数理统计大作业(北航)2014版
北航数值分析报告大作业一
北京航空航天大学数值分析大作业一学院名称自动化专业方向控制工程学号 ZY1403140学生许阳教师玉泉日期 2014 年 11月26 日设有501501⨯的实对称矩阵A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=5011A a b c b c c b c b a其中,064.0,16.0),501,,2,1(64.0)2.0sin()024.064.1(1.0-==⋅⋅⋅=--=c b i e i i a ii 。
矩阵A 的特征值为)501,,2,1(⋅⋅⋅=i i λ,并且有||min ||,501150121i i s λλλλλ≤≤=≤⋅⋅⋅≤≤1.求1λ,501λ和s λ的值。
2.求A 的与数4015011λλλμ-+=kk 最接近的特征值)39,,2,1(⋅⋅⋅=k k i λ。
3.求A 的(谱数)条件数2)A (cond 和行列式detA 。
一 方案设计1 求1λ,501λ和s λ的值。
s λ为按模最小特征值,||min ||5011i i s λλ≤≤=。
可使用反幂法求得。
1λ,501λ分别为最大特征值及最小特征值。
可使用幂法求出按模最大特征值,如结果为正,即为501λ,结果为负,则为1λ。
使用位移的方式求得另一特征值即可。
2 求A 的与数4015011λλλμ-+=kk 最接近的特征值)39,...,2,1(=k k i λ。
题目可看成求以k μ为偏移量后,按模最小的特征值。
即以k μ为偏移量做位移,使用反幂法求出按模最小特征值后,加上k μ,即为所求。
3 求A 的(谱数)条件数2)(A cond 和行列式detA 。
矩阵A 为非奇异对称矩阵,可知,||)(min max2λλ=A cond(1-1)其中m ax λ为按模最大特征值,min λ为按模最小特征值。
detA 可由LU 分解得到。
因LU 均为三角阵,则其主对角线乘积即为A 的行列式。
二 算法实现1 幂法使用如下迭代格式:⎪⎪⎩⎪⎪⎨⎧⋅===⋅⋅⋅=------||max |)|sgn(max ||max /),,(111111)0()0(10k k k k k k k k Tn u u Ay u u u y u u u β任取非零向量 (2-1)终止迭代的控制理论使用εβββ≤--||/||1k k k , 实际使用εβββ≤--||/||||||1k k k(2-2)由于不保存A 矩阵中的零元素,只保存主对角元素a[501]及b,c 值。
北航数理统计第一次大作业
数理统计第一次课程论文广州恒大队在2015赛季亚冠的进球数的多元线性回归模型学号: SY1527205姓名:郭谢有摘要本赛季亚洲冠军联赛,来自中国的球队广州恒大淘宝队最终在决赛中力克阿联酋的迪拜阿赫利队,三年之内第二次夺得亚冠冠军。
为了研究恒大的夺冠过程,本文选取了恒大该赛季亚冠总共15场比赛中的进球数为因变量,对可能影响进球数的射门数、射正数等7个自变量进行统计,并进一步利用统计软件SPSS对以上数据进行了多元逐步线性回归。
最终确定了进球数与各因素之间关系的“最优”回归方程。
关键词:多元线性回归,逐步回归法,广州恒大,SPSS目录摘要 (1)1.引言 (3)2.符号说明 (3)3.数据的采集和整理 (3)3.1数据的采集 (3)3.2建模 (4)4.数据分析及计算 (4)4.结论 (9)参考文献 (10)致谢 (10)1.引言一场足球比赛的进球数说明了一支球队攻击力的强弱,也是决定比赛胜负的至关因素,综合反映出这支球队的实际水平。
而作为竞技体育,足球场上影响进球数的因素很多,为了研究本赛季恒大在亚冠夺冠过程中的14场比赛中进球数与其他一些因素的关系,本论文从搜达足球和新浪体育数据库中查找了进球数和其他7个主要影响因素的数据,包括射门次数、射正次数、传球次数、传中次数、角球次数、抢断次数。
并进一步采用多元逐步回归分析方法对以上因素进行了显著性分析,从而确定了关于恒大在本赛季亚冠中进球数的最优多元线型回归方程。
2.符号说明3.数据的采集和整理3.1数据的采集本文统计数据时,查阅了搜达足球数据库,确定恒大在亚冠14场比赛中的进球数为因变量,并初步选取这14场比赛中的射门次数、射正次数、传球次数、传中次数、角球次数、抢断次数7因素为自变量,具体数据见下表1。
3.2建模本文选取了恒大在亚冠比赛中的进球数作为因变量y,并选取可能对进球数造成影响的因素为自变量,其中对应关系在符号说明中已经列举。
这里构建模型如下:7⋅X i+εy=β0+∑βii=1其中,其中ε为随机误差项,β0为常数项,βi为待估计的参数。
数理统计大作业
数理统计学大作业学院航空航天工程学部专业飞行器设计班级航宇二班学号142103130228 姓名张立指导教师姜永负责教师沈阳航空航天大学2014年12月目录 (2)前言 (3)一、采集样本数据整理及SPSS统计软件的实现 (4)1.1、数据的收集方法及说明 (4)1.2、数据整理:给出频数、频率分布表及偏度和峰度 (4)1.3、画出直方图和折线图 (6)1.4、经验分布函数和图形 (6)1.5、各种概率分布 (7)二、给出总体分布的参数估计 (12)2.1、矩估计法 (12)2.2、最大似然估计 (12)2.3、参数区间估计 (13)三、参数的假设检验 (16)3.1. 样本统计数据的t检验 (16)3.2样本统计数据的2χ检验 (17)四、非参数假设检验(2χ拟合优度检验) (18)4.1、2χ拟合优度检验 (18)五、结论 (20)参考文献 (21)数理统计学是研究有效地运用数据收集与数据处理、多种模型与技术分析、社会调查与统计分析等,对科技前沿和国民经济重大问题和复杂问题,以及社会和政府中的大量问题,如何对数据进行推理,以便对问题进行推断或预测,从而对决策和行动提供依据和建议的应用广泛的基础性学科。
