博弈论精品课件(13)
合集下载
博弈论完整版PPT课件
R3 3, 2 0, 4 4, 3 50, 1 会将C4从C的战略空间中剔除, 所以 R4 2, 93 0, 92 0, 91 100, 90 R不会选择R4;
2-阶理性: C相信R相信C是理性的,C会将R4从R的战略空间中剔除, 所以 C不会选择C1;
3-阶理性: R相信C相信R相信C是理性的, R会将C1从C的战略空间中剔 除, R不会选择R1;
基本假设:完全竞争,完美信息
个人决策是在给定一个价格参数和收入的条 件下最大化自己的效用,个人的效用与其他人 无涉,所有其他人的行为都被总结在“价格”参数 之中
一般均衡理论是整个经济学的理论基石 和道义基础,市场机制是完美的,帕累托 最优成立,平等与效率可以兼顾。
.
3
然而在以下情况,上述结论不成立:
.
19
理性共识
0-阶理性共识:每个人都是理性的,但不知道其 他人是否是理性的;
1-阶理性共识:每个人都是理性的,并且知道其 他人也是理性的,但不知道其他人是否知道自己 是理性的;
2-阶理性共识:每个人都是理性的,并且知道其
他人也是理性的,同时知道其他人也知道自己是
理性的;但不知道其他人是否知道自己知道他们
如果你预期我会选择X,我就真的会选择X。
如果参与人事前达成一个协议,在不存在外部强 制的情况下,每个人都有积极性遵守这个协议,这 个协议就是纳什均衡。
.
28
应用1——古诺的双寡头垄断模型(1938)
假定:
只有两个厂商 面对相同的线形需求曲线,P(Q)=a-Q, Q=q1+q2 两厂商同时做决策; 假定成本函数为C(qi)=ciqi
劣策略:如果一个博弈中,某个参与人有占优策略,那么
该参与人的其他可选择策略就被称为“劣策略”。
2-阶理性: C相信R相信C是理性的,C会将R4从R的战略空间中剔除, 所以 C不会选择C1;
3-阶理性: R相信C相信R相信C是理性的, R会将C1从C的战略空间中剔 除, R不会选择R1;
基本假设:完全竞争,完美信息
个人决策是在给定一个价格参数和收入的条 件下最大化自己的效用,个人的效用与其他人 无涉,所有其他人的行为都被总结在“价格”参数 之中
一般均衡理论是整个经济学的理论基石 和道义基础,市场机制是完美的,帕累托 最优成立,平等与效率可以兼顾。
.
3
然而在以下情况,上述结论不成立:
.
19
理性共识
0-阶理性共识:每个人都是理性的,但不知道其 他人是否是理性的;
1-阶理性共识:每个人都是理性的,并且知道其 他人也是理性的,但不知道其他人是否知道自己 是理性的;
2-阶理性共识:每个人都是理性的,并且知道其
他人也是理性的,同时知道其他人也知道自己是
理性的;但不知道其他人是否知道自己知道他们
如果你预期我会选择X,我就真的会选择X。
如果参与人事前达成一个协议,在不存在外部强 制的情况下,每个人都有积极性遵守这个协议,这 个协议就是纳什均衡。
.
