江苏省苏州市2017-2018学年第一学期高三期中调研试卷数学(理)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017—2018学年第一学期高三期中调研试卷 数
学 2017.11
注意事项:
1.本试卷共4页.满分160分,考试时间120分钟.
2.请将填空题的答案和解答题的解题过程写在答题卷上,在本试卷上答题无效. 3.答题前,务必将自己的姓名、学校、准考证号写在答题纸的密封线内.
一、填空题(本大题共14小题,每小题5分,共70分,请把答案直接填写在答卷纸...相应的位置) 1.已知集合{1,2,3,4,5},{1,3},{2,3}U A B ===,则()U A B = ▲ . 2.函数1
ln(1)
y x =
-的定义域为 ▲ .
3.设命题:4p x >;命题2:540q x x -+≥,那么p 是q 的 ▲ 条件(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”).
4.已知幂函数2
2*()m m y x m -=∈N 在(0,)+∞是增函数,则实数m 的值是 ▲ . 5.已知曲线3()ln f x ax x =+在(1,(1))f 处的切线的斜率为2,则实数a 的值是 ▲ . 6.已知等比数列{}n a 中,32a =,4616a a =,则
79
35
a a a a -=- ▲ .
7.函数sin(2)(0)2
y x ϕϕπ
=+<<图象的一条对称轴是12
x π
=
,则ϕ的值是 ▲ . 8.已知奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,则不等式()
01
f x x >-的解集为 ▲ .
9.已知tan()24
απ
-=,则cos2α的值是 ▲ .
10.若函数8,2
()log 5,2a
x x f x x x -+⎧=⎨
+>⎩≤(01)a a >≠且的值域为[6,)+∞,则实数a 的取值范围是 ▲ . 11.已知数列{},{}n n a b 满足1111
,1,(*)21
n n n n a a b b n a +=+==
∈+N ,则122017b b b ⋅⋅= ▲ .
12.设ABC △的内角,,A B C 的对边分别是,,a b c ,D 为AB 的中点,若cos sin b a C c A =+
且CD =则ABC △面积的最大值是 ▲ .
13.已知函数()sin()6
f x x π=-,若对任意的实数5[,]62
αππ
∈-
-,都存在唯一的实数[0,]m β∈,使()()0f f αβ+=,则实数m 的最小值是 ▲ .
14.已知函数ln ,0
()21,0x x f x x x >⎧=⎨+⎩
≤,若直线y ax =与()y f x =交于三个不同的点(,()),(,()),A m f m B n f n
(,())C t f t (其中m n t <<),则1
2n m
+
+的取值范围是 ▲ . 二、解答题(本大题共6个小题,共90分,请在答题卷区域内作答,解答时应写出文字说明、证明过程或
演算步骤) 15.(本题满分14分)
已知函数1
())(0,0)242
f x ax b a b π=+++>>的图象与x 轴相切,
且图象上相邻两个最高点之间的距离为
2
π. (1)求,a b 的值;
(2)求()f x 在[0,]4
π上的最大值和最小值.
16.(本题满分14分)
在ABC △中,角A ,B ,C 所对的边分别是a ,b ,c ,已知sin sin sin ()B C m A m +=∈R ,且240a bc -=. (1)当5
2,4
a m ==
时,求,b c 的值; (2)若角A 为锐角,求m 的取值范围.
已知数列{}n a 的前n 项和是n S ,且满足11a =,*131()n n S S n +=+∈N . (1)求数列{}n a 的通项公式; (2)在数列{}n b 中,13b =,*1
1()n n n n
a b b n a ++-=
∈N ,若不等式2n n a b n λ+≤对*n ∈N 有解,求实数λ的取值范围.
18.(本题满分15分)
如图所示的自动通风设施.该设施的下部ABCD 是等腰梯形,其中AB 为2米,梯形的高为1米,CD 为3米,上部CmD 是个半圆,固定点E 为CD 的中点.MN 是由电脑控制可以上下滑动的伸缩横杆(横杆面积可忽略不计),且滑动过程中始终保持和CD 平行.当MN 位于CD 下方和上方时,通风窗的形状均为矩形MNGH (阴影部分均不通风). (1)设MN 与AB 之间的距离为5
(02
x x <≤且1)x ≠米,试将通风窗的通风面积S (平方米)表示成关于x 的函数()y S x =;
(2)当MN 与AB 之间的距离为多少米时,通风窗的通风面积S 取得最大值?
