简单线性回归模型分析.pptx

合集下载

线性回归分析教程ppt

线性回归分析教程ppt

04
线性回归分析的应用
预测与决策
销售预测
通过分析历史销售数据,建立线性回归模型,预测未来销售趋势,为企业的生产和库存管理提供决策 依据。
投资决策
利用线性回归分析评估投资项目的潜在收益和风险,帮助投资者做出明智的决策。
市场细分与定位
市场细分
通过线性回归分析,识别不同消费群体 的特征和需求,将市场细分为不同的子 市场,以便更有针对性地进行营销。
影响预测精度。
数据不平衡
03
在某些情况下,某些类别的样本数量过少,可能导致模型对少
数类别的预测能力不足。
样本选择偏差
过拟合
训练数据集过小或过于特定,导致模型对训练数据过度拟合,而 对新数据预测能力不足。
欠拟合
训练数据集过大或过于复杂,导致模型过于简单,无法捕捉到数 据中的复杂模式。
选择偏差
由于某些原因(如实验设计、数据收集过程等),训练数据可能 存在选择偏差,导致模型预测能力下降。
通过残差分析、决定系数、显著性检 验等统计方法对模型进行检验,评估 模型的拟合效果。
多重共线性问题
多重共线性定义
多重共线性是指线性回归模型中自变量 之间存在高度相关或完全相关的情况。
多重共线性的诊断
通过计算自变量之间的相关系数、条 件指数、方差膨胀因子等方法诊断多
重共线性。
多重共线性的影响
多重共线性会导致模型不稳定、参数 估计不准确、甚至出现完全的多重共 线性。
பைடு நூலகம்
VS
定位策略
基于线性回归分析的结果,确定目标市场 和产品定位,制定有效的市场推广策略。
成本预测与控制
成本预测
通过分析历史成本数据,建立线性回归模型,预测未来的生产成本,为企业制定合理的 价格策略提供依据。

线性回归分析PPT

线性回归分析PPT

分析宏观经济因素对微观 经济主体的影响,为企业 决策提供依据。
评估政策变化对经济的影 响,为政策制定提供参考。
市场分析
STEP 02
STEP 03
评估市场趋势和竞争态势, 为企业战略规划提供支持。
STEP 01
分析消费者行为和偏好, 优化产品设计和营销策略。
预测市场需求和销售量, 制定合理的生产和销售计 划。
参数解释
(beta_0) 是截距项,表示当所有自变量值为0时,因变量的值;(beta_1, beta_2, ..., beta_p) 是斜率项,表示自 变量变化一个单位时,因变量变化的单位数量。
线性回归分析的假设
线性关系
自变量和因变量之间存在线性关系, 即它们之间的关系可以用一条直线近 似表示。
01
02
无多重共线性
自变量之间不存在多重共线性,即它 们之间没有高度的相关性,每个自变 量对因变量的影响是独特的。
03
无异方差性
误差项的方差不随自变量的值变化。
无随机性
误差项是随机的,不包含系统的、可 预测的模式。
05
04
无自相关
误差项之间不存在自相关性,即一个 误差项与另一个误差项不相关。
Part
02
线性回归模型的建立
确定自变量与因变量
01
根据研究目的和数据特征,选择 与因变量相关的自变量,并确定 自变量和因变量的关系。
02
考虑自变量之间的多重共线性问 题,避免选择高度相关的自变量 。
散点图与趋势线
通过绘制散点图,观察自变量与因变 量之间的关系,了解数据的分布和趋 势。
根据散点图的分布情况,选择合适的 线性回归模型,如简单线性回归或多 元线性回归。