28
应用1——古诺的双寡头垄断模型(1938)
假定:
只有两个厂商 面对相同的线形需求曲线,P(Q)=a-Q, Q=q1+q2 两厂商同时做决策; 假定成本函数为C(qi)=ciqi
劣策略:如果一个博弈中,某个参与人有占优策略,那么
该参与人的其他可选择策略就被称为“劣策略”。
《博弈论》课程ppt课件
10
图1 进攻与防守的基本式 G={N, S, u},其中N=(1,2), Si={(0,2),(1,1),(2,0)},ui (s1, s2) = ri,i = 1, 2。
守方 (0,2) (1,1) (2,0)
(0,2)
攻方 (1,1)
失败,成功
成功,失败
成功,失败
失败,成功
成功,失败
成功,失败
《博弈论》课程
(一)什么是博弈论
我们首先看几个例子。 例1 石头、剪刀、布
猪八戒
石头 石头 孙悟空 剪刀 布 未定,未定 找水,休息 休息,找水 剪刀 休息,找水 未定,未定 找水,休息 布 找水,休息 休息,找水 未定,未定
2
例2 诺曼底登陆
德军
加来设防 加来登陆 盟军
诺曼底登陆 成功,失败
诺曼பைடு நூலகம்设防 成功,失败
9
例4 进攻与防守 双方争夺一个据点,有两条进攻路线X和Y, 攻方有两个军,而防守方也有两个军,只有 当守方的兵力不少于攻方时,才能击退进攻, 否则据点将会失守。首先可知守方的防守方 案(即策略)为(0,2),(1,1),(2,0),即在X 线路和Y线路驻扎军队数,同样可以到的攻 方的进攻方案(0,2),(1,1)和(2,0)。容易看出, 行动并非策略,策略是行动方案。
正是由于博弈论将博弈如何出现均衡列为核心, 因而博弈论对于各门社会科学而言,就具有了方 法论意义,成为各门学科的有力分析工具。
6
(二)博弈表达的科学式
(1)博弈的策略式
如何将博弈表示成一种便于研究和分析的形式显然 是很重要的。如果用参与者、策略和收益函数来 科学地描述一个博弈,就称为博弈表达的策略式 (或基本式、标准式)。
博弈论讲义共125页PPT
13
3、信息(Information):信息是参与人有关博 弈的知识,特别是有关自然的选择、其他参与 人的特征和行动的知识。
完全信息:每一个参与人对所有其他参与人 (包括自然)的特征、策略空间及支付函数有 准确的知识。否则,就是不完全信息。
共同知识:指的是所有参与人知道,而且所 有参与人知道所有参与人知道……的知识。 共同知识是一个非常强的假定。
案例
房地产开发项目-假设有A、B两家开发商 市场需求:可能大,也可能小 投入:1亿
❖假定市场上有两栋楼出售: ✓需求大时,每栋售价1.4亿, ✓需求小时,售价7千万; ❖如果市场上只有一栋楼 ✓需求大时,可卖1.8亿 ✓需求小时,可卖1.1亿
一 、博弈的基本概念及策略表述
博弈论的基本概念包括:
如果另一个犯罪嫌疑人也作了坦白,则两人 各被判刑8年;如果另一个犯罪嫌人没有坦 白而是抵赖,则以妨碍公务罪(因已有证据 表明其有罪)再加刑2年,而坦白者有功被 减刑8年,立即释放。如果两人都抵赖,则 警方因证据不足不能判两人的偷窃罪,但可 以私入民宅的罪名将两人各判入狱1年。
如何描述这个博弈? 他们将如何选择?
用博弈规则决定均衡。
1、参与人(Players):在博弈中独立决策、 独立承担博弈结果的个人或组织。也称局中 人。参与人的目的是通过选择行动或策略( 策略)以最大化自己的支付(效用)水平。 特殊的虚拟参与人-自然,其实质是决定 外生的环境参数的概率分布的一种机制。 i=1, ……, n代表参与人;N代表自然。
一 、博弈的基本概念及策略表述
博弈的策略式表述:
战略式表述给出: 1、博弈的参与人集合i:, (1,2,,n); 2、每个参与人的战略间空:Si,i 1,2,,n; 3、每个参与人的支付数函:ui (s1,, si,, sn),i 1,2,,n)
3、信息(Information):信息是参与人有关博 弈的知识,特别是有关自然的选择、其他参与 人的特征和行动的知识。
完全信息:每一个参与人对所有其他参与人 (包括自然)的特征、策略空间及支付函数有 准确的知识。否则,就是不完全信息。
共同知识:指的是所有参与人知道,而且所 有参与人知道所有参与人知道……的知识。 共同知识是一个非常强的假定。
案例
房地产开发项目-假设有A、B两家开发商 市场需求:可能大,也可能小 投入:1亿
❖假定市场上有两栋楼出售: ✓需求大时,每栋售价1.4亿, ✓需求小时,售价7千万; ❖如果市场上只有一栋楼 ✓需求大时,可卖1.8亿 ✓需求小时,可卖1.1亿
一 、博弈的基本概念及策略表述
博弈论的基本概念包括:
如果另一个犯罪嫌疑人也作了坦白,则两人 各被判刑8年;如果另一个犯罪嫌人没有坦 白而是抵赖,则以妨碍公务罪(因已有证据 表明其有罪)再加刑2年,而坦白者有功被 减刑8年,立即释放。如果两人都抵赖,则 警方因证据不足不能判两人的偷窃罪,但可 以私入民宅的罪名将两人各判入狱1年。
如何描述这个博弈? 他们将如何选择?
