2012年山东春季高考数学试题
2012全国高考山东卷数学及答案
2012年普通高等学校招生全国统一考试(山东卷)文科数学第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若复数z 满足(2)117i(i z i -=+为虚数单位),则z 为(A)3+5i (B)3-5i (C)-3+5i (D)-3-5i(2)已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则()U A B ð为(A){1,2,4} (B){2,3,4} (C){0,2,4} (D){0,2,3,4}(3)函数1()ln(1)f x x =++ (A)[2,0)(0,2]- (B)(1,0)(0,2]- (C)[2,2]- (D)(1,2]-(4)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是(A)众数 (B)平均数 (C)中位数 (D)标准差(5)设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是(A)p 为真 (B)q ⌝为假 (C)p q ∧为假 (D)p q ∨为真(6)设变量,x y 满足约束条件22,24,41,x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是(A)3[,6]2- (B)3[,1]2-- (C)[1,6]- (D)3[6,]2- (7)执行右面的程序框图,如果输入a =4,那么输出的n 的值为(A)2 (B)3 (C)4 (D)5(8)函数2sin (09)63x y x ππ⎛⎫=-≤≤ ⎪⎝⎭的最大值与最小值之和为(A)2 (B)0 (C)-1(D)1-(9)圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为(A)内切 (B)相交 (C)外切 (D)相离(10)函数cos622x xx y -=-的图象大致为(11)已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为(A) 2x y = (B) 2x y = (C)28x y = (D)216x y = (12)设函数1()f x x=,2()g x x bx =-+.若()y f x =的图象与()y g x =的图象有且仅有两个不同的公共点1122(,),(,)A x y B x y ,则下列判断正确的是(A)12120,0x x y y +>+> (B)12120,0x x y y +>+<(C)12120,0x x y y +<+> (D)12120,0x x y y +<+<第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)如图,正方体1111ABCD A B C D -的棱长为1,E 为线段1B C 上的一点,则三棱锥1A DED -的体积为_____.(14)右图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为____.(15)若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数()(14g x m =-在[0,)+∞上是增函数,则a =____.(16)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP 的坐标为____.三、解答题:本大题共6小题,共74分.(17)(本小题满分12分)在△ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知sin (tan tan )tan tan B A C A C +=. (Ⅰ)求证:,,a b c 成等比数列;(Ⅱ)若1,2a c ==,求△ABC 的面积S .(18)(本小题满分12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率; (Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.(19) (本小题满分12分)如图,几何体E ABCD -是四棱锥,△ABD 为正三角形,,CB CD EC BD =⊥.(Ⅰ)求证:BE DE =;(Ⅱ)若∠120BCD =︒,M 为线段AE 的中点,求证:DM ∥平面BEC .(20) (本小题满分12分)已知等差数列{}n a 的前5项和为105,且2052a a =.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)对任意*m ∈N ,将数列{}n a 中不大于27m 的项的个数记为m b .求数列{}m b 的前m 项和m S .(21) (本小题满分13分)如图,椭圆2222:1(0)x y M a b a b+=>>x a =±和y b =±所围成的矩形ABCD 的面积为8.(Ⅰ)求椭圆M 的标准方程;(Ⅱ) 设直线:()l y x m m =+∈R 与椭圆M 有两个不同的交点,,P Q l 与矩形ABCD 有两个不同的交点,S T .求||||PQ ST 的最大值及取得最大值时m 的值.(22) (本小题满分13分) 已知函数ln ()(e xx k f x k +=为常数,e=2.71828…是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行.(Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设()()g x xf x '=,其中()f x '为()f x 的导函数.证明:对任意20,()1e x g x -><+.参考答案:一、选择题:(1)A (2)C (3)B (4)D (5)C (6)A (7)B (8)A (9)B (10)D (11)D (12)B(12)解:设32()1F x x bx =-+,则方程()0F x =与()()f x g x =同解,故其有且仅有两个不同零点12,x x .由()0F x '=得0x =或23x b =.这样,必须且只须(0)0F =或2()03F b =,因为(0)1F =,故必有2()03F b =由此得b =.不妨设12x x <,则223x b =.所以21()()()F x x x x =-,比较系数得1x -,故1x =120x x +=,由此知12121212110x x y y x x x x ++=+=<,故答案为B. 二、填空题 (13)16 以△1ADD 为底面,则易知三棱锥的高为1,故111111326V =⋅⋅⋅⋅=. (14)9 最左边两个矩形面积之和为0.10×1+0.12×1=0.22,总城市数为11÷0.22=50,最右面矩形面积为0.18×1=0.18,50×0.18=9. (15)14 当1a >时,有214,a a m -==,此时12,2a m ==,此时()g x =题意.若01a <<,则124,a a m -==,故11,416a m ==,检验知符合题意. (16)(2sin 2,1cos2)--三、解答题(17)(I)由已知得:sin (sin cos cos sin )sin sin B A C A C A C +=,sin sin()sin sin B A C A C +=,2sin sin sin B A C =,再由正弦定理可得:2b ac =,所以,,a b c 成等比数列.(II)若1,2a c ==,则22b ac ==, ∴2223cos 24a cb B ac +-==,sin C =,∴△ABC的面积11sin 1222S ac B ==⨯⨯=(18)(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为310P =. (II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为815P =. (19)(I)设BD 中点为O ,连接OC ,OE ,则由BC CD =知,CO BD ⊥,又已知CE BD ⊥,所以BD ⊥平面OCE .所以BD OE ⊥,即OE 是BD 的垂直平分线,所以BE DE =.(II)取AB 中点N ,连接,MN DN ,∵M 是AE 的中点,∴MN ∥BE ,∵△ABD 是等边三角形,∴DN AB ⊥.由∠BCD =120°知,∠CBD =30°,所以∠ABC =60°+30°=90°,即BC AB ⊥, 所以ND ∥BC ,所以平面MND ∥平面BEC ,故DM ∥平面BEC .(20)(I)由已知得:111510105,92(4),a d a d a d +=⎧⎨+=+⎩ 解得17,7a d ==,所以通项公式为7(1)77n a n n =+-⋅=.(II)由277m n a n =≤,得217m n -≤,即217m m b -=. ∵211217497m k m k b b ++-==, ∴{}m b 是公比为49的等比数列, ∴7(149)7(491)14948m m m S -==--. (21)(I)22234c a b e a a -==⇒=……① 矩形ABCD 面积为8,即228a b ⋅=……②由①②解得:2,1a b ==,∴椭圆M 的标准方程是2214x y +=. (II)222244,58440,x y x mx m y x m ⎧+=⇒++-=⎨=+⎩, 设1122(,),(,)P x y Q x y ,则21212844,55m x x m x x -+=-=,由226420(44)0m m ∆=-->得m <.||PQ =当l 过A 点时,1m =,当l 过C 点时,1m =-.①当1m <-时,有(1,1),(2,2),||)S m T m ST m ---+=+,||||PQ ST =其中3t m =+,由此知当134t =,即45,(1)33t m ==-∈-时,||||PQ ST .②由对称性,可知若1m <53m =时,||||PQ ST .③当11m -≤≤时,||ST =||||PQ ST =,由此知,当0m =时,||||PQ ST .综上可知,当53m =±和0时,||||PQ ST (22)(I)1ln ()e xx k x f x --'=, 由已知,1(1)0ek f -'==,∴1k =. (II)由(I)知,1ln 1()e xx x f x --'=. 设1()ln 1k x x x =--,则211()0k x x x '=--<,即()k x 在(0,)+∞上是减函数, 由(1)0k =知,当01x <<时()0k x >,从而()0f x '>, 当1x >时()0k x <,从而()0f x '<. 综上可知,()f x 的单调递增区间是(0,1),单调递减区间是(1,)+∞.(III)由(II)可知,当1x ≥时,()()g x xf x '=≤0<1+2e -,故只需证明2()1e g x -<+在01x <<时成立.当01x <<时,e x >1,且()0g x >,∴1ln ()1ln e x x x x g x x x x --=<--. 设()1ln F x x x x =--,(0,1)x ∈,则()(ln 2)F x x '=-+, 当2(0,e )x -∈时,()0F x '>,当2(e ,1)x -∈时,()0F x '<, 所以当2e x -=时,()F x 取得最大值22()1e F e --=+. 所以2()()1e g x F x -<≤+.综上,对任意0x >,2()1e g x -<+.。
2012年山东省高考数学试题及答案
2012年普通高等学校招生全国统一考试(山东卷)理科数学一、 选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1 若复数x 满足z(2-i)=11+7i(i 为虚数单位),则z 为 A 3+5i B 3-5i C -3+5i D -3-5i2 已知全集 ={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA ) B 为 A {1,2,4} B {2,3,4}C {0,2,4}D {0,2,3,4}3 设a >0 a ≠1 ,则“函数f(x)= a x 在R 上是减函数 ”,是“函数g(x)=(2-a) 3x 在R 上是增函数”的A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件(4)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C.则抽到的人中,做问卷B 的人数为(A )7 (B ) 9 (C ) 10 (D )15(6)执行下面的程序图,如果输入a=4,那么输出的n 的值为(A )2(B )3(C )4(D )5(7)若42ππθ⎡⎤∈⎢⎥⎣⎦,, sin 2=θ,则sin θ=(A )35(B )45(C (D )34(8)定义在R 上的函数f (x )满足f (x+6)=f (x ),当-3≤x<-1时,f (x )=-(x+2)2,当-1≤x <3时,f (x )=x 。
则f (1)+f (2)+f (3)+…+f (2012)= (A )335(B )338(C )1678(D )2012 (9)函数的图像大致为(10)已知椭圆C:的离心率为,双曲线x²-y²=1的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆c的方程为(11)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为(A)232 (B)252 (C)472 (D)484(12)设函数f(x)=,g(x)=ax2+bx若y=f(x)的图像与y=g(x)图像有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的是A.当a<0时,x1+x2<0,y1+y2>0B.当a<0时, x1+x2>0, y1+y2<0C.当a>0时,x1+x2<0, y1+y2<0D. 当a>0时,x1+x2>0, y1+y2>0第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分。
2012山东省春考数学真题
山东省2012年春季高考数学试题第Ⅰ卷(选择题,共75分)一.选择题(本大题25个小题,每小题3分,共75分,在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,填涂在答题卡上) 1.已知全集{1,2,3}U=,集合{1,2}M =,则U M ð等于.A {1} .B {3} .C {1,2} .D {1,2,3}2.若均为实数,且ab >,则下列关系正确的是.A b a ->- .B 22a b > .C > .D a b>3.已知函数()y f x =的定义域是不等式组1020x x +≥⎧⎨-<⎩的解集,则函数()y f x =的图像可以是.A .B .C .D4.已知1和4的等比中项是3log x ,则实数x 的值是.A 2或12 .B 3或13 .C 4或14.D 9或195.已知函数()()yf x x R =∈是偶函数,且在区间[0,)+∞上是增函数,则下列关系正确的是.A (1)(2)(3)f f f ->>- .B (2)(1)(3)f f f >->- .C (3)(2)(1)f f f ->>- .D (3)(1)(2)f f f ->->6.已知角α的终边经过点(1,3)P -,则sin α的值是.A 13- .B 310 .C 10-.D 107.如图所示,已知,P Q 是线段的两个三等分点,O是线段AB 外的一点,设,,OA a OB b ==uu r uur rr ,则OP uur 等于.A 1133a b +r r .B 1233a b +r r .C 2133a b +r r .D 2233a b +r r8.如果p ⌝是真命题,p q ∨也是真命题,那么下列说法正确的是.A ,p q 都是真命题 .B p 是真命题,q 是假命题.C ,p q 都是假命题 .D p 是假命题,q 是真命题9.若直线230ax y --=与直线410x y ++=互相垂直,则实数a 的值是.A 8 .B 8- .C 12 .D 12-10.已知以坐标原点为顶点的抛物线,其焦点在x 轴的正半轴上,且焦点到准线的距离是3,则抛物线的标准方程是.A 26y x = .B 26y x =- .C 23y x = .D 23y x =-11.已知二次函数2()(1)1f x x m x m =+++-的图像经过原点,则使()0f x <的x 的取值集合是.A (0,2).B (2,0)-.C (,0)(2,)-∞+∞U.D (,2)(0,)-∞-+∞U12.已知lg lg 0a b +=(其中1,1a b ≠≠),则函数()x f x a =与()xg x b=的图像.A 关于坐标原点对称 .B 关于x 轴对称.C 关于y 轴对称 .D 关于直线y x =对称AO13.椭圆22198x y +=的离心率是 .A 13 .B 3 .C 4 .D 3 14.编排一张由4个语言节目和2个舞蹈类节目组成的演出节目单,若要使2个舞蹈类节目不相邻,则不同排法的种数是.A 120 .B 240 .C 360 .D 48015.若M N 、表示两个集合,则MN M =I 是M N ⊆的.A 充分不必要条件 .B 必要不充分条件.C 充要条件 .D 既不是充分条件也不是必要条件16.若αβ、为任意实数,则下列等式恒成立的是.A 555αβαβ⨯=.B 555αβαβ++=.C (5)5αβαβ+=.D 555ααββ-=17.已知二次函数243y x x =-+图像的顶点是A ,对称轴是直线l ,对数函数2log yx =的图像与x 轴相交于点B ,与直线l 相交于点C ,则ABC ∆的面积是.A 1 .B 2 .C 3 .D 418.已知平行四边形OABC ,(4,2),(2,6)OA OC ==uu r uu u r ,则OB uur 与AC uu u r夹角的余弦值是.A 2 .B 2- .C 5 .D 5- 19.函数()sin )f x x x π=+-的单调递增区间是A 5[2,2],66k k k Z ππππ-++∈B 5[2,2],66k k k Z ππππ-++∈ C 2[2,2],33k k k Z ππππ-++∈ D 2[2,2],33k k k Z ππππ-++∈20.若()na b +展开式的第4项与第7项的系数相等,则此展开式共有.A 8项 .B 9项 .C 10项 .D 11项21.如图所示,若图中阴影部分所表示的区域是线性目标函数3zx y =+的可行域,则z 的最小值是.A 2 .B 3 .C 4 .D 1522.从5名男生和2名女生中任选3人参加某项公益活动,其中至少有1名女生的概率是.A 35 .B 57.C 1021 .D 1742 23.已知空间四边形ABCD 中,,,,E F G H 分别是边,,,AB BC CD DA 的中点,给出下列四个命题:①AC 与BD 是相交直线; ②//AB DC ; ③四边形EFGH 是平行四边形; ④//EH 平面BCD 。
2012年山东高考数学试题及答案(理科)
2012年山东高考数学试题及答案(理科)本试卷分第I卷和第II卷两部分,共4页。
满分150分。
考试用时120分钟,考试结束,务必将试卷和答题卡一并上交。
注意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上。
2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:锥体的体积公式:V=Sh,其中S是锥体的底面积,h是锥体的高。
如果事件A,B互斥,那么P(A+B)=P(A)+P(B);如果事件A,B独立,那么P(AB)=P(A)·P(B)。
第I卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1 若复数x满足z(2-i)=11+7i(i为虚数单位),则z为A 3+5iB 3-5iC -3+5iD -3-5i解析:.答案选A。
另解:设,则根据复数相等可知,解得,于是。
2 已知全集={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA)B为A {1,2,4}B {2,3,4}C {0,2,4}D {0,2,3,4}解析:。
答案选C。