随着科学技术的发展,数理统计的作用在国民生活中越来越重要,特别是现在随着大数据的时代来临,迫切的需要我们对大量数据的处理能力,当然这些大量的数据不可能用人工计算,有很多可以实际应用的数理统计软件,这次大作业我使用的是SPSS软件。
由于数理统计是一门实用性极强的学科,在学习中要紧扣它的实际背景,理解统计方法的直观含义。
了解数理统计能解决那些实际问题。
对如何处理抽样数据,并根据处理的结果作出合理的统计推断,该结论的可靠性有多少要有一个总体的思维框架,这样,学起来就不会枯燥而且容易记忆。
例如估计未知分布的数学期望,就要考虑到:1.如何寻求合适的估计量的途径,2.如何比较多个估计量的优劣。
这样,针对1按不同的统计思想可推出矩估计和极大似然估计,而针对2又可分为无偏估计、有效估计、相合估计,因为不同的估计名称有着不同的含义,一个具体估计量可以满足上面的每一个,也可能不满足。
数理统计 北航 大作业
北京市财政收入的逐步回归模型研究摘要:财政收入水平高低是反映一国经济实力的重要标志,关系着一个国家经济的发展和社会的进步。
本文根据北京市2012年度统计年鉴,选取了农林牧渔业总产值、工业总产值、建筑业总产值、常驻总人口数、社会消费品零售总额、入境旅游人数、客运量、货运量、全社会固定资产投资以及第三产业总产值,共10个指标,对北京市财政收入及其可能的影响因素进行了研究。
文中运用逐步线性回归方法建立了多元线性回归模型,分析各因素对该地区财政收入的影响;利用SPSS软件进行求解。
通过分析SPSS软件计算的数据,从相关性检验、多重共线性检验、方差分析以及残差分析四个角度,分别对模型合理性进行了验证。
结果表明,北京市财政收入与建筑业总产值和农林牧渔也总产值呈显著线性关系。
其中与建筑业正相关,与农林牧渔业负相关。
关键字:财政收入,多元,逐步线性回归,SPSS1. 引言财政收入是指政府为履行其职能、实施公共政策和提供公共物品与服务需要而集中的一切资金的综合,包括税收、企事业收入、能源交通重点建设基金收入、债务收入、规费收入、罚没收入等[1]。
财政收入水平高低是反映一国经济实力的重要标志,关系着一个国家经济的发展和社会的进步。
因此,研究财政收入的增长及就显得尤为必要[2]。
一个地区的财政收入可能受到诸多因素的影响,如工业总产值、农业总产值、建筑业总产值、人口数等。
本文以北京市为例,以财政收入为因变量,选取农林牧渔业总产值、工业总产值、建筑业总产值、常驻总人口数、社会消费品零售总额、入境旅游人数、客运量、货运量、全社会固定资产投资以及第三产业总产值这10个指标为自变量,利用SPSS统计软件进行回归分析,建立财政收入影响因素模型,分析影响财政收入的主要因素及其影响程度。
2. 理论概述2.1 多元线性回归[3]在许多实际问题中,影响一个事物的因素常常不止一个,采用多元线性回归分析方法可以找出这些因素与事物之间的数量关系。
北航数值分析报告大作业第八题
北京航空航天大学数值分析大作业八学院名称自动化专业方向控制工程学号学生姓名许阳教师孙玉泉日期2014 年11月26 日一.题目关于x , y , t , u , v , w 的方程组(A.3)⎪⎪⎩⎪⎪⎨⎧=-+++=-+++=-+++=-+++79.0sin 5.074.3cos 5.007.1cos sin 5.067.2cos 5.0y w v u t x w v u t y w v u t x w v u t (A.3) 以及关于z , t , u 的二维数表(见表A-1)确定了一个二元函数z =f (x , y )。
表A-1 二维数表1. 试用数值方法求出f (x , y ) 在区域}5.15.0,8.00|), {≤≤≤≤=y x y x D (上的近似表达式∑∑===k i kj s r rs y x c y x p 00),(要求p (x , y )以最小的k 值达到以下的精度∑∑==-≤-=100207210)],(),([i j i i i i y x p y x f σ其中j y i x i i 05.05.0,08.0+==。
2. 计算),(),,(****j i j i y x p y x f (i =1,2,…,8 ; j =1,2,…,5) 的值,以观察p (x , y ) 逼近f (x , y )的效果,其中j y i x j i 2.05.0,1.0**+==。
二.算法设计(一)总体思路1.题目要求∑∑===ki kj s r rs y x c y x p 00),(对f(x, y) 进行拟合,可选用乘积型最小二乘拟合。
),(i i y x 与),(i i y x f 的数表由方程组与表A-1得到。
2.),(**j i y x f 与1使用相同方法求得,),(**j i y x p 由计算得出的p(x,y)直接带入),(**j i y x 求得。
(二)算法实现1. ),(i i y x 与),(i i y x f 的数表的获得对区域}5.15.0,8.00|), {≤≤≤≤=y x y x D (上的f (x , y )值可由方程组及二维数表得到。
北航数理统计大作业 聚类分析
