GPS控制网的设计
关于建设林州GPS控制网的设计研究
关于建设林州GPS控制网的设计研究目前GPS布网技术已广泛应用在城市建设的各个领域,其优越性在于很大程度上逐步取代常规仪器测量定位控制方法。
在我市利用GPS卫星定位技术建立测量控制网、进行细部测图和工程放样等测量工程具有精度高、速度快、操作简便等优越性。
我市区1:1000航测数字化成图于2003年。
当时我市总规2001—2020市区约面积50km2,规划区范围196km2。
现在我市总体规划又做了重新调整和布局,即我市总规2010—2030。
中心城区发展由原来的50km2发展至137km2,城市规划区控制范围增至为约360km2,即中心城区、北部产业集聚区和控制区。
林州在“十二五”期间有鹤辉、林长高速公路和长兖铁路通过;诸多工业大项目、水利设施等投资近数十亿元分布林州范围。
鉴于此境,为林州整体规划、科学布局和各级领导提供科学决策和优化发展目的,所以对GPS网布设尤为重要。
1 GPS网技术设计和基础材料根据现行国家标准《全球定位系统(GPS)测量规范》(GB/T18314-2009),A级网是卫星定位连续运行基准站,本节GPS网设计则主要指GPS B、C、D、E级。
GPSB、C、E级网主要是为建立国家二、三、四等大地控制网,以及测图控制点。
由于点位多,布设工作量大,布设前应进行技术设计,以获取量优的布测方案。
在技术设计前应根据任务的需要,收集测区范围已有的卫星定位连续运行基准站、各种大地点位资料、各种图件,地质资料,以及测区总体建设规模和近期发展方向的资料。
1.1 我市测区内外有国家二、三等三角点成果计五点,可作测区四等GPS 起算点;1.2 我市有合涧—安阳二等水准路线经过测区外,其中二等水准点合安2、合安5距测区甚近,可作测区三、四等水准网的起算点;1.3 现有1∶5000彩印地形图,可作基础控制网设计之用;在开始进行GPS布网技术设计时,应对上述资料分析研究、勘察,然后进行图上设计。
图上设计主要依据任务GPS网布设的目的、等级、边长、观测精度等要求,综合考虑测区已有的资料、测区地形、地质以及作业效率等情况,按照优化设计原则在设计图上标出新设计的GPS点的点位、点名、点号和级别,还应标出相关的各类测量站点、水准路级及主要的交通路线、水系和居民地等。
D级GPS要求
D级GPS控制测量技术要求1、D级GPS控制网的网型设计GPS控制网的网型设计,是保证控制网精度的基础。
首先考虑起算点的位置和图形强度,遵循从整体到局部、分级布网的原则进行布设。
D级GPS控制网中不要求每点之间通视,整个控制网中应联测不少于3个高等级已知点,并根据需要联测一定数量的高程点。
D级GPS控制网最简独立闭合环或附合路线边数及相邻点之间的平均距离如下表:相邻点最小距离可为平均距离的1/3-1/2;最大距离可为平均距离的2-3倍。
2、D级GPS控制网选点埋石D级GPS控制网选点埋石必须遵守下列原则,并按下列规定进行。
1). 选点人员应收集测区地质资料,实地勘察选定点位。
同时考察卫星通视环境与电磁干扰环境,确定可用标石类型、记录点之记有关内容,实地树立标志牌等。
选点(埋石)所占用的土地,应得到土地使用者或管理者的同意。
2).点位应选择在稳定坚实的基岩、岩石、土层、建筑物顶部等能长期保存、满足观测条件的地点,并做好选点标记。
点位尽可能位于地面,城区内应尽量选在楼顶上,以便于保存和通视。
点位应尽量选在交通便利,方便观测的位置。
3).选点时应避开环境变化大,测量标志难以永久保存的地点,如易受水淹的河床、低地、靠近铁路、公路、已规划的易受施工影响有剧烈震动的地点。
点位离开铁路的距离应不小于100m。
4). 选点时应避开地质环境不稳定的地区,如断裂破碎带边缘、易发生洪水、滑坡、岩崩区、局部沉降区,有大量物质搬移的矿区、采石场、大量取土、地下水剧烈变化的地点。
5).选点时应远离发射功率强大的无线发射源、微波信道、高压线等,距离不小于200米,应远离高压输电线和微波无线电传送通道,其距离不得小于50米。
并应实地了解发射源和电磁波影响状况,标注在点之记环视图上。
6).选点时应避开多路径环境影响,避免靠近水面、树冠、高大建筑物、低洼潮湿等地点,应保证15°以上无遮挡。
50米以内的各种固定与变化反射体应标注在点之记环视图上。
控制网优化设计
控制网优化设计一、GPS 卫星定位的基本原理GPS 定位时,把卫星看成是―飞行‖的已知控制点,利用测量的距离进行空间后方交会,便得到接收机的位置。
卫星的瞬时坐标可以利用卫星的轨道参数计算。
二、在进行载波相位观测时,在不同观测时段,载波可以划分为哪几部分?首次观测值00)(~φϕFr = 后继量测值)()(~φφϕFr Int += 通常表示为)()(~00φφϕFr Int N N ++=+=Φ 三、坐标系之间的转换过程举例:WGS —84大地坐标系至80平面直角坐标系:方法一:先将WGS —84大地坐标系转换成WGS —84空间直角坐标系,再将WGS —84大地坐标系,利用七参数(三个平移参数,三个旋转参数,一个尺度变换参数)转变成80空间直角坐标系,在将80空间直角坐标系转换成80大地坐标系,通过高斯投影,输入相应中央子午线经度L0,将其转换成80平面直角坐标系。