3 设a>0 a≠1 ,则“函数f(x)= a x在R上是减函数”,是“函数g(x)=(2-a) 在R上是增函数”的A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件解析:p:“函数f(x)= a x在R上是减函数”等价于;q:“函数g(x)=(2-a) 在R上是增函数”等价于,即且a≠1,故p是q成立的充分不必要条件. 答案选A。
2012年普通高等学校招生全国统一考试数学山东卷(理科)
数学山东卷(理科)一、选择题1.若复数z 满足z (2-i)=11+7i(i 为虚数单位),则z 为( ) A .3+5i B .3-5i C .-3+5i D .-3-5i2.已知全集U ={0,1,2,3,4},集合A ={1,2,3},B ={2,4},则(∁U A )∪B 为( ) A .{1,2,4} B .{2,3,4} C .{0,2,4} D .{0,2,3,4}3.设a >0且a ≠1,则“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为( )A .7B .9C .10D .155.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥2,2x +y ≤4,4x -y ≥-1,则目标函数z =3x -y 的取值范围是( )A .[-32,6]B .[-32,-1]C .[-1,6]D .[-6,32]6.执行下面的程序框图,如果输入a =4,那么输出的n 的值为( )A .2B .3C .4D .57.若θ∈[π4,π2],sin 2θ=378,则sin θ=( )A.35B.45 C.74 D.348.定义在R 上的函数f (x )满足f (x +6)=f (x ).当-3≤x <-1时,f (x )=-(x +2)2;当-1≤x <3时,f (x )=x .则f (1)+f (2)+f (3)+…+f (2 012)=( )A .335B .338C .1 678D .2 0129.函数y =cos 6x 2x -2-x的图像大致为( )10.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32.双曲线x 2-y 2=1的渐近线与椭圆C有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( )A.x 28+y 22=1B.x 212+y 26=1 C.x 216+y 24=1 D.x 220+y 25=111.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( )A .232B .252C .472D .48412.设函数f (x )=1x ,g (x )=ax 2+bx (a ,b ∈R ,a ≠0).若y =f (x )的图像与y =g (x )的图像有且仅有两个不同的公共点A (x 1,y 1),B (x 2,y 2),则下列判断正确的是( )A .当a <0时,x 1+x 2<0,y 1+y 2>0B .当a <0时,x 1+x 2>0,y 1+y 2<0C .当a >0时,x 1+x 2<0,y 1+y 2<0D .当a >0时,x 1+x 2>0,y 1+y 2>0二、填空题13.若不等式|kx -4|≤2的解集为{x |1≤x ≤3},则实数k =________. 14.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为________.15.设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________.16.如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP ―→的坐标为________.三、解答题17.已知向量m =(sin x,1),n =(3A cos x ,A2cos 2x )(A >0),函数f (x )=m·n 的最大值为6.(1)求A ;(2)将函数y =f (x )的图像向左平移π12个单位,再将所得图像上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y =g (x )的图像,求g (x )在[0,5π24]上的值域. 18.在如图所示的几何体中,四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB =60°,FC ⊥平面ABCD ,AE ⊥BD ,CB =CD =CF .(1)求证:BD ⊥平面AED ; (2)求二面角F -BD -C 的余弦值.19.现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(1)求该射手恰好命中一次的概率;(2)求该射手的总得分X 的分布列及数学期望EX .20.在等差数列{a n }中,a 3+a 4+a 5=84,a 9=73. (1)求数列{a n }的通项公式;(2)对任意m ∈N *,将数列{a n }中落入区间(9m,92m )内的项的个数记为b m ,求数列{b m }的前m 项和S m .21.在平面直角坐标系xOy 中,F 是抛物线C :x 2=2py (p >0)的焦点,M 是抛物线C 上位于第一象限内的任意一点,过M ,F ,O 三点的圆的圆心为Q ,点Q 到抛物线C 的准线的距离为34.(1)求抛物线C 的方程;(2)是否存在点M ,使得直线MQ 与抛物线C 相切于点M ?若存在,求出点M 的坐标;若不存在,说明理由;(3)若点M 的横坐标为2,直线l :y =kx +14与抛物线C 有两个不同的交点A ,B ,l 与圆Q 有两个不同的交点D ,E ,求当12≤k ≤2时,|AB |2+|DE |2的最小值.22.已知函数f (x )=ln x +ke x(k 为常数,e =2.71828…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值; (2)求f (x )的单调区间;(3)设g (x )=(x 2+x )f ′(x ),其中f ′(x )为f (x )的导函数,证明:对任意x >0,g (x )<1+e -2.答案 数学山东卷(理科)一、选择题1.解析:z =11+7i 2-i =(11+7i )(2+i )(2-i )(2+i )=15+25i5=3+5i.故选A.答案:A2.解析:因为∁U A ={0,4},所以(∁U A )∪B ={0,2,4}. 答案:C3.解析:若函数f (x )=a x 在R 上为减函数,则有0<a <1;若函数g (x )=(2-a )x 3在R 上为增函数,则有2-a >0,即a <2,所以“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的充分不必要条件.答案:A4.解析:从960人中用系统抽样方法抽取32人,则每30人抽取一人,因为第一组抽到的号码为9,则第二组抽到的号码为39,第n 组抽到的号码为a n =9+30(n -1)=30n -21,由451≤30n -21≤750,得23615≤n ≤25710,所以n =16,17,…,25,共有25-16+1=10人. 答案:C 5.解析:作出不等式组所表示的区域如图,由z =3x -y 得y =3x -z ,平移直线y =3x ,由图像可知当直线经过点E (2,0)时,直线y =3x -z 的截距最小,此时z 最大为z =3×2-0=6,当直线经过C 点时,直线y =3x -z 的截距最大,此时z 最小,由⎩⎪⎨⎪⎧4x -y =-1,2x +y =4,解得⎩⎪⎨⎪⎧x =12,y =3,此时z =3x -y =32-3=-32,所以z =3x -y 的取值范围是[-32,6].答案:A6.解析:当a =4时,第一次P =0+40=1,Q =3,n =1,第二次P =1+41=5,Q =7,n =2,第三次P =5+42=21,Q =15,n =3,此时P ≤Q 不成立,输出n =3.答案:B7.解析:因为θ∈[π4,π2],所以2θ∈[π2,π],所以cos 2θ<0,所以cos 2θ=-1-sin 22θ=-18.又cos 2θ=1-2sin 2θ=-18,所以sin 2θ=916,所以sin θ=34.答案:D8.解析:由f (x +6)=f (x )可知,函数f (x )的周期为6,所以f (-3)=f (3)=-1,f (-2)=f (4)=0,f (-1)=f (5)=-1,f (0)=f (6)=0,f (1)=1,f (2)=2,所以在一个周期内有f (1)+f (2)+…+f (6)=1+2-1+0-1+0=1,所以f (1)+f (2)+…+f (2 012)=f (1)+f (2)+335×1=1+2+335=338.答案:B9.解析:函数为奇函数,所以其图像关于原点对称,排除A ;令y =0得cos 6x =0,所以6x =π2+k π(k ∈Z ),x =π12+k6π(k ∈Z ),函数的零点有无穷多个,排除C ;函数在y 轴右侧的第一个零点为(π12,0),又函数y =2x -2-x 为增函数,当0<x <π12时,y =2x -2-x >0,cos 6x >0,所以函数y =cos 6x2x -2-x>0,排除B.答案:D10.解析:因为椭圆的离心率为32,所以e =c a =32,c 2=34a 2,c 2=34a 2=a 2-b 2,所以b 2=14a 2,即a 2=4b 2.双曲线的渐近线方程为y =±x ,代入椭圆方程得x 2a 2+x 2b 2=1,即x 24b 2+x 2b 2=5x 24b 2=1,所以x 2=45b 2,x =±25b ,y 2=45b 2,y =±25 b ,则在第一象限双曲线的渐近线与椭圆C的交点坐标为(25b ,25b ),所以四边形的面积为4×25 b ×25b =165b 2=16,所以b 2=5,所以椭圆方程为x 220+y 25=1.答案:D11.解析:若没有红色卡片,则需从黄、蓝、绿三色卡片中选3张,若都不同色则有C 14×C 14×C 14=64种,若2张同色,则有C 23×C 12×C 24×C 14=144种;若红色卡片有1张,剩余2张不同色,则有C 14×C 23×C 14×C 14=192种,剩余2张同色,则有C 14×C 13×C 24=72种,所以共有64+144+192+72=472种不同的取法.答案:C 12.解析:不妨设a <0,在同一坐标系中分别画出两个函数的图像,如图所示,其中点A (x 1,y 1)关于原点的对称点C 也在函数y =1x 的图像上,坐标为(-x 1,-y 1),而点B 的坐标(x 2,y 2)在图像上也明显的显示出来.由图可知,当a <0时,x 2>-x 1,所以x 1+x 2>0,y 2<-y 1,所以y 1+y 2<0,同理当a >0时,则有x 1+x 2<0,y 1+y 2>0.答案:B 二、填空题13.解析:由|kx -4|≤2可得2≤kx ≤6,所以1≤k 2x ≤3,所以k2=1,故k =2.答案:214.解析:因为E 点在线段AA 1上,所以S △DED 1=12×1×1=12,又因为F 点在线段B 1C上,所以点F 到平面DED 1的距离为1,即h =1,所以VD 1-EDF =VF -DED 1=13×S △DED 1×h=13×12×1=16. 答案:1615.解析:由已知得S =⎠⎛0ax d x =23x 32|a 0=23a 32=a 2,所以a 12=23,所以a =49.答案:4916.解析:因为圆心移动的距离为2,所以劣弧P A =2,即圆心角∠PCA =2,则∠PCB =2-π2,所以PB =sin(2-π2)=-cos 2,CB =cos(2-π2)=sin 2,所以x P =2-CB =2-sin 2,y P =1+PB=1-cos 2,所以OP ―→=(2-sin 2,1-cos 2).答案:(2-sin 2,1-cos 2) 三、解答题17.解:(1)f (x )=m·n =3A sin x cos x +A2cos 2x=A (32sin 2x +12cos 2x ) =A sin(2x +π6).因为A >0,由题意知A =6. (2)由(1)f (x )=6sin(2x +π6).将函数y =f (x )的图像向左平移π12个单位后得到y =6sin[2(x +π12)+π6]=6sin(2x +π3)的图像;再将得到图像上各点横坐标缩短为原来的12倍,纵坐标不变,得到y =6sin(4x +π3)的图像.因此g (x )=6sin(4x +π3).因为x ∈[0,5π24],所以4x +π3∈[π3,7π6],故g (x )在[0,5π24]上的值域为[-3,6].18.解:(1)证明:因为四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB =60°,所以∠ADC =∠BCD =120°.又CB =CD ,所以∠CDB =30°, 因此∠ADB =90°,AD ⊥BD , 又AE ⊥BD ,且AE ∩AD =A ,AE ,AD ⊂平面AED , 所以BD ⊥平面AED .(2)法一:连接AC ,由(1)知AD ⊥BD ,所以AC ⊥BC .又FC ⊥平面ABCD ,因此CA ,CB ,CF 两两垂直,以C 为坐标原点,分别以CA ,CB ,CF 所在的直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系, 不妨设CB =1, 则C (0,0,0),B (0,1,0),D (32,-12,0),F (0,0,1),所以x =3y =3z , 取z =1,则m =(3,1,1).所以二面角F -BD -C 的余弦值为55.法二:取BD 的中点G ,连接CG ,FG ,由于CB =CD ,因此CG ⊥BD , 又FC ⊥平面ABCD ,BD ⊂平面ABCD ,所以FC ⊥BD . 由于FC ∩CG =C ,FC ,CG ⊂平面FCG , 所以BD ⊥平面FCG , 故BD ⊥FG ,所以∠FGC 为二面角F -BD -C 的平面角. 在等腰三角形BCD 中,由于∠BCD =120°, 因此CG =12CB ,又CB =CF ,所以GF =CG 2+CF 2=5CG ,故cos ∠FGC =55, 因此二面角F -BD -C 的余弦值为55. 19.解:(1)记:“该射手恰好命中一次”为事件A ,“该射手射击甲靶命中”为事件B ,“该射手第一次射击乙靶命中”为事件C ,“该射手第二次射击乙靶命中”为事件D ,由题意知P (B )=34,P (C )=P (D )=23,由于A =B C D +B C D +B C D ,根据事件的独立性和互斥性得 P (A )=P (B C D +B C D +B C D ) =P (B C D )+P (B C D )+P (B C D )=P (B )P (C )P (D )+P (B )P (C )P (D )+P (B )P (C )P (D ) =34×(1-23)×(1-23)+(1-34)×23×(1-23)+(1-34)×(1-23)×23 =736. (2)根据题意,X 的所有可能取值为0,1,2,3,4,5. 根据事件的独立性和互斥性得 P (X =0)=P (B C D ) =[1-P (B )][1-P (C )][1-P (D )] =(1-34)×(1-23)×(1-23)=136. P (X =1)=P (B C D )=P (B )P (C )P (D ) =34×(1-23)×(1-23)=112. P (X =2)=P (B C D +B C D )=P (B C D )+P (B C D ) =(1-34)×23×(1-23)+(1-34)×(1-23)×23=19, P (X =3)=P (BC D +B C D )=P (BC D )+P (B C D ) =34×23×(1-23)+34×(1-23)×23=13, P (X =4)=P (B CD )=(1-34)×23×23=19,P (X =5)=P (BCD )=34×23×23=13.故X 的分布列为所以EX =0×136+1×112+2×19+3×13+4×19+5×13=4112.20.解:(1)因为{a n }是一个等差数列, 所以a 3+a 4+a 5=3a 4=84,a 4=28. 设数列{a n }的公差为d , 则5d =a 9-a 4=73-28=45, 故d =9.由a 4=a 1+3d 得28=a 1+3×9,即a 1=1.所以a n =a 1+(n -1)d =1+9(n -1)=9n -8(n ∈N *). (2)对m ∈N *,若9m <a n <92m , 则9m +8<9n <92m +8. 因此9m -1+1≤n ≤92m -1.故得b m =92m -1-9m -1.于是S m =b 1+b 2+b 3+…+b m=(9+93+…+92m -1)-(1+9+…+9m -1)=9×(1-81m )1-81-(1-9m )1-9=92m +1-10×9m +180.21.解:(1)依题意知F (0,p 2),圆心Q 在线段OF 的垂直平分线y =p4上,因为抛物线C的准线方程为y =-p 2,所以3p 4=34,即p =1,因此抛物线C 的方程为x 2=2y .(2)假设存在点M (x 0,x 202)(x 0>0)满足条件,抛物线C 在点M 处的切线斜率为y ′|x =x 0=(x 22)′|x =x 0=x 0, 所以直线MQ 的方程为y -x 202=x 0(x -x 0).令y =14得x Q =x 02+14x 0,所以Q (x 02+14x 0,14).又|QM |=|OQ |,故(14x 0-x 02)2+(14-x 202)2=(14x 0+x 02)2+116,因此(14-x 202)2=916,又x 0>0, 所以x 0=2,此时M (2,1).故存在点M (2,1),使得直线MQ 与抛物线C 相切于点M .(3)当x 0=2时,由(2)得Q (528,14), ⊙Q 的半径为r =(528)2+(14)2=368, 所以⊙Q 的方程为(x -528)2+(y -14)2=2732. 由⎩⎨⎧ y =12x 2,y =kx +14,整理得2x 2-4kx -1=0.设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),由于Δ1=16k 2+8>0,x 1+x 2=2k ,x 1x 2=-12, 所以|AB |2=(1+k 2)[(x 1+x 2)2-4x 1x 2]=(1+k 2)(4k 2+2).由⎩⎨⎧ (x -528)2+(y -14)2=2732,y =kx +14, 整理得(1+k 2)x 2-524x -116=0. 设D ,E 两点的坐标分别为(x 3,y 3),(x 4,y 4),由于Δ2=k 24+278>0, x 3+x 4=524(1+k 2),x 3x 4=-116(1+k 2). 所以|DE |2=(1+k 2)[(x 3+x 4)2-4x 3x 4]=258(1+k 2)+14. 因此|AB |2+|DE |2=(1+k 2)(4k 2+2)+258(1+k 2)+14. 令1+k 2=t ,由于12≤k ≤2,则54≤t ≤5, 所以|AB |2+|DE |2=t (4t -2)+258t +14=4t 2-2t +258t +14, 设g (t )=4t 2-2t +258t +14,t ∈[54,5], 因为g ′(t )=8t -2-258t2, 所以当t ∈[54,5],g ′(t )≥g ′(54)=6,即函数g (t )在t ∈[54,5]是增函数,所以当t =54时,g (t )取到最小值132,因此当k =12时,|AB |2+|DE |2取到最小值132. 22.解:(1)由f (x )=ln x +k e x, 得f ′(x )=1-kx -x ln x x e x,x ∈(0,+∞), 由于曲线y =f (x )在(1,f (1))处的切线与x 轴平行,所以f ′(1)=0,因此k =1.(2)由(1)得f ′(x )=1x e x (1-x -x ln x ),x ∈(0,+∞), 令h (x )=1-x -x ln x ,x ∈(0,+∞),当x ∈(0,1)时,h (x )>0;当x ∈(1,+∞)时,h (x )<0.又e x >0,所以x ∈(0,1)时,f ′(x )>0;x ∈(1,+∞)时,f ′(x )<0.因此f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞).(3)证明:因为g (x )=(x 2+x )f ′(x ),所以g (x )=x +1e x (1-x -x ln x ),x ∈(0,+∞). 因此对任意x >0,g (x )<1+e -2等价于1-x -x ln x <e xx +1(1+e -2). 由(2)h (x )=1-x -x ln x ,x ∈(0,+∞), 所以h ′(x )=-ln x -2=-(ln x -ln e -2),x ∈(0,+∞),因此当x ∈(0,e -2)时,h ′(x )>0,h (x )单调递增; 当x ∈(e -2,+∞)时,h ′(x )<0,h (x )单调递减. 所以h (x )的最大值为h (e -2)=1+e -2, 故1-x -x ln x ≤1+e -2. 设φ(x )=e x -(x +1).因为φ′(x )=e x -1=e x -e 0,所以x ∈(0,+∞)时,φ′(x )>0,φ(x )单调递增,φ(x )>φ(0)=0,故x ∈(0,+∞)时,φ(x )=e x -(x +1)>0,即e xx +1>1. 所以1-x -x ln x ≤1+e -2<e xx +1(1+e -2). 因此对任意x >0,g (x )<1+e -2.。