应用数理统计聚类分析与判别分析(第二次作业)学院:姓名:学号:2015年12月目录我国部分城市经济发展水平的聚类分析和判别分析................................. - 1 - 摘要:................................................................... - 1 -1. 引言 ................................................................ - 1 -2. 相关统计基础理论 .................................................... - 1 -2.1 聚类分析......................................................... - 1 -2.2 判别分析......................................................... - 2 -3. 模型建立 ............................................................ - 3 -3.1 设置变量......................................................... - 3 -3.2 数据收集和整理................................................... - 3 -4. 数据结果及分析 ...................................................... - 5 -4.1 聚类分析......................................................... - 5 -4.2 判别分析......................................................... - 7 -5. 结论 ............................................................... - 11 -参考文献................................................................ - 12 -我国部分城市经济发展水平的聚类分析和判别分析摘要:本文基于《中国统计年鉴》(2014年版)统计数据,统计全国各省市居民消费情况,包括各地区农村居民人均纯收入、农村居民人均现金消费、城镇居民人均可支配收入、城镇居民人均现金消费情况共4个指标,利用统计软件SPSS综合考虑各指标,对所选地区进行K-Means 聚类分析,利用Fisher 线性判别待判地区类型,进一步验证所建模型的有效性。
北航研究生数理统计第二次大作业-聚类分析
Z 场均 角球数 0.11373 2.18400 -0.22977 0.02089 0.21585 0.09516 0.32725 -0.90749 -1.22314 0.51293 -0.44330 1.62698 -1.68732 0.32725 -0.83322 1.09780 1.37632 -1.83586 0.79144 1.09780 0.16943 0.94926 -1.68732 -0.13694 -0.75895 -0.50829 -0.13694 -0.44330 -1.37168
北京航空航天大学 数理统计第二次大作业
欧洲足球俱乐部竞技水平的聚类分析和判别分析
2015 年 12 月
欧洲足球俱乐部竞技水平的聚类分析和判别分析
摘要:近年来,人们对足球的关注越来越多。欧洲作为足球的发源地,其五大联 赛自然吸引着大批人的目光。尤其是欧洲冠军杯联赛更是代表着欧洲足球的最高 水平,吸引着各国最好的球队参加。本文从参加 2014-2015 赛季欧洲冠军杯联赛 的球队中选取 29 支球队,根据这些球队的一些技术统计资料,用 SPSS 软件对 其进行聚类分析,将这些球队按水平层次分为了 5 类。并选取 3 支球队,利用聚 类分析的结果对这 3 支球队进行判别分析。结果表明,聚类分类结果与判别分析 结果基本符合实际情况。
由于不同的变量之间存在着较大的数量级的差别,因此要对数据变量进行标
准化处理。本文采用 Z 得分值法标准化的方法进行标准化,用 x 的值减去 x 的
均值再除以样本的方差。也就是把个案转换为样本均值为 0、标准差为 1 的样本。
如果不同变量的变量值数值相差太大,会导致计算个案间距离时,由于绝对值较
小的数值权数较小,个案距离的大小几乎由大数值决定,标准化过程可以解决此
北航数理统计第二次数理统计大作业 判别分析
数理统计大作业(二)全国各省发展程度的聚类分析及判别分析指导教师院系名称材料科学与工程院学号学生姓名2015 年 12 月21 日目录全国各省发展程度的聚类分析及判别分析 (1)摘要: (1)引言 (1)1实验方案 (2)1.1数据统计 (2)1.2聚类分析 (3)1.3判别分析 (4)2结果分析与讨论 (5)2.1聚类分析结果 (5)2.2聚类分析结果分析: (8)2.3判别分析结果 (9)2.4 Fisher判别结果分析: (11)参考文献: (16)全国各省发展程度的聚类分析及判别分析摘要:利用SPSS软件对全国31个省、直辖市、自治区(浙江、安徽、甘肃除外)的主要经济指标进行多种聚类分析,分析选择最佳聚类类数,并对浙江、湖南、甘肃进行类型判别分析。
通过这两个方法对全国各省进行发展分类。
本文选取了7项社会发展指标作为决定发展程度的影响因素,其中经济因素为主要因素,同时评估城镇化率和人口素质因素。
各项数据均来自2014年国家统计年鉴。
分析结果表明:北京市和上海市和天津市为同一类;江苏省和山东省和广东省为同一类型;河北、湖北、河南、湖南、四川、辽宁为同一类;其余的为另一类。
关键词:聚类分析、判别分析、发展引言聚类分析是根据研究对象的特征对研究对象进行分类的多元统计分析技术的总称。