方法二; 通过高斯投影,输入相应中央子午线经度L0,先将WGS —84大地坐标系转换成WGS —84平面直角坐标系,再利用四参数(两个平移参数,一个旋转参数,一个缩放参数)将WGS —84平面直角坐标系转化成80平面直角坐标系。
四、GPS 网数据处理的基本过程1、数据传输2、建立坐标系统1)打开TGO 软件,功能—Coordinate System Manager ,进入坐标系统管理器。
2)增加椭球,输入椭球名称、长半轴、扁率3)增加基准转换(Molodensky ),创建新的基准转换组。
4)增加坐标系统组5)选择投影方式:横轴墨卡托投影6)文件保存退出3 、新建项目1)新建项目2)选择模板(Metric 米制单位模板).3)改变坐标系统,选择需要的坐标系统。
4、导入静态观测数据(*.dat 或RINEX)数据1)文件/导入2)修改测站名,天线高度,天线类型,测量方法。
5、处理Timeline6、处理GPS 基线7、GPS 网的无约束平差1)平差—基准—WGS-84,进行无约束平差。
GPS静态测量控制网设计
GPS静态测量控制网设计一、概述GPS(全球定位系统)已经成为现代测量技术中不可或缺的重要工具,GPS静态测量控制网是GPS测量的基础。
设计一个合理的GPS静态测量控制网是确保测量精度和可靠性的关键。
二、控制网的选择在设计GPS静态测量控制网时,首先需要选择合适的控制网。
控制网的选择应考虑以下几个因素:1.网格密度:控制网的网格密度应根据测量任务的要求来确定。
一般情况下,密集网络可以提高测量精度,但也会增加测量成本。
2.控制点的分布:控制点的分布应考虑地形地貌的特点和监测要求,避免林木、建筑物等对测量结果的影响。
3.控制网形状:控制网形状的选择应根据工程特点和测量任务来确定,一般情况下选择长方形或正方形网格。
三、测量基线的设置测量基线是控制网的基础,其合理设置对测量结果的精度和可靠性有重要影响。
在设置测量基线时,应考虑以下几点:1.基线长度:基线长度应根据地质地形条件、测量精度要求等因素选择合适的长度。
一般情况下,短基线适用于地形平坦、视线通畅的地区,长基线适用于山区、密林等复杂地形。
2.基线方向:基线方向应考虑测量任务的要求和地形地貌特点,避免遮挡物对测量结果的影响。
3.基线标记:基线标记应清晰明确,便于测量人员进行测量操作。
四、控制点的设置控制点是控制网的关键,其合理设置对测量结果的精度和可靠性起着决定性作用。
在设置控制点时,应考虑以下几点:1.控制点的选取:控制点的选取应根据测量任务的要求和地形地貌条件来确定,避免地形高低起伏、建筑物等对测量结果的影响。
2.控制点的标记:控制点的标记应清晰明确,确保测量人员可以准确找到控制点进行测量操作。
3.控制点的互测:控制点应进行互测,以验证控制点的准确性和可靠性。
五、数据处理数据处理是GPS测量的重要环节,其正确性和高效性对测量结果的精度和可靠性有着至关重要的影响。
在数据处理过程中,应注意以下几点:1.数据的准确性:数据的准确性是保证测量结果准确的前提,应根据实际情况采取合适的方法和工具确保数据的准确性。
gps控制网的布设流程与实践论文2万字
gps控制网的布设流程与实践论文2万字在经典测量中,控制网的优化十分重要,它直接影响到最后成果的精度。
GPS出现后,控制图的结构概念起了重大变化,原来的一些控制网方案的优化已不再适用,如何分析和讨论GPS网观测方案优化问题,便出现在测量工作者面前,本文就GPS网的布设作一简要分析。
简述了GPS测量技术的发展状态,及GPS工程网的布设,介绍了GPS测量所具有特点,GPS测量在公路中的应用,最后对GPS测量作出了展望。
1、GPS技术的发展概况全球定位系统(GlobalPositioningSystem简称GPS)是美国国防部从上世纪70年代开始研制的新一代卫星导航与定位系统,历时20年,耗资200亿美元,于1994年全面建成。
该系统利用导航卫星进行测时和测距,有在海、陆、空进行全方位实时三维导航与定位能力。
GPS是继阿波罗登月计划、航天飞机后的美国第三大航天工程,如今,它已成为当今世界上最实用,也是应用最广泛的全球精密导航、指挥和调度系统。
1.1GPS系统的结构组成GPS系统主要包括三大组成部分:即空间星座部分、地面监控部分和用户设备部分。
(1)空间星座部分由21颗工作卫星和3颗在轨备用卫星组成GPS卫星星座,亦即(21+3)GPS 星座。
24颗卫星均匀分布在6个轨道平面内,各个轨道平面之间交角60度。
卫星距地面的平均高度为20200km,卫星绕地球运行周期为11小时58分。
地面观测者每天至少可以观测到4颗卫星,最多还可观测到11颗卫星。
(2)地面监控部分GPS工作卫星的地面监控系统主要由分布在全球的1个主控站、3个注入站和5个监测站组成。
对于导航定位来说,GPS卫星是一动态已知点。
卫星的位置是依据卫星发射的星历,即描述卫星运动及其轨道的参数算得的。
每颗GPS 卫星所播发的星历,是由地面监控系统提供的。
卫星上的各种设备是否正常工作,以及卫星是否一直沿着预定轨道运行,都要由地面设备进行监测和控制。
地面监控系统另一重要作用是保持各颗卫星处于同一时间标准――GPS时间系统。
大同矿区GPS控制网设计实例