2012年普通高等学校招生全国统一考试数学理试题(山东卷,解析版)
用心 爱心 专心 - 1 - 2012年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第I 卷和第II 卷两部分,共4页。
满分150分。
考试用时120分钟,考试结束,务必将试卷和答题卡一并上交。
注意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上。
2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:锥体的体积公式:V=13Sh ,其中S 是锥体的底面积,h 是锥体的高。
如果事件A ,B 互斥,那么P (A+B )=P (A )+P(B);如果事件A,B 独立,那么P (AB )=P (A )·P(B )。
第I 卷(共60分)一、 选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1 若复数x 满足z(2-i)=11+7i(i 为虚数单位),则z 为A 3+5iB 3-5iC -3+5iD -3-5i 解析:i i i i i i z 535)1114(7225)2)(711(2711+=++-=++=-+=.答案选A 。
另解:设),(R b a bi a z ∈+=,则i i a b b a i bi a 711)2(2)2)((+=-++=-+根据复数相等可知72,112=-=+a b b a ,解得5,3==b a ,于是i z 53+=。
2 已知全集 ={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA ) B 为A {1,2,4}B {2,3,4}C {0,2,4}D {0,2,3,4}解析:}4,2,0{)(},4,0{==B A C A C U U 。
2012-2019山东春季高考数学真题
山东省2019年普通高校招生(春季)考试数学试题1.本试卷分卷一(选择题)和卷二(非选择题)两部分,满分120分,考试时间120分钟。
考生清在答题卡上答题,考试结束后,请将本试卷和答题卡一并交回。
2.本次考试允许使用函数型计算器,凡使用计算器的题目,除题目有具体要求外,最后结果精确到0.01。
卷一(选择题共60分)一、选择题(本大题20个小题,每小题3分,共60分。
在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出.并填涂在答题卡上)1.已知集合M={0,1},N={1,2},则M ∪N 等于()A. {1}B. {0,2}C. {0,1,2}D.∅ 2. 若实数a ,b 满足ab>0,a+b>0,则下列选项正确的是()A. a>0,b>0B. a>0,b<0C. a<0,b>0D. a<0,b<03.已知指数函数y=a x ,对数函数y=log b xA. 0<a<b<1B. 0<a<1<bC.0<b<1<aD. a<0<1<b4.已知函数f(x)=x 3+x ,若f(a)=2,则f(-a)的值是()A. -2B. 2C. -10D. 10 5.若等差数列{a n }的前7项和为70,则a 1+a 7等于()A. 5B. 10C. 15D. 206.如图所示,已知菱形ABCD 的边长是2,且∠DAB =60°,则AB AC ⋅u u u r u u u r的值是()A. 4B. 4+C. 6D.4-y第3题图B第6题图7.对于任意角α,β,“α=β”是“sin α=sin β”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D.既不充分也不必要条件 8.如图所示,直线l ⊥OP ,则直线l 的方程是() A. 3x -2y=0 B. 3x+2y -12=0 C. 2x -3y+5=0D. 2x+3y -13=0 9.在(1+x )n 的二项展开式中,若所有项的系数之和为64,则第3项是()A. 15x 3B. 20x 3C. 15x 2D. 20x 210. 在Rt V ABC 中,∠ABC =90°,AB=3,BC=4,M 是线段AC 上的动点. 设点M 到BC 的距离为x ,V MBC 的面积为y ,则y 关于x 的函数是()A. y=4x ,x∈(0,4]B. y=2x ,x∈(0,3]C. y=4x ,x∈(0,)+∞D. y=2x ,x∈(0,)+∞ 11. 现把甲、乙等6位同学排成一排,若甲同学不能排在前两位,且乙同学必须排在甲同学前面(相邻或不相邻均可),则不同排法的种树是()A. 360B. 336C. 312D. 240 12.设集合M={-2,0,2,4},则下列命题为真命题的是() A. ,a M ∀∈a 是正数 B. ,b M ∀∈b 是自然数 C. ,c M ∃∈c 是奇数 D.,d M ∃∈ d 是有理数 13. 已知sinα=12,则cos2α的值是() A.89 B. 89- C. 79 D.79- 14. 已知y=f(x)在R 上是减函数,若f(|a |+1)<f(2),则实数a 的取值范围是()A. (-∞,1)B. (-∞,1)∪(1,+∞)C. (-1,1)D.(-∞,-1)∪(1,+∞) 15. 已知O 为坐标原点,点M 在x 轴的正半轴上,若直线MA 与圆x 2+y 2=2相切于点A ,且|AO|=|AM|,则点M 的横坐标是() A. 2B.C.D. 4A. 平行B. 相交C. 异面D.重合17. 如图所示,若x,y满足线性约束条件2 01x yxy-+⎧⎪⎨⎪⎩≥≤≥,则线性目标函数z=2x-y取得最小值时的最优解是()A. (0,1)B. (0,2)C. (-1,1)D.(-1,2)18. 箱子中放有6张黑色卡片和4张白色卡片,从中任取一张,恰好取得黑色卡片的概率是()A. 16B. 13C. 25D.3519. 已知抛物线的顶点在坐标原点,对称轴为坐标轴,若该抛物线经过点M(-2,4),则其标准方程是()A. y2=-8xB. y2=-8x 或x2=yC. x2=yD. y2=8x 或x2=-y20. 已知V ABC的内角A,B,C的对边分别是a,b,c,若a=6,sinA=2cosBsinC,向量m =(,3)a b, 向量n=(-cosA,sinB),且m∥n,则V ABC的面积是()A. 183B. 93C. 33D.3卷二(非选择题共60分)二、填空题(本大题5个小题,每小题4分,共20分。
2012年高考数学山东文解析版
2012年普通高等学校招生全国统一考试(山东卷)文科数学第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若复数z 满足(2)117i(i z i -=+为虚数单位),则z 为 (A)3+5i (B)3-5i (C)-3+5i (D)-3-5i 【答案】A【解析】由题目可知,()()()()11721171525352225i i i iz i ii i +⋅+++====+--⋅+,故答案选A.【点评】本题考查了复数的除法运算,考查了对学生计算能力,属于基础题.明年基本还会考查复数的运算.(2)已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则()U A B ð为 (A){1,2,4} (B){2,3,4} (C){0,2,4} (D){0,2,3,4} 【答案】C【解析】由题意可知,{}{}0,4,0,2,4UUA AB == 故而痧,故而选择答案选C.【点评】本题考查了集合的概念和集合的运算,考查了考生的运算能力,明年可能考到子集与真子集的知识. (3)函数1()ln(1)f x x =++(A)[2,0)(0,2]- (B)(1,0)(0,2]- (C)[2,2]- (D)(1,2]- 【答案】B【解析】要使得函数有意义,应满足21011100240x x x x x ⎧+>⎪+≠⇒-<<<≤⎨⎪-≥⎩或【点评】本题考查函数定义域的求法, 本题中由于分母为ln(1)x +, 很容易忽略ln(1)0x +≠这个条件,另外求上述三个不等式的交集才能得到最后的定义域, 往往求出并集. 明年可以考查函数的值域问题.(4)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是(A)众数 (B)平均数 (C)中位数 (D)标准差 【答案】D【解析】根据特征数的定义和特征是公式已知标准差始终没有改变.【点评】本题考查统计中常见的数字特征, 考查了学生的识记以及公式的应用能力.明年仍然会围绕着数字特征考查.(5)设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是(A)p 为真 (B)q ⌝为假 (C)p q ∧为假 (D)p q ∨为真 【答案】C【解析】命题p 中,函数sin 2y x =最小正周期应为22T ππ==,故而命题p 是假命题, 命题q :函数cos y x =的图象关于直线0x =对称,关于,02π⎛⎫⎪⎝⎭成中心对称,故而命题q 也是假命题.所以q ⌝为真, )p q ∨为假, p q ∧为假, 故而正确选项为C.【点评】本题考查简易逻辑中命题的问题,考查了学生的推断能力, “或”“且”联结两个命题,这两个命题的真假确定了“或”命题和“且”命题的真假,其中“或”命题是一真即真,“且”命题是一假即假,“非”是对一个命题的否定,命题与其“非”命题一真一假.明年可能考查全称命题与特称命题关系.明年可能结合命题考查充要条件.(6)设变量,x y 满足约束条件22,24,41,x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是(A)3[,6]2- (B)3[,1]2-- (C)[1,6]- (D)3[6,]2-【答案】A【解析】由所给的不等式组可知所表示的可行域如图所示,而目标函数可以看做3y x z =-,截距最小时z 值最大,当截距最大时z 值最小,根据条件242220x y x x y y +==⎧⎧⇒⎨⎨+==⎩⎩,故当目目标函数过()2,0时,取到z 的最大,m a x 6z =,由1412243x y x x y y ⎧-=-=⎧⎪⇒⎨⎨+=⎩⎪=⎩,当目标函数经过1,32⎛⎫⎪⎝⎭时,z 取到最小值,m in 32z =-,故而答案为A.【点评】本题考查了线性规划问题,是典型的线性规划求最值问题,体现了数形结合法思想的应用.在线性约束条件下,线性约束条件所表示的区域一般是一个多边形区域或者一个以直线为边界的无限区域,如果目标函数是线性的,则可以根据目标函数的几何意义确定目标函数取得最大值和最小值的位置,如本题中的目标函数3z x y =-变换后即3y x z =- z ,则目标函数z 的几何意义即直线3y x z =-在y 轴上的截距相反数,截距最大(小)时的位置就是目标函数取得最小(大)值的位置,在一些含有参数的线性规划问题中这个思想显得更为重要;明年可能结合线性规划考查参数的取值.(7)执行右面的程序框图,如果输入a =4,那么输出的n 的值为 (A)2 (B)3 (C)4 (D)5 【答案】B【解析】由题意可知,当第一次执行循环体时,1,3,1P Q n ===这时,当第二次执行循环体时,145,2317,P Q n =+==⨯+==这时,当第三次执行循环体时,214421,27115,3P Q n =++==⨯+==这时,而此时Q P <,故而程序结束,这时3n =,故答案选B.【点评】本题考察了程序框图的应用,根据程序框图推算结果,程序框图明年还会进行考查. (8)函数2sin (09)63x y x ππ⎛⎫=-≤≤⎪⎝⎭的最大值与最小值之和为(A)2- (B)0 (C)-1 (D)1--【答案】A【解析】因为09x ≤≤,所以73636x ππππ-≤-≤,结合函数图象易知sin 1263x ππ⎛⎫-≤-≤ ⎪⎝⎭,即2y ≤≤, 故最大值为2,而最小值为, 所以最大值与最小值之和为2-【点评】本题考查本题考查了三角函数图象与性质,预测明年结合图象的变换考查. (9)圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为 (A)内切 (B)相交 (C)外切 (D)相离 【答案】B【解析】由题意可知,两个圆的圆心分别为()122,0,(2,1)O Q -, 对应的半径为122,3r r ==,两个圆圆心距为12O O ==,所以211212r r O O r r -<<+, 故而两个圆相交.【点评】本题考查判断圆与圆位置关系的方法;预测明年考查求圆的方程. (10)函数cos 622xxx y -=-的图象大致为【答案】D【解析】根据条件cos(6)cos 6()()2222xxxxx x f x f x ----==-=---,所以函数为奇函数,排除选项A,由因为,当x 取很小的正数时有cos 60,220,xxx ->->故而()0f x >,故而排除B,当x 取很大的正数时,分母为非常大的正数,而分子始终[]1,1-之间,故而排除C,所以选D.【点评】】本题考查了函数的奇偶性的性质特点,结合图象语言,考查了数形结合法的思想. 图象的考查也是固定的考点,预测明年可能结合函数的性质考查. (11)已知双曲线1C :22221(0,0)x y a b ab-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为(A) 23x y=(B) 23x y=(C)28x y = (D)216x y =【答案】D【解析】双曲线的一条渐近线为by x a =, 即0bx ay -=,抛物线的焦点为,2p o ⎛⎫ ⎪⎝⎭,抛物线焦点到渐近线距离为2482a p d p e c==⋅=⇒==,故而抛物线方程为216x y =.【点评】本题考查圆锥曲线的性质,点的直线的距离公式等解析几何知识,属于知识的综合考察.预测明年结合抛物线的概念与性质考查. (12)设函数1()f x x=,2()g x x bx =-+.若()y f x =的图象与()y g x =的图象有且仅有两个不同的公共点1122(,),(,)A x y B x y ,则下列判断正确的是 (A)12120,0x x y y +>+> (B)12120,0x x y y +>+< (C)12120,0x x y y +<+> (D)12120,0x x y y +<+< 【答案】B【解析】设32()1F x x bx =-+,则方程()0F x =与()()f x g x =同解,故其有且仅有两个不同零点12,x x .由()0F x '=得0x =或23x b=.这样,必须且只须(0)0F =或2()03F b =,因为(0)1F =,故必有2()03F b =由此得b =.不妨设12x x <,则223x b ==.所以21()()(2)F x x x =-,比较系数得1x -=,故1x =-120x x +=>,由此知12121212110x x y y x x x x ++=+=<,故答案为B.【点评】本题考察了函数与方程知识,反比例函数与二次函数图象的应用是数形结合法思想的应用;明年预测结合函数零点考查.第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)如图,正方体1111ABCD A B C D -的棱长为1,E 为线段1B C 上的一点,则三棱锥1A DED -的体积为_____. 【答案】16【解析】由题意可知,11111111113326DE D FF D E D D E D V V D C S --==⨯⨯∆=⨯⨯⨯⨯=.【点评】本题考察多面体与体积公式的应用,同时考察了学生的空间想象能力;预测明年结合三视图考查体积与表面积.(14)右图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为____. 【答案】9【解析】 最左边两个矩形面积之和为0.10×1+0.12×1=0.22,总城市数为11÷0.22=50,最右面矩形面积为0.18×1=0.18,50×0.18=9.【点评】本题考查直方图的应用,考察了学生的识图、用图能力,频率分布直方图直观形象地表示了样本的频率分布,从这个直方图上可以求出样本数据在各个组的频率分布.根据频率分布直方图估计样本(或者总体)的平均值时,一般是采取组中值乘以各组的频率的方法.茎叶图也是统计中重要的知识点,预测明年结合茎叶图考查.(15)若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数()(14g x m =-在[0,)+∞上是增函数,则a =____.【答案】14【解析】 当1a >时,有214,a a m -==,此时12,2a m ==,此时()g x =合题意.若01a <<,则124,a a m -==,故11,416a m ==,检验知符合题意.【点评】本题考查本函数单调性与最值问题,属于对应初等函数的综合考察.可以结合分段函数考查基本初等函数,估计明年可能这样考查.(16)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP的坐标为____.【答案】()2sin 2,1cos 2--【解析】根据题意可知圆滚动了2单位个弧长,点P 旋转 了212=弧度,此时点P 的坐标为)2cos 1,2sin 2(,2cos 1)22sin(1,2sin 2)22cos(2--=-=-+=-=--=OP y x P P ππ.另解1:根据题意可知滚动制圆心为(2,1)时的圆的参数方程为⎩⎨⎧+=+=θθsin 1cos 2y x ,且223,2-==∠πθPCD ,则点P 的坐标为⎪⎩⎪⎨⎧-=-+=-=-+=2cos 1)223sin(12sin 2)223cos(2ππy x ,即)2c o s 1,2s i n 2(--=OP .【点评】本题考察了三角函数与向量知识的灵活应用,属于知识点交汇处的题目.解决好本题的关键是充分利用图象语言,属于典型的数形结合法思想的应用,数形结合的重点是研究“以形助数”,这在解选择题、填空题中更显其优越,要注意培养这种思想意识,做到心中有图,见数想图,以开拓自己的思维视野.这种创新情景题明年还会继续考察. 三、解答题:本大题共6小题,共74分. (17)(本小题满分12分)在△ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知sin (tan tan )tan tan B A C A C +=. (Ⅰ)求证:,,a b c 成等比数列; (Ⅱ)若1,2a c ==,求△ABC 的面积S .【解析】(I)由已知得:sin (sin cos cos sin )sin sin B A C A C A C +=,sin sin()sin sin B A C A C +=,2sin sin sin B A C =,再由正弦定理可得:2b ac =, 所以,,a b c 成等比数列.(II)若1,2a c ==,则22b ac ==, ∴2223cos 24a c bB ac+-==,sin 4C ==,∴△ABC 的面积11sin 122244S ac B ==⨯⨯⨯=.【点评】本题考查三角恒等变换和解三角形知识,是对应三角部分内容的综合考察.解三角形依靠的就是正弦定理和余弦定理.正弦定理解决的是已知三角形两边和一边的对角、三角两内角和其中一边两类问题,余弦定理解决的是已知三角形两边及其夹角、已知三角形三边的两类问题.