八年级数学下册《图形的平移与旋转》水平测试(含答案)
2022年最新北师大版八年级数学下册第三章图形的平移与旋转同步测评试卷(含答案解析)
八年级数学下册第三章图形的平移与旋转同步测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各组图形中,能够通过平移得到的一组是( )A .B .C .D .2、下列图形中不是中心对称图形的是( )A .B .C .D .3、如图,将OAB 绕点O 逆时针旋转55°得到OCD ,若20AOB ∠=︒,则BOC ∠的度数是( )A.25°B.30°C.35°D.75°4、下列图标中,既是中心对称图形又是轴对称图形的是()A.B.C.D.5、以下分别是回收、节水、绿色包装、低碳4个标志,其中是中心对称图形的是().A.B.C.D.6、下列图案中既是轴对称图形又是中心对称图形的是()A.B.C.D.7、如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为()A.30°B.45°C.90°D.135°8、在平面直角坐标系中,点()4,1A -关于原点对称的点的坐标是( )A .()41-,B .()4,1C .()4,1-D .()4,1--9、如图所示,在平面直角坐标系中,点A (0,4),B (2,0),连接AB ,点D 为AB 的中点,将点D 绕着点A 旋转90°得到点D 的坐标为( )A .(﹣2,1)或(2,﹣1)B .(﹣2,5)或(2,3)C .(2,5)或(﹣2,3)D .(2,5)或(﹣2,5)10、如图,将Rt ABC ∆绕点A 按顺时针旋转一定角度得到Rt ADE ∆,点B 的对应点点D 恰好落在边BC上,若AC =60ABC ︒∠=,则CD 的长为( )A .3B .2CD .1第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系xOy 中,已知点(3,4)A ,将OA 绕坐标原点O 逆时针旋转90︒至'OA ,则点'A 的坐标是________.2、如图,将ABC 绕点A 顺时针旋转()090αα︒<<︒得到ADE ,点B 的对应点D 恰好落在边BC 上,则ADE ∠=_______.(用含α的式子表示)3、在平面直角坐标系中,已知点A (a ,﹣3)与点B (2,b )关于原点对称,则b a =_____.4、在平面直角坐标系中,点(-2,5)关于原点对称的点的坐标是___________.5、如图,将Rt △ABO 绕原点O 逆时针旋转90°得到△CDO ,则点D 的坐标是_________三、解答题(5小题,每小题10分,共计50分)1、如图1,点O 为直线AB 上一点,过点O 作射线OC ,使∠AOC :∠BOC =2:1,将一直角三角板的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 在直线AB 的下方,将图1中的三角板绕点O 按顺时针方向旋转一周.(1)三角板从图1位置旋转到图2位置(OM 落在射线OA 上),ON 旋转的角度为 °;(2)在三角板从图1旋转到图3位置的过程中,若三角板绕点O 按每秒钟15°的速度旋转,当OM 所在直线恰好平分∠BOC 时,直接写出三角板绕点O 运动的时间: 秒;(3)在旋转过程中,请探究∠BON 与∠COM 的数量关系.(画出示意图,写出结论,并简要说明理由)2、如图,在平面直角坐标系中,直角ABC 的三个顶点分别是()3,1A -,()0,3B ,()0,1C .(1)将ABC 以点O 为旋转中心顺时针旋转90︒,画出旋转后对应的111A B C 并写出各个顶点坐标;(2)分别连结1BA ,1AB 后,求四边形11AB A B 的面积.3、如图,在平面直角坐标系中,P (a ,b )是三角形ABC 的边AB 上一点,三角形ABC 经平移后点P 的对应点为1(2,5)P a b -+.(1)请画出经过上述平移后得到的三角形111A B C ,并写出点1A ,1C 的坐标;(2)求点1A 到11B C 的距离.4、如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上,将△ABC向右平移3单位,再向上平移2个单位得到三角形A1B1C1.(1)在网格中画出三角形A1B1C1.(2)A1B1与AB的位置关系.5、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点A的坐标为(1,-4).(1)△A1B1C1是△ABC关于y轴的对称图形,则点A的对称点A1的坐标是_______,并在图中画出△A1B1C1.(2)将△ABC绕原点O逆时针旋转90°得到△A2B2C2,则A点的对应点A2的坐标是______,并在图中画出△A2B2C2 .-参考答案-一、单选题1、B【分析】根据平移的性质对各选项进行判断.【详解】A、左图是通过翻折得到右图,不是平移,故不符合题意;B、上图可通过平移得到下图,故符合题意;C、不能通过平移得到,故不符合题意;D、不能通过平移得到,故不符合题意;故选B.【点睛】本题主要考查平移的性质,熟练掌握平移的性质是解题的关键.2、B【分析】根据中心对称图形的概念求解.【详解】解:A、是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项符合题意;C、是中心对称图形,故本选项不合题意;D、是中心对称图形,故本选项不合题意.故选:B.【点睛】本题考查了中心对称图形的知识,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.3、C【分析】由旋转的性质可得出答案.