3 大同矿区GPS控制网设计实例3.1 任务来源及工作量大同矿区为全国最大的煤炭企业大同矿物局所属,并且预测煤炭储量丰富,工业前景可观。
但是该矿区原有测量控制网为90年代建立,历经十几年的采矿影响,认为破坏及地貌变化,使原有控制点大部分失去控制作用,使得服务于日常生产的多项测量工作难以正常进行,远远不能满足矿山生产和工程建设的需要。
因此,该矿区急需建立新的测量控制网。
该网不但要满足日常采矿生产需要,而且还要顾及远景规划及预测区,控制面积约600 KM2,测量范围(如图3-1)为:图3-1 已知点分布图东至:550km(大同矿区独立坐标系)南至:4415km西至:534km北至:4439km3.2 测区概况大同矿区位于山西省大同市西南,地跨大同、朔州两市,地处东经112度53分─113度12分,北纬39度55分─40度零8分,距市区12。
5公里,辖区与大同市南郊区交叉,总面积约90平方公里,号称百里矿区。
区内为平缓的丘陵地貌,西南高,东北低。
尖口山最高,标高1835.9米,口泉沟最低,标高1093.6米。
境内主要山脉有七峰山、鸡爪山、大钟山、马武山等;主要河流有口泉河、十里河,均为季节性河流。
该区厂矿企业主要分布在口泉─黑流水(口泉沟),马军营─燕子山(云岗沟)两条狭长的山沟里。
通往矿区的铁路有大同—王村、大同—燕子山两条矿区专用线,各煤矿集运站都分散在两条专用线周围。
以横穿矿区东西向的109国道、沿矿区东侧穿行的南北向大运公路为骨干线,配以矿区内专用公路,交通十分方便。
矿区供水水源以第四系潜水为主,现有大同市的白马城水源地以及时庄水源地,供水量严重不足,需另找新的水源。
矿区电源主要来自大同市第一热电厂和神头电厂。
矿区现有生产煤矿55处,其中国有重点煤矿18处,设计能力3645万吨/年。
截至1996年末,大同矿区保有探明储量386。
43亿吨,其中生产矿井保有储量77。
41亿吨。
矿区原有国家二等三角网8个,经野外踏勘,发现有3个已明显被破坏或受采动影响;现只有代家沟、孙家沟、羊坊、怀仁、土台山5个点的标石保存完好(如图3-1)。
GPS静态测量控制网设计
GPS静态控制网布设GPS网形设计的一般原则:1、GPS网中不应该存在自由基线。
2、GPS网中的闭合条件中基线不可过多。
3、GPS网中应以“每个点至少独立设站观测两次”的原则布网。
4、为了实现GPS网与地面网之间的坐标转换,GPS网至少应与地面网有2个重合点。
5、为了便于观测,GPS点应选择在交通便利,视野开阔、容易到达的地方。
下图是我国全球定位系统测量规范中有关GPS网等级的有关内容:GPS基线向量网的布网形式:GPS网常用的布网形式有以下几种:跟踪站式、会战式、多基准站式(枢纽点式)、同步图形扩展式、单基准站式1、跟踪站式:布网形式:若干台接收机长期固定安放在测站上,进行常年、不间断的观测,即一年观测365天,一天观测24小时,这种观测方式很象是跟踪站,因此,这种布网形式被称为跟踪站式。
2、会战式:布网形式:在布设GPS网时,一次组织多台GPS接收机,集中在一段不太长的时间内,共同作业。
在作业时,所有接收机在若干天的时间里分别在同一批点上进行多天、长时段的同步观测,在完成一批点的测量后,所有接收机又都迁移到另外一批点上进行相同方式的观测,直至所有的点观测完毕,这就是所谓的会战式的布网。
3、多基准站式布网形式:所谓多基准站式的布网形式就是有若干台接收机在一段时间里长期固定在某几个点上进行长时间的观测,这些测站称为基准站,在基准站进行观测的同时,另外一些接收机则在这些基准站周围相互之间进行同步观测。
4、同步图形扩展式布网形式:同步图形扩展式就是多台接收机在不同测站上进行同步观测,在完成一个样时段的同步观测后,迁移到其它的测站上进行同步观测,每次同步观测都可以形成一个同步图形,在测量过程中,不同的同步图形间一般有若干个公共点相连,整个GPS网由这些同步图形构成。
采用同步图形扩展式布设GPS基线向量网时的观测作业方式主要以下几种式:点连式、边连式、网连式、混连式。
(1)点连式:观测作业方式:所谓点连式就是在观测作业时,相邻的同步图形间只通过一个公共点相连。
地质工程测量中GPS控制网的设计与观测资料分析
地质工程测量中GPS控制网的设计与观测资料分析摘要:本文简单介绍了GPS定位技术在地质工程测量中的应用;详细叙述了GPS 控制网的设计布设;进一步论述了GPS控制网的基线解算、平差过程和误差分析;最后提出了在地质工程测量中如何合理地利用GPS定位技术布设控制网,对以后类似的工作有一定的指导意义。
关键词:地质工程测量;GPS控制网;高程一、地质工程测量的主要技术标准(1)《地质矿产勘查测量规范》(GB/T18341-2001)。
是地质工程测量执行的主要标准,内容包括了几乎所有的地质测量内容。
(2)《地质调查GPS测量规程》(DD2004-03)。
是为适用于中国地质调查局下发的各种地质调查项目。
(3)《物化探工程测量规范》(DZ/T0153-95)。
是为地质勘探中的物理、化学勘探两种专业规定的从控制布网到测网布设的各项精度指标。
(4)《全球定位系统(GPS)测量规范》(GB/T18314-2001)。
适用于各种测绘的通用规范。
