,CD=5,AD=3.求:四边形ABCD 的面积.特殊平行四边形课后练习参考答案题一:C.详解:A.对角线互相垂直且相等的四边形不能判定正方形,故本选项错误;B.对角线互相平分的四边形是平行四边形,故本选项错误;C.四边相等的四边形是菱形,故本选项正确;D.矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选C.题二:C.详解:选项A的结论正确,AB=CD可判定为平行四边形,AO=DO可判定对角线相等,故是矩形;选项B的结论正确,AB=AD可判定△ABD为等边三角形,AO=CO可判定△CDB也为等边三角形,故是菱形;选项C的结论错误,判定结果为矩形,不一定是正方形;选项D的结论正确,对角线相等的梯形是等腰梯形;故选C.题三:见详解.详解:①连接AC,BD,∵四边形ABCD中,E、F、G、H分别为AB、BC、CD、DA的中点,∴EH∥BD,FG∥BD,∴EH∥FG,同理:GH∥EF,∴四边形EFGH是平行四边形.②a.当AC⊥BD时,四边形EFGH是矩形.∵由①得:四边形MONH是平行四边形,∴当AC⊥BD时,四边形MONH是矩形,∴∠EH G=90°,∴四边形EFGH是矩形.b.当AC=BD时,四边形EFGH是菱形.∵HG=12AC,EH=12BD,∴EH=GH,∴四边形EFGH是菱形;c.由a与b可得:原四边形ABCD的对角线AC、BD满足AC⊥BD且AC=BD时,四边形EFGH是正方形.故答案为:a.AC⊥BD,b.AC=BD,c.AC⊥BD且AC=BD.题四:见详解.详解:(1)∵△ABD和△FBC都是等边三角形,∴BD=BA,BF=BC,∠DBA=∠FBC=60°,∴∠DBA-∠FBA=∠FBC-∠FBA,∴∠DBF=∠ABC.在△ABC和△DBF中,BA=BD,∠ABC=∠DBF,BC=BF,∴△ABC≌△DBF.∴AC=DF=AE.同理△ABC≌△EFC.∴AB=EF=AD.∴四边形ADFE是平行四边形.(2)当∠BAC=150°,∠DAE=360°-60°-60°-150°=90°,∴平行四边形DAEF是矩形.当AB=AC≠BC,有AD=AE,∴平行四边形DAEF是菱形.当∠BAC=60°,△FBC与△ABC重合,故以D、A、E、F为顶点的四边形不存在.题五:见详解.详解:连AC,设AC、BD相交于点O,(1)∵四边形AECF是平行四边形,∴OE=OF,OA=OC,∵BE=FD,∴OB=OD.∴四边形ABCD是平行四边形;(2)∵四边形AECF是菱形,∴OE=OF,OA=OC,AC⊥BD.∵BE=FD,∴OB=OD.∴四边形ABCD是菱形;(3)四边形ABCD不是矩形.题六:见详解.详解:(1)平行四边形;菱形;矩形;正方形;(2)结合图形,联想特殊四边形的特征及识别很容易发现,其中的桥梁为AC、BD.①当ABCD为任意四边形时,EFGH为平行四边形.∵EH∥AC∥FG,EF∥BD∥GH,∴四边形EFGH为平行四边形.②若ABCD为矩形,则EFGH为菱形.∵EH∥AC∥FG,EF∥BD∥GH.∴四边形EACH,ACGF,EFBD,BDHG,EFGH均为平行四边形.∴EH=AC=FG,EF=BD=GH.∵四边形ABCD为矩形.∴AC=BD.∴EH=AC=FG=EF=BD=GH.∴四边形EFGH为菱形.(3)当平行四边形EFGH是矩形时,四边形ABCD必须满足:对角线互相垂直.当平行四边形EFGH是菱形时,四边形ABCD必须满足:对角线相等.题七:见详解.详解:(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠C=90°,∵在矩形ABCD中,M、N分别是AD、BC的中点,∴AM=12AD,CN=12BC,∴AM=CN,在△MAB和△NDC中,∵AB=CD,∠A=∠C=90°,AM=CN,∴△MBA≌△NDC;(2)四边形MPNQ是菱形.理由如下:连接AP,MN,则四边形ABNM是矩形,∴AN和BM互相平分,则A,P,N在同一条直线上,易证:△ABN≌△BAM,∴AN=BM,∵△MAB≌△NDC,∴BM=DN,∵P、Q分别是BM、DN的中点,∴PM=NQ,∵DM=BN,DQ=BP,∠MDQ=∠NBP,∴△MQD≌△NPB,∴四边形MPNQ是平行四边形,∵M是AD中点,Q是DN中点,∴MQ=12AN,∴MQ=12BM,∵MP=12BM,∴MP=MQ,∴平行四边形MQNP是菱形.题八:见详解.详解:(1)四边形ABCD是菱形;(2)∵△AMG沿AG折叠,使AM落在AC上,∴∠MAD=∠DAC=12∠MAC,同理可得∠CAB=∠NAB=12∠CAN,∠DCA=∠MCD=12∠ACM,∠ACB=∠NCB=12∠ACN,∵四边形AMCN是正方形,∴∠MAC=∠MCA=∠NAC=∠NCA,∴∠DAC=∠BAC=∠BCA=∠DCA,∴AD∥BC,AB∥DC,∴四边形ABCD为平行四边形,∵∠DAC=∠DCA,∴AD=CD,∴四边形ABCD为菱形.题九:见详解.详解:(1)∵AD∥BC,∴∠QDM=∠PCM,∵M是CD的中点,∴DM=CM,∵∠DMQ=∠CMP,∴△PCM≌△QDM;(2)当四边形ABPQ是平行四边形时,PB=AQ,∵BC-CP=AD+QD,∴8-CP=5+CP,∴CP=(8-5)÷2=1.5,∴当PC=1.5时,四边形ABPQ是平行四边形.题十:见详解.详解:(1)∵点N只在AD上运动,∴当点M运动到BC边上的时候,点A、E、M、N才可能组成平行四边形,即2.5<t<7.5,设经过t秒,四点可组成平行四边形.