用博弈规则决定均衡。
1、参与人(Players):在博弈中独立决策、 独立承担博弈结果的个人或组织。也称局中 人。参与人的目的是通过选择行动或策略( 策略)以最大化自己的支付(效用)水平。 特殊的虚拟参与人-自然,其实质是决定 外生的环境参数的概率分布的一种机制。 i=1, ……, n代表参与人;N代表自然。
一 、博弈的基本概念及策略表述
博弈的策略式表述:
战略式表述给出: 1、博弈的参与人集合i:, (1,2,,n); 2、每个参与人的战略间空:Si,i 1,2,,n; 3、每个参与人的支付数函:ui (s1,, si,, sn),i 1,2,,n)
博弈论讲义完整PPT课件
• 两个寡头企业选择产量的博弈:
如果两个企业联合起来形成卡特尔,选择垄断利润最大化的产量,每 个企业都可以得到更多的利润。给定对方遵守协议的情况下,每个企业都 想增加产量,结果是,每个企业都只得到纳什均衡产量的利润,它严格小 于卡特而产量下的利润。
• 请举几个囚徒困境的例子
第18页/共293页
第一章 导论-囚徒困境
知识:完全信息博弈和不完全信息博弈。 ❖完全信息:每一个参与人对所有其他参与人的(对手)的特征、
战略空间及支付函数有准确的 知识,否则为不完全信息。
第33页/共293页
第一章 导论-基本概念
• 博弈的划分:
行动顺序 信息
完全信息
静态
完全信息静态博弈 纳什均衡
纳什(1950,1951)
不完全信息
不完全信息静态博弈 贝叶斯纳什均衡
0,300 0,300
纳什均衡:进入,默许;不进入,斗争
第29页/共293页
第一章 导论
• 人生是永不停歇的博弈过程,博弈意略达到合意的结果。 • 作为博弈者,最佳策略是最大限度地利用游戏规则,最
大化自己的利益; • 作为社会最佳策略,是通过规则使社会整体福利增加。
第30页/共293页
第一章 导论-基本概念
一只河蚌正张开壳晒太阳,不料,飞 来了一只鸟,张嘴去啄他的肉,河蚌连忙合 起两张壳,紧紧钳住鸟的嘴巴,鸟说:“今 天不下雨,明天不下雨,就会有死蚌肉。” 河蚌说:“今天不放你,明天不放你,就会 有死鸟。”谁也不肯松口,有一个渔夫看见 了,便过来把他们一起捉走了。
第17页/共293页
第一章 导论-囚徒困境
✓“要害”是否在于“利己主义”即“个人理
性”?