它直接比较各事物之间的性质,将性质相近的归为一类,将性质差别较大的归入不同的类。
系统聚类分析又称集群分析,是聚类分析中应用最广的一种方法,它根据样本的多指标(变量)、多个观察数据,定量地确定样品、指标之间存在的相似性或亲疏关系,并据此连结这些样品或指标,归成大小类群,构成分类树状图或冰柱图。
判别分析是根据多种因素(指标)对事物的影响来实现对事物的分类,从而对事物进行判别分类的统计方法。
判别分析适用于已经掌握了历史上分类的每一个类别的若干样品,希望根据这些历史的经验(样品),总结出分类的规律性(判别函数)来指导未来的分类。
北航数理统计大作业(逐步回归)
BEIHANG UNIVERSITY应用数理统计第一次大作业学号:姓名:一班级:B11班2015年12月民航客运量的多元线性回归分析摘要:本文为建立以民航客运量为因变量的多元线性回归模型,选取了1996年至2013年的统计数据,包含国民生产总值,民航航线里程,过夜入境旅游人数,城镇居民可支配收入等因素,利用统计软件SPSS寸各因素进行了筛选分析,采用逐步回归法得到最优多元线性回归模型,并对模型的回归显著性、拟合度以及随机误差的正态性进行了检验,并采用2014年的数据进行检验,得到的结果达到预期,证明该模型建立是较为成功的。
关键词:多元线性回归,逐步回归法,民航客运量1. 引言随着社会的进步,人民生活水平的提高,如何获得更快捷方便的交通成为人们日益关注的问题。
因为航空的安全性,快速且价格水平越来越倾向大众,越来越多的人们选择航空这种交通方式。
近年来,我国的航空客运量已经进入世界前列,为掌握航空客运的动态,合理安排班机数量。
科学地对我国民航客运量的影响因素的分析,并得出其回归方程,进而能够估计航空客运量是非常有必要的。
本文收集整理了与我国航空客运量相关的历年数据,运用SPSS软件对数据进行分析,研究1996年起至2013年我国民航客运量y (万人)与国民生产总值X i (亿元)、铁路客运量X2 (万人)、民航航线里程X3 (万公里)、入境过夜旅游人数X4 (万人)、城镇居民人均可支配收入X5 (元)的关系。
采用逐步回归法建立线性模型,选出较优的线性回归模型。
2. 数据的统计与分析本文在进行统计时,查阅《中国统计摘要》,《中国统计年鉴2014》以及中国知网数据查询中的数据,收集了1996年至2013年各个自变量因素的数据,分析它们之间的联系。
整理如表1所示。
表1:年份民航客运量(万人)国内生产总值(亿元)铁路客运量(万人)民航航线里程(万公里)入境过夜旅游人数(万人)城镇居民可支配收入(元)1996 5555 78973 94797 116.65 1356.26 4838.9 1997 5630 84402.3 93308 142.5 1578.53 5160.3 1998 5755 89677.1 95085 150.58 1692.45 5425.1 1999 6094 88479.2 100164 152.22 1765.25 5854.1 2000 6722 99214.6 105073 150.29 1750.96 6280.1 2001 7524 109655.2 105155 155.36 1880.36 6859.6 2002 8594 120332.7 105606 163.77 2012.45 7702.8 2003 8759 135822.8 97260 174.95 2033.58 8472.2 2004 12123 159878.3 111764 204.94 2519.89 9421.6 2005 13827 184937.4 115583 199.85 2925.63 10493.1 2006 15968 216314.4 125656 211.35 3486.45 11759.5 2007 18576 265810.3 135670 234.3 3398.58 13785.8 2008 19251 314045.4 146193 246.18 3696.71 15780.8 2009 23052 340506.9 152451 234.51 4025.96 17174.7 2010 26769 397983.5 168145 276.5 4753.84 19109.4 2011 29316 473104 146192 349.05 4924.32 21809.8 2012 31896 519470.1 189337 328.01 5668.63 24564.7 2013 35397 568845.2 210597 410.6 5562.39 26955.12.1模型的建立以民航客运量y为因变量,以上5种影响因素为自变量X,构建回归方程:y = ?? + ?????+ e其中??为常数项,为误差项。
北航数理统计回归分析大作业
北航数理统计回归分析大作业(总17页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除数理统计(课程大作业1) 逐步回归分析学院:机械工程学院专业:材料加工工程日期:2014年12月7日摘要:本文介绍多元线性回归分析方法以及逐步回归法,然后结合实际,以我国1995-2012年的财政收入为因变量,选取了8个可能的影响因素,选用逐步回归法对各影响因素进行了筛选分析,最终确定了其“最优”回归方程。
关键字:多元线性回归 逐步回归法 财政收入 SPSS1 引言自然界中任何事物都是普遍联系的,客观事物之间往往都存在着某种程度的关联关系。
为了研究变量之间的相关关系,人们常用回归分析的方法,而回归分析是数理统计中一种常用方法。
数理统计作为一种实用有效的工具,广泛应用于国民经济的各个方面,在解决实际问题中发挥了巨大的作用,是一种理论联系实践、指导实践的科学方法。