已知函数2()ln ,()f x x g x x x m ==--. (1)求过点(0,1)P -的()f x 的切线方程;
(2)当0=m 时,求函数()()()F x f x g x =-在],0(a 的最大值;
(3)证明:当3m ≥-时,不等式2()()(2)e x f x g x x x +<--对任意1[,1]2
x ∈均成立(其中e 为自然对数的底数,e 2.718...=).
20.(本题满分16分)
已知数列{}n a 各项均为正数,11a =,22a =,且312n n n n a a a a +++=对任意*n ∈N 恒成立,记{}n a 的前n 项和为n S .
(1)若33a =,求5a 的值;
(2)证明:对任意正实数p ,221{}n n a pa -+成等比数列;
(3)是否存在正实数t ,使得数列{}n S t +为等比数列.若存在,求出此时n a 和n S 的表达式;若不存在,说明理由.
2017—2018学年第一学期高三期中调研试卷
数 学 (附加) 2017.11
注意事项:
1.本试卷共2页.满分40分,考试时间30分钟. 2.请在答题卡上的指定位置作答,在本试卷上作答无效.
3.答题前,请务必将自己的姓名、学校、考试证号填写在答题卡的规定位置.
21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答...................
.若多做,
则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .(几何证明选讲) (本小题满分10分)
如图,AB 为圆O 的直径,C 在圆O 上,CF AB ⊥于F ,点D 为线段CF 上任意一点,延长AD 交圆O 于E ,030AEC ∠=. (1)求证:AF FO =;
(2
)若CF =,求AD AE ⋅的值.
B .(矩阵与变换) (本小题满分10分)
已知矩阵1221⎡⎤=⎢⎥⎣⎦A ,42α⎡⎤
=⎢⎥
⎣⎦
,求49αA 的值.
C .(极坐标与参数方程) (本小题满分10分)
在平面直角坐标系中,直线l 的参数方程为425
25x t y t ⎧
=-+⎪⎪⎨⎪=⎪⎩
(t 为参数),以原点O 为极点,x 轴正半轴为
极轴建立极坐标系,圆C
的极坐标方程为cos()(0)4
a ρθπ
-≠. (1)求直线l 和圆C 的直角坐标方程;
(2)若圆C 任意一条直径的两个端点到直线l
,求a 的值.
D .(不等式选讲) (本小题满分10分)
设,x y 均为正数,且x y >,求证:22
1
2232x y x xy y +
+-+≥.
【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)
B
在小明的婚礼上,为了活跃气氛,主持人邀请10位客人做一个游戏.第一轮游戏中,主持人将标有数字1,2,…,10的十张相同的卡片放入一个不透明箱子中,让客人依次去摸,摸到数字6,7,…,10的客人留下,其余的淘汰,第二轮放入1,2,…,5五张卡片,让留下的客人依次去摸,摸到数字3,4,5的客人留下,第三轮放入1,2,3三张卡片,让留下的客人依次去摸,摸到数字2,3的客人留下,同样第四轮淘汰一位,最后留下的客人获得小明准备的礼物.已知客人甲参加了该游戏. (1)求甲拿到礼物的概率;
(2)设ξ表示甲参加游戏的轮数..,求ξ的概率分布和数学期望()E ξ.