第20页/共293页
如果两个企业联合起来形成卡特尔,选择垄断利润最大化的产量,每 个企业都可以得到更多的利润。给定对方遵守协议的情况下,每个企业都 想增加产量,结果是,每个企业都只得到纳什均衡产量的利润,它严格小 于卡特而产量下的利润。
• 请举几个囚徒困境的例子
第18页/共293页
第一章 导论-囚徒困境
知识:完全信息博弈和不完全信息博弈。 ❖完全信息:每一个参与人对所有其他参与人的(对手)的特征、
战略空间及支付函数有准确的 知识,否则为不完全信息。
第33页/共293页
第一章 导论-基本概念
• 博弈的划分:
行动顺序 信息
完全信息
静态
完全信息静态博弈 纳什均衡
纳什(1950,1951)
不完全信息
不完全信息静态博弈 贝叶斯纳什均衡
0,300 0,300
纳什均衡:进入,默许;不进入,斗争
第29页/共293页
第一章 导论
• 人生是永不停歇的博弈过程,博弈意略达到合意的结果。 • 作为博弈者,最佳策略是最大限度地利用游戏规则,最
大化自己的利益; • 作为社会最佳策略,是通过规则使社会整体福利增加。
第30页/共293页
第一章 导论-基本概念
一只河蚌正张开壳晒太阳,不料,飞 来了一只鸟,张嘴去啄他的肉,河蚌连忙合 起两张壳,紧紧钳住鸟的嘴巴,鸟说:“今 天不下雨,明天不下雨,就会有死蚌肉。” 河蚌说:“今天不放你,明天不放你,就会 有死鸟。”谁也不肯松口,有一个渔夫看见 了,便过来把他们一起捉走了。
第17页/共293页
第一章 导论-囚徒困境
✓“要害”是否在于“利己主义”即“个人理
性”?
第20页/共293页
运筹学第13章博弈论(20141202版)-课件
1.1.2 引例 斗鸡博弈(懦夫博弈)
进 大将军
退
大英雄
进
退
-3, -3
2, 0
0, 2
0, 0
第1节 博弈论概论│什么是博弈论
1.1.2 引例 斗鸡博弈(懦夫博弈)ቤተ መጻሕፍቲ ባይዱ
独木桥
冷战期间美苏抢占地盘,一方抢占一块地盘,另一方就占另一块。 夫妻吵架,一方厉害,另一方就出去躲躲。
第1节 博弈论概论│什么是博弈论
第1节 博弈论概论│什么是博弈论
1.1.2 引例 囚徒困境与苏美争霸
美国
不扩军备战 扩军备战
不扩军备战 (10, 10) (100, -100)
前苏联
在苏美争霸博弈中,美国和前苏联都处于“囚徒困境”中。
扩军备战 (-100, 100)
(0,0)
第1节 博弈论概论│什么是博弈论
1.1.2 引例
智猪博弈
第1节 博弈论概论│什么是博弈论
1.1.3 博弈论的概念 博弈论(game theory):研究利益存在冲突的决策主体在相互依赖的条件下,如何选择适
当的策略实施以获得最大利益的思想和方法。 1 研究对象不是客观规律,而是带有主动性的人的活动。
2 最优不是绝对的,而是现有主客观条件下的理想结果。
第1节 博弈论概论│什么是博弈论
第1节 博弈论概论│什么是博弈论
1.1.2 引例
囚徒困境是图克(Tucker)1950年提出的,该博弈是博弈论最经典、著名的博弈。该
博弈本身讲的是一个法律刑侦或犯罪学方面的问题,但可以扩展到许多经济问题,以及
各种社会问题。
坦白
囚徒 B
不坦白
囚徒 A
坦白 不坦白
-5, -5 -10, -1
进 大将军
退
大英雄
进
退
-3, -3
2, 0
0, 2
0, 0
第1节 博弈论概论│什么是博弈论
1.1.2 引例 斗鸡博弈(懦夫博弈)ቤተ መጻሕፍቲ ባይዱ
独木桥
冷战期间美苏抢占地盘,一方抢占一块地盘,另一方就占另一块。 夫妻吵架,一方厉害,另一方就出去躲躲。
第1节 博弈论概论│什么是博弈论
第1节 博弈论概论│什么是博弈论
1.1.2 引例 囚徒困境与苏美争霸
美国
不扩军备战 扩军备战