在解题中只要分析清楚了三角形中的已知元素,就可以选用这两个定理中的一个求解三角形中的未知元素.本例的第二小题中的不等式看上去是角的正弦的一个不等式,实际上给出的是边的不等式,正弦定理在三角形的边角关系互化中起关键作用.三角函数的性质也是常考内容,故而明年会这样考查.(18)(本小题满分12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率; (Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.【解析】(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为310P =.(II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为815P =.【点评】本题考查古典概型的应用,属于典型考法,考察了学生的计算能力,明年还会继续考察.(19) (本小题满分12分)如图,几何体E ABC D -是四棱锥,△ABD 为正三角形,,C B C D E C B D =⊥. (Ⅰ)求证:BE DE =;(Ⅱ)若∠120BC D =︒,M 为线段AE 的中点, 求证:D M ∥平面BEC .【解析】 (I)设BD 中点为O ,连接OC ,OE ,则由B C C D =知,C O BD⊥,又已知C E BD ⊥,所以BD ⊥平面OCE . 所以BD O E ⊥,即OE 是BD 的垂直平分线, 所以BE DE =.(II)取AB 中点N ,连接,M N D N , ∵M 是AE 的中点,∴M N ∥BE , ∵△ABD 是等边三角形,∴D N AB ⊥.由∠BCD =120°知,∠CBD =30°,所以∠ABC =60°+30°=90°,即BC AB ⊥, 所以ND ∥BC ,所以平面MND ∥平面BEC ,故DM ∥平面BEC .【点评】本题考查空间几何中量的关系,以及证明线面平行的方法,考察了学生的空间想象能力以及推理证明能力;垂直问题同样重要,故明年可能围绕线面或者面面垂直考察. (20) (本小题满分12分)已知等差数列{}n a 的前5项和为105,且2052a a = (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)对任意*m ∈N ,将数列{}n a 中不大于27m 的项的个数记为m b .求数列{}m b 的前m 项和m S .【解析】 (I)由已知得:111510105,92(4),a d a d a d +=⎧⎨+=+⎩ 解得17,7a d ==,所以通项公式为7(1)77n a n n =+-⋅=. (II)由277m n a n =≤,得217m n -≤, 即217m m b -=. ∵211217497m k m k b b ++-==,∴{}m b 是公比为49的等比数列,∴7(149)7(491)14948mmm S -==--.【点评】本题考查本题考察了数列的求通项与求和的方法,属于数列的典型问题.考查灵活运用基本知识解决问题的能力,运算求解能力和创新思维能力.在等差数列问题中其最基本的量是其首项和公差,在解题时根据已知条件求出这两个量,其他的问题也就随之解决了,这就是解决等差数列问题的基本方法,其中蕴含着方程思想的运用.数列求通项与求和是常见的考法,故而明年会继续围绕这些内容进行考察.(21) (本小题满分13分)如图,椭圆2222:1(0)x y M a b ab+=>>2,直线x a =±和y b =±所围成的矩形ABCD 的面积为8.(Ⅰ)求椭圆M 的标准方程;(Ⅱ) 设直线:()l y x m m =+∈R 与椭圆M 有两个不同的交点,,P Q l 与矩形ABCD 有两个不同的交点,S T .求||||P Q ST 的最大值及取得最大值时m 的值.【解析】(21)(I)222324c a b e a a-==⇒=……①矩形ABCD 面积为8,即228a b ⋅=……② 由①②解得:2,1a b ==, ∴椭圆M 的标准方程是2214xy +=.(II)222244,58440,x y x m x m y x m ⎧+=⇒++-=⎨=+⎩,设1122(,),(,)P x y Q x y ,则21212844,55m x x m x x -+=-=,由226420(44)0m m ∆=-->得m <.||PQ =.当l 过A 点时,1m =,当l 过C 点时,1m =-.①当1m <-时,有(1,1),(2,2),||)S m T m ST m ---+=+,||||PQ ST =其中3t m =+,由此知当134t=,即45,(1)33t m ==-∈-时,||||P Q ST .②由对称性,可知若1m <<53m =时,||||P Q ST .③当11m -≤≤时,||ST =||||PQ ST =,由此知,当0m =时,||||P Q ST .综上可知,当53m =±和0时,||||P Q ST .一是点明本题体现了今年考纲中的哪一点,二是本题对明年高考命题的指导意义.【点评】本题考查椭圆方程的求法以及直线与椭圆的位置关系问题.解决圆锥曲线中最值、范围问题的基本思想是建立目标函数和建立不等关系,根据目标函数和不等式求最值、范围,因此这类问题的难点,就是如何建立目标函数和不等关系.建立目标函数或不等关系的关键是选用一个合适变量,其原则是这个变量能够表达要解决的问题,这个变量可以是直线的斜率、直线的截距、点的坐标等,要根据问题的实际情况灵活处理.估计明年还会这样考查.(22) (本小题满分13分) 已知函数ln ()(e x x kf x k +=为常数,e=2.71828…是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行.(Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设()()g x xf x '=,其中()f x '为()f x 的导函数.证明:对任意20,()1e x g x -><+.【解析】 (I)1ln ()e x x kxf x --'=,由已知,1(1)0e k f -'==,∴1k =.(II)由(I)知,1ln 1()e x x x f x --'=. 设1()ln 1k x x x =--,则211()0k x x x '=--<,即()k x 在(0,)+∞上是减函数,由(1)0k =知,当01x <<时()0k x >,从而()0f x '>,当1x >时()0k x <,从而()0f x '<.综上可知,()f x 的单调递增区间是(0,1),单调递减区间是(1,)+∞.(III)由(II)可知,当1x ≥时,()()g x xf x '=≤0<1+2e -,故只需证明2()1e g x -<+在01x <<时成立.当01x <<时,e x >1,且()0g x >,∴1ln ()1ln e x x x xg x x x x --=<--.设()1ln F x x x x =--,(0,1)x ∈,则()(ln 2)F x x '=-+,当2(0,e )x -∈时,()0F x '>,当2(e ,1)x -∈时,()0F x '<,所以当2e x -=时,()F x 取得最大值22()1e F e --=+.所以2()()1e g x F x -<≤+.综上,对任意0x >,2()1e g x -<+.【点评】本题考察了导数的几何意义,利用导数求函数的单调区间以及导数在函数与不等式中的应用,体现了等价转换思想应用.函数与导数考查属于固定题型,明年也不例外.。
2012年高考数学(理科)试卷山东卷(含答案)最完美最高清word版
2012年普通高等学校招生全国统一考试数学理工农医类(山东卷)本试卷分第Ⅰ卷和第Ⅱ卷两部分.满分150分.考试用时120分钟.参考公式:锥体的体积公式:V=13Sh,其中S是锥体的底面积,h是锥体的高.如果事件A,B互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z满足z(2-i)=11+7i(i为虚数单位),则z为()A.3+5i B.3-5i C.-3+5i D.-3-5i2.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(U A)∪B为()A.{1,2,4} B.{2,3,4}C.{0,2,4} D.{0,2,3,4}3.设a>0,且a≠1,则“函数f(x)=a x在R上是减函数”是“函数g(x)=(2-a)x3在R上是增函数”的() A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为() A.7 B.9 C.10 D.155.设变量x,y满足约束条件222441x yx yx y+≥⎧⎪+≤⎨⎪-≥-⎩,,,则目标函数z=3x-y的取值范围是()A.[32-,6]B.[32-,-1]C.[-1,6]D.[-6,32]6.执行下面的程序框图,如果输入a=4,那么输出的n的值为()A.2 B.3 C.4 D.57.若θ∈[π4,π2],sin2θsinθ=()A.35B.45CD.348.定义在R上的函数f(x)满足f(x+6)=f(x).当-3≤x<-1时,f(x)=-(x+2)2;当-1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2 012)=()A.335 B.338 C.1 678 D.2 0129.函数cos622x xxy-=-的图象大致为()10.已知椭圆C:22221x ya b+=(a>b>0)的离心率为2.双曲线x2-y2=1的渐近线与椭圆C有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C的方程为()A.22182x y+=B.221126x y+=C.221164x y+=D.221205x y+=11.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为()A.232 B.252 C.472 D.48412.设函数1()f xx=,g(x)=ax2+bx(a,b∈R,a≠0).若y=f(x)的图象与y=g(x)的图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的是()A .当a <0时,x 1+x 2<0,y 1+y 2>0B .当a <0时,x 1+x 2>0,y 1+y 2<0C .当a >0时,x 1+x 2<0,y 1+y 2<0D .当a >0时,x 1+x 2>0,y 1+y 2>0第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.若不等式|kx -4|≤2的解集为{x |1≤x ≤3},则实数k =__________.14.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为__________.15.设a >0.若曲线y =x =a ,y =0所围成封闭图形的面积为a 2,则a =__________.16.如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP的坐标为__________.三、解答题:本大题共6小题,共74分.17.已知向量m =(sin x,1),n =cos x ,2Acos2x )(A >0),函数f (x )=m ·n 的最大值为6.(1)求A ;(2)将函数y =f (x )的图象向左平移π12个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )在[0,5π24]上的值域.18.在如图所示的几何体中,四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB =60°,FC ⊥平面ABCD ,AE ⊥BD ,CB =CD =CF .(1)求证:BD ⊥平面AED ;(2)求二面角F -BD -C 的余弦值.19.现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分,该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(1)求该射手恰好命中一次的概率;(2)求该射手的总得分X 的分布列及数学期望EX .20.在等差数列{a n }中,a 3+a 4+a 5=84,a 9=73. (1)求数列{a n }的通项公式;(2)对任意m ∈N *,将数列{a n }中落入区间(9m,92m )内的项的个数记为b m ,求数列{b m }的前m 项和S m .21.在平面直角坐标系xOy 中,F 是抛物线C :x 2=2py (p >0)的焦点,M 是抛物线C 上位于第一象限内的任意一点,过M ,F ,O 三点的圆的圆心为Q ,点Q 到抛物线C 的准线的距离为34. (1)求抛物线C 的方程;(2)是否存在点M ,使得直线MQ 与抛物线C 相切于点M ?若存在,求出点M 的坐标;若不存在,说明理由;(3)若点Ml :y =kx +14与抛物线C 有两个不同的交点A ,B ,l 与圆Q 有两个不同的交点D ,E ,求当12≤k ≤2时,|AB |2+|DE |2的最小值.22.已知函数ln ()exx kf x +=(k 为常数,e =2.718 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值;(2)求f (x )的单调区间;(3)设g (x )=(x 2+x )f ′(x ),其中f ′(x )为f (x )的导函数,证明:对任意x >0,g (x )<1+e -2.1.A 由已知得2117i (117i)(2i)227i 14i 11i 1525i35i 2i (2i)(2i)55z +++++++=====+--+.2.C 由题知U A ={0,4},所以(U A )∪B ={0,2,4},故选C 项.3. A 由函数f (x )=a x 在R 上是减函数可得0<a <1,由函数g (x )=(2-a )x 3在R 上是增函数可得a <2,因为0<a <1a <2,a <20<a <1,所以题干中前者为后者的充分不必要条件,故选A 项.4. C 由题意可得,抽样间隔为30,区间[451,750]恰好为10个完整的组,所以做问卷B 的有10人,故选C 项.5. A 作出可行区域如图所示.目标函数z =3x -y 可变为y =3x -z ,作l 0:3x -y =0,在可行域内平移l 0,可知在A 点处z 取得最小值为32-,在B 点处z 取得最大值6,故选A 项.6. B 由程序框图知,当n =0时,P =1,Q =3;当n =1时,P =5,Q =7;当n =2时,P =21,Q =15,此时n 增加1变为3,满足P >Q ,循环结束,输出n =3,故选B 项.7. D 由θ∈[π4,π2],得2θ∈[π2,π].又37sin2θ=,故1c o s 28θ=-.故1c o s 2s i n 24θθ-==.8. B 由f (x +6)=f (x )得f (x )的周期为6,所以f (1)+f (2)+…+f (2 012)=335[f (1)+f (2)+…+f (6)]+f (1)+f (2),而f (1)=1,f (2)=2,f (3)=f (-3)=-1,f (4)=f (-2)=0,f (5)=f (-1)=-1,f (6)=f (0)=0,f (1)+f (2)+f (3)+…+f (6)=1,所以f (1)+f (2)+…+f (2 012)=338,故选B 项.9.D 令cos6()22x x xf x -=-,则f (x )的定义域为(-∞,0)∪(0,+∞),而()cos 6()()22x xx f x f x ---==--,所以f (x )为奇函数,故排除A 项.又因为当x ∈(0,16)时,cos6x >0,2x -2-x >0,即f (x )>0,故排除B 项,而f (x )=0有无数个根,所以排除C 项,D 项正确.10. D 双曲线x 2-y 2=1的渐近线为y =±x ,与椭圆C 有四个交点,以这四个交点为顶点的四边形面积为16,可得四边形为正方形,其边长为4,双曲线的渐近线与椭圆C 的一个交点为(2,2),所以有22441a b+=,又因为32c e a ==,a 2=b 2+c 2,联立解方程组得a 2=20,b 2=5,故选D 项. 11. C 完成这件事可分为两类,第一类3张卡片颜色各不相同共有31114444C C C C 256=种;第二类3张卡片有两张同色且不是红色卡片共有21213344C C C C 216=种,由分类加法计数原理得共有472种,故选C 项.12. B 由题意知函数1()f x x=,g (x )=ax 2+bx (a ,b ∈R ,a ≠0)的图象有且仅有两个公共点A (x 1,y 1),B (x 2,y 2),等价于方程1x=ax 2+bx (a ,b ∈R ,a ≠0)有两个不同的根x 1,x 2,即方程ax 3+bx 2-1=0有两个不同的实根x 1,x 2,因而可设ax 3+bx 2-1=a (x -x 1)2(x -x 2),即ax 3+bx 2-1=a (x 3-2x 1x 2+x 12x -x 2x 2+2x 1x 2x -x 2x 12),∴b =a (-2x 1-x 2),x 12+2x 1x 2=0,-ax 2x 12=-1,x 1+2x 2=0,ax 2>0, 当a >0时,x 2>0,∴x 1+x 2=-x 2<0,x 1<0,∴y 1+y 2=121212110x x x x x x ++=>. 当a <0时,x 2<0,∴x 1+x 2=-x 2>0,x 1>0, ∴y 1+y 2=121212110x x x x x x ++=<. 13.答案:2解析:不等式|kx -4|≤2可化为-2≤kx -4≤2,即2≤kx ≤6,而不等式的解集为{x |1≤x ≤3},所以k =2. 14.答案:16解析:三棱锥D 1-EDF 的体积即为三棱锥F -DD 1E 的体积.因为E ,F 分别为AA 1,B 1C 上的点,所以在正方体ABCD -A 1B 1C 1D 1中△EDD 1的面积为定值12,F 到平面AA 1D 1D 的距离为定值1,所以11111326F D D EV -=⨯⨯=. 15.答案:49解析:由题意可得曲线y x =x =a ,y =0所围成封闭图形的面积33222022πd 033a S x x a a ====⎰,解得49a =. 16.(2-sin2,1-cos2)解析:因为圆心由(0,1)平移到了(2,1),所以在此过程中P 点所经过的弧长为2,其所对圆心角为2.如图所示,过P 点作x 轴的垂线,垂足为A ,圆心为C ,与x 轴相切于点B ,过C 作P A 的垂线,垂足为D ,则π22PC D ∠=-,|PD |=sin(2-π2)=-cos2,|CD |=cos(2-π2)=sin2,所以P 点坐标为(2-sin2,1-cos2),即OP 的坐标为(2-sin2,1-cos2).17.解:(1)f (x )=m ·n 3sin x cos x +2Acos2x =A (32sin2x +12cos2x )=A sin(2x +π6).因为A >0,由题意知A =6.(2)由(1)知f (x )=6sin(2x +π6). 将函数y =f (x )的图象向左平移π12个单位后得到y =6sin [2(x +π12)+π6]=6sin(2x +π3)的图象;再将图象上各点横坐标缩短为原来的12倍,纵坐标不变,得到y =6sin(4x +π3)的图象.因此g (x )=6sin(4x +π3).因为x ∈[0,5π24],所以4x +π3∈[π3,7π6].故g (x )在[0,5π24]上的值域为[-3,6].18.解:(1)证明:因为四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB =60°, 所以∠ADC =∠BCD =120°. 又CB =CD ,所以∠CDB =30°. 因此∠ADB =90°,AD ⊥BD .又AE ⊥BD ,且AE ∩AD =A ,AE ,AD ⊂平面AED , 所以BD ⊥平面AED . (2)方法一:由(1)知AD ⊥BD ,所以AC ⊥BC .又FC ⊥平面ABCD ,因此CA ,CB ,CF 两两垂直,以C 为坐标原点,分别以CA ,CB ,CF 所在的直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,不妨设CB =1,则C (0,0,0),B (0,1,0),D(2,12-,0),F (0,0,1),因此BD=(2,2-,BF =(0,-1,1).