23.(本小题满分10分)
(1)若不等式(1)ln(1)x x ax ++≥对任意[0,)x ∈+∞恒成立,求实数a 的取值范围; (2)设*n ∈N ,试比较
111
23
1
n +++
+与ln(1)n +的大小,并证明你的结论. 2017—2018学年第一学期高三期中调研试卷
数 学 参 考 答 案
一、填空题(本大题共14小题,每小题5分,共70分)
1.{1} 2.(1,2)
(2,)+∞ 3.充分不必要 4.1 5.1
3
6.4 7.3
π
8.(2,0)(1,2)- 9.45- 10.(1,2]
11.12018 121 13.2
π
14.1(1,e )e +
二、解答题(本大题共6个小题,共90分) 15.(本题满分14分)
解:(1)∵()f x 图象上相邻两个最高点之间的距离为
2
π
, ∴()f x 的周期为
2
π,∴202||2a a ππ
=>且,······································································2分 ∴2a =,··················································································································4分
此时1
())242
f x x b π=+++, 又∵()f x 的图象与x 轴相切,
∴1||022
b b +=>,·
······················································6分
∴1
2
b =-;
··········································································································8分 (2)由(1
)可得())4f x x π=+, ∵[0,]4x π∈,∴4[,]444
x ππ5π
+∈,
∴当444x π5π+
=
,即4
x π
=时,()f x
有最大值为12;·················································11分 当442x ππ+=,即16
x π
=时,()f x 有最小值为0.························································14分
16.(本题满分14分)
解:由题意得b c ma +=,240a bc -=.···············································································2分
(1)当52,4a m ==
时,5
,12
b c bc +==, 解得212b c =⎧⎪⎨=⎪⎩或122b c ⎧
=⎪⎨
⎪=⎩;································································································6分 (2)2
2
222222
22
()()22cos 23222
a ma a
b
c a b c bc a A m a bc bc
--+-+--====-,····························8分 ∵A 为锐角,∴2cos 23(0,1)A m =-∈,∴
23
22
m <<,·
···················································11分 又由b c ma +=可得0m >,·························································································13分
m <<·
····································································································14分 17.(本题满分15分)
解:(1)∵*131()n n S S n +=+∈N ,∴*131(,2)n n S S n n -=+∈N ≥,
∴*13(,2)n n a a n n +=∈N ≥,·························································································2分 又当1n =时,由2131S S =+得23a =符合213a a =,∴*13()n n a a n +=∈N ,······························3分 ∴数列{}n a 是以1为首项,3为公比的等比数列,通项公式为1*3()n n a n -=∈N ;·····················5分 (2)∵*1
13()n n n n
a b b n a ++-=
=∈N ,∴{}n b 是以3为首项,3为公差的等差数列,····················7分 ∴*33(1)3()n b n n n =+-=∈N ,·····················································································9分
∴2n n a b n λ+≤,即1
2
3
3n n n λ-⋅+≤,即2133
n n n
λ--≤对*n ∈N 有解,·
·································10分 设2*1
3()()3
n n n
f n n --=∈N , ∵2221(1)3(1)32(41)
(1)()333
n n n
n n n n n n f n f n -+-+---++-=-=, ∴当4n ≥时,(1)()f n f n +<,当4n <时,(1)()f n f n +>, ∴(1)(2)(3)(4)(5)(6)f f f f f f <<<>>>,
∴max 4
[()](4)27
f n f ==,···························································································14分 ∴427
λ≤
.·············································································································15分 18.(本题满分15分)
解:(1)当01x <≤时,过A 作AK CD ⊥于K (如上图),
则1AK =,1
22
CD AB DK -==,1HM x =-, 由2AK MH DK DH ==,得122
HM x DH -==, ∴322HG DH x =-=+,
∴2()(1)(2)2S x HM HG x x x x =⋅=-+=--+;·······························································4分 当5