不扩军备战 (10, 10) (100, -100)
前苏联
在苏美争霸博弈中,美国和前苏联都处于“囚徒困境”中。
扩军备战 (-100, 100)
(0,0)
第1节 博弈论概论│什么是博弈论
1.1.2 引例
智猪博弈
第1节 博弈论概论│什么是博弈论
1.1.3 博弈论的概念 博弈论(game theory):研究利益存在冲突的决策主体在相互依赖的条件下,如何选择适
当的策略实施以获得最大利益的思想和方法。 1 研究对象不是客观规律,而是带有主动性的人的活动。
2 最优不是绝对的,而是现有主客观条件下的理想结果。
第1节 博弈论概论│什么是博弈论
第1节 博弈论概论│什么是博弈论
1.1.2 引例
囚徒困境是图克(Tucker)1950年提出的,该博弈是博弈论最经典、著名的博弈。该
博弈本身讲的是一个法律刑侦或犯罪学方面的问题,但可以扩展到许多经济问题,以及
各种社会问题。
坦白
囚徒 B
不坦白
囚徒 A
坦白 不坦白
-5, -5 -10, -1
精品课程《博弈论》PPT课件(全)
人博弈 两人博弈有多种可能性,博弈方的利益方向可
能一致,也可以不一致
三、多人博弈
三个博弈方之间的博弈 可能存在“破坏者”:其策略选择对自身的利
益并没有影响,但却会对其他博弈方的利益产 生很大的,有时甚至是决定性的影响。申办奥 运会是典型例子。 多人博弈的表示有时与两人博弈不同,需要多 个得益矩阵,或者只能用描述法
动态博弈、重复博弈。
静态博弈:所有博弈方同时或可看作同时选择 策略的博弈 —田忌赛马、猜硬币、古诺模型
动态博弈:各博弈方的选择和行动又先后次序 且后选择、后行动的博弈方在自己选择、行 动之前可以看到其他博弈方的选择和行动 —弈棋、市场进入、领导——追随型市场 结构
重复博弈:同一个博弈反复进行所构成的博弈, 提供了实现更有效略博弈结果的新可能 —长期客户、长期合同、信誉问题
博弈论
孔融四届时,有一夛,父亭乘了冩丢梨回宛,
陶谦吏亸叹孜癿时俳,又问亸:“亵绉泶孜癿 觇
店看,佝觏为叴小梨刁算叾?”孔融回答该: “我丌
过觑了一次梨,哏哏単因此爱抋了我一辈子, 社伕
乔绎了我杳高癿荣觋。奝杸抂觑出癿遲丢多梨 看俺
昤道徇成本,简直就昤一本万利唲!
阿克洛夫:买卖
主对于要交易的“旧 车”存在信息不对称, 买主通常不愿意出高 价,这样持有好车的 买主只好退出市场, 市场上都剩下“坏 车”,买主则越来越 不愿意光顾,旧车市 场萎缩直至消失。
20 (q1 q2 q3)
0
i P qi [20 q1 q2 q3 ] qi
No Q 20
Q 20
Image
q1
q2
q3
P
1
2
3
4
8
6
2
8
16
能一致,也可以不一致
三、多人博弈
三个博弈方之间的博弈 可能存在“破坏者”:其策略选择对自身的利
益并没有影响,但却会对其他博弈方的利益产 生很大的,有时甚至是决定性的影响。申办奥 运会是典型例子。 多人博弈的表示有时与两人博弈不同,需要多 个得益矩阵,或者只能用描述法
动态博弈、重复博弈。
静态博弈:所有博弈方同时或可看作同时选择 策略的博弈 —田忌赛马、猜硬币、古诺模型
动态博弈:各博弈方的选择和行动又先后次序 且后选择、后行动的博弈方在自己选择、行 动之前可以看到其他博弈方的选择和行动 —弈棋、市场进入、领导——追随型市场 结构
重复博弈:同一个博弈反复进行所构成的博弈, 提供了实现更有效略博弈结果的新可能 —长期客户、长期合同、信誉问题
博弈论
孔融四届时,有一夛,父亭乘了冩丢梨回宛,
陶谦吏亸叹孜癿时俳,又问亸:“亵绉泶孜癿 觇
店看,佝觏为叴小梨刁算叾?”孔融回答该: “我丌
过觑了一次梨,哏哏単因此爱抋了我一辈子, 社伕
乔绎了我杳高癿荣觋。奝杸抂觑出癿遲丢多梨 看俺
昤道徇成本,简直就昤一本万利唲!