分两种情形:①当M点在E点右侧,如图:此时AN=EM,则四边形AEMN是平行四边形,∵DN= t,CM=2t -5,∴AN=10- t,EM=10- 4-(2t -5),∴10- t =10- 4-(2t -5),解得:t =1,∵2.5<t<7.5,∴t =1舍去;②当M点在B点与E点之间,如图,则MC=2t -5,BM=10-(2t -5)=15-2t,∴ME= 4-(15-2t)=2t -11,2t-11=10-t,解得t =7,此时符合,∴当t =7秒时,点A、E、M、N组成平行四边形;(2)动点M、N在运动的过程中,线段MN能经过矩形ABCD的两条对角线的交点,此时M在BC上,如图,∵四边形ABCD是矩形,∴OA=OC,AD∥BC,∴∠NAO=∠MCO,在△ANO和△CMO中,∠NAO=∠MCO,AO=OC,∠AON=∠COM,∴△ANO≌△CMO(ASA),∴AN=CM,设N运动的时间是t秒,则10-t=2t -5,解得:t =5,即动点M、N在运动的过程中,线段MN能经过矩形ABCD的两条对角线的交点,此时运动的时间是5秒.题十一:8.详解:∵AD∥BC,∠A=120°,∴∠ABC=180°-120°=60°,∵BD平分∠ABC,∴∠DBC=12∠ABC=12×60°=30°,又∵∠ABC=∠DCB=60°,∴∠BDC=180°-30°-60°=90°,∴BC=2CD=2×4=8.题十二:18.详解:过D作DE∥AB,交CB于E点,又∵AD∥CB,∴四边形ABED是平行四边形,∴EB=AD=3,DE=AB=4,∵CB=6,∴EC=BC-BE=6-3=3,∵CD=5,∴CD2=DE2+CE2,∴△DEC是直角三角形,∴∠DEC=90°,∴四边形ABCD的面积是:12(AD+CB)•DE=12(3+6)×4=18.。
八年级下册数学书人教版答案
八年级下册数学书人教版答案
人教版八年级下册数学书的答案包含多项内容,主要包括如下:第一章:函数和图像。
本章回答函数和正比例关系、一元二次方程及其解法、根式及其解法,以及图形的表示和分析。
第二章:空间几何和图形的分析。
本章讨论的内容包括:体积的计算、三视图的相互转换以及三棱锥、四棱锥等体积的计算,以及对几何图形进行分析的方法。
第三章:数理逻辑与概率统计。
本章回答数理逻辑和概率统计的问题。
第四章:统计数据与应用。
本章包括有非独立样本比较、独立样本比较,以及单因素方差分析等。
人教版八年级数学下册二次根式(全章)习题及答案
人教版八年级数学下册二次根式(全章)习题及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN二次根式16.1 二次根式:1. 有意义的条件是 。
2. 当__________3. 11m +有意义,则m 的取值范围是 。
4. 当__________x 是二次根式。
5. 在实数范围内分解因式:429__________,2__________x x -=-+=。
6. 2x =,则x 的取值范围是 。
7. 2x =-,则x 的取值范围是 。
8. )1x 的结果是 。
9. 当15x ≤5_____________x -=。
10. 把的根号外的因式移到根号内等于 。
11. 1x =+成立的条件是 。
12. 若1a b -+互为相反数,则()2005_____________a b -=。
13. )()()230,2,12,20,3,1,x y y x x x x y +=--++中,二次根式有( )A. 2个B. 3个C. 4个D. 5个14. 下列各式一定是二次根式的是( )15. 若23a ,则- )A. 52a -B. 12a -C. 25a -D. 21a -16. 若A==( ) A. 24a + B. 22a + C. ()222a + D. ()224a + 17. 若1a ≤)A. (1a -B. (1a -C. (1a -D. (1a -18.=x 的取值范围是( ) A. 2x ≠ B. 0x ≥ C. 2x D. 2x ≥ 19.)A. 0B. 42a -C. 24a -D. 24a -或42a -20. 下面的推导中开始出错的步骤是( )()()()()23123224==-==∴=-∴=- A. ()1 B. ()2 C. ()3 D. ()421.2440y y -+=,求xy 的值。
22. 当a 取什么值时,代数式1取值最小,并求出这个最小值。
23. 去掉下列各根式内的分母:())10x ())21x24. 已知2310x x -+=25. 已知,a b (10b -=,求20052006a b -的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题16.11、当a 是怎样的实数时,下列各式在实数范围内有意义?(1(2(3;(4. 解析:(1)由a +2≥0,得a ≥-2; (2)由3-a ≥0,得a ≤3; (3)由5a ≥0,得a ≥0; (4)由2a +1≥0,得12a -≥.2、计算:(1)2;(2)2(;(3)2;(4)2;(5(6)2(-;(7(8).解析:(1)25=;(2)222((1)0.2=-⨯=;(3)227=;(4)2225125=⨯=;(510==;(6)222((7)14-=-⨯=;(723==;(8)25==-.3、用代数式表示:(1)面积为S 的圆的半径;(2)面积为S 且两条邻边的比为2︰3的长方形的长和宽.解析:(1)设半径为r (r>0),由2r S r π==,得(2)设两条邻边长为2x ,3x (x>0),则有2x ·3x=S ,得x =所以两条邻边长为4、利用2(0)a a =≥,把下列非负数分别写成一个非负数的平方的形式: (1)9;(2)5;(3)2.5;(4)0.25;(5)12;(6)0.解析:(1)9=32;(2)5=2;(3)2.5=2;(4)0.25=0.52;(5)212=;(6)0=02.5、半径为r cm 的圆的面积是,半径为2cm 和3cm 的两个圆的面积之和.求r 的值.解析:222223,13,0,r r r r πππππ=⨯+⨯∴=>∴=6、△ABC 的面积为12,AB 边上的高是AB 边长的4倍.