12
x <<
时,过E 作ET MN ⊥于T ,连结EN (如下图), 则1ET x =-,2
2239(1)(1)224MN TN x x ⎛⎫
==---- ⎪⎝⎭
∴29
2
(1)4
MN x =-- ∴29
()2
(1)(1)4
S x MN ET x x =⋅=---,······································································8分 综上:22
2,01()952(1)(1)142x x x S x x x x ⎧--+<⎪
=⎨---<<⎪⎩
≤;·································································9分 (2)当01x <≤时,221
9
()2()24
S x x x x =--+=-++
在[0,1)上递减, ∴max ()(0)2S x S ==;································································································11分
2︒当5
12
x <<时,22
29
(1)(1)994()2(1)(1)2424
x x S x x x -+
--=---⋅
=≤,
当且仅当(1)x -=
51(1,)42
x =+∈时取“=”, ∴max 9()4S x =
,此时max 9
()24
S x =>,∴()S x 的最大值为94,············································14分 答:当MN 与AB
之间的距离为14
+米时,通风窗的通风面积S 取得最大值.·
···················15分 19.(本题满分16分)
解:(1)设切点坐标为00(,ln )x x ,则切线方程为000
1
ln ()y x x x x -=
-, 将(0,1)P -代入上式,得0ln 0x =,01x =,
∴切线方程为1y x =-;·······························································································2分 (2)当0m =时,2()ln ,(0,)F x x x x x =-+∈+∞, ∴(21)(1)
(),(0,)x x F x x x
+-'=-
∈+∞,
············································································3分 当01x <<时,()0F x '>,当1x >时,()0F x '<,
∴()F x 在(0,1)递增,在(1,)+∞递减,·············································································5分 ∴当01a <≤时,()F x 的最大值为2()ln F a a a a =-+;
当1a >时,()F x 的最大值为(1)0F =;········································································7分 (3)2()()(2)e x f x g x x x +<--可化为(2)e ln x m x x x >-+-,
设1
()(2)e ln ,[,1]2x h x x x x x =-+-∈,要证3m ≥-时()m h x >对任意1[,1]2
x ∈均成立, 只要证max ()3h x <-,下证此结论成立.
∵1()(1)(e )x h x x x
'=--,∴当1
12x <<时,10x -<,·
······················································8分 设1()e x u x x =-,则21()e 0x u x x '=+>,∴()u x 在1
(,1)2
递增,
又∵()u x 在区间1[,1]2
上的图象是一条不间断的曲线,且1
()202
u <,(1)e 10u =->,
∴01(,1)2
x ∃∈使得0()0u x =,即00
1
e x x =
,00ln x x =-,····················································11分 当01(,)2
x x ∈时,()0u x <,()0h x '>;当0(,1)x x ∈时,()0u x >,()0h x '<; ∴函数()h x 在01[,]2
x 递增,在0[,1]x 递减,
∴0max 000000000
12
()()(2)e ln (2)212x h x h x x x x x x x x x ==-+-=-⋅
-=--,
····························14分 ∵212y x x =-
-在1
(,1)2
x ∈递增,∴0002()121223h x x x =--<--=-,即max ()3h x <-,
∴当3m ≥-时,不等式2()()(2)e x f x g x x x +<--对任意1
[,1]2
x ∈均成立.··························16分 20.(本题满分16分)
解:(1)∵1423a a a a =,∴46a =,又∵2534a a a a =,∴543
92
a a ==;·
······································2分
(2)由312
1423
n n n n n n n n a a a a a a a a +++++++=⎧⎨=⎩,两式相乘得2134123n n n n n n n a a a a a a a ++++++=,
∵0n a >,∴2*42()n n n a a a n ++=∈N ,
从而{}n a 的奇数项和偶数项均构成等比数列,···································································4分 设公比分别为12,q q ,则1122222n n n a a q q --==,1121111n n n a a q q ---==,······································5分 又∵
312=
n n n n a a a a +++,∴422311
22a a q
a a q ===,即12q q =,···························································6分 设12q q q ==,则2212223()n n n n a pa q a pa ---+=+,且2210n n a pa -+>恒成立,
数列221{}n n a pa -+是首项为2p +,公比为q 的等比数列,问题得证;····································8分 (3)法一:在(2)中令1p =,则数列221{}n n a a -+是首项为3,公比为q 的等比数列,
