人工神经网络-PPT课件

合集下载

人工神经网络基础与应用-幻灯片(1)

人工神经网络基础与应用-幻灯片(1)
24
4.4.2 根据连接方式和信息流向分类
反馈网络
y1 y2 ... y n 特点
仅在输出层到输入层存在反 馈,即每一个输入节点都有 可能接受来自外部的输入和 来自输出神经元的反馈,故 可用来存储某种模式序列。
应用
x 1 x 2 .... xn
神经认知机,动态时间序列 过程的神经网络建模
25
4.4.2 根据连接方式和信息流向分类
w ij : 从ui到xj的连接权值(注意其下标与方向);
s i : 外部输入信号;
y i : 神经元的输出
18
4.3.2 人工神经元的激励函数
阈值型 f 1 0
分段线性型
f
f max k
f
Neit10
Nei t0 Nei t0
Net i
0
0NietNie0 t
fNiet kNietNie0tNie0tNietNi1 et
典型网络
回归神经网络(RNN)
x 1 x 2 .... xn
27
第4.5节 人工神经网络的学习
连接权的确定方法: (1)根据具体要求,直接计算出来,如Hopfield网络作 优化计算时就属于这种情况。 (2)通过学习得到的,大多数人工神经网络都用这种方 法。
学习实质: 针对一组给定输入Xp (p=1,2,…, N ),通过学习使网络动态 改变权值,从而使其产生相应的期望输出Yd的过程。
树 突
细胞核 突

细胞膜 细胞体
轴 突
来自其 它细胞 轴突的 神经末 稍
神经末稍
11
4.2.1 生物神经元的结构
突触:是神经元之间的连接 接口。一个神经元,通过其 轴突的神经末梢,经突触与 另一个神经元的树突连接, 以实现信息的传递。

《人工神经网络》课件

《人工神经网络》课件
添加项标题
动量法:在梯度下降法的基础上,引入动量项,加速收敛速 度
添加项标题
RMSProp:在AdaGrad的基础上,引入指数加权移动平 均,提高了算法的稳定性和收敛速度
添加项标题
随机梯度下降法:在梯度下降法的基础上,每次只使用一个 样本进行更新,提高了训练速度
添加项标题
AdaGrad:自适应学习率算法,根据历史梯度的平方和来 调整学习率,解决了学习率衰减的问题
情感分析:分析文本中的情感 倾向,如正面评价、负面评价 等
推荐系统
推荐系统是一种基于用户历史行为 和偏好的个性化推荐服务
推荐算法:协同过滤、深度学习、 矩阵分解等
添加标题
添加标题
添加标题
添加标题
应用场景:电商、社交媒体、视频 网站等
应用效果:提高用户满意度、增加 用户粘性、提高转化率等
Part Six
类型:Sigmoid、 Tanh、ReLU等
特点:非线性、可 微分
应用:深度学习、 机器学习等领域
权重调整
权重调整的目的:优化神经网络的性能 权重调整的方法:梯度下降法、随机梯度下降法等 权重调整的步骤:计算损失函数、计算梯度、更新权重 权重调整的影响因素:学习率、批次大小、优化器等
Part Four
《人工神经网络》PPT 课件
,
汇报人:
目录
01 添 加 目 录 项 标 题 03 神 经 网 络 基 础 知 识 05 神 经 网 络 应 用 案 例 07 未 来 发 展 趋 势 与 挑 战
02 人 工 神 经 网 络 概 述 04 人 工 神 经 网 络 算 法 06 神 经 网 络 优 化 与 改 进
深度学习算法
卷积神经网络(CNN):用于图像处理和识别 循环神经网络(RNN):用于处理序列数据,如语音识别和自然语言处理 长短期记忆网络(LSTM):改进的RNN,用于处理长序列数据 生成对抗网络(GAN):用于生成新数据,如图像生成和文本生成