阿克洛夫:买卖
主对于要交易的“旧 车”存在信息不对称, 买主通常不愿意出高 价,这样持有好车的 买主只好退出市场, 市场上都剩下“坏 车”,买主则越来越 不愿意光顾,旧车市 场萎缩直至消失。
20 (q1 q2 q3)
0
i P qi [20 q1 q2 q3 ] qi
No Q 20
Q 20
Image
q1
q2
q3
P
1
2
3
4
8
6
2
8
16
博弈论最全完整ppt 讲解
完全信息
纳什均衡(NE)
子博弈完美纳什 均衡(SPNE)
不完全信息
贝氏纳什均衡 (BNE)
完美贝氏纳什均衡 (PBNE)及序贯均 衡(SE)
静态博弈与动态博弈
(static games and dynamic games)
同时决策或者同时行动的博弈属于静态 博弈;先后或序贯决策或者行动的博弈, 属于动态博弈
如果一个博弈在所有各种对局下全体参 与人之得益总和总是保持为一个常数, 这个博弈就叫常和博弈;
相反,如果一个博弈在所有各种对局下 全体参与人之得益总和不总是保持为一 个常数,这个博弈就叫非常和博弈。
常和博弈也是利益对抗程度最高的博弈。 非常和(变和)博弈蕴含双赢或多赢。
导论
四、主要参考文献
博弈论为众多学科提供了分析的概念和方 法:经济学和商学,政治科学,生物学, 心 理学和哲学。
如何在“博弈”中获胜?
日常生活中的博弈(“游戏”)往往指的是 诸如赌博和运动这样的东西: 赌抛硬币 百米赛跑 打网球/橄榄球
How can you win such games? 许多博弈都包含着运气、技术和策略。 策略是为了获胜所需要的一种智力的技巧。
威廉·维克瑞, 1914-1996, 生于美国
詹姆斯·莫里斯 1936年生于英国
2001年诺贝尔经济学奖获得者
三位美国学者乔治-阿克尔洛夫(George A. Akerlof)、迈克尔-斯彭斯(A. Michael Spence)和约瑟夫-斯蒂格利茨(Joseph E. Stiglitz)
获奖理由:在“对充满不对称信息市场进 行分析”领域做出了重要贡献。
即使决策或行动有先后,但只要局中人 在决策时都还不知道对手的决策或者行 动是什么,也算是静态博弈
博弈论 PPT课件
所有别的游戏者策略的简记法
s-i=(s1,…,si-1,si+1,…, sn) 纳什均衡简述为: ui(si*,s-i*)≥ui(si,s-i*), si∈Si
博弈方
博弈方:独立决策、独立承担博弈结果的个人 或组织 博弈规则面前博弈方之间平等,不因博弈方之 间权利、地位的差异而改变 博弈方数量对博弈结果和分析有影响 根据博弈方数量分单人博弈、两人博弈、多人 博弈等。最常见的是两人博弈,单人博弈是退 化的博弈
策略 策略:博弈中各博弈方的选择内容 策略有定性定量、简单复杂之分 不同博弈方之间不仅可选策略不同,而且可 选策略数量也可不同 有限博弈:每个博弈方的策略数都是有限的 无限博弈:至少有某些博弈方的策略有无限 多个
纳什均衡
策略空间:S1,……Sn 博弈方i的第j个策略:sij∈Si 博弈方i的得益:ui 博弈:G={S1 ,…,Sn,u1,…,un} 纳什均衡:在博弈G={S1 ,…,Sn,u1,…,un}中,如果 由各个博弈方的各一个策略组成的某个策略组合( s1*,…, sn* )中,任一i博弈方si*的策略,都是对其余博弈方策略的组 合( s1*,…,si-1*,si+1*,…,sn* )的最佳对策,即ui( s1*,…,si-1*,si*,si+1*,…,sn* )≥ ui( s1*,…,si-1*,sij, si+1*,…,sn* ) 对任意sij∈Si都成立,则称( s1*,…,sn* ) 为G的一个纳什均衡
严格下策反复消去法
严格下策:不管其它博弈方的策略如何变化, 给一个博弈方带来的收益总是比另一种策略 给他带来的收益小的策略 严格下策反复消去
左 上 下 1,0 0,4 1,3 中 1, 3 0, 2 右 0, 1 2, 0 左 1,0 0,4 中 1, 3 0, 2 左 1,0 中 1,3
博弈论专题PPT课件
流浪汉 找工作 游荡
B 正面 反面
政 救济 3,2 -1,3 A 正面 -1,1 1,-1 府1,-1 -1,1
(一) 完全信息静态博弈:纳什均衡
----混合战略纳什均衡
• 纯战略: • 参与人在每一个给定信息的情况下只选择一个特定的行动 • 混合战略: • 参与人在每一个给定信息的情况下以某种概率分布随机地选