统计学10.线性回归分析PPT课件

统计学10.线性回归分析PPT课件

-973 1314090 1822500 947508
-929 975870 1102500 863784
-445 334050 562500 198381
-412 185580 202500 170074
-159 23910 22500 25408
28 4140 22500
762
402 180720 202500 161283
y ˆ 3.8 82 1 .5 3x 2 4 1 0 1 .02 x 228
2. 多重判定系数R2= 0.9373;调整后的R2= 0.9194 3. 回归方程的显著性检验
▪ F = 52.3498 F>F0.05(2,7)=4.74,回归方程显著
1520
9
35.1
28.2
1620
10
34.5
26.9
1570
一个二元线性回归的例子
(Excel 输出的结果)
SUMMARY OUTPUT
回归统计
Multiple R
0.968159025
R Square
0.937331897
Adjusted R Square 0.919426725
标准误差
2.010050279
且与 X 无关, 它反映了 Y 被 X 解释的不确定性。
如果随机干扰项 u 的均值为 0, 对上式求条件均值, 有
E(YX)12X
反映出从“平均”角度看,是确定性关系。
例:地区的多孩率与人均国民收入的散点图如下:
多 孩 率 Y
人均收入X
这两个变量之间的不确定关系,大致可以用下式表示:
Y12Ln X u
观测值
10
方差分析

简单线性回归模型 PPT课件

简单线性回归模型 PPT课件
• 我们可以通过写出关于y和x的一个方程来 消除这些疑惑。一个简单的方程是:
• y = b0 + b1x + u…………(2.1)
• 且假定方程(2.1)在我们所关注的某个总体 中成立,它定义了一个简单线性回归模型 (simple linear regression model)。因为它把 两个变量x和y联系起来,所以又把它叫做 两变量或者双变量线性回归模型。我们现 在来讨论等式(2.1)中每个量的含义。
• 在写出用x解释y的模型时,我们要面临三 个问题。
– 首先,既然两个变量之间没有一个确切的关系, 那么我们应该如何考虑其他影响y的因素呢? – 第二,y和x的函数关系是怎样的呢? – 第三,我们怎样知道是否抓住了在其他条件不 变的情况下y和x之间的关系(如果这是我们所 追求的目标的话)呢?
简单回归模型的定义
关于u和x的关系的关键性假定
• 需要一个关键假设来约定u和x之间 的关系。我们希望关于x的信息不会 透露关于u的任何信息,也就是说, 两者应该是完全无关的。
关于u和x的关系的关键性假定
• 因为u和x是随机变量,所以我们能够在任 何给定的x值下得到u的条件分布。具体地 说,对于任何一个x值,我们都能够在x的 值所描述的总体剖面上求得u的期望(或平 均)值。因此,一种好的方法是对给定x时 u的期望值作出假定。 • 故关键的假定是:u的平均值不依赖于x值。 也即: E(u|x) = E(u) = 0…… (2.6) • 也就意味着: E(y|x) = b0 + b1x
y ie ld b 1 fe r tiliz e r
• 例2.2 一个简单的工资方程 • 以下模型表示一个人的工资水平与他的可测教育水 平及其他非观测因素的关系:

第二章-简单线性回归模型-PPT精选文档

第二章-简单线性回归模型-PPT精选文档

经济变量之间的因果关系有两种
:确定性的因果关系与随机的因果关 系。前者可以表示为数学中的函数关 系,后者不能像函数关系那样比较精 确地描述其变化规律,但是可以通过 分析大量的统计数据,找寻出它们之 间的一定的数量变化规律,这种通过 大量统计数据归纳出的数量变化规律 称之为统计相关关系,进而称为回归 关系。研究回归关系的方法称为回归 分析方法,表示回归关系的数学式子 称为回归方程。
由于变量Y的非确定性是由于它受
一些随机因素的影响,因此可以 认为,当给定变量 X 的一个确定 值之时,所对应的变量 Y 是一个 随机变量,记作Y|X 。假定条件随 机变量 Y|X 的数学期望值是存在 的,即 E( Y|X ) 存在,由于同一随 机变量的数学期望值是惟一的, 故 E(Y|X ) 能够由 X 的值惟一地确 定,于是 E(Y|X )是变量X 的函数
二、总体回归模型
假设 X 为一个经济变量,Y 为另一个经 济变量,且变量 X 与 Y 之间存在着非确定 性的因果关系,即当 X 变化时会引起 Y 的 变化,但这种变化是随机的。例如,某种 饮料的销售量与气温的关系,销售量受气 温的影响而变化,但其变化又不能由气温 惟一确定;再比如,家庭的周消费额与周 收入之间的关系等等。
第二章 简单线性回归模型
本章主要讨论:
●回归分析与回归函数 ●简单线性回归模型参数的估计 ●拟合优度的度量 ●回归系数的区间估计和假设检验 ●回归模型预测
第一节 回归分析与回归函数
一、相关分析与回归分析 (一)经济变量之间的相互关系
相关关系 1、总体相关 变量之间具有本质上的联系 2、样本相关 变量的样本观察值之间相关
2400
X
非线性相关:
Y
80
70