《人工神经网络》课件

《人工神经网络》课件

拟牛顿法
改进牛顿法的不足,使用正定矩阵近 似Hessian矩阵,提高优化效率。
共轭梯度法
结合梯度下降法和共轭方向的思想, 在每一步迭代中选择合适的共轭方向 进行搜索。
遗传算法
模拟生物进化过程的优化算法,通过 选择、交叉、变异等操作寻找最优解 。
正则化技术
L1正则化
对权重参数的绝对值进行惩罚总结词
自然语言处理是利用人工神经网络对自然语言文本进行分析和处理的技术。
详细描述
自然语言处理是实现人机文本交互的关键技术之一,通过训练神经网络对大量文本数据进 行学习,可以实现对文本的自动分类、情感分析、机器翻译等功能。
具体应用
在社交媒体领域,自然语言处理技术可以用于情感分析和舆情监控;在新闻媒体领域,可 以用于新闻分类和摘要生成;在机器翻译领域,可以用于实现多语言之间的自动翻译。
06
人工神经网络的未 来展望
新型神经网络模型的研究
持续探索新型神经网络模型
随着技术的不断发展,新型神经网络模型的研究将不断涌现,以解决传统模型无法处理 的复杂问题。这些新型模型可能包括更复杂的拓扑结构、更高效的参数优化方法等。
结合领域知识进行模型设计
未来的神经网络模型将更加注重与领域知识的结合,以提高模型的针对性和实用性。例 如,在医疗领域,结合医学影像和病理学知识的神经网络模型能够更准确地辅助医生进
THANKS
感谢您的观看
文字、人脸等目标的技术。
02 03
详细描述
图像识别是人工神经网络应用的重要领域之一,通过训练神经网络对大 量图像数据进行学习,可以实现对图像的自动分类、目标检测、人脸识 别等功能。
具体应用
在安防领域,图像识别技术可以用于人脸识别和视频监控;在医疗领域 ,可以用于医学影像分析;在电商领域,可以用于商品图片的自动分类 和检索。

神经网络控制基础人工神经网络课件ppt课件

神经网络控制基础人工神经网络课件ppt课件

其他工业领域应用案例
电力系统
神经网络控制可以应用于电力系统的负荷预测、故障诊断和稳定性 分析等方面,提高电力系统的运行效率和安全性。
化工过程控制
神经网络控制可以对化工过程中的各种参数进行实时监测和调整, 确保生产过程的稳定性和产品质量。
航空航天
神经网络控制在航空航天领域的应用包括飞行器的姿态控制、导航控 制和故障诊断等,提高飞行器的安全性和性能。
05 神经网络控制性能评估与优化
性能评估指标及方法
均方误差(MSE)
衡量神经网络输出与真实值之间的误差,值越小表示性能越好。
准确率(Accuracy)
分类问题中正确分类的样本占总样本的比例,值越高表示性能越好。
交叉验证(Cross-Validation)
将数据集分成多份,轮流作为测试集和训练集来评估模型性能。
强化学习在神经网络控制中应用
强化学习原理
通过与环境进行交互并根据反馈信号进行学习的方法,使神经网络能够自主学习 到最优控制策略。
强化学习算法
包括Q-learning、策略梯度等算法,用于求解神经网络控制中的优化问题,实现 自适应控制。
04 神经网络控制系统设计与实现
系统需求分析
功能性需求
明确系统需要实现的功能,如 数据输入、处理、输出等。
非监督学习
无需已知输出数据,通过挖掘输入数 据中的内在结构和特征进行学习,常 用于聚类、降维等任务。
深度学习在神经网络控制中应用
深度学习模型
通过构建深层神经网络模型,实现对复杂非线性系统的建模与控制,提高控制 精度和性能。
深度学习优化算法
采用梯度下降等优化算法对深度学习模型进行训练,提高训练效率和模型泛化 能力。

第6章人工神经网络算法ppt课件

第6章人工神经网络算法ppt课件
1.基本概念 1.3 主要的神经网络模型 目前使用的比较典型的一些神经网络模型主要有以下几类:
4.随机型神经网络 随机型神经网络其基本思想是:不但让网络的误差和能量函数向减小的方
向变化,而且还可按某种方式向增大的方向变化,目的是使网络有可能跳出局部 极小值而向全局最小点收敛。随机型神经网络的典型算法是模拟退火算法。
曲线越陡。
六、人工神经网络算法
1.基本概念 1.2 人工神经元模型 神经元采用了不同的激活函数,使得神经元具有不同的信息处理特性,并且
神经元的信息处理特性是决定神经网络整体性能的主要因素之一。 下面介绍四种常用的激活函数形式:
(4)高斯函数。高斯函数(也称钟型函数)也是极为重要的一类激活函数,常用 于径向基神经网络(RBF网络),其表达式为:
通过调整权值和阈值,使得误差能量达到最小时,网络趋于稳定状态,学习
结束。
(1)输出层与隐含层之间的权值调整。对每一个 wjk 的修正值为:
w jk
E
w jk
E
netk
netk w jk
J
式中: 为学习步长,取值介于(0,1),对式 netk wjkOj 求偏导得:
j0
netk wjk
Oj
x1
w1i
x2
w2ifΒιβλιοθήκη yixnwni
x0 1
六、人工神经网络算法
1.基本概念 1.2 人工神经元模型 在神经元中,对信号进行处理采用的是数学函数,通常称为激活函数、激励
函数或挤压函数,其输入、输出关系可描述为
u j
f
n
wij xi
j
i1
y f uj
式中xi i 1,2,,n是从其它神经元传来的输入信号; j 是该神经元的阈值;