博弈信息:影响最后博弈结局的所有参与人的情报 “完美信息”-确定的结果 “不完美信息”-概率期望
依据支付结果分为零和博弈、常和博弈以及变和 博弈
非合作博弈理论
完全信息
静态 完全信息静态博弈
纳什均衡 纳什(1950,1951)
不完全信息
不完全信息静态博弈 贝叶斯纳什均衡 海萨尼 (1967-1968)
such that no player has incentive to unilaterally change her action. Players are in
equilibrium if a change in strategies by any one of them would lead that player to earn
动态
完全信息动态博弈 子博弈精炼纳什均衡
泽尔腾(1965) 不完全信息动态博弈 精炼贝叶斯纳什均衡
泽尔腾(1975) Kreps和Wilson(1982)
Fudenberg和Tirole (1991)
(一)完全信息静态博弈:纳什均衡 Nash Equilibrium
A Nash equilibrium, named after John Nash, is a set of strategies, one for each player,
西方经济学博弈论全解ppt课件.ppt
小猪的最优策略:等待 大猪无最优策略:即大猪的最优策略是依赖于 小猪的策略
此时用重复剔除严格劣策略的思路找出均衡:小 猪的严格劣策略为按,剔除“按”后,小猪只 有一种策略等待,大猪仍有两个策略,但此时, “等待”已成为大猪的劣策略,剔除,大猪的 最优策略——按
这是一个“多劳不多得,少劳不少得”的均衡
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
博弈论与主流经济学的发展
传统经济学的假设及其局限性
两个基本假设:完全竞争,完美信息 局限性:交易主体的数量其实很有限;信息是不对称的 一般均衡理论是整个经济学的理论基石和道义基础,市场机
博弈论与主流经济学的发展
博弈论研究的是:在策略性环境中如何进 行策略性决策和采取策略性行动的科学。 当成果无法由个体完全掌握,而结局须视 群体共同决策而定时,个人为了取胜,应 该采取什么策略
博弈论成为通用方法论,经济学、政治学、 管理、军事、外交、国际关系、公共选择、 犯罪学
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
博弈论:专门研究博弈如何出现均衡的规 律的学问
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
博弈论要点
博弈论的基本概念包括:参与人、参与人的策 略、参与人的支付(效用)
博弈有不同的种类:
从行动顺序角度:
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
此时用重复剔除严格劣策略的思路找出均衡:小 猪的严格劣策略为按,剔除“按”后,小猪只 有一种策略等待,大猪仍有两个策略,但此时, “等待”已成为大猪的劣策略,剔除,大猪的 最优策略——按
这是一个“多劳不多得,少劳不少得”的均衡
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
博弈论与主流经济学的发展
传统经济学的假设及其局限性
两个基本假设:完全竞争,完美信息 局限性:交易主体的数量其实很有限;信息是不对称的 一般均衡理论是整个经济学的理论基石和道义基础,市场机
博弈论与主流经济学的发展
博弈论研究的是:在策略性环境中如何进 行策略性决策和采取策略性行动的科学。 当成果无法由个体完全掌握,而结局须视 群体共同决策而定时,个人为了取胜,应 该采取什么策略
博弈论成为通用方法论,经济学、政治学、 管理、军事、外交、国际关系、公共选择、 犯罪学
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
博弈论:专门研究博弈如何出现均衡的规 律的学问
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
博弈论要点
博弈论的基本概念包括:参与人、参与人的策 略、参与人的支付(效用)
博弈有不同的种类:
从行动顺序角度:
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统