简单线性回归模型PPT课件

简单线性回归模型PPT课件

940 1030 1160 1300 1440 1520 1650
980 1080 1180 1350 1450 1570 1750
-
1130 1250 1400 -
1600 1890
-
1150 -
-
-
1620 -
2600 1500 1520 1750 1780 1800 1850 1910
y (消费)
出-
表2
1000 650 700 740 800 850 880 -
每月家庭收入支出表(元)
1200 1400 1600 1800 2000 2200 2400
790 800 1020 1100 1200 1350 1370
840 930 1070 1150 1360 1370 1450
900 950 1100 1200 1400 1400 1550
ui N (0, 2 ) (i 1,2,..., n)
或 Yi N (1 1X i , 2 ) (i 1,2,..., n)
以上假定也称高斯假定或古典假定。
二、普通最小二乘法
在不知道总体回归直线的情况下,利用样本信 息建立的样本回归函数应尽可能接近总体回归 函数,有多种方法。
普通最小二乘法(Ordinary Least Squares) 由德国数学家高斯(C.F.Gauss)提出。
Y
e1
Yˆi ˆ1 ˆ2 Xi e3
e4
e2
X1
X2
X
X3
X4
ei Yi Yˆi
Yi (ˆ1 ˆ2 Xi )
对于给定的 Y 和 X的观测值,我们希望这 样决定SRF,使得SRF上的值尽可能接近 实际的 Y。
就是使得残差平方和

线性回归分析教程PPT课件

线性回归分析教程PPT课件

实例二:销售预测
总结词
线性回归分析在销售预测中,可以通过分析历史销售数据,建立销售量与影响因子之间的线性关系, 预测未来一段时间内的销售量。
详细描述
在销售预测中,线性回归分析可以用于分析历史销售数据,通过建立销售量与影响因子(如市场需求 、季节性、促销活动等)之间的线性关系,预测未来一段时间内的销售量。这种分析方法可以帮助企 业制定生产和销售计划。
自相关检验
自相关是指残差之间存在 相关性。应通过图形或统 计检验方法检验残差的自 相关性。
05
线性回归模型的预测与 优化
利用线性回归模型进行预测
确定自变量和因变量
01
在预测模型中,自变量是预测因变量的变量,因变量是需要预
测的目标变量。
建立模型
02
通过收集数据并选择合适的线性回归模型,利用数学公式表示
一元线性回归模型
一元线性回归模型是用来研究一个因变量和一个 自变量之间的线性关系的模型。
它通常用于预测一个因变量的值,基于一个自变 量的值。
一元线性回归模型的公式为:y = b0 + b1 * x
多元线性回归模型
01 多元线性回归模型是用来研究多个自变量和一个 因变量之间的线性关系的模型。
02 它通常用于预测一个因变量的值,基于多个自变 量的值。
线性回归模型与其他模型的比较
01
与逻辑回归的比较
逻辑回归主要用于分类问题,而 线性回归主要用于连续变量的预 测。
02
与决策树的比较
决策树易于理解和解释,但线性 回归在预测精度和稳定性方面可 能更优。
03
与支持向量机的比 较
支持向量机适用于小样本数据, 而线性 Nhomakorabea归在大样本数据上表现 更佳。

简单线性回归模型与分析残差图(ppt 35页)