人工神经网络算法基础精讲ppt课件

人工神经网络算法基础精讲ppt课件
30
2.3学习规则
学习规则
在神经网络的学习中,各神经元的连接权值需按一定的规则
调整,这种权值调整规则称为学习规则。下面介绍几种常见的学习
规则。
1.Hebb学习规则
2.Delta(δ)学习规则
3.LMS学习规则
4.胜者为王学习规则
5.Kohonen学习规则
6.概率式学习规则
2.3学习规则
1.Hebb学习规则
突触结构示意图
1.3生物神经元的信息处理机理
电脉冲
输 入
树 突
细胞体 形成 轴突




信息处理
传输
图 12.2 生物神经元功能模型
神经元的兴奋与抑制
当传入神经元冲动,经整和使细胞膜电位升高,超过动作电位 的阈值时,为兴奋状态,产生神经冲动,由轴突经神经末稍传出。 当传入神经元的冲动,经整和,使细胞膜电位降低,低于阈值时, 为抑制状态,不产生神经冲动。
④神经元的输出和响应是个输入值的综合作用的结果。
⑤兴奋和抑制状态,当细胞膜电位升高超过阈值时,细胞进入兴奋 状态,产生神经冲动;当膜电位低于阈值时,细胞进入抑制状态。
13
1.6激活函数
神经元的描述有多种,其区别在于采用了不同的激活函数,不 同的激活函数决定神经元的不同输出特性,常用的激活函数有如下 几种类型:
1957年,F.Rosenblatt提出“感知器”(Perceptron)模型,第一 次把神经网络的研究从纯理论的探讨付诸工程实践,掀起了人工神 经网络研究的第一次高潮。
4
1.1人工神经网络发展简史
20世纪60年代以后,数字计算机的发展达到全盛时期,人们误以 为数字计算机可以解决人工智能、专家系统、模式识别问题,而放 松了对“感知器”的研究。于是,从20世纪60年代末期起,人工神 经网络的研究进入了低潮。

神经网络方法-PPT课件精选全文完整版

神经网络方法-PPT课件精选全文完整版

信号和导师信号构成,分别对应网络的输入层和输出层。输
入层信号 INPi (i 1,根2,3据) 多传感器对标准试验火和各种环境条件
下的测试信号经预处理整合后确定,导师信号
Tk (k 1,2)
即上述已知条件下定义的明火和阴燃火判决结果,由此我们
确定了54个训练模式对,判决表1为其中的示例。
15
基于神经网络的融合算法
11
局部决策
局部决策采用单传感器探测的分析算法,如速率持续 法,即通过检测信号的变化速率是否持续超过一定数值来 判别火情。 设采样信号原始序列为
X(n) x1 (n), x2 (n), x3 (n)
式中,xi (n) (i 1,2,3) 分别为温度、烟雾和温度采样信号。
12
局部决策
定义一累加函数 ai (m为) 多次累加相邻采样值 的xi (差n) 值之和
样板和对应的应识别的结果输入人工神经网络,网络就会通过
自学习功能,慢慢学会识别类似的图像。
第二,具有联想存储功能。人的大脑是具有联想功能的。用人
工神经网络的反馈网络就可以实现这种联想。
第三,具有容错性。神经网络可以从不完善的数据图形进行学
习和作出决定。由于知识存在于整个系统而不是一个存储单元
中,一些结点不参与运算,对整个系统性能不会产生重大影响。
18
仿真结果
19
仿真结果
20
2
7.2 人工神经元模型—神经组织的基本特征
3
7.2 人工神经元模型—MP模型
从全局看,多个神经元构成一个网络,因此神经元模型的定义 要考虑整体,包含如下要素: (1)对单个人工神经元给出某种形式定义; (2)决定网络中神经元的数量及彼此间的联结方式; (3)元与元之间的联结强度(加权值)。