设平面BDF 的一个法向量为m =(x ,y ,z ),则m ·BD =0,m ·BF =0,所以x =,取z =1,则m.由于CF=(0,0,1)是平面BDC 的一个法向量,则cos ,CF CF CF⋅===m m m , 所以二面角F -BD -C方法二:取BD 的中点G ,连接CG ,FG , 由于CB =CD ,因此CG ⊥BD .又FC ⊥平面ABCD ,BD 平面ABCD , 所以FC ⊥BD .由于FC ∩CG =C ,FC ,CG 平面FCG , 所以BD ⊥平面FCG .故BD ⊥FG . 所以∠FGC 为二面角F -BD -C 的平面角. 在等腰三角形BCD 中,由于∠BCD =120°, 因此12CG CB =. 又CB =CF ,所以GF =,故cos FGC ∠=, 因此二面角F -BD -C19.解:(1)记:“该射手恰好命中一次”为事件A ,“该射手射击甲靶命中”为事件B ,“该射手第一次射击乙靶命中”为事件C ,“该射手第二次射击乙靶命中”为事件D ,由题意知P (B )=34,P (C )=P (D )=23, 由于A BCD BCD BCD =++,根据事件的独立性和互斥性得()()P A P BCD BCD BCD =++=()()()P BCD P BCD P BCD ++=()()()+()()()()()()P B P C P D P B P C P D P B P C P D +=322322322(1)(1)(1)(1)(1)(1)433433433⨯-⨯-+-⨯⨯-+-⨯-⨯ =736. (2)根据题意,X 的所有可能取值为0,1,2,3,4,5, 根据事件的独立性和互斥性得(0)()P X P BCD ===[1-P (B )][1-P (C )][1-P (D )]=3221 (1)(1)(1)43336 -⨯-⨯-=,(1)()()()() P X P BCD P B P C P D ====322(1)(1) 433⨯-⨯-=1 12,(2)=()()() P X P BCD BCD P BCD P BCD =+=+=322322 (1)(1)(1)(1)433433 -⨯⨯-+-⨯-⨯=19,(3)()()() P X P BCD BCD P BCD P BCD ==+=+=3223221(1)(1) 4334333⨯⨯-+⨯-⨯=,(4)() P X P BCD===3221 (1)4339 -⨯⨯=,P(X=5)=P(BCD)=3221 4333⨯⨯=.故X的分布列为所以EX=0×136+1×112+2×9+3×3+4×9+5×3=12.20.解:(1)因为{a n}是一个等差数列,所以a3+a4+a5=3a4=84,a4=28.设数列{a n}的公差为d,则5d=a9-a4=73-28=45,故d=9.由a4=a1+3d得28=a1+3×9,即a1=1.所以a n=a1+(n-1)d=1+9(n-1)=9n-8(n∈N*).(2)对m∈N*,若9m<a n<92m,则9m+8<9n<92m+8.因此9m-1+1≤n≤92m-1.故得b m=92m-1-9m-1.于是S m=b1+b2+b3+…+b m=(9+93+…+92m-1)-(1+9+…+9m-1)=9(181)19 18119m m ⨯-----=219109180m m+-⨯+.21.解:(1)依题意知F(0,2p),圆心Q在线段OF的垂直平分线4py=上,因为抛物线C的准线方程为2py=-,所以3344p=,即p=1,因此抛物线C的方程为x2=2y.(2)假设存在点M(x0,22x)(x0>0)满足条件,抛物线C在点M处的切线斜率为y′|x=x0=(22x)′|x=x0=x0.所以直线MQ的方程为y-22x=x0(x-x0),令14y=,得0124Qxxx=+,所以Q(0124xx+,14).又|QM|=|OQ|,故2222000001111()()()42424216x x xx x-+-=++,因此2219()416x-=,又x0>0,所以x=M 1).故存在点M1),使得直线MQ与抛物线C相切于点M.(3)当x=(2)得Q(8,14).Q的半径为r==,所以Q的方程为22127(()432x y+-=.由21214y xy kx⎧=⎪⎪⎨⎪=+⎪⎩,,整理得2x2-4kx-1=0.设A,B两点的坐标分别为(x1,y1),(x2,y2),由于1∆=16k2+8>0,x1+x2=2k,1212xx=-,所以|AB|2=(1+k2)[(x1+x2)2-4x1x2]=(1+k2)(4k2+2).由22127((),84321,4x yy kx⎧-+-=⎪⎪⎨⎪=+⎪⎩整理得(1+k2)x2-1416x-=0.设D,E两点的坐标分别为(x3,y3),(x4,y4).由于2227048k ∆=+>,3424(1)x x k +=+, 342116(1)x x k =-+, 所以|DE |2=(1+k 2)[(x 3+x 4)2-4x 3x 4]=22518(1)4k ++. 因此|AB |2+|DE |2=(1+k 2)(4k 2+2)+22518(1)4k ++. 令1+k 2=t ,由于12≤k ≤2,则54≤t ≤5.所以|AB |2+|DE |2=t (4t -2)+25184t +=4t 2-2t +25184t +, 设g (t )=4t 2-2t +25184t +,t ∈[54,5], 因为g ′(t )=8t -2-2258t ,所以当t ∈[54,5]时,g ′(t )≥g ′(54)=6,即函数g (t )在t ∈[54,5]是增函数,所以当54t =时g (t )取到最小值132,因此当12k =时,|AB |2+|DE |2取到最小值132.22.解:(1)由ln ()e xx kf x +=,得1ln '()exkx x xf x x --=,x ∈(0,+∞), 由于曲线y =f (x )在(1,f (1))处的切线与x 轴平行, 所以f ′(1)=0,因此k =1. (2)由(1)得f ′(x )=1e xx (1-x -x ln x ),x ∈(0,+∞), 令h (x )=1-x -x ln x ,x ∈(0,+∞),当x ∈(0,1)时,h (x )>0;当x ∈(1,+∞)时,h (x )<0. 又e x >0,所以x ∈(0,1)时,f ′(x )>0;x ∈(1,+∞)时,f ′(x )<0.因此f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞). (3)(理)因为g (x )=(x 2+x )f ′(x ), 所以g (x )=1e xx +(1-x -x ln x ),x ∈(0,+∞). 因此对任意x >0,g (x )<1+e -2等价于1-x -x ln x <e 1x x +·(1+e -2).由(2)知h (x )=1-x -x ln x ,x ∈(0,+∞),所以h ′(x )=-ln x -2=-(ln x -lne -2),x ∈(0,+∞),因此当x ∈(0,e -2)时,h ′(x )>0,h (x )单调递增;当x ∈(e -2,+∞)时,h ′(x )<0,h (x )单调递减.所以h (x )的最大值为h (e -2)=1+e -2,故1-x -x ln x ≤1+e -2. 设φ(x )=e x -(x +1).因为φ′(x )=e x -1=e x -e 0,所以x ∈(0,+∞)时,φ′(x )>0,φ(x )单调递增, φ(x )>φ(0)=0,故x ∈(0,+∞)时,φ(x )=e x -(x +1)>0,即e 11xx >+. 所以1-x -x ln x ≤1+e -2<e 1x x +(1+e -2).因此对任意x >0,g (x )<1+e -2. (文)证明:因为g (x )=xf ′(x ),所以g (x )=1ex (1-x -x ln x ),x ∈(0,+∞). 由(2)知h (x )=1-x -x ln x ,求导得h ′(x )=-ln x -2=-(ln x -lne -2),所以当x ∈(0,e -2)时,h ′(x )>0,函数h (x )单调递增;当x ∈(e -2,+∞)时,h ′(x )<0,函数h (x )单调递减.所以当x ∈(0,+∞)时,h (x )≤h (e -2)=1+e -2.又当x ∈(0,+∞)时,0<1e x <1, 所以当x ∈(0,+∞)时,1ex h (x )<1+e -2,即g (x )<1+e -2. 综上所述结论成立.。
2012年山东春季高考数学模拟试题
2012年山东春季高考数学模拟试题(含答案)一、选择题(本大题共25个小题,每小题3分,共75分)1、已知集合P={(x ,y )|y = x+1},Q={( x ,y )| x 2+y 2=1},则集合P ∩Q 的子集的个数是( A )A 、2B 、4C 、6D 、82、设命题p :a 2+b 2=0,则 p 的充分且必要条件是( A )A 、a=0且b=0,B 、a ≠0且b ≠0,C 、a ≠0或b ≠0,D 、a=0或b=0 3、已知a =x -x 2,b =1-x ,则a ,b 间大小关系为( D )A 、a >bB 、a <bC 、a =bD 、a ≤b4、已知奇函数f(x)在(0,+∞)上是增函数,偶函数g(x)在(0,∞)上是减函数,则在(-∞,0)上,有( C )奇函数在单调性的定义域是一致的,偶函数是相反的。
A 、f(x)为减函数,g(x)为增函数;B 、f(x)为增函数,g(x)为减函数;C 、f(x)、g(x)都是增函数;D 、f(x)、g(x)都是减函数 5、如果函数y=2x 2+(2a-b)x+b ,当y <0时,有1<x <2,则a 、b 的值为( D ) A 、a=-1,b=-4 B 、a=-12 ,b=2 C 、a=-1,b=4 D 、a=1,b=-4 6、已知f (e x )= x ,则f (5)=( C )A 、e 5B 、5C 、ln5D 、log 5 e 7、已知tan θ=2,则sin θcos θ=( B )A 、53B 、52C 、±52D 、±538、把函数y=sin x 图象上所有点的横坐标都缩小到原来的一半,纵坐标保持不变,A 、y=cos 2xB 、y= -sin 2xC 、y=sin(2x-4)D 、y=sin(2x+4) 9、我国轿车进入家庭是时代发展的必然,随着车价的逐年降低,购买轿车将不是一件难事,如果每隔3年车价将降低13 ,那么现价为18万元的小轿车6年后的车价是( C ) 18×﹙1-1/3﹚²=8 三年看成一个周期,则6年2周期A 、2万元B 、4万元C 、8万元D 、16万元 10、在△ABC 中,已知AB=,∠B=30°,则∠A=( D )A 、45°B 、15°C 、45°或135°D 、15°或105° 11、若与都是单位向量,则下列式子恒成立的是( B )单位向量指的是模式1的向量,所以选BA 、·=0;B 、||=||,C 、-=0;D 、·=1 12、数列{}n a 满足,,11n S a n ==则=2012a ( A )A 、1B 、2010C 、2011D 、201213、从五名学生中选出四人分别参加语文、数学、英语和专业综合知识竞赛,其中学生甲不参加语文和数学竞赛,则不同的参赛方法共有( C ) A .24 B.48 C.72 D.12014、某校二年级有8个班,甲,乙两人从外地转到该年级插班,学校让他们各自随机选择班级,他们刚好选在同一个班的概率是( B )因为有八个班级,假设把我A 、B 都分到5班,概率是1/8A . 14 B. 18 C. 116 D. 16415. 某个小区住户共200户,为调查小区居民的7月份用水量,用分层抽样的方法抽取了50户进行调查,得到本月的用水量(单位:m 3)的频率分布直方图如图所示,则小区内用水量超过15m 3的住户的户数为 C A.10 B.50 C.60 D.14016、二项式()n x +1展开式中有9项,则展开式中的第5项的系数为( A )A 、70 B 、-70 C 、126 D 、24017.已知正方体ABCD A BC D ''''-,则A C ''与B C '所成的角为( A )A .45︒B .60︒C .30︒D .90︒ 18、已知直线m ,n 和平面α,下面四个命题中,正确的是( ) A 、m ⊥α,m ∥n ⇒n ⊥α B 、 m ⊥α,n ∥α⇒m ∥n C 、m 、n 与α所成的角相等⇒m ∥n D 、m ⊥α,m ⊥n ⇒n ∥α 19. 设βα、为两个不同的平面,m 、n 为两条不同的直线,,m n αβ⊂⊂,有两个命题:p :若//m n ,则//αβ;q :若m β⊥,则αβ⊥;那么 A .“p 或q ”是假命题 B .“p 且q ”是真命题 C .“非p 或q ” 是假命题 D .“非p 且q ”是真命题20.设实数y x ,满足⎪⎩⎪⎨⎧≥-≤-+.0,0,042>y y x y x 则y x 2-的最大值为( B )A 、2B 、4C 、6D 、821、对任意实数k,直线(k+1)x -ky -1=0与圆x 2+y 2-2x -2y -2=0的位置关系是 ( A )直线恒过圆心,直线与圆相交A.相交B.相切C.相离D.与k 的值有关 22、圆x 2+y 2-4x+2y+F=0与y 轴相交于A 、B 二点,圆心为C ,若∠ACB=90º,则F 等于( D ) A 、22- B 、22 C 、3 D 、-323、若抛物线()220y px p =>过点M )(4,4,则点M 到准线的距离d=( ) A 、 5 B 、 4 C 、3 D 、224、12222=-by a x 与2222a y b x -=1(a >b >0)的渐近线( )A .重合B .不重合,但关于x 轴对称C .不重合,但关于y 轴对称D .不重合,但关于直线y =x 对称25、已知AB 为经过椭圆12222=+by a x (a>b>0)的中心的弦, F(c, 0)为椭圆的右焦点,则△ABF 的面积的最大值为( )A. b 2B. abC. acD. bc二、填空题(本大题共5个小题,每小题4分,共20分) 26、2和3的等比中项是__1.86______. (精确到0.01)28、若直线m x y +=2经过第一、二、三象限,则方程1322=+my x 表示的曲线是____________.29、函数y =的定义域为__1≤X <2__30、某商品计划提价,现有四种方案:①先提价m%,再提价n%;②先提价n%,再提价m%;③分两次提价,每次都提价(m+n2)%;④一次性提价(m+n)%,已知m >n >0,那么四种提价方案中,提价最多的方案是___③___. (只填序号) 三、解答题(本大题共5个小题,共55分) 31、(8分)在4与64之间插入三个正数a 1,a 2,a 3,使4,a 1,a 2及a 2,a 3,64依次成等比为数列,而a 1,a 2,a 3依次成等差数列,求a 1,a 2,a 3. 31.(10分)某服装厂生产某种风衣,日销售量x (件)与售价P (元/件)之间的关系为1602P x =-,生产x 件的成本为50030R x =+元。
2012年普通高等学校招生全国统一考试山东文科数学word解析版
2012年普通高等学校招生全国统一考试(山东卷)数学(文科)第I 卷(共60分)一、 选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)若复数z 满足z(2-i)=11+7i(i 为虚数单位),则z 为A 3+5iB 3-5iC -3+5iD -3-5i 答案:A考点:复数的运算。
值得注意的是21i =-. 解析:因为z(2-i)=11+7i ,所以1172iz i+=-,分子分母同时乘以2i +, 得22(117)(2)221114722725152535(2)(2)4415i i i i i i i z i i i i +++++-++=====+-+-+ (2) 已知全集 ={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA ) B 为 A {1,2,4} B {2,3,4}C {0,2,4}D {0,2,3,4} 答案:C考点:集合运算解析:}4,2,0{)(},4,0{==B A C A C U U 。
答案选C 。
(3)函数()()1ln 1f x x =+ )A [)(]2,00,2-B ()(]1,00,2-C []2,2-D (]1,2-答案:B考点:求函数的定义域,对指对幂函数性质的考察。
解析:函数式若有意义需满足条件:210,1,l n (1)0,0,22,40,x x xx x x ⎧+>>-⎧⎪⎪+≠⇒≠⎨⎨⎪⎪-≤≤-≥⎩⎩取交集可得:()(]1,00,2x ∈- 。
答案:B. (4)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是(A)众数 (B)平均数 (C)中位数 (D)标准差 答案:D考点:求样本方差、标准差解析: A 样本的平均数为86,B 样本的平均数为88 A 样本的方差为4)8688(104)8686(103)8684(102)8682(1012222=-+-+-+-=σ A 样本的标准差为2 B 样本的方差为4)8890(104)8888(103)8886(102)8884(1012222=-+-+-+-=σ B 样本的标准差为2,,两者相等(5)设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x = 的图象关于直线2x π=对称.则下列判断正确的是(A)p 为真 (B) ⌝q 为假 (C) p ∨q 为假 (D)p ∧q 为真 答案:C考点:主要考点是常用逻辑用语,三角函数的周期性和对称性,但是这个题目中对三角函数的考察是相当简单的。
2012年高考数学试卷 山东理