求AB 的长.7、当x 是怎样的实数时,下列各式在实数范围内有意义?(1(2(3(4 答案:(1)x 为任意实数;(2)x 为任意实数;(3)x >0;(4)x >-1.8、小球从离地面为h (单位:m )的高处自由下落,落到地面所用的时间为t (单位:s ).经过实验,发现h 与t 2成正比例关系,而且当h=20时,t=2.试用h 表示t ,并分别求当h=10和h=25时,小球落地所用的时间.答案:h=5t 29、(1是整数,求自然数n 所有可能的值;(2n 的最小值. 答案:(1)2,9,14,17,18;(2)6.因为24n=22×6×n n 是6.10、一个圆柱体的高为10,体积为V .求它的底面半径r (用含V 的代数式表示),并分别求当V=5π,10π和20π时,底面半径r 的大小.答案:2r =习题16.21、计算:(1(2(;(3(4.答案:(1)(2)-(3)(4)2、计算:(1(2(3(4.答案:(1)32;(2)(3(43、化简:(1(2(3(4答案:(1)14;(2)(3)37;(4.4、化简:(1)2;(2(3(4;(5(6.答案:(1(2)2(3)30;(4)3;(5)(6)5、根据下列条件求代数式2b a-+的值;(1)a=1,b=10,c=-15;(2)a=2,b=-8,c=5.答案:(1)5-+;(26、设长方形的面积为S,相邻两边分别为a,b.(1)已知a=b=S;(2)已知a=b=,求S.答案:(1)(2)240.7、设正方形的面积为S,边长为a.(1)已知S=50,求a;(2)已知S=242,求a.答案:(1)(2)8、计算:(1;(2(3(4答案:(1)1.2;(2)32;(3)13;(4)15.9 1.414≈答案:0.707,2.828.10、设长方形的面积为S,相邻两边长分别为a,b.已知S a==,求b..11、已知长方体的体积V=h=S.答案:263.12、如图,从一个大正方形中裁去面积为15cm 2和24cm 2的两个小正方形,求留下部分的面积.答案:21210cm .13、用计算器计算:(19919⨯+;(29999199⨯+;(39999991999⨯+(49999999919999⨯+.观察上面几题的结果,你能发现什么规律?用你发现的规律直接写出下题的结果:9999999991999________.n n n ⨯+=个个个答案:(1)10;(2)100;(3)1000;(4)10000.01000n 个.习题16.31、下列计算是否正确?为什么? (1235=(2)2222=;(3)3223=;(4)188943212==-=. 答案:(123 (2)不正确,22 (3)不正确,32222=(4)不正确,222==.2、计算:(1);(2(3(4)3a .答案:(1)(2(3);(4)17a .3、计算:(1;(2(3)-;(4)1324-.答案:(1)0;(2(3)(4)4、计算:(1)(2);(3)2;(4)答案:(1)6+(2)-6;(3)95+(4)4312+.5、已知5 2.236≈,求154545545-+的近似值(结果保留小数点后两位). 答案:7.83.6、已知31,31x y =+=-,求下列各式的值: (1)x 2+2xy +y 2;(2)x 2-y 2. 答案:(1)12;(2)43.7、如图,在Rt △ABC 中,∠C=90°,CB=CA=a .求AB 的长.2a .8、已知110a a+=,求1a a -的值.答案:6.9、在下列各方程后面的括号内分别给出了一组数,从中找出方程的解: (1)2x 2-6=0,3,6,3,6);(2)2(x +5)2=24,(523,523,523,523)+--+--. 答案:(1)3(2)235±.复习题161、当x 是怎样的实数时,下列各式在实数范围内有意义? (13x + (221x -;(3(4答案:(1)x ≥-3;(2)12x >;(3)23x <;(4)x ≠1.2、化简:(1 (2 (3 (4(5 (6答案:(1)(2);(33;(4(5);(63、计算:(1)-;(2)÷(3);(4)(5)2;(6)2.答案:(1(2(3)6;(4)2-;(5)35+;(6)5.4、正方形的边长为a cm ,它的面积与长为96cm ,宽为12cm 的长方形的面积相等.求a 的值.答案:5、已知1x =,求代数式x 2+5x -6的值.答案:5.6、已知2x =,求代数式2(7(2x x ++的值.答案:23+.7、电流通过导线时会产生热量,电流I (单位:A )、导线电阻R (单位:Ω)、通电时间t (单位:s )与产生的热量Q (单位:J )满足Q=I 2Rt .已知导线的电阻为5Ω,1s 时间导线产生30J 的热量,求电流I 的值(结果保留小数点后两位).答案:2.45A .8、已知n 是正整数,189n 是整数,求n 的最小值.答案:21. 9、(1)把一个圆心为点O ,半径为r 的圆的面积四等分.请你尽可能多地设想各种分割方法.(2)如图,以点O 为圆心的三个同心圆把以OA 为半径的大圆O 的面积四等分.求这三个圆的半径OB ,OC ,OD 的长.答案:(1)例如,相互垂直的直径将圆的面积四等分; (2)设OA=r ,则12OD r =,22OC r =,32OB =.10、判断下列各式是否成立:22334422;33;4.33881515=== 类比上述式子,再写出几个同类型的式子.你能看出其中的规律吗?用字母表示这一规律,并给出证明.答案:2211n n n nn n +=--32211n n n n n +=--,再两边开平方即可.习题17.11、设直角三角形的两条直角边长分别为a和b,斜边长为c.(1)已知a=12,b=5,求c;(2)已知a=3,c=4,求b;(3)已知c=10,b=9,求a.