在布设控制网前应按《设计》要求,确定使用上述哪个标准。
不同的标准对控制网的基线长度、观测时间、解算精度、约束条件以及能否发展次一级网等不尽相同。
二、GPS控制网的设计GPS控制网的设计虽然不像以往常规测量网的设计,需要考虑边长相近、点间通视、角度大小等众多因素,GPS网设计方便灵活,但也并不是说GPS控制网不用精心设计、可以随意连边成网,它同样也需要从多方面考虑。
有关资料文献与多年的经验可知:布网时应尽可能地选择国家一、二等三角点,最好是同边邻点,这样的点位精度基本相同,能够很好地将WGS84坐标较严密地转换到BJZ54系统,而尽可能地少选用三、四等点。
众所周知,三、四等点通常是一、二等锁网点内插所得,因此不在同锁网内的三、四等点的精度不统一。
如果选用跨锁网的三、四等点,就会使得GPS控制网在约束平差时很难得到较为理想的精度。
所以,收集起算约束点的成果时要考虑这些因素。
为了求得较为精确的转换参数,约束点应均匀分布在工区的外围。
GPS控制网的布设及分析
GPS控制网的布设及分析摘要:通过对岳口镇地籍调查中gps控制测量的实例的分析,对数据进行系统的整理和对比,得出了重要结论:在d级gps工程网中,观测时间越长,基线和点位精度越高,但当所延长的测量时间段内影响基线解算的误差因素较大时,基线精度反而可能会降低。
1、引言2、控制网的布网方式及原则2.1控制网的布网方式(1)跟踪站式,(2)会战式,(3)多基准站式,(4)同步图形扩展式,(5)星形布网方式。
2.2控制网的布设原则(1)效率优先原则:在进行gps 网的设计时,应采用效率指标来衡量设计方案的效率,以及在采用布网方案作业中所需要的时间、消耗等问题。
(2)高精度性原则:gps 控制网的高精度性是工程测量的基石,也是其最明显的优势之一。
在布设时,要做到高精度性原则:先确定gps 网的网形,再根据gps 网的网形,得到gps 网的设计矩阵b,从而得到gps 网的协因数阵q,由此做到gps 控制网的高精度性原则。
(3)可靠性原则:可靠性原则是gps 控制网布设的重要原则之一。
在进行实际gps 网的设计时,一般采用一种反映gps 网可靠性的数量指标,以达到改善网的质量的目的。
(4)低经费性原则:gps 的布设是一项重要的前期工程,应着重考虑实现较低的经费支出和较高的测量效果的问题。
经费的多少取决于网中点的总数和重复设站率。
3、实例岳口镇实测的gps网共有9个点,用3台trimble 5700接收机进行观测,共观测了8个时段,每个时段长度为60min。
该网的最长边为6788m,最短边为1911m,平均边长为3797m。
gps外业实施方案制定时,主要考虑两个方面,一是技术方面,二是测区环境方面。
技术方面决定了控制网的精度,测区环境方面决定了控制网的作业时间长度、进度和经费。
分一下几个步骤实施:(1)进行技术设计:在大比例尺地形上进行设计,因为控制测量的任务就是布设作为图根控制依据的测图控制网,以保证地形图的精度和各幅地形图之间的准确拼接。
GPS控制网平面设计
GPS控制网平面设计GPS控制网平面设计是指利用全球定位系统(GPS)进行测量和控制的空间大地网平面设计。
它是现代测绘和地理信息领域的一项重要技术,可以广泛应用于土地测量、三维建模、城市规划、工程监测等领域。
本文将从GPS控制网的建立、网点选取、观测量计算和数据处理等方面进行详细介绍。
首先,GPS控制网的建立是整个平面设计的基础。
建立GPS控制网的目的是为了提供空间大地坐标系的参考框架,使得后续的测量和控制工作能够以统一的参考框架进行。
GPS控制网的建立需要考虑到网内闭合度、留边、多线型布设等因素,以确保控制网的精度和强度。
同时,还需要选择恰当的高程点以建立高程控制网。
其次,网点选取是GPS控制网平面设计的关键环节。
网点选取应满足以下要求:首先,选取的网点应具备良好的遥测条件,可以与卫星正常通信;其次,网点应有稳定的地质地形条件,以避免因地质条件变化引起的测量误差;最后,网点应具有一定的分布均匀性,以提高整个网的稳定性。
网点选取的关键技术是确定其空间坐标,这需要通过GPS观测和高精度测量设备进行测量。
第三,在观测量计算方面,需要根据观测的卫星数据和测站坐标信息,利用差分技术对GPS观测量进行计算。
观测量计算的目的是确定每个测站的坐标和高程,以及相关的精度参数。
观测量计算主要包括观测数据处理、数据加密和数据纠正等步骤。
观测数据处理是对观测数据进行初始处理,包括数据录入、时间同步、数据转换等;数据加密是对观测数据进行差分处理,以获得更加精确的观测结果;数据纠正是对观测结果进行修正,包括大气延迟、钟差和卫星轨道误差等因素的纠正。
最后,数据处理是完成整个GPS控制网平面设计的最后一步。
数据处理主要包括整体平差、相对平差和绝对平差等步骤。
整体平差是将所有测站的坐标和高程进行整体拟合,得到一个统一的参考框架;相对平差是在整体平差的基础上,对所有测站之间的相对位置关系进行平差,获得从一个测站到另一个测站的平差结果;绝对平差是在相对平差的基础上,对整个GPS控制网的坐标和高程进行纠正,以修正整个GPS控制网平面设计的精度。
精密控制B级GPS网技术设计
1.1.1 GPS 测量按精度应划分为AA、A、B、C、D、E 级,布网时可以根据控制测量的精度要求逐级布网。
