数学思想方法(一)整体思想、转化思想、分类讨论思想
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年中考数学二轮复习精品资料
数学思想方法(一)
(整体思想、转化思想、分类讨论思想)
一、中考专题诠释
数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。
抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.二、解题策略和解法精讲
数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。
三、中考考点精讲
考点一:整体思想
整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。
整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。
例1 (2013•吉林)若a-2b=3,则2a-4b-5= .
思路分析:把所求代数式转化为含有(a-2b)形式的代数式,然后将a-2b=3整体代入并求值即可.
解:2a-4b-5=2(a-2b)-5=2×3-5=1.
故答案是:1.
点评:本题考查了代数式求值.代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式(a-2b)的值,然后利用“整体代入法”求代数式的值.
对应训练
1.(2013•福州)已知实数a,b满足a+b=2,a-b=5,则(a+b)3•(a-b)3的值是.
1.1000
考点二:转化思想
转化思想是解决数学问题的一种最基本的数学思想。在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。转化的内涵非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。
对应训练
考点三:分类讨论思想
在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。分类的原则:(1)分类中的每一部分是相互
独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.正确的分类必须是周全的,既不重复、也不遗漏. 例3 (2013•山西)某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y (元)与印刷份数x (份)之间的关系如图所示:
(1)填空:甲种收费的函数关系式是 .
乙种收费的函数关系式是 .
(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?
思路分析:(1)设甲种收费的函数关系式y 1=kx+b ,乙种收费的函数关系式是y 2=k 1x ,直接运用待定系数法就可以求出结论;
(2)由(1)的解析式分三种情况进行讨论,当y 1>y 2时,当y 1=y 2时,当y 1<y 2时分别求出x 的取值范围就可以得出选择方式.
解:(1)设甲种收费的函数关系式y 1=kx+b ,乙种收费的函数关系式是y 2=k 1x ,由题意,得
616100b k b
=⎧⎨=+⎩,12=100k 1, 解得:0.16k b =⎧⎨=⎩
,k 1=0.12, ∴y 1=0.1x+6,y 2=0.12x ;
(2)由题意,得
当y 1>y 2时,0.1x+6>0.12x ,得x <300;
当y 1=y 2时,0.1x+6=0.12x ,得x=300;
当y 1<y 2时,0.1x+6<0.12x ,得x >300;
∴当100≤x <300时,选择乙种方式合算;
当x=100时,甲乙两种方式一样合算;
当300<x≤4500时,选择甲种方式合算.
故答案为:y 1=0.1x+6,y 2=0.12x .
点评:本题考查待定系数法求一次函数的解析式的运用,运用函数的解析式解答方案设计的运用,解答时求出函数解析式是关键,分类讨论设计方案是难点.
对应训练
3.(2013•牡丹江)某农场的一个家电商场为了响应国家家电下乡的号召,准备用不超过105700元购进40台电脑,其中A 型电脑每台进价2500元,B 型电脑每台进价2800元,A 型每台售价3000元,B 型每台售价3200元,预计销售额不低于123200元.设A 型电脑购进x 台、商场的总利润为y (元).
(1)请你设计出进货方案;
(2)求出总利润y (元)与购进A 型电脑x (台)的函数关系式,并利用关系式说明哪种方案的利润最大,最大利润是多少元?
(3)商场准备拿出(2)中的最大利润的一部分再次购进A 型和B 型电脑至少各两台,另一部分为地震灾区购买单价为500元的帐篷若干顶.在钱用尽三样都购买的前提下请直接写出购买A 型电脑、B 型电脑和帐篷的方案.
3.解:(1)设A 型电脑购进x 台,则B 型电脑购进(40-x )台,由题意,得
25002800(40-)10570030003200(40-)123200
x x x x +≤⎧⎨+≥⎩, 解得:21≤x≤24,
∵x 为整数,
∴x=21,22,23,24
∴有4种购买方案:
方案1:购A 型电脑21台,B 型电脑19台;
方案2:购A 型电脑22台,B 型电脑18台;
方案3:购A 型电脑23台,B 型电脑17台;
方案4:购A 型电脑24台,B 型电脑16台;
(2)由题意,得
y=(3000-2500)x+(3200-2800)(40-x ),
=500x+16000-400x ,
=100x+16000.
∵k=100>0,