财政收入,是指政府为履行其职能、实施公共政策和提供公共物品与服务需要而筹集的一切资金的总和。
财政收入表现为政府部门在一定时期内(一般为一个财政年度)所取得的货币收入。
财政收入是衡量一国政府财力的重要指标,政府在社会经济活动中提供公共物品和服务的范围和数量,在很大程度上决定于财政收入的充裕状况。
本文将以回归分析为方法,运用数理统计工具探求财政收入与各种统计指标之间的关系,总结主要影响因素,并对其作用、前景进行分析和展望。
2 多元线性回归2.1 多元线性回归简介在实际问题中,某一因素的变化往往受到许多因素的影响,多元回归分析的任务就是要找出这些因素之间的某种联系。
由于许多非线性的情形都可以通过变换转化为线性回归来处理,因此,一般的实际问题都是基于多元线性回归问题进行处理的。
对多元线性回归模型简要介绍如下:如果随机变量y 与m )2(≥m 个普通变量m x x x 21,有关,且满足关系式:εββββ++++=m m x x x y 22110 2,0σεε==D E(2.1)其中,2210,,,σββββm 是与m x x x 21,无关的未知参数,ε是不可观测的随机变量,),0(~2N I N σε。
北航研究生数理统计答案完全版
) , y ~ N ( 2 ,
2
n
),
(m 1) S12m
2
~ (m 1) ,
2
2 (n 1) S 2 n
2
~ 2 (n 1) ,
于是有, ( x 1 ) ~ N (0,
2
m
2 ) , ( y 2 ) ~ N (0,
2
n
2),
则
( x 1 ) ( y 2 ) ~ N (0, (
解:
E( X )
1 1 1 xdx xdx 0 2 2(1 ) 1 1 2 1 1 (1 2 ) 2 2 2(1 ) 2 1 1 1 2 (1 ) 4 4 4
第 4 页 /第 23 页
北京航空航天大学
研究生应用数理统计
书后部分习题解答整理版
做矩估计, x
1 2 , 4 1 。 2
ˆ 2x 可得 的矩估计,
9. ( P80.7)
解: (1)由分布函数得出概率密度函数
f ( x; )
d ( F ( x; ) x 1 x 1 dx 0x 1
n
2
(1 x ) ,
令
ln L n n - 2 (1 x ) 0 ,得到 2 x 1 , 2 2 2
i
ˆ x ˆ x min{x } 。 于是 2 的极大似然估计为 2 1 i
13. ( P81.12) x1 , x 2 ,…, x n 为来自总体 X 的简单样本,试证明下列估计量来自m , nm n
。
ˆz 于是有,
北航数理统计大作业2-聚类与判别分析
应用数理统计作业二学号:姓名:电话:二〇一四年十二月对NBA球队的聚类分析和判别分析摘要:NBA联盟作为篮球的最高殿堂深受广大球迷的喜爱,联盟的30支球队大家也耳熟能详,本文选取NBA联盟30支球队2013-2014常规赛赛季场均数据。
利用spss软件通过聚类分析对27个地区进行实力类型分类,并利用判断分析对其余3支球队对分类结果进行验证。
可以看出各球队实力类型与赛季实际结果相吻合。
关键词:聚类分析,判别分析,NBA目录1. 引言 (4)2、相关统计基础理论 (5)2.1、聚类分析 (5)2.2,判别分析 (6)3.聚类分析 (7)3.1数据文件 (7)3.2聚类分析过程 (9)3.3 聚类结果分析 (11)4、判别分析 (12)4.1 判别分析过程 (12)4.2判别检验 (17)5、结论 (20)参考文献 (21)致谢 (22)1. 引言1896年,美国第一个篮球组织"全国篮球联盟(简称NBL)"成立,但当时篮球规则还不完善,组织机构也不健全,经过几个赛季后,该组织就名存实亡了。
1946年4月6日,由美国波士顿花园老板沃尔特.阿.布朗发起成立了“美国篮球协会”(简称BAA)。
1949年在布朗的努力下,美国两大篮球组织BAA和NBL合并为“全国篮球协会”(简称NBA)。
NBA季前赛是 NBA各支队伍的热身赛,因为在每个赛季结束后,每支球队在阵容上都有相当大的变化,为了让各队磨合阵容,熟悉各自球队的打法,确定各队新赛季的比赛阵容、同时也能增进队员、教练员之间的沟通,所以在每个赛季开始之前,NBA就举办若干场季前赛,使他们能以比较好的状态投入到漫长的常规赛的比赛当中。
为了扩大NBA在全球的影响,季前赛有约三分之一的球队在美国以外的国家举办。
从总体上看,NBA的赛程安排分为常规赛、季后赛和总决赛。
常规赛采用主客场制,季后赛和总决赛采用七场四胜制的淘汰制。
[31]NBA常规赛从每年的11月的第一个星期二开罗,到次年的4月20日左右结束。
数理统计大作业(北航)2014版
应用数理统计大作业一学院:XXXXXXX学号:XXXXXXX姓名:XXX指导老师:XXX2014年12月21日国民生产总值增量的多元线性回归模型摘要:国民生产总值一直是衡量国家综合经济水平的重要指标,本文要讨论研究的是国民生产总值的增量趋势与各产业增值趋势间的多元线性关系[1]。
本论文搜集了我国从1998至2012年15年的国民生产与各产业增量指标,拟定数个自变量,代入统计软件SPSS 19.0[2]对各影响因素进行了统计分析,综合分析结果模拟多元线性回归函数。
模型建立之后,又将2013年数据作为测试集测试模型的拟合精确度,得到的结果达到预期值,得出模型建立较为成功。
关键词:逐步回归法,国民生产总值增量,线性拟合一引言国民生产总值(Gross Domestic Product)是在一定时期中,一个国家地区经济生产出的全部最终产品和劳务的价值,被公认为衡量国家经济状况的较佳指标。
它不仅仅反映了一定的经济表现,还可以反映国家的综合国力与经济发展前景,作为经济政策的制定依据,研究我国的国民生产总值的制约因素成为了学者们的热点问题。