答案:(1)13;(2)7;(3)19.2、一木杆在离地面3m处折断,木杆顶端落在离木杆底端4m处.木杆折断之前有多高?答案:8m.3、如图,一个圆锥的高AO=2.4,底面半径OB=0.7.AB的长是多少?答案:2.5.4、已知长方形零件尺寸(单位:mm)如图,求两孔中心的距离(结果保留小数点后一位).答案:43.4mm.5、如图,要从电线杆离地面5m处向地面拉一条长7m的钢缆.求地面钢缆固定点A 到电线杆底部B的距离(结果保留小数点后一位).答案:4.9m.620的点.答案:略.7、在△ABC中,∠C=90°,AB=c.(1)如果∠A=30°,求BC,AC;(2)如果∠A=45°,求BC,AC.答案:(1)12BC c=,32AC c=;(2)22BC c=,22AC=.8、在△ABC中,∠C=90°,AC=2.1,BC=2.8.求:(1)△ABC的面积;(2)斜边AB;(3)高CD.答案:(1)2.94;(2)3.5;(3)1.68.9、已知一个三角形工件尺寸(单位:mm)如图,计算高l的长(结果取整数).答案:82mm.10、有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度与这根芦苇的长度分别是多少?答案:12尺,13尺.11、如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=2.求斜边AB的长.答案:43 3.12、有5个边长为1的正方形,排列形式如图.请把它们分割后拼接成一个大正方形.答案:分割方法和拼接方法分别如图(1)和图(2)所示.13、如图,分别以等腰Rt △ACD 的边AD ,AC ,CD 为直径画半圆.求证:所得两个月形图案AGCE 和DHCF 的面积之和(图中阴影部分)等于Rt △ACD 的面积.答案:2211()228AEC AC S AC ππ==半圆,218CFD S CD π=半圆,218ACD S AD π=半圆.因为∠ACD=90°,根据勾股定理得AC 2+CD 2=AD 2,所以 S 半圆AEC +S 半圆CFD =S 半圆ACD ,S 阴影=S △ACD + S 半圆AEC +S 半圆CFD -S 半圆ACD , 即S 阴影=S △ACD .14、如图,△ACB 和△ECD 都是等腰直角三角形,△ACB 的顶点A 在△ECD 的斜边DE 上.求证:AE 2+AD 2=2AC 2.证明:证法1:如图(1),连接BD .∵△ECD 和△ACB 都为等腰直角三角形, ∴EC=CD ,AC=CB ,∠ECD=∠ACB=90°. ∴∠ECA=∠DCB . ∴△ACE ≌△DCB .∴AE=DB ,∠CDB=∠E=45°. 又∠EDC=45°, ∴∠ADB=90°.在Rt△ADB中,AD2+DB2=AB2,得AD2+AE2=AC2+CB2,即AE2+AD2=2AC2.证法2:如图(2),作AF⊥EC,AG⊥CD,由条件可知,AG=FC.在Rt△AFC中,根据勾股定理得AF2+FC2=AC2.∴AF2+AG2=AC2.在等腰Rt△AFE和等腰Rt△AGD中,由勾股定理得AF2+FE2=AE2,AG2+GD2=AD2.又AF=FE,AG=GD,∴2AF2=AE2,2AG2=AD2.而2AF2+2AG2=2AC2,∴AE2+AD2=2AC2.习题17.21、判断由线段a,b,c组成的三角形是不是直角三角形:(1)a=7,b=24,c=25;(2)41a=b=4,c=5;(3)54a=,b=1,34c=;(4)a=40,b=50,c=60.答案:(1)是;(2)是;(3)是;(4)不是.2、下列各命题都成立,写出它们的逆命题.这些逆命题成立吗?(1)同旁内角互补,两直线平行;(2)如果两个角是直角,那么它们相等;(3)全等三角形的对应边相等;(4)如果两个实数相等,那么它们的平方相等.答案:(1)两直线平行,同旁内角互补.成立.(2)如果两个角相等,那么这两个角是直角.不成立.(3)三条边对应相等的三角形全等.成立.(4)如果两个实数的平方相等,那么这两个实数相等.不成立.3、小明向东走80m后,沿另一方向又走了60m,再沿第三个方向走100m回到原地.小明向东走80m后是向哪个方向走的?答案:向北或向南.4、在△ABC中,AB=13,BC=10,BC边上的中线AD=12.求AC.答案:13.5、如图,在四边形ABCD中,AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.答案:36.6、如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且14CF CD.求证∠AEF=90°.答案:设AB=4k,则BE=CE=2k,CF=k,DF=3k.∵∠B=90°,∴AE2=(4k)2+(2k)2=20k2.同理,EF2=5k2,AF2=25k2.∴AE2+EF2=AF2.根据勾股定理的逆定理,△AEF为直角三角形.∴∠AEF=90°.7、我们知道3,4,5是一组勾股数,那么3k,4k,5k(k是正整数)也是一组勾股数吗?一般地,如果a,b,c是一组勾股数,那么ak,bk,ck(k是正整数)也是一组勾股数吗?答案:因为(3k)2+(4k)2=9k2+16k2=25k2=(5k)2,所以3k,4k,5k(k是正整数)为勾股数.如果a,b,c为勾股数,即a2+b2=c2,那么(ak)2+(bk)2=a2k2+b2k2=(a2+b2)k2=c2k2=(ck)2.因此,ak,bk,ck(k是正整数)也是勾股数.复习题171、两人从同一地点同时出发,一人以20 m/min的速度向北直行,一人以30m/min的速度向东直行.10min后他们相距多远(结果取整数)?答案:361m.2、如图,过圆锥的顶点S和底面圆的圆心O的平面截圆锥得截面△SAB,其中SA=SB,AB是圆锥底面圆O的直径.