神经网络ppt课件

神经网络ppt课件
神经元层次模型 组合式模型 网络层次模型 神经系统层次模型 智能型模型
通常,人们较多地考虑神经网络的互连结构。本 节将按照神经网络连接模式,对神经网络的几种 典型结构分别进行介绍
12
2.2.1 单层感知器网络
单层感知器是最早使用的,也是最简单的神经 网络结构,由一个或多个线性阈值单元组成
这种神经网络的输入层不仅 接受外界的输入信号,同时 接受网络自身的输出信号。 输出反馈信号可以是原始输 出信号,也可以是经过转化 的输出信号;可以是本时刻 的输出信号,也可以是经过 一定延迟的输出信号
此种网络经常用于系统控制、 实时信号处理等需要根据系 统当前状态进行调节的场合
x1
…… …… ……
…… yi …… …… …… …… xi
再励学习
再励学习是介于上述两者之间的一种学习方法
19
2.3.2 学习规则
Hebb学习规则
这个规则是由Donald Hebb在1949年提出的 他的基本规则可以简单归纳为:如果处理单元从另一个处
理单元接受到一个输入,并且如果两个单元都处于高度活 动状态,这时两单元间的连接权重就要被加强 Hebb学习规则是一种没有指导的学习方法,它只根据神经 元连接间的激活水平改变权重,因此这种方法又称为相关 学习或并联学习
9
2.1.2 研究进展
重要学术会议
International Joint Conference on Neural Networks
IEEE International Conference on Systems, Man, and Cybernetics
World Congress on Computational Intelligence
复兴发展时期 1980s至1990s

人工神经网络PPT演示课件

人工神经网络PPT演示课件

感知器的学习算法
采用感知器学习规则进行训练。训练步骤为:
① 对各初始权值w0j(0),w1j(0),w2j(0),…,wnj(0),j=1,2,…,m(m为计算层的节点数) 赋予较小的非零随机数;
② 输入样本对{Xp,dp},其中Xp=(-1, x1p , x2p ,…, xnp ),dp为期望的输出向量(教师信 号),上标p代表样本对的模式序号,设样本集中的样本总数为P,则p=1,2,…,P;

计算各节点的实际输出
o
p j
(t
)

sgn[X
T j
(t)
X
],
j 1,2,, m


调整各节点对应的权值,Wj
(t
1)

Wj
(t)
[dLeabharlann p jop j
]X
p
,
j 1,2,, m
,其中η
为学习率,用于控制调整速度,太大会影响训练的稳定性,太小则使训练的收敛
速度变慢,一般取0<η ≤1;
x1
oj Wj
x2 ······ xi ······xn
由方程 w1 j x1 w2 j x2 Tj 0 确定的直线成为二维输入样本空间上的一条分界线。
② 设输入向量X=(x1,x2,x3)T,则三个输入分量在几何上构成一个三维空间。节点j的
输出为
1, o j 1,
w1 j x1 w2 j x2 w3 j x3 Tj 0 w1 j x1 w2 j x2 w3 j x3 Tj 0
智能信息处理技术
华北电力大学
1
第5章 人工神经网络
1 人工神经网络基础知识 2 前馈神经网络 3 自组织神经网络 4 反馈神经网络

人工神经网络8ART神经网络ppt课件

人工神经网络8ART神经网络ppt课件

络 运
G1=1。G1为1时允许输入模式直接从C层输出,并向前传至R 层,与
行 原
R 层节点对应的所有内星向量Bj 进行匹配计算:

n
net j
B
T j
X
bij xi
j=1,2,…,m
选择具有最大匹配度(即具有最i大1 点积)的竞争获胜节点:
net j*
max j
{net
j
}
使获胜节点输出
r j
*
=1,其它节点输出为0。
要点简介
1. 研究背景
2. 学习规则 3. ART神经网络结构 4. ART神经网络学习规则
1
研究背景
▪ 1969年,美国学者格诺斯博格(Grossberg)和卡普特
尔(Carperter)提出了自适应共振理论(ART)模型。
研究背景
▪ ART是一种自组织神经网络结构,是无教师的学
习网络。当在神经网络和环境有交互作用时,对 环境信息的编码会自发地在神经网中产生,则认 为神经网络在进行自组织活动。ART就是这样一 种能自组织地产生对环境认识编码的神经网络理 论模型。
▪ ART1用于处理二进制输入的信息; ▪ ART2用于处理二进制和模拟信息这两种输人; ▪ ART3用于进行分级搜索。 ▪ ART理论可以用于语音、视觉、嗅觉和字符识别
等领域。
ART模型的结构
▪ ART模型来源于Helmboltz无意识推理学说的竞争
学习网络交互模型。这个模型如图所示。 竞争层
输入层
结 构
c1
ci
cn
……
G1
x1
xI
xn
(1)C层结构
该层有n个节点,每个节点接受来自3

BP神经网络PPTppt课件

BP神经网络PPTppt课件

输 入 至 网 络 , 由 前 向 后 , 逐 层 得 到 各 计 算 单 元 的 实 际 输 出 y:
对 于 当 前 层 l 的 第 j个 计 算 单 元 ,j 1,..., nl











n l1
n
e
t
l j
Ol l 1 ij i
i 1
O
l j
f
n
e
t
l j
1
=
1+
e
➢ 可见层
输入层 (input layer) 输入节点所在层,无计算能力
输出层 (output layer) 节点为神经元
➢ 隐含层( hidden layer) 中间层,节点为神经元
可编辑课件PPT
20
具有三层计算单 元的前馈神经网络结 构
可编辑课件PPT
21
2. 感知器神经网络(感知器)、感知器神经元
s ig n 型 函 数 , 不 可 微 ; 对 称 硬 极 限 函 数 ;




f
net
=
sgn
net
=
1
-
1
net 0 net < 0
m atlab函 数 hardlim s
D .阈 值 函 数
f
net
=
-
net net <
其 中 , , 非 负 实 数
可编辑课件PPT
单层感知器网络
感知器神经元
可编辑课件PPT
22
2. 感知器神经网络、感知器神经元(续)
感知器神经元的传递函数

人工神经网络课件

人工神经网络课件
人工神经网络课件
目录
• 神经网络基本概念 • 前馈神经网络 • 反馈神经网络 • 深度学习基础 • 优化算法与技巧 • 实践应用与案例分析
01 神经网络基本概念
生物神经网络简介
01
02
03
生物神经网络组成
生物神经网络由大量神经 元通过突触连接而成,具 有并行处理、分布式存储 和自学习等特性。
信号传递方式
每次只利用一个样本的梯度信息进行参数更新,计算量小,收敛速度快,但容易受到噪声干扰, 陷入局部最优解。
小批量梯度下降法(Mini-Batch Gradie…
折中方案,每次利用一小批样本的梯度信息进行参数更新,兼具批量梯度下降法和随机梯度下降 法的优点。
正则化方法防止过拟合
L1正则化(Lasso)
01
RNN在自然语言处理领域有广泛应用,如机器翻译、文本生成、情感分析等,同时也可以应用于语音识别 和图像处理等领域。
05 优化算法与技巧
梯度下降法及其改进算法
批量梯度下降法(Batch Gradient Des…
利用整个数据集的梯度信息进行参数更新,计算量大,收敛速度慢,但能找到全局最优解。
随机梯度下降法(Stochastic Gradien…
03 反馈神经网络
反馈神经网络结构
01
02
03
04
神经元之间相互连接,形成反 馈回路。
网络中的每个神经元都接收来 自其他神经元的信号,并产生
输出信号。
输出信号会再次作为输入信号 反馈到网络中,影响其他神经
元的输出。
通过不断调整神经元之间的连 接权重,网络可以学习并适应
不同的输入模式。
Hopfield网络模型与算法
批处理、随机梯度下降等优化策略