下文就以1998年至2012年的统计数据为标准,利用SPSS软件作出了多元线性回归分析。
二统计分析2.1变量说明因变量——国民生产总值增值(亿元);自变量——第一产业增加值(亿元)自变量——第二产业增加值(亿元)自变量——第三产业增加值(亿元)自变量——工业增加值(亿元)自变量——建筑业增加值(亿元)2.2统计数据2000年9537.5 14944.72 45555.88 38713.95 40033.59 5522.29 1999年5274.77 14770.03 41033.58 33873.44 35861.48 5172.1 1998年5429.25 14817.63 39004.19 30580.47 34018.43 4985.76 表格2-11998~2012年训练集数据测试组国民生产总值增值(亿元)第一产业增加值(亿元)第二产业增加值(亿元)第三产业增加值(亿元)工业增加值(亿元)建筑业增加值(亿元)2013年49375.11 56957 249684.4 262203.8 210689.4 38995表格2-22013年测试集数据以上数据来自《中国统计年鉴2013》[3]中收录的近15年全国国民生产总值增值数据,考察与各产业间增量趋势变化中关系密切并且直观上有线性关系的因素,因此选取了第一产业增值、第二产业增值、第三产业增值、工业总产值增值、建筑业增值五大因素为自变量。
(完整word版)北航数理统计大作业1-线性回归分析
应用数理统计作业一学号:姓名:电话:二〇一四年十二月国内生产总值的多元线性回归模型摘要:本文首先选取了选取我国自1978至2012年间的国内生产总值为因变量,并选取了7个主要影响因素,进一步利用统计软件SPSS对以上数据进行了多元逐步线性回归。
从而找到了能反映国内生产总值与各因素之间关系的“最优”回归方程.然后利用多重线性的诊断找出存在共线性的自变量,剔除缺失值较多的因子.再次进行主成份线性回归分析,找出最优回归方程。
所得结论与我国当前形势相印证。
关键词:多元线性回归,逐步回归法,多重共线性诊断,主成份分析目录0符号说明 (1)1 介绍 (2)2 统计分析步骤 (3)2。
1 数据的采集和整理 (3)2。
2采用多重逐步回归分析 (7)2.3进行共线性诊断 (17)2。
4进行主成分分析确定所需主成份 (24)2。
5进行主成分逐步回归分析 (27)3 结论 (30)参考文献 (31)致谢 (32)0符号说明1 介绍文中主要应用逐步回归的主成份分析方法,对数据进行分析处理,最终得出能够反映各个因素对国内生产总值影响的最“优”模型及线性回归方程.国内生产总值是指在一定时期内(一个季度或一年),一个国家或地区的经济中所生产出的全部最终产品和劳务的价值,常被公认为衡量国家经济状况的最佳指标.它不但可反映一个国家的经济表现,还可以反映一国的国力与财富。
2012年1月,国家统计局公布2011年重要经济数据,其中GDP增长9.2%,基本符合预期。
2012年10月18日,统计显示,2012年前三季度国内生产总值353480亿元,同比增长7.7%;其中,一季度增长8.1%,二季度增长7。
6%,三季度增长7.4%,三季度增幅创下2009年二季度以来14个季度新低。
中国的GDP核算历史不长,上世纪90年代之前通常用“社会总产值”来衡量经济发展情况。
上世纪80年代初中国开始研究联合国国民经济核算体系的国内生产总值(GDP)指标。
北航-数理统计大作业
对中国各地财政收入情况的聚类分析和判别分析应用数理统计第二次大作业学院名称学号学生姓名摘要我国幅员辽阔,由于人才、地理位置、自然资源等条件的不同,各地区的财政收入类型各自呈现出不一样的发展趋势,通过准确定位中国各地区财政收入情况对于正确认识我国财政收入具有重要的意义。
本文以中国各地财政收入情况为研究对象,从《中国统计年鉴》中选取2011年期间中国各地财政收入情况为因变量,选取国内增值税、营业税、企业所得税、个人所得税、城市维护建设税、土地增值税、契税、专项收入、行政事业性收费收入、国有资本经营收入和国有资源(资产)有偿使用收入11个可能影响中国各地财政收入的因素为自变量,利用统计软件SPSS,对27个地区的财政收入进行了聚类分析,并对另外4个地区的财政收入进行了判别分析,并最终确定了中国各地区根据财政收入类型的分类情况。
关键词:聚类分析,判别分析,SPSS,中国各地财政收入类型1、引言财政收入,是指政府为履行其职能、实施公共政策和提供公共物品与服务需要而筹集的一切资金的总和。
财政收入表现为政府部门在一定时期内(一般为一个财政年度)所取得的货币收入。
财政收入是衡量一国政府财力的重要指标,政府在社会经济活动中提供公共物品和服务的范围和数量,在很大程度上决定于财政收入的充裕状况。
通过准确定位中国各地区财政收入情况对于正确认识我国财政收入具有重要的意义。
本文利用统计软件SPSS,根据各地区的财政收入情况,对北京、天津、河北等27个地区进行聚类分析,并对青海、重庆、四川、贵州4个省市进行判别分析,判断属于聚类分析结果中的哪种财政收入类型。
1.1 聚类分析聚类分析是根据研究对象的特征对研究对象进行分类的多元统计分析技术的总称,它直接比较各事物之间的性质,将性质相近的归为一类,将性质差别较大的归入不同的类。
本文采用的是系统聚类分析,它又称集群分析,是聚类分析中应用最广的一种方法,其基本思想是:首先将每个聚类对象看作一类,然后根据对象间的相似程度,将相似程度最高的两类进行合并,并计算合并后的类与其他类之间的距离,再选择相近者进行合并,每合并一次减少一类,直至所有的对象都并为一类为止。
北航14秋《统计学》在线作业三答案