简单线性回归模型与分析残差图(ppt 35页)
销 售 额 / 千 元 5 81 0 58 81 1 8 1 1 7 1 3 7 1 5 7 1 6 9 1 4 9 2 0 2
根据以上数据,你能否判断学生人数(x)如何影 响到销售收入(y)?根据一家连锁店附近大学的人数, 你能够预测该家连锁店的季度销售收入吗?
3
描述学生人数和销售收入之间的关系
第i个标准化残差
其中
Std_ˆi ˆi / sˆi
sˆi s
1 hi ,
1
h i n
(xi x)2 (xi x)2
26
如何分析残差图
如果模型是符合的,那么残差图上的散 点应该落在一条水平带中间,除此之外, 残差图上的点不应呈现出什么规律性。
使用EXCEL对阿姆德连锁店的数据产生残 差图。你能得到什么结论?
协方差(315.56)和相关系数(0.95),散点图;
250
季 度 销 售 收 入 /千 美 圆
200
150
100
50
0
0
5
10
15
20
25
30
学生人数/千人
根据这些你可以得到什么结论?
4
Types of Regression Models
Positive Linear Relationship
散点图; 利用学生化标准残差基本服从标 准正态分布来检测(落在2个标准差之外 时)。
32
带有异常值的散点图示例
80
70
60
50
40
30
20
10
0
0
1
2
3
4
5
6
7
33
检测有影响的观测值
什么是有影响的观测? 观测的杠杆率:

计量经济学 第二章 简单线性回归模型案例分析 PPT

计量经济学 第二章 简单线性回归模型案例分析 PPT
t(ˆ 2 ) 1 1 .9 8 2 6 t0 .0 2 5 (2 9 ) 2 .0 4 5应拒绝 H0 :2 0
3. 用P值检验 α=0.05 >> p=0.0000
表明,城镇居民人均总收入对城镇居民每百户计算机拥有量确 有显著影响。
4. 经济意义检验:
所估计的参数
,说明城镇
居民家庭人均总收入每增加1元,平均说来城变量选择:被解释变量选择能代表城乡所有居民消费的 “城镇居民家庭平均每百户计算机拥有量”(单位:台) ; 解释变量选择表现城镇居民收入水平的“城镇居民平均每 人全年家庭总收入”(单位:元) 研究范围:全国各省市2011年底的城镇居民家庭平均每 百户计算机拥有量和城镇居民平均每人全年家庭总收入数 据。
3、总体回归函数(PRF)是将总体被解释变量Y的条件 均值表现为解释变量X的某种函数。 样本回归函数(SRF)是将被解释变量Y的样本条件 均值表示为解释变量X的某种函数。 总体回归函数与样本回归函数的区别与联系。
4、随机扰动项是被解释变量实际值与条件均值的偏差, 代表排除在模型以外的所有因素对Y的影响。
Yt 12Xt ut
估计参数
假定模型中随机扰动满足基本假定,可用OLS法。 具体操作:使用EViews 软件,估计结果是:
用规范的形式将参数估计和检验的结果写为: Y ˆt11.95800.002873X t
(5.6228) (0.00024) t= (2.1267) (11.9826) R2 0.8320 F=143.5836 n=31
即是说:当地区城镇居民人均总收入达到25000元时,城镇居 民每百户计算机拥有量 平均值置信度95%的预测区间为 (80.6219,86.9473)台。
12
个别值区间预测:

第二章 简单线性回归模型2PPT课件

第二章 简单线性回归模型2PPT课件

(TSS) (ESS) (RSS)
19
总变差 y(i2 TSS):应变量Y的观测值与其平均
值的离差平方和(总平方和)
解释了的变差
^
y
2 i
(ESS):应变量Y的估计值与
其平均值的离差平方和(回归平方和)
剩余平方和 ei2(RSS):应变量观测值与估计
值之差的平方和(未解释的平方和)
20
变差分解的图示
u 在给定 X
的条件下,
ui
i 的条件方差为某个常数
2
V ar(u i X i)E [u iE (u i X i)]22
6
假定3:无自相关假定
随机扰动项 u i 的逐次值互不相关
C o v ( u i,u j) E [ u i E ( u i) ] [ u j E ( u j) ] E (u iuj)0 (ij)
Y
Yi
• ei来自残差
^
(Yi-Y)总变差
SRF
^
(Yi-Y)来自 回归
Y
Xi
X
21
三、可决系数ห้องสมุดไป่ตู้
以TSS同除总变差等式两边:
TSSESSRSS 或 TSS TSS TSS
计量经济学
第二章 简单线性回归模型
标题添加
点击此处输入相 关文本内容
前言
点击此处输入 相关文本内容
标题添加
点击此处输入相 关文本内容
点击此处输入 相关文本内容
第二节 简单线性回归模型的最小二乘估计
本节基本内容:
● 简单线性回归的基本假定 ● 普通最小二乘法 ● OLS回归线的性质 ● 参数估计式的统计性质
假定3:无自相关假定 C ov(Y i,Yj)0 (ij)