2012年高考山东卷(理)选择题1.若复数z 满足(2i)117i z -=+(i 为虚数单位),则z 为( ).(A )35i + (B )35i - (C )35i -+ (D )35i -- 2.已知全集{}0,1,2,3,4U =,集合{}1,2,3A =,{}2,4B =,则()U A B ⋃ð为( ). (A ){}1,2,4 (B ){}2,3,4 (C ){}0,2,4 (D ){}0,2,3,4 3.设01a a >≠且,则“函数()x f x a =在R 上是减函数”是“函数()()32g x a x =-在R 上是增函数”的( ).(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件4.采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[]1,450的人做问卷A ,编号落入区间[]451,750的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为( ).(A )7 (B )9 (C )10 (D )155.设变量,x y 满足约束条件22,24,41,x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是( ).(A )3,62⎡⎤-⎢⎥⎣⎦ (B )3,12⎡⎤--⎢⎥⎣⎦ (C )[]1,6- (D )36,2⎡⎤-⎢⎥⎣⎦6.执行下面的程序框图,如果输入4a =,那么输出的n 的值为( ).(A )2 (B )3 (C )4 (D )57.若42θππ⎡⎤∈⎢⎥⎣⎦,,sin 2θ,则sin θ=( ).(A )35 (B )45 (C )4(D )34 8.定义在R 上的函数()f x 满足()()6f x f x +=.当31x -≤<-时,()()22f x x =-+;当13x -≤<时,()f x x =.则()()()()1232012f f f f ++++=( ).(A )335 (B )338 (C )1678 (D )2012 9.函数cos 622x xxy -=-的图象大致为( ).10.已知椭圆C :()222210x y a b a b +=>>的离心率为2.双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( ).(A )22182x y += (B )221126x y += (C )221164x y += (D )221205x y += 11.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为( ). (A )232 (B )252 (C )472 (D )484 12.设函数()1f x x=,()2g x ax bx =+(),,0a b a ∈≠R .若()y f x =的图象与()y g x =图象有且仅有两个不同的公共点()11,A x y ,()22,B x y ,则下列判断正确的是( ). (A )当0a <时,12120,0x x y y +<+> (B )当0a <时,12120,0x x y y +>+< (C )当0a >时,12120,0x x y y +<+< (D )当0a >时,12120,0x x y y +>+> 填空题13.若不等式42kx -≤的解集为{}13x x ≤≤,则实数k =__________.14.如下图,正方体1111ABCD A BC D -的棱长为1,,E F 分别为线段1AA ,1BC 上的点,则三棱锥1D EDF -的体积为____________.15.设0a >.若曲线y 与直线x a =,0y =所围成封闭图形的面积为2a ,则a =______. 16.如下图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在()0,1,此时圆上一点P 的位置在()0,0,圆在x 轴上沿正向滚动.当圆滚动到圆心位于()2,1时,OP 的坐标为______________.参考答案 选择题 1.A提示:方法一:设()i ,z a b a b =+∈R ,则()()()i 2i 22i 117i a b a b b a +-=++-=+.根据复数相等的充要条件可知211,27,a b b a +=⎧⎨-=⎩解得3,5,a b =⎧⎨=⎩于是35i z =+.方法二:()()()117i 2i 2271411i117i 35i 2i 55z ++-+++====+-. 2.C提示:因为{}0,4,U A =ð所以(){}0,2,4U A B ⋃=ð. 3.A提示:“函数()x f x a =在R 上是减函数 ”等价于10<<a ; “函数()()32g x a x =-在R 上是增函数”等价于02>-a ,即,20<<a 且1a ≠,所以“函数()x f x a =在R 上是减函数 ”是“函数()()32g x a x =-在R 上是增函数”的充分不必要条件.4.C提示:从960中用系统抽样抽取32人,则每30人抽取一人.因为第一组号码为9,则第二组为39,公差为30,所以通项为()93013021n a n n =+-=-.由7502130451≤-≤n ,即11715251510n ≤≤,所以16,17,,25n =,共有1011625=+-人.5. A提示:作出可行域,如下图,作出平行于直线03=-y x 的一族直线,易知直线过点()2,0时有最大值,过点1,32⎛⎫⎪⎝⎭时有最小值,即623≤≤-z .6.B提示:第一次循环后,0041,213P Q =+==+=,1n =; 第二次循环后,1145,617P Q =+==+=,2n =; 第三次循环后,25421,14115P Q =+==+=,3n =. 此时不满足条件,退出循环. 7.D提示:由42θππ⎡⎤∈⎢⎥⎣⎦,,可得2,2θπ⎡⎤∈π⎢⎥⎣⎦.所以812sin 12cos 2-=--=θθ,从而4322cos 1sin =-=θθ. 8.B提示:因为函数()f x 的周期为6,且2)2(,1)1(,0)0(,1)1(,0)2(,1)3(===-=-=--=-f f f f f f ,所以()()()122012f f f +++=()()()33510101212f f ⨯-+-+++++=3353338+=.9.D提示:令()cos 622x x x f x -=-,则()()cos 622x xxf x f x --==--,即()f x 为奇函数. 当0→x ,且0>x 时,()f x →+∞;当0→x ,且0<x 时,()f x →-∞;当x →+∞时,22x x--→+∞,()0f x →;当x →-∞时,22x x --→-∞,()0f x →.10.D提示:因为双曲线221x y -=的渐近线方程为x y ±=,代入()222210x y a b a b+=>>,可得22222a b x a b=+.又四边形的面积2416S x ==,所以()22224a b a b =+.又椭圆C 的离心率为,可得2a b =,则425b b =,于是225,20b a ==.故椭圆方程为221205x y +=. 11.C提示:方法一: 3321164412161514C 4C C C 1672560884726⨯⨯--=--=-=; 方法二: 0331241244121211101211C C 3C C C 1242202641247262⨯⨯⨯-+=-+⨯=+-=. 12.B提示:令bx ax x+=21,则()3210ax bx x =+≠.设()32F x ax bx =+,()232F x ax bx '=+.令()2320F x ax bx '=+=,得23bx a=-,要使()y f x =的图象与()y g x =图象有且仅有两个不同的公共点,只需函数()F x 的图象与直线1y =有且仅有两个公共点,即322221333b b b F a b a a a ---⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,整理得32427b a =,于是可取2,3a b =±=来研究,当2,3a b ==时,32231x x +=,解得1211,2x x =-=,此时121,2y y =-=,所以12120,0x x y y +<+>;当2,3a b =-=时,32231x x -+=,解得1211,2x x ==-,此时121,2y y ==-,所以12120,0x x y y +>+<.填空题 13.2提示:由42kx -≤,得242kx -≤-≤,即26kx ≤≤.又不等式42kx -≤的解集为{}13x x ≤≤,所以2k =.14.16提示: 11111111326D EDF F D DE V V --==⨯⨯⨯⨯=.15.49提示:3322202233aa S x x a a ====⎰,解得49a =.16. ()2sin 2,1cos2--提示:根据题意,圆的半径为1,圆滚动的距离为2,如下图,点P 在圆上旋转的弧度数为221=,即2PCD ∠=,所以圆心位于()2,1时,点P 的横坐标为2cos 22sin 22P x π⎛⎫=--=- ⎪⎝⎭,纵坐标为1sin 21cos 2,2P y π⎛⎫=+-=- ⎪⎝⎭从而()2sin 2,1cos2.OP =--【解答题】【1】.已知向量(sin ,1),cos ,cos 2)(0)2A x x x A ==>m n ,函数()f x =⋅m n 的最大值为6. (Ⅰ)求A ;(Ⅱ)将函数()y f x =的图象向左平移π12个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()y g x =的图象.求()g x 在5π[0,]24上的值域.【2】.在如下图所示的几何体中,四边形ABCD 是等腰梯形,//AB CD ,60,DAB ∠=FC ⊥平面,ABCD AE BD ⊥,CB CD CF ==. (Ⅰ)求证:BD ⊥平面AED ; (Ⅱ)求二面角F BD C --的余弦值.【3】.现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击. (Ⅰ)求该射手恰好命中一次的概率;(Ⅱ)求该射手的总得分X 的分布列及数学期望EX . 【4】.在等差数列{}n a 中,345984,73a a a a ++==.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)对任意*m ∈N ,将数列{}n a 中落入区间2(9,9)m m 内的项的个数记为m b ,求数列{}m b 的前m 项和m S .【5】.在平面直角坐标系xOy 中,F 是抛物线2:2C x py =(0)p >的焦点,M 是抛物线C 上位于第一象限内的任意一点,过,,M F O 三点的圆的圆心为Q ,点Q 到抛物线C 的准线的距离为34.(Ⅰ)求抛物线C 的方程;(Ⅱ)是否存在点M ,使得直线MQ 与抛物线C 相切于点?M 若存在,求出点M 的坐标;若不存在,说明理由;(Ⅲ)若点M 1:4l y kx =+与抛物线C 有两个不同的交点,A B ,l 与圆Q 有两个不同的交点,D E ,求当122k ≤≤时,22||||AB DE +的最小值.【6】.已知函数ln ()e xx k f x +=(k为常数,e=2.71828…是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行. (Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设2()(+)()g x x x f x '=,()f x '为()f x 的导函数.证明:对任意20,()1e x g x -><+.【参考答案】 【1】.解:(Ⅰ)1π()sin cos +cos2=2+cos2)=sin (2+)226A f x x x x A x x A x =m n g .因为0A >,所以由题意知6A =. (Ⅱ)由(Ⅰ)得π()6sin(2+)6f x x =.将函数()y f x =的图象向左平移π12个单位后得到πππ=6sin[2(+)+]=6sin(2+)1263y x x的图象;再将所得图象上各点横坐标缩短为原来的12倍,纵坐标不变,得到π=6sin(4+)3y x的图象.因此π()=6sin(4+)3g x x . 因为5π[0,]24x ∈,所以ππ7π4+[,]336x ∈. 故()g x 在区间5π[0,]上的值域为[3,6]-.【2】.(Ⅰ)证明:因为四边形ABCD 为等腰梯形,//AB CD ,60DAB ∠=, 所以120ADC BCD ∠=∠=. 又CB CD =,所以 30CDB ∠=. 因此90ADB ∠=,AD BD ⊥. 又AE BD ⊥,且AE AD A =,,AE AD ⊂平面AED ,所以BD ⊥平面AED .(Ⅱ)解法一:由(I )知AD BD ⊥,所以AC BC ⊥,又FC ⊥平面ABCD ,因此,,CA CB CF 两两垂直.以C 为坐标原点,分别以,,CA CB CF 所在的直线为x 轴、y 轴、z轴建立如下图所示的空间直角坐标系,不妨设1CB =,则(0,0,0)C ,(0,1,0)B ,1(,,0)2D -,(0,0,1)F ,因此33(,,0)2BD =-,(0,1,1)BF =-.设平面BDF 的一个法向量为(,,)x y z =m ,则0BD =⋅m ,0BF=⋅m ,所以x =.取1z =,则(=m .又平面BDC 的法向量为(0,0,1)=n ,所以cos ,||||<>===⋅m n m n m n所以二面角F BD C -- 解法二:取BD 的中点G ,连结,CG FG ,由于CB CD =,所以CG BD ⊥. 又FC ⊥平面ABCD ,BD ⊂平面ABCD ,所以FC BD ⊥. 由于FCCG C =,,FC CG ⊂平面FCG ,所以BD ⊥平面FCG ,故BD FG ⊥.所以FGC ∠为二面角F BD C --的平面角.在等腰三角形BCD 中,由于120BCD ∠=,因此12CG CB =,又CB CF =, 所以GF ,故cos FGC ∠=.因此 二面角F BD C --的余弦值为. 【3】.解:(Ⅰ)记“该射手恰好命中一次”为事件A ;“该射手射击甲靶命中”为事件B ;“该射手第一次射击乙靶命中”为事件C ;“该射手第二次射击乙靶命中”为事件D . 由题意知,3()4P B =,2()()3P C P D ==,由于A BCD BCD BCD =++,根据事件的独立性与互斥性,得()()()()()P A P BCD BCD BCD P BCD P BCD P BCD =++=++333222222(1)(1)(1)(1)(1)(1)433433433=⨯-⨯-+-⨯⨯-+-⨯-⨯736=.(Ⅱ)根据题意,X 的所以可能取值为0,1,2,3,4,5. 根据事件的独立性和互斥性,得3221(0)()(1)(1)(1)43336P X P BCD ===-⨯-⨯-=,3221(1)()(1)(1)P X P BCD ===⨯-⨯-=, 3221(2)()()(1)(1)24339P X P BCD P BCD ==+=-⨯⨯-⨯=,3221(3)()()(1)24333P X P BCD P BCD ==+=⨯⨯-⨯=, 3221(4)()(1)4339P X P BCD ===-⨯⨯=,3221(5)()4333P X P BCD ===⨯⨯=,故X 的分布列为所以111111410123453612939312EX=⨯+⨯+⨯+⨯+⨯+⨯=.【4】.解:(Ⅰ)因为{}n a 是一个等差数列,所以3454384a a a a ++==,即428a =.设数列{}n a 的公差为d ,则945==7328=45d a a --,故=9d .由41+3=a a d ,得128=+39a ⨯,即1=1a . 所以*1=+(1)=1+9(1)=9()n a a n d n n n ∈N ---8. (Ⅱ)对*m ∈N ,若 299m m n a <<,则 298998m m n +<<+,因此 121919m m n --+≤≤,故得2-1-1=99m m m b -. 于是32-1-112+++==(9+9++9)(1+9++9)m m m m S b b b -=9(181)19m m ⨯---2+199+1=80m m ⨯-10. 【5】.解:(Ⅰ)依题意知(0,)p F ,圆心Q 在线段OF 的垂直平分线py =上,因为抛物线C 的准线方程为2p y =-,所以33=44p ,即1p =.因此抛物线C 的方程为2=2x y .(Ⅱ)假设存在点0(M x ,2)2x 0(>0)x 满足条件,抛物线C 在点M 处的切线斜率为2==0|=()|=2x x x x x y x '',因此直线MQ 的方程为2000=()2x y x x x --. 令1=4y ,得00124Q x x x =+,所以001(24x Q x +,1)4.又||=||QM OQ ,故2222000001111()+()=(+)+42424216x x x x x --,因此22019()=x -. 又0>0x,所以0xM .故存在点M ,使得直线MQ 与抛物线C 相切于点M .(Ⅲ)当点MQ 1)4,圆Q的半径r 圆心Q 到直线1=+4y kx的距离为|d 所以2222222|272527+2|=4()=4[]=3232(1+)8(1+)k k DE r d k k --.由2=2,1=+,4x y y kx ⎧⎪⎨⎪⎩得212=02x kx --.设1(A x ,1)y ,2(B x ,2)y ,则有1212+=2,1=.2x x k x x ⎧⎪⎨⎪⎩-所以222221212||(1)[()4](1)(42)AB k x x x x k k =++-=++.于是22222422222792511||||(1)(42)46(2)4828(1)1k AB DE k k k k k k k ++=+++=+++≤≤++⋅. 记292511()46(4)4814f x x x x x =+++≤≤+⋅,则225125()=8+6>6>0f x x '∙--,所以()f x 在区间1[4,4]上是增函数. 所以当14x=时,()f x 取得最小值min 131()()42f x f ==.故当12k=时,22||||AB DE +取得最小值132. 【6】.解:(Ⅰ)由ln ()e x x k f x +=得1ln ()e xx x xkf x x --'=,(0,+)x ∈∞. 由于曲线()y f x =在点(1,(1))f 处的切线与x 轴平行,所以1(1)0ekf -'==,因此1k =. (Ⅱ)由(Ⅰ)得1ln ()e xx x xf x x --'=,(0,+)x ∈∞,记()1ln 0h x x x x x =∈∞--,(,+), 所以,当(0,1)x ∈时,()0h x >; 当(1,+)x ∈∞时,()0h x <.又e >0x ,所以当(0,1)x ∈时,()0f x '>;当(1,+)x ∈∞时,()0f x '<. 综上可知,()f x 的单调递增区间是(0,1),单调递减区间是(1,)+∞. (Ⅲ)因为2()(+)()g x x x f x '=,所以+1()(1ln ),(0,+)ex x g x x x x x =∈∞--, 因此对任意20,()1e x g x -><+等价于-2e 1ln <(1+e )+1xx x x x --.由(Ⅱ)知,()1ln 0h x x x x x =∈∞--,(,+),所以()ln ln ln 0h x x x x '=∈∞-2--2=-(-e ),(,+),因此当2(0,e )x ∈-时,()>0h x ',函数()h x 单调递增; 当2(e ,+)x ∈∞-时,()<0h x ',函数()h x 单调递减. 所以函数()h x 的最大值为-2-2(e )=1+e h . 故-21--ln 1+e x x ≤. 记()=e (+1)x x x ϕ-.因为()=e 1=e x x x ϕ'0--e ,所以(0,+)x ∈∞时,()>0x ϕ',函数()x ϕ单调递增,()>(0)=0x ϕϕ.故(0,+)x ∈∞时,()=e (+1)>0xx x ϕ-,即e >1+1xx .所以-2-2e 1--ln 1+e <(1+e )+1x x x x ≤.因此对任意20,()1e x g x -><+. 【End 】。
2012年高考山东数学(理)试卷解析(精析word版)(教师版)
2012年普通高等学校招生全国统一考试(山东卷)理科数学【试卷总评】本试题在承袭了山东自行命题风格的同时,积极进行创新与突破,呈现出诸多亮点。
试卷全面考查了基本知识与方法,注重对数学能力及数学素养的考查。
并进一步对分值结构进行调整,淡化压轴题的概念,后面几道题难度较大,都有一定的思维量,梯度设置科学合理,体现了高考的选拔作用.第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数x 满足(2)117z i i -=+(i 为虚数单位),则z 为(A )35i + (B )35i - (C )35i -+ (D )35i --2. 已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则U C A B 为(A ){}1,2,4 (B ){}2,3,4 (C ){}0,2,4 (D ){}0,2,3,43. 设0a >且1a ≠,则“函数()x f x a =在R 上是减函数 ”,是“函数3()(2)g x a x =-在R 上是增函数”的(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件3.【答案】:A【解析】:若函数()x f x a =在R 上是减函数,则01,a <<这样函数()()32g x a x =-在R4.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,3,...,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[]1,450的人做问卷A ,编号落入区间[]451,750的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为(A )7 (B )9 (C )10 (D )155. 已知变量,x y 满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,则目标函数3z x y =-的取值范围是(A )3[,6]2- (B )3[,1]2-- (C )[1,6]- (D )3[6,]2- 6. 执行下面的程序图,如果输入4a =,那么输出的n 的值为(A )2 (B )3 (C )4 (D )57. 若42ππθ⎡⎤∈⎢⎥⎣⎦,,37sin 2=8θ,则sin θ= (A )35 (B )45 (C )74 (D )348. 定义在R 上的函数()f x 满足(6)()f x f x +=.当31x -≤<-时,2()(2)f x x =-+,当13x -≤<时,()f x x =。
2012年普通高等学校招生全国统一考试数学文试题(山东卷,含答案)
2
,则
2
b
ac
2,
2
2
2
∴ cos B a c b
2ac
3 ,
4
sin C
2
1 cos C
7 ,
4
∴△ ABC 的面积 S
1 ac sin B
1 12
7
7 .