已知SA=7cm,AB=4cm,求截面△SAB的面积.65cm.答案:23、如图,车床齿轮箱壳要钻两个圆孔,两孔中心的距离是134mm,两孔中心的水平距离是77mm.计算两孔中心的垂直距离(结果保留小数点后一位).答案:109.7mm.4、如图,要修一个育苗棚,棚的横截面是直角三角形,棚宽a=3m,高b=1.5m,长d=10m .求覆盖在顶上的塑料薄膜需多少平方米(结果保留小数点后一位).答案:33.5m 2.5、一个三角形三边的比为1:3:2,这个三角形是直角三角形吗?答案:设这个三角形三边为k ,3k ,2k ,其中k >0.由于2222(3)4(2)k k k k +==,根据勾股定理的逆定理,这个三角形是直角三角形.6、下列各命题都成立,写出它们的逆命题.这些逆命题成立吗? (1)两条直线平行,同位角相等;(2)如果两个实数都是正数,那么它们的积是正数; (3)等边三角形是锐角三角形;(4)线段垂直平分线上的点到这条线段两个端点的距离相等. 答案:(1)同位角相等,两直线平行.成立.(2)如果两个实数的积是正数,那么这两个实数是正数.不成立. (3)锐角三角形是等边三角形.不成立.(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.成立.7、已知直角三角形的两条直角边的长分别为231+和231-,求斜边c 的长. 答案:26.8、如图,在△ABC 中,AB=AC=BC ,高AD=h .求AB .答案:233h .9、如图,每个小正方形的边长都为1. (1)求四边形ABCD 的面积与周长; (2)∠BCD 是直角吗?答案:(1)14.5,351726++; (2)由20BC =,5CD =,BD=5,可得BC 2+CD 2=BD 2.根据勾股定理的逆定理,△BCD 是直角三角形,因此∠BCD 是直角.10、一根竹子高1丈,折断后竹子顶端落在离竹子底端3尺处.折断处离地面的高度是多少?(这是我国古代数学著作《九章算术》中的一个问题.其中的丈、尺是长度单位,1丈=10尺.)答案:4.55尺.11、古希腊的哲学家柏拉图曾指出,如果m 表示大于1的整数,a=2m ,b=m 2-1,c=m 2+1,那么a ,b ,c 为勾股数.你认为对吗?如果对,你能利用这个结论得出一些勾股数吗?答案:因为a 2+b 2=(2m )2+(m 2-1)2=4m 2+m 4-2m 2+1=m 4+2m 2+1=(m 2+1)2=c 2, 所以a ,b ,c 为勾股数.用m=2,3,4等大于1的整数代入2m ,m 2-1,m 2+1,得4,3,5;6,8,10;8,15,17;等等.12、如图,圆柱的底面半径为6cm ,高为10cm ,蚂蚁在圆柱表面爬行,从点A 爬到点B 的最短路程是多少厘米(结果保留小数点后一位)?答案:21.3cm .13、一根70cm 的木棒,要放在长、宽、高分别是50cm ,40cm ,30cm 的长方体木箱中,能放进去吗?答案:能.14、设直角三角形的两条直角边长及斜边上的高分别为a ,b 及h .求证:222111abh+=.答案:由直角三角形的面积公式,得221122ab h a b =+,等式两边平方得a 2b 2=h 2(a 2+b 2),等式两边再同除以a 2b 2c 2,得222111hab=+,即222111abh+=.习题18.11、如果四边形ABCD 是平行四边形,AB=6,且AB 的长是□ABCD 周长的316,那么BC 的长是多少?答案:10.2、如图,在一束平行光线中插入一张对边平行的纸板.如果光线与纸板右下方所成的∠1是72°15′,那么光线与纸板左上方所成的∠2是多少度?为什么?答案:72°15′,平行四边形的对角相等.3、如图,□ABCD的对角线AC,BD相交于点O,且AC+BD=36,AB=11.求△OCD 的周长.答案:29.4、如图,在□ABCD中,点E,F分别在BC,AD上,且AF=CE.求证:四边形AECF 是平行四边形.答案:提示:利用AF CE.5、如图,□ABCD的对角线AC,BD相交于点O,且E,F,G,H分别是AO,BO,CO,DO的中点.求证:四边形EFGH是平行四边形.答案:提示:利用四边形EFGH的对角线互相平分.6、如图,四边形AEFD和EBCF都是平行四边形.求证:四边形ABCD是平行四边形.答案:提示:利用AD=EF=BC.7、如图,直线l1∥l2,△ABC与△DBC的面积相等吗?为什么?你还能画出一些与△ABC面积相等的三角形吗?答案:相等.提示:在直线l1上任取一点P,△PBC的面积与△ABC的面积相等(同底等高).8、如图,□OABC的顶点O,A,C的坐标分别是(0,0),(a,0),(b,c).求顶点B的坐标.答案:B(a+b,c).9、如图,在梯形ABCD中,AB∥DC.(1)已知∠A=∠B,求证AD=BC;(2)已知AD=BC,求证∠A=∠B.答案:提示:过点C作CE∥AD,交AB于点E,可得四边形AECD为平行四边形.10、如图,四边形ABCD是平行四边形,∠ABC=70°,BE平分∠ABC且交AD于点E,DF∥BE且交BC于点F.求∠1的大小.答案:35°.11、如图,A′B′∥BA,B′C′∥CB,C′A′∥AC,∠ABC与∠B′有什么关系?线段AB′与线段AC′呢?为什么?答案:由四边形ABCB′是平行四边形,可知∠ABC=∠B′,AB′=BC;再由四边形C′BCA 是平行四边形,可知C′A=BC.从而AB′=AC′.12、如图,在四边形ABCD中,AD=12,DO=OB=5,AC=26,∠ADB=90°.求BC的长和四边形ABCD的面积.答案:因为AD=12,DO=5,利用勾股定理可得AO=13,从而四边形ABCD的对角线互相平分,它是一个平行四边形.所以BC=AD=12,四边形ABCD的面积为120.13、如图,由六个全等的正三角形拼成的图中,有多少个平行四边形?