B 级主要用于局部变形监测和各种精密工程测量,也可以作为建立国家空间大地测量控制网的基础。
1.1.2 各级网相邻点间弦长精度应按公式1.1.1 计算σ= a2 +(b.d) 2 (1.1.1)式中σ——基线弦长标准差(mm)a——固定误差(mm)b ——比例误差(mm/km)d ——相邻点距离(km)1.1.3 各等级网的精度指标应满足表4.1.3 的规定。
精度分级表1.1.1 等级固定误差a (㎜) 比例误差系数AA ≤3 ≤0.01A ≤5 ≤0.1B ≤8 ≤1C ≤10 ≤5D ≤10 ≤10E ≤10 ≤201.2.1 控制网设计应视其目的,预期达到的精度,作业时卫星的可见性,成果的可靠性,以及参加作业的接收机台数,交通等后勤条件,按照优化设计的原则进行。
1.2.2 控制网的设计应满足下列准则:(1) 精度设计应满足表1.1.1 中相应等级的指标;(2) 按下式计算的网的平均可靠率r 应大于0.25~ rr (1.2.2)n式中 r ——控制网中多余观测数;n ——控制网中的总观测数。
(3) 基准设计应满足投影变形限值的要求。
1.2.3 控制网应由一个或者若干个独立观测环构成。
当网的可靠性和精度要求较高时,宜采用三角形网或者大地四边形网;当精度要求较低时,可采用四边形网、导线环、附合路线或者包括这些布网形式的混合网。
普通不得用单基线定点。
1.2.4 AA、A、B 级控制网普通应布设成连续网,除边缘点外,每点的连接点应不少于3 个。
1.2.5 控制网同步图形之间的连接应采用边联式或者网联式。
当精度要求不高时,也可采用点联式布网,但应加强全网定位结果的检核,防止粗差浮现。
1.2.6 控制网最简独立闭合环或者附合路线边数应符合表 1.2.6 的规定。
最简独立环或者附合路线边数的规定表 1.2.6等级闭合环或者附合路线边数E≦10D≦8A≦5C≦6B≦61.2.7 各级 GPS 控制网相邻点间平均距离应符合表 1.2.7 的规定。
校园gps控制网设计实验报告
校园gps控制网设计实验报告一、引言随着信息技术的发展,校园里的定位和导航需求越来越多。
为了满足校园内教职工和学生的定位导航需求,我们设计了一套校园GPS控制网系统。
该系统通过GPS定位技术,可以实时获取校园内各个位置的坐标信息,并将其展示在地图上,以方便用户查找目的地。
本实验报告将详细介绍我们的设计方案和实验过程。
二、设计方案1. 硬件设备我们使用了一台GPS接收器和多个支持网络通信的终端设备。
GPS 接收器用于接收卫星信号,并能够准确地获取到当前设备所在位置的经纬度信息。
终端设备则通过网络连接到服务器,将获取到的位置信息上传至服务器。
2. 软件设计我们使用了一套完整的软件系统,包含前端和后端两部分。
前端部分负责展示地图和进行用户交互,后端部分负责接收终端设备上传的数据,并将坐标信息进行处理和存储。
前端部分使用了HTML、CSS和JavaScript来设计网页界面,并使用了地图API来显示校园地图。
用户可以在网页上输入目的地信息,然后系统会根据当前位置和目的地,计算出最优的路径,并在地图上标注出来。
同时,前端还可以将用户的当前位置实时更新在地图上,以便用户随时查看自己的位置。
后端部分使用了Java编程语言,通过Spring框架搭建了一个服务器,用于接收终端设备上传的位置信息。
服务器会将这些位置信息进行处理和存储,以便用户在前端查看地图时获取最新的位置数据。
另外,后端还实现了一系列算法,用于计算最优路径和生成路径规划。
三、实验过程1. 硬件连接首先,我们将GPS接收器通过串口连接到终端设备。
然后,将终端设备连接到服务器。
确保硬件连接正常后,我们进一步进行软件配置。
2. 软件配置我们首先在终端设备上安装前端软件,包括HTML、CSS和JavaScript 文件。
然后,将后端软件部署到服务器上。
确保软件配置完成后,我们启动系统,以便进行实际测试。
3. 实际测试我们邀请了一些志愿者来参与测试。
志愿者携带终端设备,通过前端界面输入目的地信息,并在地图上查看自己的位置。
GPS网型优化设计
GPS网型优化设计摘要:本文重点论述了 GPS控制网的最优设计,以及 GPS控制网的构造特征与构造方式,以及 GPS控制网的网型设计的基本原理。
网络优化的目标是从众多的网络结构中选出既能满足精度要求,又能满足可靠性要求的网络结构。
因此,对 GPS网络中的基准优化及可行性分析进行了探讨,并对 GPS网络的优化方案进行了阐述。
本文还对典型网络的性能指标进行了分析,提出了典型网络的性能指标,并对其进行了分析。
并在此基础上,对 GPS网络的优化方案进行了探讨。
关键词:GPS 网型优化网型设计引言:在 GPS控制网络的优化设计方面,国内外的相关文献和文献都有较多,其优化设计的方式也多种多样,因此,要想获得最佳的设计方式,使得整个优化的流程变得更加简单、快速,就必须在 GPS控制网络的优化设计方面进行深入的探讨。
为求解控制网优化的难题,得到布网方案,控制网优化的方式,本文从控制网优化的角度出发,通过一个例子加以说明。
一、测区概况本项目振兴路跨桥梁位于濮阳新区东、西龙湖的连接渠上。
周边规划用地性质为行政办公、商务设施、居住用地、绿化用地。