人工神经网络理论及应用.ppt课件

人工神经网络理论及应用.ppt课件

ww1ij (k )
m
yi1
j1
1 yi1
w2ji e j
yi1 (1
yi1 )
uj
对比Hebb规则: 各项
如遇到隐含层多于1层,可依次类推
yi (1 yi ) y1jei
yi1(1
yi1) u j
m
yi1
1 yi1
w2jie
j
j1
演示
BP算法演示
BP学习算法评述
优点
代入上式,有 因此
ym yi1
ym (1
ym )wmi
J
T
e
e yi1
m j 1
y j (1
y j ) w2jiej
即误差进行反向传输
BP学习步骤:误差反传(隐含层)
w1
w2
u1
e1
yi1 wi1j
yi1(1 yi1)u j
un
… …

em
综合上述结果
y1
Δwi1j
k
dJ dwi1j
主要内容
神经元数学模型 感知器 多层前馈网络与BP算法※ BP算法评述
神经元数学模型
n
y f wjxj
j1
n
设 p wj x j 则 yi f ( pi ) j 1
作用 函数
f
(
x)
1, 0,
x0 x0
i
f (xi )
(a)
f (x)
1
0 x
(b) 作用函数
MP神经元模型
感知器(感知机)
包含感知层,连接层和反应层。
感知层:接受二值输入; 连接层:根据学习规则不断调整权值 输出层:取为对称型阶跃函数

机器学习与应用第02讲人工神经网络ppt课件

机器学习与应用第02讲人工神经网络ppt课件

1
w(2) 21
y1
w222
y2
w223
y3
w224
y4
b22
神经网络每一层完成的变换
ul Wlxl1 bl
xl f ul
权重矩阵的每一行为本层神经元与上一层所有神经 元的连接权重
激活函数分别作用于每个神经元的输出值,即向量 的每个分量,且使用了相同的函数
内积 加偏置
激活函数
w11l
以下面的3层网络为例:
输入层
隐含层
输出层
激活函数选用sigmoid:
f
x
1
1 exp
x
隐含层完成的变换:
y1 1 exp
1
w(1) 11
x1
w112 x2
w113 x3
b11
1
y2 1 exp
w(1) 21
x1
w212 x2
w213 x3
b21
y3 1 exp
1
w(1) 31
分类问题-手写数字图像识别
28 28
输入层有784个神经元
隐含层的神经元数量根据需要设定
0 1 2 3 4 5 6 7 8 9
输出层有10个神经元
回归问题-预测人脸关键点 神经网络直接为输入图像预测出关键点的坐标(x, y)
反向传播算法简介 解决神经网络参数求导问题 源自微积分中多元函数求导的链式法则 与梯度下降法配合,完成网络的训练
y1
w122
y2
w132
y3
w142
y4
b12
z2 1 exp
1
w(2) 21
y1
w222
y2
w223
y3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

*
《医学信息分析与决策》课程组
7
一、神经网络简介
神经网络的基本特征
结构特征: 并行式处理 分布式存储 容错性
能力特征: 自学习 自组织 自适应性
*
《医学信息分析与决策》课程组
8
一、神经网络简介
神经网络的基本功能
联 想 记 忆 功 能
*
《医学信息分析与决策》课程组
9
一、神经网络简介
神经网络的基本功能
人脑与计算机信息处理机制的比较 系统结构 信号形式 信息存储 信息处理机制
*
《医学信息分析与决策》课程组
5
一、神经网络简介
生物神经网络 人类的大脑大约有1.41011个神经细胞,亦称 为神经元。每个神经元有数以千计的通道同其 它神经元广泛相互连接,形成复杂的生物神经 网络。 人工神经网络 以数学和物理方法以及信息处理的角度对人脑 神经网络进行抽象,并建立某种简化模型,就 称为人工神经网络(Artificial Neural Network,缩写 ANN)。
*
《医学信息分析与决策》课程组
19
一、神经网络简介
神经网络的软硬件实现
MATLAB以商品形式出现后,仅短短几年,就以 其良好的开放性和运行的可靠性,使原先控制 领域里的封闭式软件包(如英国的UMIST,瑞 典的LUND和SIMNON,德国的KEDDC)纷纷淘汰, 而改以MATLAB为平台加以重建。在时间进入20 世纪九十年代的时候,MATLAB已经成为国际控 制界公认的标准计算软件。
*
《医学信息分析与决策》课程组
21
一、神经网络简介
神经网络的软硬件实现
MATLAB的推出得到了各个领域的专家学者的广 泛关注,在此基础上,专家们相继推出了 MATLAB工具箱,主要包括信号处理、控制系统、 神经网络、图像处理、鲁棒控制、非线性系统 控制设计、系统辨识、最优化、模糊逻辑、小 波等工具箱,这些工具箱给各个领域的研究和 工程应用提供了有力的工具。
知识处理功能
*
《医学信息分析与决策》课程组
13
一、神经网络简介
神经网络的应用领域:信息处理领域
信号处理
模式识别
数据压缩
*
《医学信息分析与决策》课程组
14
一、神经网络简介
神经网络的应用领域:自动化领域
系统识别 神经控制器 智能检测
*
《医学信息分析与决策》课程组
15
一、神经网络简介
神经网络的应用领域:工程领域
汽车工程 军事工程 化学工程 水利工程
*
《医学信息分析与决策》课程组
16
一、神经网络简介
神经网络的应用领域:医学领域 检测数据分析
生物活性研究
医学专家系统
*
《医学信息分析与决策》课程组
17
一、神经网络简介
神经网络的应用领域:经济领域 信贷分析
输 入 样 本
神 经 网 络
自 动 提 取 非 线 性 映 射 规 则
输 出 样 本
非线性映射功能
*
《医学信息分析与决策》课程组
10
一、神经网络简介
神经网络的基本功能