2
2
44
-5-
(18) (I) 从五张卡片中任取两张的所有可能情况有如下
10 种:红 1 红 2,红 1 红 3,红 1 蓝 1,红
1 蓝 2,红 2 红 3,红 2 蓝 1,红 2 蓝 2,红 3 蓝 1,红 3 蓝 2,蓝 1 蓝 2. 其中两张卡片的颜色不同且
1 3 2 . x1 x2 1 3 2 0 ,由此知
2
2
y1 y2 1 1 x1 x2 0 ,故答案为 B.
x1 x2
x1 x2
二、填空题
(13) 1 以△ ADD1 为底面,则易知三棱锥的高为 6
1,故 V
11 1 11
1 .
32
6
(14) 9 最左边两个矩形面积之和为 0.10 × 1+0.12 × 1= 0.22 ,总城市数为 11÷ 0.22 = 50,最
x 2 y 2, 2x y 4, 则目标函数 z 3x y 的取值范围是 4x y 1,
(A)
3 [ ,6]
2
3 (B) [ , 1]
2
(7) 执行右面的程序框图,如果输入
(A)2
(B)3
(C)4
(C) [ 1,6]
3 (D) [ 6, ]
2
a = 4,那么输出的 n 的值为
(D)5
(8) 函数 y 2sin x
2012年普通高等学校招生全国统一考试数学文试题(山东卷)解析版(1)2
2012年普通高等学校招生全国统一考试(山东卷)文科数学一、 (1) (A)3+5i (2) (C){0,2,4} (3) (B)(1,0)(0,2]- (4) (D)标准差 (5) (C)p q ∧为假 (6) (A)3[,6]2- (7) (B)3(8) (A)2-相交(10)选D.(11) (D)216x y =(12) (B)12120,0x x y y +>+< 二、(13)61 (14)9 (15)14(16) )2cos 1,2sin 2(--三、(17)(I)由已知得:sin (sin cos cos sin )sin sin B A C A C A C +=,sin sin()sin sin B A C A C +=, 2sin sin sin B A C =,再由正弦定理可得:2b ac =,所以,,a b c 成等比数列.(II)若1,2a c ==,则22b ac ==,∴2223cos 24a c bB ac +-==,sin 4C ==ABC 的面积11sin 122244S ac B ==⨯⨯⨯=.(18)(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为310P =.(II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为815P =. (19)(I)设BD 中点为O ,连接OC ,OE ,则由B CC D=知 ,C O B D⊥,又已知C E BD⊥,所以BD ⊥平面OCE .所以BDO E⊥,即OE 是BD 的垂直平分线,所以BE DE =.(II)取AB 中点N ,连接,M N D N , ∵M 是AE 的中点,∴M N ∥BE , ∵△ABD 是等边三角形,∴D NAB⊥.由∠BCD =120°知,∠CBD =30°,所以∠ABC =60°+30°=90°,即BC AB⊥,所以ND ∥BC ,所以平面MND ∥平面BEC ,故DM ∥平面BEC .(20) (I)由已知得:111510105,92(4),a d a d a d +=⎧⎨+=+⎩解得17,7a d ==,所以通项公式为7(1)77n a n n =+-⋅=. (II)由277mn a n =≤,得217m n -≤,即217m m b -=.∵211217497m k m k b b ++-==,∴{}m b 是公比为49的等比数列,∴7(149)7(491)14948mmm S -==--.(21)(I)222324c a b e a a-==⇒=……①矩形ABCD 面积为8,即228a b⋅=……②由①②解得:2,1a b ==,∴椭圆M 的标准方程是2214xy +=.(II)222244,58440,x y x m x m y x m ⎧+=⇒++-=⎨=+⎩,设1122(,),(,)P x y Q x y ,则21212844,55m x x m x x -+=-=,由226420(44)0m m ∆=-->得m <<||PQ ==.当l 过A 点时,1m =,当l 过C 点时,1m =-.①当1m <-时,有(1,1),(2,2),||)S m T m ST m ---+=+,||||PQ ST ==其中3tm =+,由此知当134t=,即45,(1)33t m ==-∈-时,||||P Q ST.②由对称性,可知若1m <<53m =时,||||P Q ST.③当11m -≤≤时,||ST =||||PQ ST =,由此知,当0m =时,||||P Q ST 取得最大.综上可知,当53m =±和0时,||||P Q ST.(22) (I)1ln ()exx k xf x --'=,由已知,1(1)0ek f -'==,∴1k =.(II)由(I)知,1ln 1()exx xf x --'=.设1()ln 1k x x x=--,则211()0k x xx'=--<,即()k x 在(0,)+∞上是减函数,由(1)0k =知,当01x <<时()0k x >,从而()0f x '>,当1x>时()0k x <,从而()0f x '<.综上可知,()f x 的单调递增区间是(0,1),单调递减区间是(1,)+∞.(III)由(II)可知,当1x ≥时,()()g x xf x '=≤0<1+2e -,故只需证明2()1e g x -<+在01x <<时成立. 当01x <<时,ex>1,且()0g x >,∴1ln ()1ln exx x xg x x x x--=<--.设()1ln F x x x x =--,(0,1)x ∈,则()(ln 2)F x x '=-+, 当2(0,e )x -∈时,()0F x '>,当2(e ,1)x -∈时,()0F x '<, 所以当2e x -=时,()F x 取得最大值22()1e F e --=+. 所以2()()1e g x F x -<≤+. 综上,对任意0x >,2()1e g x -<+.。
2012年山东省高考数学试卷(理科)答案与解析
2012年山东省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•山东)若复数x满足z(2﹣i)=11+7i(i为虚数单位),则z为()A.3+5i B.3﹣5i C.﹣3+5i D.﹣3﹣5i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:等式两边同乘2+i,然后化简求出z即可.解答:解:因为z(2﹣i)=11+7i(i为虚数单位),所以z(2﹣i)(2+i)=(11+7i)(2+i),即5z=15+25i,z=3+5i.故选A.点评:本题考查复数代数形式的混合运算,考查计算能力.2.(5分)(2012•山东)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为()A.{1,2,4} B.{2,3,4} C.{0,2,4} D.{0,2,3,4}考点:交、并、补集的混合运算.专题:集合.分析:由题意求出A的补集,然后求出(∁U A)∪B.解答:解:因为全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则∁U A={0,4},(∁U A)∪B={0,2,4}.故选C.点评:本题考查集合的基本运算,考查计算能力.3.(5分)(2012•山东)设a>0且a≠1,则“函数f(x)=a x在R上是减函数”,是“函数g(x)=(2﹣a)x3在R上是增函数”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据函数单调性的性质结合充分条件和必要条件的定义即可得到结论.解答:解:a>0且a≠1,则“函数f(x)=a x在R上是减函数”,所以a∈(0,1),“函数g(x)=(2﹣a)x3在R上是增函数”所以a∈(0,2);显然a>0且a≠1,则“函数f(x)=a x在R上是减函数”,是“函数g(x)=(2﹣a)x3在R上是增函数”的充分不必要条件.故选A.点评:本题主要考查充分条件和必要条件的判断,根据函数单调性的性质是解决本题的关键.4.(5分)(2012•山东)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为()A.7B.9C.10 D.15考点:系统抽样方法.专题:概率与统计.分析:由题意可得抽到的号码构成以9为首项、以30为公差的等差数列,求得此等差数列的通项公式为a n=9+(n﹣1)30=30n﹣21,由451≤30n﹣21≤750 求得正整数n的个数.解答:解:960÷32=30,故由题意可得抽到的号码构成以9为首项、以30为公差的等差数列,且此等差数列的通项公式为a n=9+(n﹣1)30=30n﹣21.由451≤30n﹣21≤750 解得15.7≤n≤25.7.再由n为正整数可得16≤n≤25,且n∈z,故做问卷B的人数为10,故选:C.点评:本题主要考查等差数列的通项公式,系统抽样的定义和方法,属于基础题.5.(5分)(2012•山东)设变量x,y满足约束条件,则目标函数z=3x﹣y的取值范围是()A.B.C.[﹣1,6]D.考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组表示的平面区域;作出目标函数对应的直线;由目标函数中z的几何意义可求z的最大值与最小值,进而可求z的范围解答:解:作出不等式组表示的平面区域,如图所示由z=3x﹣y可得y=3x﹣z,则﹣z为直线y=3x﹣z在y轴上的截距,截距越大,z越小结合图形可知,当直线y=3x﹣z平移到B时,z最小,平移到C时z最大由可得B(,3),由可得C(2,0),z max=6∴故选A点评:本题考查画不等式组表示的平面区域、考查数形结合求函数的最值.解题的关键是准确理解目标函数的几何意义6.(5分)(2012•山东)执行程序框图,如果输入a=4,那么输出的n的值为()A.2B.3C.4D.5考点:循环结构.专题:算法和程序框图.分析:通过循环求出P,Q的值,当P>Q时结束循环,输出结果即可.解答:解:第1次判断后循环,P=1,Q=3,n=1,第2次判断循环,P=5,Q=7,n=2,第3次判断循环,P=21,Q=15,n=3,第3次判断,不满足题意,退出循环,输出n=3.故选B.点评:本题考查循环结构的作用,注意判断框与循环后,各个变量的数值的求法,考查计算能力.7.(5分)(2012•山东)若,,则sinθ=()A.B.C.D.考点:二倍角的正弦;同角三角函数间的基本关系.专题:三角函数的求值.分析:结合角的范围,通过平方关系求出二倍角的余弦函数值,通过二倍角公式求解即可.解答:解:因为,,所以cos2θ=﹣=﹣,所以1﹣2sin2θ=﹣,所以sin2θ=,,所以sinθ=.故选D.点评:本题考查二倍角的正弦,同角三角函数间的基本关系,注意角的范围,考查计算能力.8.(5分)(2012•山东)定义在R上的函数f(x)满足f(x+6)=f(x),当﹣3≤x<﹣1时,f(x)=﹣(x+2)2,当﹣1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2012)=()A.335 B.338 C.1678 D.2012考点:函数的周期性;函数的值.专题:函数的性质及应用.分析:由f(x+6)=f(x)可知,f(x)是以6为周期的函数,可根据题目信息分别求得f (1),f(2),f(3),f(4),f(5),f(6)的值,再利用周期性即可得答案.解答:解:∵f(x+6)=f(x),∴f(x)是以6为周期的函数,又当﹣1≤x<3时,f(x)=x,∴f(1)+f(2)=1+2=3,f(﹣1)=﹣1=f(5),f(0)=0=f(6);当﹣3≤x<﹣1时,f(x)=﹣(x+2)2,∴f(3)=f(﹣3)=﹣(﹣3+2)2=﹣1,f(4)=f(﹣2)=﹣(﹣2+2)2=0,∴f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=1+2﹣1+0+(﹣1)+0=1,∴f(1)+f(2)+f(3)+…+f(2012)=[f(1)+f(2)+f(3)+…+f(2010)]+f(2011)+f(2012)=335×1+f(1)+f(2)=338.故选:B.点评:本题考查函数的周期,由题意,求得f(1)+f(2)+f(3)+…+f(6)=是关键,考查转化与运算能力,属于中档题.9.(5分)(2012•山东)函数y=的图象大致为()A.B.C.D.考点:余弦函数的图象;奇偶函数图象的对称性.专题:三角函数的图像与性质.分析:由于函数y=为奇函数,其图象关于原点对称,可排除A,利用极限思想(如x→0+,y→+∞)可排除B,C,从而得到答案D.解答:解:令y=f(x)=,∵f(﹣x)==﹣=﹣f(x),∴函数y=为奇函数,∴其图象关于原点对称,可排除A;又当x→0+,y→+∞,故可排除B;当x→+∞,y→0,故可排除C;而D均满足以上分析.故选D.点评:本题考查奇偶函数图象的对称性,考查极限思想的运用,考查排除法的应用,属于中档题.10.(5分)(2012•山东)已知椭圆C:+=1(a>b>0)的离心率为,与双曲线x2﹣y2=1的渐近线有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C的方程为()A.+=1 B.+=1C.+=1D.+=1考点:圆锥曲线的共同特征;椭圆的标准方程;双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由题意,双曲线x2﹣y2=1的渐近线方程为y=±x,根据以这四个交点为顶点的四边形的面积为16,可得(2,2)在椭圆C:+=1.利用,即可求得椭圆方程.解答:解:由题意,双曲线x2﹣y2=1的渐近线方程为y=±x∵以这四个交点为顶点的四边形的面积为16,故边长为4,∴(2,2)在椭圆C:+=1(a>b>0)上∴又∵∴∴a2=4b2∴a2=20,b2=5∴椭圆方程为:+=1故选D.点评:本题考查双曲线的性质,考查椭圆的标准方程与性质,正确运用双曲线的性质是关键.11.(5分)(2012•山东)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求取出的这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为()A.232 B.252 C.472 D.484考点:排列、组合及简单计数问题.专题:排列组合.分析:不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有种取法,由此可得结论.解答:解:由题意,不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有种取法,故所求的取法共有﹣﹣=560﹣16﹣72=472故选C.点评:本题考查组合知识,考查排除法求解计数问题,属于中档题.12.(5分)(2012•山东)设函数f(x)=,g(x)=ax2+bx(a,b∈R,a≠0)若y=f(x)的图象与y=g(x)图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的是()A.当a<0时,x1+x2<0,y1+y2>0 B.当a<0时,x1+x2>0,y1+y2<0C.当a>0时,x1+x2<0,y1+y2<0 D.当a>0时,x1+x2>0,y1+y2>0考点:根的存在性及根的个数判断;二次函数的性质.专题:函数的性质及应用.分析:画出函数的图象,利用函数的奇偶性,以及二次函数的对称性,不难推出结论.解答:解:当a<0时,作出两个函数的图象,若y=f(x)的图象与y=g(x)图象有且仅有两个不同的公共点,必然是如图的情况,因为函数f(x)=是奇函数,所以A与A′关于原点对称,显然x2>﹣x1>0,即x1+x2>0,﹣y1>y2,即y1+y2<0,同理,当a>0时,有当a>0时,x1+x2<0,y1+y2>0故选B.点评:本题考查的是函数图象,直接利用图象判断;也可以利用了构造函数的方法,利用函数与导数知识求解.要求具有转化、分析解决问题,由一般到特殊的能力.题目立意较高,很好的考查能力.二、填空题:本大题共4小题,每小题4分,共16分.13.(4分)(2012•山东)若不等式|kx﹣4|≤2的解集为{x|1≤x≤3},则实数k=2.考点:绝对值不等式.专题:不等式的解法及应用.