为什么?答案:6个,利用对边相等的四边形是平行四边形.14、如图,用硬纸板剪一个平行四边形,作出它的对角线的交点O,用大头针把一根平放在平行四边形上的直细木条固定在点O处,并使细木条可以绕点O转动.拨动细木条,使它随意停留在任意位置.观察几次拨动的结果,你发现了什么?证明你的发现.答案:设木条与□ABCD的边AD,BC分别交于点E,F,可以发现OE=OF,AE=CF,DE=BF,△AOE≌△COF,△DOE≌△BOF等.利用平行四边形的性质可以证明上述结论.15、如图,在□ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB.图中哪两个平行四边形面积相等?为什么?答案:□AEPH与□PGCF面积相等.利用△ABD与△CDB,△PHD与△DFP,△BEP 与△PGB分别全等,从而□AEPH与□PGCF面积相等.习题18.21、如图,四边形ABCD是平行四边形,对角线AC,BD相交于点O,且∠1=∠2.它是一个矩形吗?为什么?答案:是.利用∠1=∠2,可知BO=CO,从而BD=AC,□ABCD的对角线相等,它是一个矩形.2、求证:四个角都相等的四边形是矩形.答案:由于四边形的内角和为360°,四个角又都相等,所以它的四个角都是直角.因此这个四边形是矩形.3、一个木匠要制作矩形的踏板.他在一个对边平行的长木板上分别沿与长边垂直的方向锯了两次,就能得到矩形踏板.为什么?答案:能.这时他得到的是一个角为直角的平行四边形,即矩形.4、在Rt△ABC中,∠C=90°,AB=2AC.求∠A,∠B的度数.答案:∠A=60°,∠B=30°.5、如图,四边形ABCD是菱形,∠ACD=30°,BD=6.求:(1)∠BAD,∠ABC的度数;(2)AB,AC的长.AC答案:(1)∠BAD=60°,∠ABC=120°;(2)AB=6,636、如图,AE∥BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE于点D,连接CD.求证:四边形ABCD是菱形.答案:提示:由∠ABD=∠DBC=∠ADB,可知AB=AD,同理可得AB=BC.从而AD BC,四边形ABCD是一组邻边相等的平行四边形,它是菱形.7、如图,把一个长方形的纸片对折两次,然后剪下一个角.要得到一个正方形,剪口与折痕应成多少度的角?答案:45°.8、如图,为了做一个无盖纸盒,小明先在一块矩形硬纸板的四角画出四个相同的正方形,用剪刀剪下.然后把纸板的四边沿虚线折起,并用胶带粘好,一个无盖纸盒就做成了.纸盒的底面是什么形状?为什么?答案:矩形,它的四个角都是直角.9、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠ACD=3∠BCD,E是斜边AB的中点.∠ECD是多少度?为什么?答案:45°.提示:∠BCD=∠EAC=∠ECA=22.5°.10、如图,四边形ABCD是菱形,点M,N分别在AB,AD上,且BM=DN,MG∥AD,NF∥AB;点F,G分别在BC,CD上,MG与NF相交于点E.求证:四边形AMEN,EFCG都是菱形.答案:提示:四边形AMEN,EFCG都是一组邻边相等的平行四边形.11、如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H.求DH的长.答案:DH=4.8.提示:由AB·DH=2AO·OD=2S△ABD可得.12、(1)如下图(1),四边形OBCD是矩形,O,B,D三点的坐标分别是(0,0),(b,0),(0,d).求点C的坐标.(2)如下图(2),四边形ABCD是菱形,C,D两点的坐标分别是(c,0),(0,d),点A,B在坐标轴上.求A,B两点的坐标.(3)如下图(3),四边形OBCD是正方形,O,D两点的坐标分别是(0,0),(0,d).求B,C两点的坐标.答案:(1)C(b,d);(2)A(-c,0),B(0,-d);(3)B(d,0),C(d,d).13、如图,E,F,M,N分别是正方形ABCD四条边上的点,且AE=BF=CM=DN.试判断四边形EFMN是什么图形,并证明你的结论.答案:正方形.提示:△BFE ≌△CMF ≌△DNM ≌△AEN ,证明四边形EFMN 的四条边相等,四个角都是直角.14、如图,将等腰三角形纸片ABC 沿底边BC 上的高AD 剪成两个三角形.用这两个三角形你能拼成多少种平行四边形?试一试,分别求出它们的对角线的长.答案:3种.可以分别以AD ,AB (AC ),BD (CD )为四边形的一条对角线,得到3种平行四边形,它们的对角线长分别为h ,22224(3)n h n m ++或;m ,m ;n ,22224(3)n h h m ++或.15、如图,四边形ABCD 是正方形.G 是BC 上的任意一点,DE ⊥AG 于点E ,BF ∥DE ,且交AG 于点F .求证:AF -BF=EF .答案:提示:由△ADE ≌△BAF ,可得AE=BF ,从而AF -BF=EF .16、如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD与CE相交于点O.BO 与OD的长度有什么关系?BC边上的中线是否一定过点O?为什么?答案:BO=2OD,BC边上的中线一定过点O.利用四边形EMND是平行四边形,可知BO=2OD;设BC边上的中线和BD相交于点O′,可知BO′=2O′D,从而O与O′重合.17、如图是一块正方形草地,要在上面修建两条交叉的小路,使得这两条小路将草地分成的四部分面积相等,你有多少种方法?并与你的同学交流一下.答案:分法有无数种.只要保持两条小路互相垂直,并且都过正方形的中心即可.复习题181、选择题.