桥梁定位为跨越景观水系的景观桥。
由于连接渠现已形成规划断面并注水,现状河道顶宽约200 米。
经过和新区、市规划局两次汇报和甲方多次沟通,考虑桥梁的景观效果,保留现状河道断面,取桥梁长度210 米。
在濮阳示范区新区东、西龙湖的连接渠上后期还有两座桥梁的工程、示范区主次干道工程及规划附属工程,形成一片区域性质的片状控制网。
二、控制网情况1、工程小组依据由甲方和设计单位提出的A001,A002,A003,A004等初始控制点,对其进行了实地测量,并对其进行了稳定评价。
通过对该方案中的关键节点的重新测定,达到了《工程测量规范》的精确标准。
2、在濮阳示范区里的所有规划施工均以4个控制点为基准起算点。
3、根据现场施工的要求对控制网进行了,加密点为8个WH01、WH02、WH03、ZX01、ZX02、ZX03、ZX04、ZX05。
gps控制网测量实施方案
gps控制网测量实施方案GPS控制网测量实施方案。
一、引言。
GPS(全球定位系统)是一种通过卫星信号来确定地面位置的技术,它在测量领域有着广泛的应用。
在测量工程中,GPS控制网是一种重要的测量基准,能够提供高精度的位置信息。
本文将介绍GPS控制网测量的实施方案,包括网络设计、测量方法、数据处理等内容。
二、网络设计。
1. 网络布设。
GPS控制网的布设需要考虑到测量区域的地形、地物、遮挡物等因素。
一般来说,需要选择高处、开阔的地点来布设控制点,以保证信号的稳定和覆盖范围的广泛性。
同时,需要根据测量需求确定控制点的数量和位置,以保证整个测量区域的覆盖。
2. 控制点选取。
控制点的选取需要考虑到其地理位置、地貌特征、便于观测等因素。
通常情况下,需要选择地势平坦、无遮挡物的地点作为控制点,以保证GPS信号的稳定性和精度。
同时,需要根据测量任务的要求确定控制点的数量和分布,以保证整个测量区域的覆盖。
三、测量方法。
1. 观测方式。
GPS控制网的观测方式一般包括静态观测和动态观测两种。
静态观测适用于对控制点进行长时间、高精度的观测,能够提供较为精确的位置信息;动态观测适用于对移动目标进行实时定位,能够提供动态位置信息。
根据测量任务的要求,选择合适的观测方式进行测量。
2. 数据采集。
在进行GPS控制网测量时,需要对控制点进行数据采集,包括卫星信号的接收、位置信息的记录等。
同时,需要进行数据的质量控制,排除掉异常数据,保证采集到的数据的准确性和可靠性。
四、数据处理。
1. 数据处理流程。
数据处理是GPS控制网测量中的关键环节,包括数据的预处理、平差计算、精度评定等步骤。
在进行数据处理时,需要根据实际情况选择合适的数据处理方法,保证数据处理的准确性和有效性。
2. 结果分析。
经过数据处理后,需要对处理结果进行分析,评定控制点的位置精度、测量精度等指标。
根据分析结果,可以对测量结果进行修正和优化,以提高测量的精度和可靠性。
五、总结。
GPS控制网的建立与技术设计
第三节GPS控制网的建立与技术设计一、GPS控制网的建立通常将应用GPS卫星定位技术建立的控制网称为GPS网。
与常规方法相比,应用GPS卫星定位技术建立控制网的主要特点是:1.采用相对定位方法,即若干台GPS接收机同步观测,确定各点之间的相对位置,并采用载波相位测量,从而得到高精度的测量结果。
2.GPS测量不要求各点之间互相通视,使得控制点的点位选定灵活方便。
3.GPS测量可以全天候进行,不论白天黑夜或晴天雨天,均能正常工作,使得测量工作更具有计划性。
4.观测时间短,当测站之间的距离小于30km时,同步观测1~2h便可得到较好的观测成果;当测站之间的距离小于10km时,还可采用快速定位方法,观测时间可以缩短为10—20min,甚至更短。
5.GPS测量的观测数据是自动记录的,GPS基线向量的计算和GPS网的平差计算的自动化程度很高。
目前大致可以将GPS控制网分为两大类:一类是国家或区域性的高精度的GPS控制网。
(相邻点的距离通常是从数千公里至数百公里),其主要任务是作为高精度三维国家大地测量控制网,以求定国家大地坐标系与世界大地坐标系的转换参数,为地学和空间科学等方面的科学研究工作服务;或者是对GPS网进行重复观测,用以研究地区性的板块运动或地壳形变规律等问题。
另一类是局部性的GPS控制网,包括城市或矿区GPS控制网,或其它工程GPS控制网。
一般来说,这类GPS网中相邻点间的距离为几公里至几十公里,其主要任务是直接为城市建设或工程建设服务。
GPS控制网的建立按其工作性质可以分为外业工作和内业工作两大部分。
外业工作主要包括选点、建立测站标志、野外观测作业等;内业工作主要包括GPS控制网的技术设计、数据处理和技术总结等。
也可以按工作程序大体分为GPS网的技术设计、仪器检验、选点与建造标志、外业观测与成果检核、GPS网的平差计算以及技术总结等若干个阶段。
尽管GPS测量具有一些优越性,但为了得到可靠的观测成果,也必须有科学的技术设计,严谨的作业管理和工作作风,且GPS测量也应遵循统一的规范。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§10.3 GPS控制网的设计10.3.1总述一个完整的技术设计,主要应包含如下内容:1.项目来源介绍项目的来源、性质。