统计学北航《统计学》在线作业三一,单选题1. 构成统计总体的基础为()。
A. 一致性B. 目的性C. 同质性D. 相关性?正确答案:C2. 当自变量按一定数量变化时,因变量也相应随之而等量变化,则两个变量之间存在着()。
A. 直线相关关系B. 曲线相关关系C. 负相关关系D. 正相关关系?正确答案:A3. 定基发展速度与与环比发展速度之间的关系表现为()。
A. 定基发展速度等于其相应的各个环比发展速度的连乘积B. 定基发展速度等于其相应的各个环比发展速度之和C. 环比发展速度等于定基发展速度-1D. 定基发展速度等于环比发展速度-1?正确答案:A4. 一数列,直接利用未分组资料计算算术平均数和先分组再计算算术平均数,二者的结果()。
A. 一致B. 不一致C. 某些情况下一致D. 多数情况下一致?正确答案:C5. 把反映社会经济现象发展水平的统计指标数值,按照时间先后顺序排列起来所形成的统计数列,这是()。
A. 统计数列B. 时间数列C. 时点数列D. 时期数列?正确答案:B6. 某企业2006年1~4月初的商品库存额如下,月份 1 2 3 4 月初库存额 20 24 18 22 (单位:万元)。
则第一季度的平均库存额为()。
A. (20+24+18+22)/4B. (20+24+18)/3C. (10+24+18+11)/3D. (10+24+9)/3?正确答案:C7. 1990年,我国人均粮食产量393.10公斤,人均棉花产量3.97公斤,人均国民生产总值为1558元,人均国民收入1271元它们是()。
A. 结构相对指标B. 强度相对指标C. 比较相对指标D. 比例相对指标?正确答案:B8. 单位产品成本报告期比基期下降了5%,产量增加了6%,则生产费用()。
A. 增加B. 降低C. 不变D. 很难判断?正确答案:A9. 平均增长速度是()。
A. 长环增长速度的算术平均数B. 总增长速度的算术平均数C. 平均发展速度减去百分之百D. 环比发展速度的序时平均数?正确答案:C10. 随着样本单位数的无限增加,样本统计量和未知的总体指标之差的绝对值小于任意的正数,称为抽样估计的()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用数理统计大作业一学院:XXXXXXX学号:XXXXXXX姓名:XXX指导老师:XXX2014年12月21日国民生产总值增量的多元线性回归模型摘要:国民生产总值一直是衡量国家综合经济水平的重要指标,本文要讨论研究的是国民生产总值的增量趋势与各产业增值趋势间的多元线性关系[1]。
本论文搜集了我国从1998至2012年15年的国民生产与各产业增量指标,拟定数个自变量,代入统计软件SPSS 19.0[2]对各影响因素进行了统计分析,综合分析结果模拟多元线性回归函数。
模型建立之后,又将2013年数据作为测试集测试模型的拟合精确度,得到的结果达到预期值,得出模型建立较为成功。
关键词:逐步回归法,国民生产总值增量,线性拟合一引言国民生产总值(Gross Domestic Product)是在一定时期中,一个国家地区经济生产出的全部最终产品和劳务的价值,被公认为衡量国家经济状况的较佳指标。
它不仅仅反映了一定的经济表现,还可以反映国家的综合国力与经济发展前景,作为经济政策的制定依据,研究我国的国民生产总值的制约因素成为了学者们的热点问题。
下文就以1998年至2012年的统计数据为标准,利用SPSS 软件作出了多元线性回归分析。
二统计分析2.1变量说明因变量Y——国民生产总值增值(亿元);自变量x1——第一产业增加值(亿元)自变量x2——第二产业增加值(亿元)自变量x3——第三产业增加值(亿元)自变量x4——工业增加值(亿元)自变量x5——建筑业增加值(亿元)2.2统计数据训练组国民生产总值增值(亿元) 第一产业增加值(亿元)第二产业增加值(亿元)第三产业增加值(亿元)工业增加值(亿元)建筑业增加值(亿元)2012年46366.05 52373.63 235161.99 231934.48 199670.66 35491.34 2011年71591.25 47486.21 220412.81 205205.02 188470.15 31942.66 2010年60609.99 40533.6 187383.21 173595.98 160722.23 26660.98 2009年26857.38 35226 157638.78 148038.04 135239.95 22398.83 2008年48235.12 33702 149003.44 131339.99 130260.24 18743.2 2007年49495.88 28627 125831.36 111351.95 110534.88 15296.48 2006年31377.06 24040 103719.54 88554.88 91310.94 12408.61 2005年25059.03 22420 87598.09 74919.28 77230.78 10367.31 2004年24055.58 21412.73 73904.31 64561.29 65210.03 8694.282003年 15490.07 17381.72 62436.31 56004.73 54945.53 7490.78 2002年 10677.52 16537.02 53896.77 49898.9 47431.31 6465.46 2001年 10440.62 15781.27 49512.29 44361.61 43580.62 5931.67 2000年 9537.5 14944.72 45555.88 38713.95 40033.59 5522.29 1999年 5274.77 14770.03 41033.5833873.44 35861.48 5172.1 1998年5429.2514817.6339004.1930580.4734018.434985.76表格2-1 1998~2012年训练集数据表格2-2 2013年测试集数据以上数据来自《中国统计年鉴2013》[3]中收录的近15年全国国民生产总值增值数据,考察与各产业间增量趋势变化中关系密切并且直观上有线性关系的因素,因此选取了第一产业增值、第二产业增值、第三产业增值、工业总产值增值、建筑业增值五大因素为自变量。