*
《医学信息分析与决策》课程组
3
一、神经网络简介
人脑与计算机信息处理能力的比较 记忆与联想能力 学习与认知能力 信息加工能力 信息综合能力 信息处理速度
存储器
指令
输入设备
运算器
输出设备
控制器 冯 .诺 依 曼 体 系 计 算 机
*
《医学信息分析与决策》课程组
4
一、神经网络简介
*
《医学信息分析与决策》课程组
20
一、神经网络简介
神经网络的软硬件实现
在欧美大学里,诸如应用代数、数理统计、自 动控制、数字信号处理、模拟与数字通信、时 间序列分析、动态系统仿真等课程的教科书都 把MATLAB作为内容。这几乎成了九十年代教科 书与旧版书籍的区别性标志。在那里,MATLAB 是攻读学位的大学生、硕士生、博士生必须掌 握的基本工具。
市场预测
*
《医学信息分析与决策》课程组
18
一、神经网络简介
神经网络的软硬件实现
神经网络编程语言既可用高级语言也可用低级语言。C 语言是神经网络应用软件的基本编程工具;汇编语言常 用于提高神经网络的已有功能或解决与硬件相关的难 点。 MATLAB名字由MATrix和 LABoratory 两词的前三个字 母组合而成。20世纪七十年代后期,时任美国新墨西 哥大学计算机科学系主任的Cleve Moler教授出于减轻 学生编程负担的动机,为学生设计了一组调用LINPACK 和EISPACK库程序的“通俗易用”的接口,此即用 FORTRAN编写的萌芽状态的MATLAB。
*
《医学信息分析与决策》课程组
6
一、神经网络简介
人工神经网络定义 神经网络是由多个非常简单的处理单元彼此按 某种方式相互连接而形成的计算系统,该系统 是靠其状态对外部输入信息的动态响应来处理 信息的。 人工神经网络是一个由许多简单的并行工作的 处理单元组成的系统,其功能取决于网络的结 构、连接强度以及各单元的处理方式。 人工神经网络是一种旨在模仿人脑结构及其功 能的信息处理系统。
传统分类能力
ANN 分类能力
分类与识别功能
*
《医学信息分析与决策》课程组
11
一、神经网络简介
神经网络的基功能
优化计算功能
*
《医学信息分析与决策》课程组
12
一、神经网络简介
神经网络的基本功能
问 题 解 答 知 识 分 布 式 表 示 知 识 获 取 、 知 识 库 平 行 推 理 输 入 数 据 变 量 变 换 求 解 的 问 题 神 经 网 络 专 家 系 统 的 构 成 由 同 一 神 经 网 络 实 现
医药信息分析与决策
第八章 人工神经网络
大 脑 是 人 的 主 宰 。
人 类 是 地 球 的 宠 儿 ,
地 球 是 宇 宙 的 骄 子 ,
人脑的结构、机制 和功能中凝聚着无比的 奥秘和智慧。 现在是探索脑的奥秘, 从中获得智慧,在其启发 下构造为人类文明服务的 高级智能系统的时候了!
*
2
本章要点
一、神经网络简介 二、MATLAB简介 三、神经网络建模基础 四、利用Microsoft SQL Server2019实 践神经网络算法
相关文档
最新文档