∴22212223213 ,1
()()()3(1),11k k k k k k k q S a a a a a a q q q
---=⎧⎪
=++++
++=-⎨≠⎪-⎩
, 121221
32 ,13(1)2,11k k k k k k k q q S S a q q q q ---⎧-=⎪
=-=⎨--≠⎪-⎩
,·····································································10分 且12341,3,3,33S S S q S q ===+=+,
∵数列{}n S t +为等比数列,∴2
2132
324()()(),
()()(),S t S t S t S t S t S t ⎧+=++⎪⎨+=++⎪⎩ 即2
2(3)(1)(3),(3)(3)(33),
t t q t q t t q t ⎧+=+++⎪⎨++=+++⎪⎩,即26(1),3,t q t t q +=+⎧⎨=-⎩
解得14t q =⎧⎨=⎩
(3t =-舍去),·························································································13分
∴224121k k k S =-=-,212121k k S --=-,
从而对任意*n ∈N 有21n n S =-,
此时2n n S t +=,12n n S t S t
-+=+为常数,满足{}n S t +成等比数列, 当2n ≥时,111222n n n n n n a S S ---=-=-=,又11a =,∴1*2()n n a n -=∈N ,
综上,存在1t =使数列{}n S t +为等比数列,此时1*2,21()n n n n a S n -==-∈N .······················16分 法二:由(2)知,则122n n a q -=,121n n a q --=,且12341,3,3,33S S S q S q ===+=+,
∵数列{}n S t +为等比数列,∴221323
24()()(),()()(),S t S t S t S t S t S t ⎧+=++⎪⎨+=++⎪⎩ 即22(3)(1)(3),(3)(3)(33),
t t q t q t t q t ⎧+=+++⎪⎨++=+++⎪⎩,即26(1),3,t q t t q +=+⎧⎨=-⎩ 解得14t q =⎧⎨=⎩
(3t =-舍去),·······················································································11分
∴121222n n n a q --==,22212n n a --=,从而对任意*n ∈N 有12n n a -=,····································13分 ∴01211222222112n n n n S --=+++
+==--, 此时2n n S t +=,12n n S t S t
-+=+为常数,满足{}n S t +成等比数列, 综上,存在1t =使数列{}n S t +为等比数列,此时1*2,21()n n n n a S n -==-∈N .······················16分
21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答....................若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A .(几何证明选讲,本小题满分10分)
解:(1)证明 :连接,OC AC ,∵030AEC ∠=,∴0260AOC AEC ∠=∠=,
又OA OC =,∴AOC ∆为等边三角形,
∵CF AB ⊥,∴CF 为AOC ∆中AO 边上的中线,
∴AF FO =;······································································5分
B
(2)解:连接BE ,
∵CF ,AOC ∆是等边三角形,
∴可求得1AF =,4AB =,
∵AB 为圆O 的直径,∴90AEB ∠=,∴AEB AFD ∠=∠,
又∵BAE DFA ∠=∠,∴AEB ∆∽AFD ∆,∴AD AF AB AE
=, 即414AD AE AB AF ⋅=⋅=⨯=.··················································································10分
B .(矩阵与变换,本小题满分10分)
解:矩阵A 的特征多项式为21
2()2321
f λλλλλ--==----, 令()0f λ=,解得矩阵A 的特征值121,3λλ=-=,····························································2分
当11λ=-时特征向量为111α⎡⎤=⎢⎥-⎣⎦,当23λ=时特征向量为211α⎡⎤=⎢⎥⎣⎦
,·····································6分 又∵12432ααα⎡⎤==+⎢⎥⎣⎦
,······························································································8分 ∴50494949
11225031331αλαλα⎡⎤-=+=⎢⎥+⎣⎦A .···········································································10分
C .(极坐标与参数方程,本小题满分10分)
解:(1)直线l 的普通方程为220x y +-=;··········································································3分
圆C 的直角坐标方程为2
22()()222
a a a x y -+-=;·······························································6分 (2)∵圆C 任意一条直径的两个端点到直线l
∴圆心C 到直线l
|
2|a a +-,·······················································8分 解得3a =或13a =-
.·······························································································10分
D .(不等式选讲,本小题满分10分)
证:∵0,0,0x y x y >>->, ∴222
11222()2()x y x y x xy y x y +-=-+-+-
21()()3()x y x y x y =-+-+
=-≥,。

相关文档
最新文档