2.3模型建立建立多元线性模型:Y =α1x 1+α2x 2+α3x 3+α4x 4+α5x 5将以上数据数据录入SPSS 。
2.3.1 自变量与因变量关系利用SPSS统计分析得到各自变量与国民生产总值增值的散点图:图2-1国民生产总值增值与第一产业增加值的散点图图2-2国民生产总值增值与第二产业增加值的散点图图2-3国民生产总值增值与第三产业增加值的散点图图2-4国民生产总值增值与工业增加值的散点图图2-5国民生产总值增值与建筑业增加值的散点图由以上数据我们可以看出各产业的增量与国民生产总值增量的散点图都比较相似,因此无法直观地排除无关变量。
下一步,我们用SPSS自带的逐步回归分析法作进一步研究:输入/移去的变量a模型输入的变量移去的变量方法1 工业增加值(亿元) . 步进(准则:F-to-enter 的概率<= .050,F-to-remove 的概率>= .100)。
2 第三产业增加值(亿元) . 步进(准则:F-to-enter 的概率<= .050,F-to-remove 的概率>= .100)。
a. 因变量: 国内生产总值增值(亿元)图2-6 变量排除结果在模型建立中,SPSS 将第一产业与第二产业以及建筑业产业增值都剔除了,而保留了工业和第三产业的产业增值,由此可见,在五个自变量因素中,工业与第三产业的增量与国民生产总值增量的关联度较高,为目标函数提供的贡献度较大。
因此,在以下的模型建立中,我们保留了这两个因素作为拟合自变量。
2.3.2 模型方案的建立已排除的变量c模型 Beta In t Sig. 偏相关 共线性统计量容差1第一产业增加值(亿元) -2.622a -2.476 .029 -.581 .009 第二产业增加值(亿元) -15.202a -3.178 .008 -.676 .000 第三产业增加值(亿元) -4.011a -4.118 .001 -.765 .007 建筑业增加值(亿元)-2.331a -3.178 .008 -.676 .015 2第一产业增加值(亿元) .078b .057 .955 .017 .004 第二产业增加值(亿元) .043b .005 .996 .001 7.779E-5建筑业增加值(亿元).007b.005.996.001.003a. 模型中的预测变量: (常量), 工业增加值(亿元)。
b. 模型中的预测变量: (常量), 工业增加值(亿元), 第三产业增加值(亿元)。
c. 因变量: 国内生产总值增值(亿元)图2-7 排除变量的相关性数值由以上结果我们可以看出,系统提供给我们两个最终拟合方案。
方案一:以工业增加值为自变量得到拟合函数Y=0.339x4−2593.808方案二:以工业增加值和第三产业增加值为自变量得到拟合函数:Y=−1.303x3+1.835x4−14838.847除了模型具体参数值,以下系统还给出了两模型方案的回归、残差分析表格,得出了其残差平方和与均方平方和数值:Anova c模型平方和df 均方 F Sig.1 回归 5.177E9 1 5.177E9 59.268 .000a残差 1.136E9 13 87355376.604总计 6.313E9 142 回归 5.842E9 2 2.921E9 74.499 .000b残差 4.705E8 12 39211809.744总计 6.313E9 14a. 预测变量: (常量), 工业增加值(亿元)。
b. 预测变量: (常量), 工业增加值(亿元), 第三产业增加值(亿元)。
c. 因变量: 国内生产总值增值(亿元)图2-8 回归残差结果从结果可以得到,两个回归模型的F值分别为59.268与74.499,根据F分布表格,易查得,方案二的回归显著性更高。
因此我们选用模型二的拟合函数作为最终输出结果。
下面是回归标准化残差图:图2-9 回归残差结果我们利用2013年数据进行拟合测试:方案一:Ỹ1=0.339∗210689.4−2593.808=68829.986方案二:Ỹ2=−1.303∗262203.8+1.835∗210689.4−14838.847=30124.652实际输出为:Y=49375.11可以看出,两个模型与实际结果的误差仍然较大,相比之下模型二更接近实际输出,但是仍不满足我们预期的结果,超出误差范围很大。
因此此模型建立得不够完善,或者说,模型中自变量与因变量的线性关系仍不明显。
三结果分析由于软件所建立模型在测试过程中仍然误差较大,所以可以得出这样的结论:本模型中自变量第一产业增加值、第二产业增加值、第三产业增加值、工业增加值、建筑业增加值与因变量国民生产总值增值之间的线性关系不明显。
但综合来看,模型二较为可靠:Y=−1.303x3+1.835x4−14838.847参考文献[1] 孙海燕,周梦,李卫国,冯伟. 应用数理统计[M]. 北京:北京航空航天大学数学系, 2014.[2] 张建同,孙昌言. 以Excel和SPSS为工具的管理统计[M]. 北京:清华大学出版社,2002.[3] 国家统计局.2010年中国统计年鉴[M]. 中国统计出版社,2013.。