即项目由何单位、部门下达、发包,属于何种性质的项目等。
2.测区概况介绍测区的地理位置、气候、人文、经济发展状况、交通条件、通讯条件等。
这可为今后工程施测工作的开展提供必要的信息。
如在施测时作业时间、交通工具的安排,电力设备使用,通讯设备的使用等。
3.工程概况介绍工程的目的、作用、要求、GPS网等级(精度)、完成时间、有无特殊要求等在进行技术设计、实际作业和数据处理中所必须要了解的信息。
4.技术依据介绍工程所依据的测量规范、工程规范、行业标准及相关的技术要求等。
5.现有测绘成果介绍测区内及与测区相关地区的现有测绘成果的情况。
如已知点、测区地形图等。
6.施测方案介绍测量采用的仪器设备的种类、采取的布网方法等。
7.作业要求规定选点埋石要求、外业观测时的具体操作规程、技术要求等,包括仪器参数的设置(如采样率、截止高度角等)、对中精度、整平精度、天线高的量测方法及精度要求等。
8.观测质量控制介绍外业观测的质量要求,包括质量控制方法及各项限差要求等。
如数据删除率、RMS值、RA TIO值、同步环闭合差、异步环闭合差、相邻点相对中误差、点位中误差等。
9.数据处理方案详细的数据处理方案,包括基线解算和网平差处理所采用的软件和处理方法等内容。
对于基线解算的数据处理方案,应包含如下内容:基线解算软件、参与解算的观测值、解算时所使用的卫星星历类型等。
对于网平差的数据处理方案,应包含如下内容:网平差处理软件、网平差类型、网平差时的坐标系、基准及投影、起算数据的选取等。
10.提交成果要求规定提交成果的类型及形式;若国家技术质量监督总局或行业发布新的技术设计规定,应据之编写。
10.3.2 GPS基线向量网的等级根据我国1992年所颁布的全球定位系统测量规范,GPS基线向量网被分成了A、B、C、D、E五个级别。
下面是我国全球定位系统测量规范中有关GPS网等级的有关内容。
GPS网的精度指标,通常是以网中相邻点之间的距离误差来表示的,其具体形式为:其中,σ:网中相邻点间的距离中误差(mm); a :固定误差(mm); b :比例误差(ppm);D :相邻点间的距离(km)。
A 级网一般为区域或国家框架网、区域动力学网;B 级网为国家大地控制网或地方框架网;C 级网为地方控制网和工程控制网;D 级网为工程控制网;E 级网为测图网。
美国联邦大地测量分管委员会(Federal Geodetic Control Subcommittee-FGCS )在1988年公布的GPS 相对定位的精度标准中有一个AA 级的等级,此等级的网一般为全球性的坐标框架。
10.3.3 GPS 基线向量网的布网形式GPS 网常用的布网形式有以下几种: (1)跟踪站式 (2)会战式(3)多基准站式(枢纽点式) (4)同步图形扩展式 (5)单基准站式 1.跟踪站式 (1)布网形式若干台接收机长期固定安放在测站上,进行常年、不间断的观测,即一年观测365天,一天观测24小时,这种观测方式很象是跟踪站,因此,这种布网形式被称为跟踪站式。
(2)特点接收机在各个测站上进行了不间断的连续观测,观测时间长、数据量大,而且在处理采用这种方式所采集的数据时,一般采用精密星历,因此,采用此种形式布设的GPS 网具有很高的精度和框架基准特性。
每个跟踪站为保证连续观测,一般需要建立专门的永久性建筑即跟踪站,用以安置仪器设备,这使得这种布网形式的观测成本很高。
此种布网形式一般用于建立GPS 跟踪站(AA 级网),对于普通用途的GPS 网,由于此种布网形式观测时间长、成本高,故一般不被采用。
2.会战式 (1)布网形式在布设GPS 网时,一次组织多台GPS 接收机,集中在一段不太长的时间内,共同作业。
在作业时,所有接收机在若干天的时间里分别在同一批点上进行多天、长时段的同步观22)(D b a ⨯+=σ测,在完成一批点的测量后,所有接收机又都迁移到另外一批点上进行相同方式的观测,直至所有的点观测完毕,这就是所谓的会战式的布网。
(2)特点所布设的GPS 网,因为各基线均进行过较长时间、多时段的观测,因而具有特高的尺度精度。
此种布网方式一般用于布设A 、B 级网。
3.多基准站式(1)布网形式若干台接收机在一段时间里长期固定在某几个点上进行长时间的观测,这些测站称为基准站,在基准站进行观测的同时,另外一些接收机则在这些基准站周围相互之间进行同步观测。
(见图10-6)(2)特点 所布设的GPS 网,由于在各个基准站之间进行了长时间的观测,因此,可以获得较高精度的定位结果,这些高精度的基线向量可以作为整个GPS 网的骨架,具较强的图形结构。
4.同步图形扩展式 (1)布网形式多台接收机在不同测站上进行同步观测,在完成一个时段的同步观测后,又迁移到其它的测站上进行同步观测,每次同步观测都可以形成一个同步图形,在测量过程中,不同的同步图形间一般有若干个公共点相连,整个GPS 网由这些同步图形构成。
(2)特点具有扩展速度快,图形强度较高,且作业方法简单的优点。
同步图形扩展式是布设GPS 网时最常用的一种布网形式。
5.单基准站式 (1)布网形式 又称作星形网方式,它是以一台接收机作为基准站,在某个测站上连续开机观测,其余的接收机在此基准站观测期间,在其周围流动,每到一点就进行观测,流动的接收机之间一般不要求同步,这样,流动的接收机每观测一个时段,就与基准站间测得一条同步观测基线,所有这样测得的同步基线就形成了一个以基准站为中心的星形。