金融学《简单线性回归模型》课件

金融学《简单线性回归模型》课件

4500
2277 2388 2526 2681 2887 3050 3189 3353 3534 3710 3834
Hale Waihona Puke 30395000 5500
2469 2924 2889 3338 3090 3650 3156 3802 3300 4087 3321 4298 3654 4312 3842 4413 4074 4165
9
“线性”的判断p39
计量经济学中,线性回归模型的“线性” 有两种解释: ◆就变量而言是线性的 ——Y的条件期望(均值)是 X 的线性函数 ◆就参数而言是线性的 ——Y的条件期望(均值)是参数 β 的线性函数:
例如: E(Yi Xi ) 1 2Xi 对变量、参数均为“线性”
E(Yi Xi ) 1 2 ln Xi 对参数“线性”,对变量”非线性”
样本回归函数:
Y
SRF
如果把被解释变量Y的样本条件
均值Yˆi 表示为解释变量X的某种
函数,这个函数称为样本回归函
Yˆi
•• •••
数(SRF)。
Xi
X
13
样本回归函数的表现形式
条件均值形式:
将样本条件均值表现为解释变量的函数,样本回归函数如果为
线性函数,可表示为 Yˆi ˆ1 ˆ2 Xi
其中:Yˆi 是与 X i相对应的 Y 的样本条件均值 ˆ1 和 ˆ2 分别是样本回归函数的参数
一、明确几个概念(为深刻理解“回归”)
●被解释变量 Y 的条件分布:
当解释变量 X 取某固定值时(条件),Y 的值不确定, Y的不同取值会形成一定的分布,这是Y的条件分布。 ●被解释变量 Y 的条件概率:
X取某固定值时,Y 取不同值的概率称为Y的条件概率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这些假定意味着什么?
9
f
y 服从在回归直线附近的正态分布
对每个 x 值, y分布的方差相同.
Y
X2
X1 X
回归直线
10
估计的回归方程
如何估计参数和?
最小二乘准则
n
求解 min ( yi 0 1 xi )2 0 ,1 i1
得出达到最小值点(b0 , b1)为0和1的点估计
b1
yˆ p t / 2 (n 2) sind
其中
s2 ind
s2 1
1 n
(xp x)2
xi2 ( xi )2 / n
( 76.13, 143.87)
的一个无偏估计 s2=MSE=SSE/(n-2)
15
关于回归系数的假设检验
H0 : 1 0 H1 : 1 0
检验统计量
t b1
sb1
其中sb1
s
xi2
1 n
(
xi )2 是b1的标准误差
给定显著水平时,选择拒绝域
t t /2 (n 2)或者t t /2 (n 2)
16
关于回归方程整体的检验
xi yi ( xi2 (
xi xi
)
2
yi ) /n
/
n
,
b0 y b1 x
估计的回归直线 yˆ b0 b1x
11
阿姆德连锁店的回归直线
估计参数
b1=5
250
季度销售收入/千美圆
b0=60
200 150
回归直线
100
50
yˆ 60 5x
0
0
5
10
15
20
25
30
你对系数的含义怎么
连锁店附近的人流与店的利润
气温与滑雪场门票销量
………
2
阿姆德比萨饼连锁店的问题
阿姆得(Armand)比萨饼连锁店坐落在美国的5 个州内,它们通常的位置是在大学旁边,而且管理人 员相信附近大学的人数与这些连锁店的季度销售额是 有关系的。下面是10家连锁店附近大学的学生人数和 季度销售收入的数据:
使用EXCEL对阿姆德连锁店的数据 建立模型,并进行分析,基于EXCEL的输 出结果,你对该模型有些什么认识?
19
使用你建立的模型(一)
问题一:对于那些附近学校人数是1万的 连锁店,他们的季度销售收入一定是一 样吗?这种连锁店平均的季度销售收入 是多少?你能够给出一个估计吗?
问题二:某家连锁店附近学生总数约1万 人,你能够给出它的季度销售收入的一 个估计值吗?