(1)若平行四边形中两个内角的度数比为1︰2,则其中较小的内角是().A.90°B.60°C.120°D.45°(2)若菱形的周长为8,高为1,则菱形两邻角的度数比为().A.3︰1 B.4︰1 C.5︰1 D.6︰1(3)如图,在正方形ABCD的外侧,作等边三角形ADE,则∠AEB为()A.10°B.15°C.20°D.125°答案:(1)B;(2)C;(3)B.2、如图,将□ABCD的对角线BD向两个方向延长,分别至点E和点F,且使BE=DF.求证:四边形AECF是平行四边形.答案:提示:连接AC,利用对角线互相平分的四边形是平行四边形.3、矩形对角线组成的对顶角中,有一组是两个50°的角.对角线与各边组成的角是多少度?答案:65°和25°.4、如图,你能用一根绳子检查一个书架的侧边是否和上、下底都垂直吗?为什么?答案:可以.通过测量对边以及对角线是否分别相等来检验.5、如图,矩形ABCD的对角线AC,BD相交于点O,且DE∥AC,CE∥BD.求证:四边形OCED是菱形.答案:提示:一组邻边相等的平行四边形是菱形.6、如图,E,F,G,H分别是正方形ABCD各边的中点.四边形EFGH是什么四边形?为什么?答案:正方形.提示:证明四边形EFGH四边相等、四个角都是直角.7、如图,四边形ABCD是平行四边形,BE∥DF,且分别交对角线AC于点E,F,连接ED,BF.求证∠1=∠2.答案:由△ABE≌△CDF,可知BE=DF.又BE∥DF,所以四边形BFDE是平行四边形.所以DE∥BF,从而∠1=∠2.8、如图,ABCD是一个正方形花园,E,F是它的两个门,且DE=CF.要修建两条路BE和AF,这两条路等长吗?它们有什么位置关系?为什么?答案:由△ABE≌△DAF可知,BE和AF等长,并且互相垂直.9、我们把顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形.(1)任意四边形的中点四边形是什么形状?为什么?(2)任意平行四边形的中点四边形是什么形状?为什么?(3)任意矩形、菱形和正方形的中点四边形分别是什么形状?为什么?答案:(1)平行四边形,利用三角形中位线定理可证一组对边平行且相等,或两组对边分别平行;(2)平行四边形;(3)菱形、矩形、正方形.10、如果一个四边形是轴对称图形,并且有两条互相垂直的对称轴,它一定是菱形吗?一定是正方形吗?答案:一定是菱形,不一定是正方形.11、用纸板剪成的两个全等三角形能够拼成什么四边形?要想拼成一个矩形,需要两个什么样的全等三角形?要想拼成菱形或正方形呢?动手剪拼一下,并说明理由.答案:平行四边形;要拼成一个矩形,需要两个全等的直角三角形;要拼成一个菱形,需要两个全等的等腰三角形;要拼成一个正方形,需要两个全等的等腰直角三角形.12、如图,过□ABCD的对角线AC的中点O作两条互相垂直的直线,分别交AB,BC,CD,DA于E,F,G,H四点,连接EF,FG,GH,HE.试判断四边形EFGH的形状,并说明理由.答案:菱形.提示:先证明△AOE≌△COG,△AOH≌△COF,可得OE=OG,OF=OH,所以四边形EFGH是平行四边形.又EG⊥FH,从而□EFGH是菱形.13、如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm.点P从点A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.从运动开始,使PQ ∥CD和PQ=CD,分别需经过多少时间?为什么?答案:6s;6s或7s.提示:设经过t s,四边形PQCD成为平行四边形,根据PD=QC,可列方程24-t=3t,解得t=6.若PQ=CD,则四边形PQCD为平行四边形或梯形(腰相等),为平行四边形时有t=6;为梯形(腰相等)时,有QC=PD+2(BC-AD),可列方程3t=24-t+4,解得t=7.14、如图,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.求证AE=EF.答案:提示:证明△AGE≌△ECF.15、求证:平行四边形两条对角线的平方和等于四条边的平方和.答案:提示:如图,在□ABCD中,设AD=a,AB=b,BD=m,AC=n,DE=h,AE=x,则分别有h2=a2-x2①,h2=n2-(b+x)2②,h2=m2-(b-x)2③,由①×2=②+③,化简可得m2+n2=2a2+2b2.习题19.11、购买一些铅笔,单价为0.2元/支,总价y元随铅笔支数x变化.指出其中的常量与变量,自变量与函数,并写出表示函数与自变量关系的式子.答案:常量0.2,变量x,y,自变量x,函数y,y=0.2x.2、一个三角形的底边长为5,高h可以任意伸缩.写出面积S随h变化的解析式,并指出其中的常量与变量,自变量与函数,以及自变量的取值范围.答案:常量5,变量h,S,自变量h(h>0),函数S,52hS .3、在计算器上按下面的程序操作:x 1 3 -4 0 101 -5.2y显示的计算结果y是输入数值x的函数吗?为什么?答案:7,11,-3,5,207,-5.4,y是x的函数,符合函数定义.4、下列式子中的y是x的函数吗?为什么?(1)y=3x-5;(2)21xyx-=-;(3)1y x=-.请再举出一些函数的例子.答案:y是x的函数,符合函数定义.例子略.5、分别对上一题中的各函数解析式进行讨论:(1)自变量x在什么范围内取值时函数解析式有意义?(2)当x=5时对应的函数值是多少?答案:(1)y=3x-5,x可为任意实数;21xyx-=-,x≠1;1y x=-,x≥1.(2)y=3x-5,x=5,y=10;21xyx-=-,x=5,34y=;1y x=-,x=5,y=2.6、画出函数y=0.5x的图象,并指出自变量x的取值范围.答案:自变量x的取值范围是全体实数.7、下列各曲线中哪些表示y是x的函数?答案:图(1)(2)(3)中y是x的函数,图(4)中y不是x的函数.8、“漏壶”是一种古代计时器.