分析:|kx﹣4|≤2⇔(kx﹣4)2≤4,由题意可知1和3是方程k2x2﹣8kx+12=0的两根,有韦达定理即可求得k的值.解答:解:∵|kx﹣4|≤2,∴(kx﹣4)2≤4,即k2x2﹣8kx+12≤0,∵不等式|kx﹣4|≤2的解集为{x|1≤x≤3},∴1和3是方程k2x2﹣8kx+12=0的两根,∴1+3=,∴k=2.故答案为2.点评:本题考查绝对值不等式,将|kx﹣4|≤2转化为(kx﹣4)2≤4是关键,考查等价转化的思想与利用韦达定理解决问题的能力,属于基础题.,14.(4分)(2012•山东)如图,正方体ABCD﹣A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1﹣EDF的体积为.考点:棱柱、棱锥、棱台的体积;棱柱的结构特征.专题:空间位置关系与距离;立体几何.分析:将三棱锥D1﹣EDF选择△D1ED为底面,F为顶点,进行等体积转化V D1﹣EDF=V F﹣D1ED后体积易求.解答:解:将三棱锥D1﹣EDF选择△D1ED为底面,F为顶点,则=,其==,F到底面D1ED的距离等于棱长1,所以=××1=S故答案为:点评:本题考查了三棱柱体积的计算,等体积转化法是常常需要优先考虑的策略.15.(4分)(2012•山东)设a>0,若曲线y=与直线x=a,y=0所围成封闭图形的面积为a2,则a=.考点:定积分在求面积中的应用.专题:函数的性质及应用.分析:利用定积分表示图形的面积,从而可建立方程,由此可求a的值.解答:解:由题意,曲线y=与直线x=a,y=0所围成封闭图形的面积为==,∴=a2,∴a=.故答案为:.点评:本题考查利用定积分求面积,确定被积区间与被积函数是解题的关键.16.(4分)(2012•山东)如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,的坐标为(2﹣sin2,1﹣cos2).考点:圆的参数方程;平面向量坐标表示的应用.专题:平面向量及应用;坐标系和参数方程.分析:设滚动后圆的圆心为O',切点为A,连接O'P.过O'作与x轴正方向平行的射线,交圆O'于B(3,1),设∠BO'P=θ,则根据圆的参数方程,得P的坐标为(2+cosθ,1+sinθ),再根据圆的圆心从(0,1)滚动到(2,1),算出θ=﹣2,结合三角函数的诱导公式,化简可得P的坐标为(2﹣sin2,1﹣cos2),即为向量的坐标.解答:解:设滚动后的圆的圆心为O',切点为A(2,0),连接O'P,过O'作与x轴正方向平行的射线,交圆O'于B(3,1),设∠BO'P=θ∵⊙O'的方程为(x﹣2)2+(y﹣1)2=1,∴根据圆的参数方程,得P的坐标为(2+cosθ,1+sinθ),∵单位圆的圆心的初始位置在(0,1),圆滚动到圆心位于(2,1)∴∠AO'P=2,可得θ=﹣2可得cosθ=cos(﹣2)=﹣sin2,sinθ=sin(﹣2)=﹣cos2,代入上面所得的式子,得到P的坐标为(2﹣sin2,1﹣cos2)∴的坐标为(2﹣sin2,1﹣cos2).故答案为:(2﹣sin2,1﹣cos2)点评:本题根据半径为1的圆的滚动,求一个向量的坐标,着重考查了圆的参数方程和平面向量的坐标表示的应用等知识点,属于中档题.三、解答题:本大题共6小题,共74分.17.(12分)(2012•山东)已知向量=(sinx,1),=(Acosx,cos2x)(A>0),函数f(x)=•的最大值为6.(Ⅰ)求A;(Ⅱ)将函数y=f(x)的图象像左平移个单位,再将所得图象各点的横坐标缩短为原来的倍,纵坐标不变,得到函数y=g(x)的图象.求g(x)在[0,]上的值域.考点:三角函数的最值;平面向量数量积的坐标表示、模、夹角;正弦函数的定义域和值域;函数y=Asin(ωx+φ)的图象变换.专题:三角函数的求值;三角函数的图像与性质;平面向量及应用.分析:(Ⅰ)利用向量的数量积展开,通过二倍角公式以及两角和的正弦函数化为,一个角的一个三角函数的形式,通过最大值求A;(Ⅱ)通过将函数y=f(x)的图象像左平移个单位,再将所得图象各点的横坐标缩短为原来的倍,纵坐标不变,得到函数y=g(x)的图象.求出g(x)的表达式,通过x∈[0,]求出函数的值域.解答:解:(Ⅰ)函数f(x)=•==A()=Asin(2x+).因为A>0,由题意可知A=6.(Ⅱ)由(Ⅰ)f(x)=6sin(2x+).将函数y=f(x)的图象向左平移个单位后得到,y=6sin[2(x+)+]=6sin(2x+).的图象.再将所得图象各点的横坐标缩短为原来的倍,纵坐标不变,得到函数y=6sin(4x+)的图象.因此g(x)=6sin(4x+).因为x∈[0,],所以4x+,4x+=时取得最大值6,4x+=时函数取得最小值﹣3.故g(x)在[0,]上的值域为[﹣3,6].点评:本题考查三角函数的最值,平面向量数量积的坐标表示、模、夹角,正弦函数的定义域和值域,函数y=Asin(ωx+φ)的图象变换,考查计算能力.18.(12分)(2012•山东)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.(Ⅰ)求证:BD⊥平面AED;(Ⅱ)求二面角F﹣BD﹣C的余弦值.考点:用空间向量求平面间的夹角;直线与平面垂直的判定;向量语言表述线面的垂直、平行关系;二面角的平面角及求法.专题:空间位置关系与距离;空间角;空间向量及应用;立体几何.分析:(Ⅰ)由题意及图可得,先由条件证得AD⊥BD及AE⊥BD,再由线面垂直的判定定理即可证得线面垂直;(II)解法一:由(I)知,AD⊥BD,可得出AC⊥BC,结合FC⊥平面ABCD,知CA,CA,CF两两垂直,因此可以C为坐标原点,分别以CA,CB,CF所在的直线为X轴,Y轴,Z轴建立如图的空间直角坐标系,设CB=1,表示出各点的坐标,再求出两个平面的法向量的坐标,由公式求出二面角F﹣BD﹣C的余弦值即可;解法二:取BD的中点G,连接CG,FG,由于CB=CD,因此CG⊥BD,又FC⊥平面ABCD,BD⊂平面ABCD,可证明出∠FGC为二面角F﹣BD﹣C的平面角,再解三角形求出二面角F﹣BD﹣C的余弦值.解答:(I)证明:因为四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°.所以∠ADC=∠BCD=120°.又CB=CD,所以∠CDB=30°,因此,∠ADB=90°,AD⊥BD,又AE⊥BD且,AE∩AD=A,AE,AD⊂平面AED,所以BD⊥平面AED;(II)解法一:由(I)知,AD⊥BD,同理AC⊥BC,又FC⊥平面ABCD,因此CA,CB,CF两两垂直,以C为坐标原点,分别以CA,CB,CF所在的直线为X轴,Y轴,Z轴建立如图的空间直角坐标系,不妨设CB=1,则C(0,0,0),B(0,1,0),D(,﹣,0),F(0,0,1),因此=(,﹣,0),=(0,﹣1,1)设平面BDF的一个法向量为=(x,y,z),则•=0,•=0所以x=y=z,取z=1,则=(,1,1),由于=(0,0,1)是平面BDC的一个法向量,则cos<,>===,所以二面角F﹣BD﹣C的余弦值为解法二:取BD的中点G,连接CG,FG,由于CB=CD,因此CG⊥BD,又FC⊥平面ABCD,BD⊂平面ABCD,所以FC⊥BD,由于FC∩CG=C,FC,CG⊂平面FCG.所以BD⊥平面FCG.故BD⊥FG,所以∠FGC为二面角F﹣BD﹣C的平面角,在等腰三角形BCD中,由于∠BCD=120°,因此CG=CB,又CB=CF,所以GF==CG,故cos∠FGC=,所以二面角F﹣BD﹣C的余弦值为点评:本题考查线面垂直的证明与二面角的余弦值的求法,解题的关键是熟练掌握线面垂直的判定定理及二面角的两种求法﹣向量法与几何法,本题是高中数学的典型题,也是高考中的热点题型,尤其是利用空间向量解决立体几何问题是近几年高考的必考题,学习时要好好把握向量法的解题规律.19.(12分)(2012•山东)现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(Ⅰ)求该射手恰好命中一次得的概率;(Ⅱ)求该射手的总得分X的分布列及数学期望EX.考点:离散型随机变量的期望与方差;互斥事件的概率加法公式;相互独立事件的概率乘法公式.专题:概率与统计.分析:(I)记:“该射手恰好命中一次”为事件A,“该射手射击甲靶命中”为事件B,“该射手第一次射击乙靶命中”为事件C,“该射手第二次射击乙靶命中”为事件D,由于A=B++,根据事件的独立性和互斥性可求出所求;(II)根据题意,X的所有可能取值为0,1,2,3,4,根据事件的对立性和互斥性可得相应的概率,得到分布列,最后利用数学期望公式解之即可.解答:解:(I)记:“该射手恰好命中一次”为事件A,“该射手射击甲靶命中”为事件B,“该射手第一次射击乙靶命中”为事件C,“该射手第二次射击乙靶命中”为事件D由题意知P(B)=,P(C)=P(D)=由于A=B++根据事件的独立性和互斥性得P(A)=P(B)+P()+P()=P(B)P()P()+P()P(C)P ()+P()P()P(D)=×(1﹣)×(1﹣)+(1﹣)××(1﹣)+(1﹣)×(1﹣)×=(II)根据题意,X的所有可能取值为0,1,2,3,4,5根据事件的对立性和互斥性得P(X=0)=P()=(1﹣)×(1﹣)×(1﹣)=P(X=1)=P(B)=×(1﹣)×(1﹣)=P(X=2)=P(+)=P()+P()=(1﹣)××(1﹣)+(1﹣)×(1﹣)×=P(X=3)=P(BC)+P(B D)=××(1﹣)+×(1﹣)×=P(X=4)=P()=(1﹣)××=P(X=5)=P(BCD)=××=故X的分布列为X 0 1 2 3 4 5P所以E(X)=0×+1×+2×+3×+4×+5×=点评:本题主要考查了离散型随机变量的期望,以及分布列和事件的对立性和互斥性,同时考查了计算能力和分析问题的能力,属于中档题.20.(12分)(2012•山东)在等差数列{a n}中,a3+a4+a5=84,a9=73.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)对任意m∈N*,将数列{a n}中落入区间(9m,92m)内的项的个数记为b m,求数列{b m}的前m项和S m.考点:数列的求和;等差数列的通项公式.专题:等差数列与等比数列.分析:(I)由已知及等差数列的性质可求a4,由可求公差d,进而可求a1,进而可求通项(II)由可得9m+8<9n<92m+8,从而可得,由等比数列的求和公式可求解答:解:(I)∵数列{a n}是等差数列∴a3+a4+a5=3a4=84,∴a4=28设等差数列的公差为d∵a9=73∴==9由a4=a1+3d可得28=a1+27∴a1=1∴a n=a1+(n﹣1)d=1+9(n﹣1)=9n﹣8(II)若则9m+8<9n<92m+8因此9m﹣1+≤n≤92m﹣1+故得∴S m=b1+b2+…+b m=(9+93+95+…+92m﹣1)﹣(1+9+…+9m﹣1)==点评:本题主要考查了等差数列的性质及通项公式的应用,等比数列的求和公式的应用,属于等差数列与等比数列基本运算的综合应用.21.(13分)(2012•山东)在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为.(Ⅰ)求抛物线C的方程;(Ⅱ)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由;(Ⅲ)若点M的横坐标为,直线l:y=kx+与抛物线C有两个不同的交点A,B,l与圆Q有两个不同的交点D,E,求当≤k≤2时,|AB|2+|DE|2的最小值.考点:直线与圆锥曲线的综合问题;抛物线的标准方程;抛物线的简单性质.专题:圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.分析:(Ⅰ)通过F(0,),圆心Q在线段OF平分线y=上,推出求出p=1,推出抛物线C的方程.(Ⅱ)假设存在点M(x0,),(x0>0)满足条件,抛物线C在点M处的切线的斜率为函数的导数,求出Q的坐标,利用|QM|=|OQ|,求出M().使得直线MQ与抛物线C相切与点M.(Ⅲ)当x0=时,求出⊙Q的方程为.利用直线与抛物线方程联立方程组.设A(x1,y1),B(x2,y2),利用韦达定理,求出|AB|2.同理求出|DE|2,通过|AB|2+|DE|2的表达式,通过换元,利用导数求出函数的最小值.解答:解:(Ⅰ)由题意可知F(0,),圆心Q在线段OF平分线y=上,因为抛物线C的标准方程为y=﹣,所以,即p=1,因此抛物线C的方程x2=2y.(Ⅱ)假设存在点M(x0,),(x0>0)满足条件,抛物线C在点M处的切线的斜率为y′==x0.令y=得,,所以Q(),又|QM|=|OQ|,故,因此.又x0>0.所以x0=,此时M().故存在点M(),使得直线MQ与抛物线C相切与点M.(Ⅲ)当x0=时,由(Ⅱ)的Q(),⊙Q的半径为:r==.所以⊙Q的方程为.由,整理得2x2﹣4kx﹣1=0.设A(x1,y1),B(x2,y2),由于△=16k2+8>0,x1+x2=2k,x1x2=﹣,所以|AB|2=(1+k2)[(x1+x2)2﹣4x1x2]=(1+k2)(4k2+2).由,整理得(1+k2)x2﹣,设D,E两点的坐标分别为(x3,y3),(x4,y4),由于△=>0,x3+x4=,x3x4=.所以|DE|2=(1+k2)[(x3+x4)2﹣4x3x4]=,因此|AB|2+|DE|2=(1+k2)(4k2+2)+,令1+k2=t,由于△=16k2+8>0⇒,≤k≤2,∴t≥则,所以|AB|2+|DE|2=t(4t﹣2)+=4t2﹣2t+,设g(t)=4t2﹣2t+,t,因为g′(t)=8t﹣2﹣,所以当t,g′(t)≥g′()=6,即函数g(t)在t是增函数,所以当t=时,g(t)取最小值,因此当k=时,|AB|2+|DE|2的最小值为.点评:本题考查直线与圆锥曲线的综合问题,抛物线的标准方程,抛物线的简单性质,设而不求的解题方法,弦长公式的应用,考查分析问题解决问题的能力,转化思想的应用.22.(13分)(2012•山东)已知函数为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(Ⅰ)求k的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=(x2+x)f′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g (x)<1+e﹣2.考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:(Ⅰ)先求出f′(x)=,x∈(0,+∞),由y=f(x)在(1,f(1))处的切线与x轴平行,得f′(1)=0,从而求出k=1;(Ⅱ)由(Ⅰ)得:f′(x)=(1﹣x﹣xlnx),x∈(0,+∞),令h(x)=1﹣x﹣xlnx,x∈(0,+∞),求出h(x)的导数,从而得f(x)在(0,1)递增,在(1,+∞)递减;(Ⅲ)因g(x)=(1﹣x﹣xlnx),x∈(0,+∞),由(Ⅱ)h(x)=1﹣x﹣xlnx,x∈(0,+∞),得1﹣x﹣xlnx≤1+e﹣2,设m(x)=e x﹣(x+1),得m(x)>m(0)=0,进而1﹣x﹣xlnx≤1+e﹣2<(1+e﹣2),问题得以证明.解答:解:(Ⅰ)∵f′(x)=,x∈(0,+∞),且y=f(x)在(1,f(1))处的切线与x轴平行,∴f′(1)=0,∴k=1;(Ⅱ)由(Ⅰ)得:f′(x)=(1﹣x﹣xlnx),x∈(0,+∞),令h(x)=1﹣x﹣xlnx,x∈(0,+∞),当x∈(0,1)时,h(x)>0,当x∈(1,+∞)时,h(x)<0,又e x>0,∴x∈(0,1)时,f′(x)>0,x∈(1,+∞)时,f′x)<0,∴f(x)在(0,1)递增,在(1,+∞)递减;证明:(Ⅲ)∵g(x)=(x2+x)f′(x),∴g(x)=(1﹣x﹣xlnx),x∈(0,+∞),∴∀x>0,g(x)<1+e﹣2⇔1﹣x﹣xlnx<(1+e﹣2),由(Ⅱ)h(x)=1﹣x﹣xlnx,x∈(0,+∞),∴h′(x)=﹣(lnx﹣lne﹣2),x∈(0,+∞),∴x∈(0,e﹣2)时,h′(x)>0,h(x)递增,x∈(e﹣2,+∞)时,h(x)<0,h(x)递减,∴h(x)max=h(e﹣2)=1+e﹣2,∴1﹣x﹣xlnx≤1+e﹣2,设m(x)=e x﹣(x+1),∴m′(x)=e x﹣1=e x﹣e0,∴x∈(0,+∞)时,m′(x)>0,m(x)递增,∴m(x)>m(0)=0,∴x∈(0,+∞)时,m(x)>0,即>1,∴1﹣x﹣xlnx≤1+e﹣2<(1+e﹣2),∴∀x>0,g(x)<1+e﹣2.点评:本题考查了函数的单调性,函数的最值问题,考查导数的应用,切线的方程,是一道综合题.。