学生人数/千人
理解?
12
回归方程的判定系数
y的总变差的分解
SST ( yi y)2 ( yi yˆi yˆi y)2
( yi yˆi )2 ( yˆi y)2 SSE SSR
定义判定系数R2=SSR/SST. 判定系数的含义是什么? 阿姆德比萨饼连锁店的例子:R2=0.9027. 判定系数和相关系数的关系。
第十讲
简单线性回归模型
1
建立两个变量X和Y间的关系模型,推断变量Y 如何依赖于变量X, 从而可以用X预测Y.
例:
广告费用和销售量
公司的市值与CEO的年薪
原始股的销售数量和期望价格
证券市场收益率与某只股票的收益率
商品价格和销售量
装配线的速度和次品数量
年收入与信用卡消费金额
年龄与手机话费
变量x的确对y有解释作用吗?(H0: =0) 检验统计量
F=MSR/MSE 其中MSR=SSR/自变量的个数 拒绝域
F>F(1, n-2)
17
回归方程的方差分析表
方差来源 回归 误差 总计
平方和 SSR SSE SST
Байду номын сангаас
自由度 1 n-2 n-1
均方 F值 MSR MSR/MSE MSE
18
阿姆德连锁店的情形
随机误 差
因变量(响 应变量,被 预测变量)
斜率
自变量(解释 变量,预测变 量)
7
Y
观测值
Yi 0 1Xi i 观测值
i
=
随机误差
Y 0 1X
X
8
模型的假定
1) E()=0; (E(y)=x) 2) 对于所有的x,Var()=. 3) 是服从正态分布N(0, ) 的. 4) 对于不同的x, 是相互独立的.
连锁店
1
学生人数/千人 2
销售额/千元 58
2 3 4 5 6 7 8 9 10 6 8 8 12 16 20 20 22 26 105 88 118 117 137 157 169 149 202
根据以上数据,你能否判断学生人数(x)如何影 响到销售收入(y)?根据一家连锁店附近大学的人数, 你能够预测该家连锁店的季度销售收入吗?
Relationship NOT Linear
Negative Linear Relationship
No Relationship
5
模型的引入
对于给定的学生人数,销售收入是唯一确定的 一个数,还是一个随机变量?
学生人数的变化如何影响到销售收入? 使用的模型
6
简单线性回归模型
Y 的截距
Y 0 1X
xi2 ( xi )2
/ n
E( yp )的1置信区间是
yˆ p t / 2 (n 2) syˆ p ( 98.58, 121.42)
21
使用你建立的模型(三)
对于问题二,如何给出一个预测区间, 使得这家连锁店的季度销售收入落在该 区间里面的概率是1-?
y p的概率为1 的预测区间是
点估计:110
20
使用你建立的模型(二)
对于问题一,如何得到这种连锁店平均 销售收入的一个95%的置信区间?
对于给定的xp , yˆ p b0 b1xp是E( y p )的无偏估计。
yˆ p的分布是N (E( yp ),
2 yˆ p
), 其中
2 的估计是
yˆ p
s2 yˆ p
s
2
1 n
(xp x)2
13
Coefficients of Determination (r2) and Correlation (r)
Y r2 = 1,r = +1
Y r2 = 1, r = -1
X
Yr2 = .8, r = +0.9
X
Y r2 = 0, r = 0
X
X
14
的估计
理解误差平方和 SSE ( yi yˆi )2 ( yi b0 b1xi )2
3
描述学生人数和销售收入之间的关系
协方差(315.56)和相关系数(0.95),散点图;
250
季度销售收入/千美圆
200
150
100
50
0
0
5
10
15
20
25
30
学生人数/千人
根据这些你可以得到什么结论?
4
Types of Regression Models
Positive Linear Relationship
相关文档
最新文档