在它内部盛一定量的水,水从壶下的小孔漏出.壶内壁有刻度,人们根据壶中水面的位置计算时间.用x表示漏水时间,y表示壶底到水面的高度.下列哪个图象适合表示y与x的对应关系?(不考虑水量变化对压力的影响.)答案:图(2).9、下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x表示时间,y表示张强离家的距离.根据图象回答下列问题:(1)体育场离张强家多远?张强从家到体育场用了多少时间?(2)体育场离文具店多远?(3)张强在文具店停留了多少时间?(4)张强从文具店回家的平均速度是多少?答案:(1)2.5km,15min;(2)1km;(3)20min;(4)3km/min 70.10、某种活期储蓄的月利率是0.06%,存入100元本金.求本息和y(本金与利息的和,单位:元)随所存月数x变化的函数解析式,并计算存期为4个月时的本息和.答案:y=100+0.06x,100.24元.11、正方形边长为3.若边长增加x,则面积增加y.求y随x变化的函数解析式,指出自变量与函数,并以表格形式表示当x等于1,2,3,4时y的值.答案:y=x2x 1 2 3 4y 7 16 27 4012、甲、乙两车沿直路同向行驶,车速分别为20m/s和25m/s.现甲车在乙车前500m 处,设x s(0≤x≤100)后两车相距y m.用解析式和图象表示y与x的对应关系.答案:y=500-5x(0≤x≤100).13、甲、乙两车从A城出发前往B城.在整个行程中,汽车离开A城的距离y与时刻t的对应关系如下图所示.(1)A,B两城相距多远?(2)哪辆车先出发?哪辆车先到B城?(3)甲、乙两车的平均速度分别为多少?(4)你还能从图中得到哪些信息?答案:(1)300km;(2)甲先出发,乙先到达;(3)甲60km/h,乙100km/h;(4)6:00~7:30甲在乙前,7:30乙追上甲,7:30~9:00乙在甲前.14、在同一直角坐标系中分别画出函数y=x与1yx的图象.利用这两个图象回答:(1)x取什么值时,x比1x大?(2)x取什么值时,x比1x小?答案:(1)-1<x<0或x>1;(2)x<-1或0<x<1.15、四边形有两条对角线,五边形、六边形分别有多少条对角线?n边形呢?多边形对角线的条数是边数的函数吗?答案:五边形有5条对角线,六边形有9条对角线,n边形有(3)2n n条对角线,多边形对角线的条数是边数的函数.习题19.21、一列火车以90km/h的速度匀速前进.求它的行驶路程s(单位:km)关于行驶时间t(单位:h)的函数解析式,并画出函数图象.答案:s=90t(t≥0).图象略.2、函数y=-5x的图象在第__________象限内,经过点(0,__________)与点(1,__________),y随x的增大而__________.答案:二,四,0,-5,减小.3、一个弹簧不挂重物时长12 cm,挂上重物后伸长的长度与所挂重物的质量成正比.如果挂上1 kg的物体后,弹簧伸长2 cm.求弹簧总长y(单位:cm)关于所挂物体质量x(单位:kg)的函数解析式.答案:y=12+2x(0≤x≤m,m是弹簧能承受物体的最大质量).4、分别画出下列函数的图象:(1)y=4x;(2)y=4x+1;(3)y=-4x+1;(4)y=-4x-1.答案:(1)(2)(3)(4)5、在同一直角坐标系中,画出函数y=2x+4与y=-2x+4的图象,并指出每个函数中当x增大时y如何变化.答案:y=2x+4随x增大而增大,y=-2x+4随x增大而减小.6、已知一次函数y=kx+b,当x=2时y的值为4,当x=-2时y的值为-2,求k与b.答案:32k=,b=1.7、已知一次函数的图象经过点(-4,9)和点(6,3),求这个函数的解析式.答案:33355y x=-+.8、当自变量x取何值时,函数512y x=+与y=5x+17的值相等?这个函数值是多少?答案:325x=-,y=-15.9、点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0).设△OPA的面积为S.(1)用含x的式子表示S,写出x的取值范围,画出函数S的图象.(2)当点P的横坐标为5时,△OPA的面积为多少?(3)△OPA的面积能大于24吗?为什么?答案:(1)S=-3x+24(0<x<8);(2)9;(3)不能大于24,因为0<x<8,所以0<S=-3x+24<24.10、不画图象,仅从函数解析式能否看出直线y=3x+4与y=3x-4具有什么样的位置关系?答案:平行.11、从A 地向B 地打长途电话,通话时间不超过3min 收费2.4元,超过3min 后每分加收1元.写出通话费用y (单位:元)关于通话时间x (单位:min )的函数解析式.有10元钱时,打一次电话最多可以通话多长时间?(本题中x 取整数,不足1min 的通话时间按1min 计费.)答案: 2.4, 03,0.6, 3.x y x x <⎧=⎨->⎩≤由函数解析式得x=10.6.由不足1min 的通话时间要按1min 计算可知,有10元钱最多通话10min .12、(1)当b >0时,函数y=x +b 的图象经过哪几个象限? (2)当b <0时,函数y=-x +b 的图象经过哪几个象限? (3)当k >0时,函数y=kx +1的图象经过哪几个象限? (4)当k <0时,函数y=kx +1的图象经过哪几个象限? 答案:(1)第一、二、三象限; (2)第二、三、四象限; (3)第一、二、三象限; (4)第一、二、四象限.13、在同一直角坐标系中,画出函数512y x =+和y=5x +17的图象.并结合图象比较这两个函数的函数值的大小关系.答案:当325x <-时,51517;2y x y x =+>=+ 325,1517;52x y x y x =-=+==+当时325,1517.52x y x y x >-=+<=+当时。