流动的接收机有时也称为流动站。
见图10-7。
(2)特点单基准站式的布网方式的效率很高,但是由于各流动站一般只与基准站之间有同步观测基线,故图形强度很弱,为提高图形强度,一般需要每个测站至少进行两次观测。
10.3.4 布设GPS 基线向量网时的设计指标在布设GPS 网时,我们除了遵循一定的设计原则外,还需要一些定量的指标来指导我图10-6基准站流动站 图10-7们的工作。
在我们进行GPS 网的设计时经常需要采用效率指标、可靠性指标和精度指标等。
1.效率指标 在进行GPS 网的设计时,我们经常采用效率指标来衡量某种网设计方案的效率,以及在采用某种布网方案作业时所需要的作业时间、消耗等。
在布设一个GPS 网时,在点数、接收机数和平均重复设站次数确定后,则完成该网测设所需的理论最少观测期数(同步观测的时段数)就可以确定。
但是,当按照某个具体的布网方式和观测作业方式进行作业时,要按要求完成整网的测设,所需的观测期数与理论上的最少观测期数会有所差异,理论最少观测期数与设计的观测期数的比值,称之为效率指标(e ),即ds s e m in=其中:min s 为理论最少观测期数;理论最少观测期数)INT(minmnR s ⋅= R 为平均重复设站次数;m 为接收机数;n 为GPS 网的点数; INT( )为凑整函数,x x ≥)INT(。
d s 为设计观测期数。
该指标可用来衡量GPS 网设计的效率。
2.可靠性指标GPS 网可靠性,可以分为内可靠性和外可靠性。
所谓GPS 网的内可靠性就是指所布设的GPS 网发现粗差的能力,即可发现的最小粗差的大小;所谓GPS 网的外可靠性就是指GPS 网抵御粗差的能力,即未剔除的粗差对GPS 网所造成的不良影响的大小。
由于内、外可靠性指标在计算上过于烦琐,因此,在实际的GPS 网的设计中采用一个计算较为简单的反映GPS 网可靠性的数量指标,该指标就是整网的多余独立基线数与总的独立基线数的比值,称为整网的平均可靠性指标(η),即:trl l =η 其中:r l 为多余的独立基线数; n t r l l l -=,n l 为必要的独立基线数,1-=n l nt l 为总的独立基线数,)1(-⋅=m s l t ,s 为观测期数,m 为同步观测接收机的台数。
3.精度指标当GPS 网布网方式和观测作业方式确定后,GPS 网的网形就确定了,根据已确定的GPS 网的网形,可以得到GPS 网的设计矩阵B ,从而可以得到GPS 网的协因数阵)(PB B Q T=,在GPS 网的设计阶段可以采用)(Q tr 作为衡量GPS 网精度的指标。
该指标可通过相关软件(如武汉大学测绘学院开发的COSA 软件)计算得到。
10.3.5 GPS 网的设计准则GPS 网设计的出发点是在保证质量的前提下,尽可能地提高效率,努力降低成本。
因此,在进行GPS的设计和测量时,既不能脱离实际的应用需求,盲目地最求不必要的高精度和高可靠性;也不能为追求高效率和低成本,而放弃对质量的要求。
1.选点(1)为保证对卫星的连续跟踪观测和卫星信号的质量,要求测站上空应尽可能的开阔,在10︒~15︒高度角以上不能有成片的障碍物。
(2)为减少各种电磁波对GPS卫星信号的干扰,在测站周围约200m的范围内不能有强电磁波干扰源,如大功率无线电发射设施、高压输电线等。
(3)为避免或减少多路径效应的发生,测站应远离对电磁波信号反射强烈的地形、地物,如高层建筑、成片水域等。
(4)为便于观测作业和今后的应用,测站应选在交通便利,上点方便的地方。
(5)测站应选择在易于保存的地方。
2.提高GPS网可靠性的方法(1)增加观测期数(增加独立基线数)。
在布设GPS网时,适当增加观测期数(时段数)对于提高GPS网的可靠性非常有效。
因为,随着观测期数的增加,所测得的独立基线数就会增加,而独立基线数的增加,对网的可靠性的提高是非常有益的。
(2)保证一定的重复设站次数。
保证一定的重复设站次数,可确保GPS网的可靠性。
一方面,通过在同一测站上的多次观测,可有效地发现设站、对中、整平、量测天线高等人为错误;另一方面,重复设站次数的增加,也意味着观测期数的增加。
不过,需要注意的是,当同一台接收机在同一测站上连续进行多个时段的观测时,各个时段间必须重新安置仪器,以更好地消除各种人为操作误差和错误。
(3)保证每个测站至少与三条以上的独立基线相连,这样可以使得测站具有较高的可靠性。
在布设GPS网时,各个点的可靠性与点位无直接关系,而与该点上所连接的基线数有关,点上所连接的基线数越多,点的可靠性则越高。
(4)在布网时要使网中所有最小异步环的边数不大于6条。
在布设GPS网时,检查GPS观测值(基线向量)质量的最佳方法是异步环闭合差,而随着组成异步环的基线向量数的增加,其检验质量的能力将逐渐下降。
3.提高GPS网精度的方法(1)为保证GPS网中各相邻点具有较高的相对精度,对网中距离较近的点一定要进行同步观测,以获得它们间的直接观测基线。
(2)为提高整个GPS网的精度,可以在全面网之上布设框架网,以框架网作为整个GPS网的骨架。