【详解】解:∵将△OAB绕点O逆时针旋转55°后得到△OCD,∴∠AOC=55°,∵∠AOB=20°,∴∠BOC=∠AOC-∠AOB=55°-20°=35°,故选:C.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.4、B【分析】由题意直接根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得出答案.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.既是轴对称图形,又是中心对称图形,故本选项符合题意;C.不是轴对称图形,是中心对称图形,故本选项不符合题意;D.是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:B.【点睛】本题考查中心对称图形与轴对称图形的概念,注意掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.5、C【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出答案.【详解】解:A、此图形不是中心对称图形,故本选项不符合题意;B、此图形不是中心对称图形,故此选项不符合题意;C、此图形是中心对称图形,故此选项符合题意;D、此图形不是中心对称图形,故此选项不符合题意.故选:C.【点睛】此题主要考查了中心对称图形的定义,关键是找出图形的对称中心.6、B【详解】A.是轴对称图形,不是中心对称图形,故不符合题意;B. 既是轴对称图形,又是中心对称图形,故符合题意;C.是轴对称图形,不是中心对称图形,故不符合题意;D.既不是轴对称图形,也不是中心对称图形,故不符合题意;故选B【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.7、C【分析】根据旋转的性质,对应边的夹角∠BOD 即为旋转角.【详解】解:∵△AOB 绕点O 按逆时针方向旋转到△COD 的位置,∴对应边OB 、OD 的夹角∠BOD 即为旋转角,∴旋转的角度为90°.故选:C【点睛】本题考查了旋转的性质,熟记性质以及旋转角的确定是解题的关键.8、A【分析】关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数,根据原理直接作答即可.【详解】解:点()4,1A -关于原点对称的点的坐标是:4,1,故选A【点睛】本题考查的是关于原点成中心对称的两个点的坐标规律,掌握“关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数”是解题的关键.9、C【分析】分顺时针和逆时针旋转90°两种情况讨论,构造全等三角形即可求解.解:设点D绕着点A逆时针旋转90°得到点D1,分别过点D,D1作y轴的垂线,分别交y轴于点C、E,如图:根据旋转的性质得∠DAD1=90°,AD1=AD,∴∠AED1=∠ACD=90°,∴∠D1+∠EAD1=90°,∠EAD1+∠DAC=90°,∴∠D1=∠DAC,∴△AD1E≌△DAC,∴CD=AE,ED1=AC,∵A(0,4),B(2,0),点D为AB的中点,∴点D的坐标为(1,2),∴CD=AE=1,ED1=AC=AO-OC=2,∴点D1的坐标为(2,5);设点D绕着点A顺时针旋转90°得到点D2,同理,点D2的坐标为(-2,3),综上,点D绕着点A旋转90°得到点D的坐标为(-2,3)或(2,5),故选:C.本题考查了坐标与图形的变化-旋转,全等三角形的判定和性质,根据平面直角坐标系确定出点D1和D2的位置是解题的关键.10、B【分析】由直角三角形的性质可得AB=2,BC=2AB=4,由旋转的性质可得AD=AB,可证△ADB是等边三角形,可得BD=AB=2,即可求解.【详解】解:∵AC=60ABC︒∠=,∠BAC=90°∴∠C=90°-30∠=ABC︒∴BC=2AB∵BC2=AC2+AB2∴AB=2,BC=2AB=4,∵Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,∴AD=AB,且∠B=60°∴△ADB是等边三角形∴BD=AB=2,∴CD=BC−BD=4−2=2故选:B.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,直角三角形的性质,熟练运用旋转的性质是本题的关键.二、填空题1、()4,3-【分析】分别过点,A A ' 作AB x ⊥轴,A B x ''⊥ 轴于点,B B ' ,可证得AOB OA B ''≅ ,从而得到,OB A B AB OB '''== ,即可求解.【详解】解:如图,分别过点,A A ' 作AB x ⊥轴,A B x ''⊥ 轴于点,B B ' ,∴90ABO A B O ''∠=∠=︒ ,∴90AOB BAO ∠+∠=︒ ,根据题意得:OA OA '= ,90AOA '∠=︒ ,∴90AOB A OB ''∠+∠=︒ ,∴BAO A OB ''∠=∠,∴AOB OA B ''≅ ,∴,OB A B AB OB '''== ,∵点(3,4)A ,∴4,3AB OB == ,∴4,3OB A B '''== ,∴点'A 的坐标是()4,3-.故答案为:()4,3-【点睛】本题主要考查了图形的旋转,全等三角形的判定和性质,准确得到AOB OA B ≅''是解题的关键. 2、1802α- 【分析】由旋转的性质可得∠DAB =α,AD =AB ,ADE ∠=∠B ,进而即可求解.【详解】解:∵将ABC 绕点A 顺时针旋转()090αα︒<<︒得到ADE ,∴∠DAB =α,AD =AB ,ADE ∠=∠B ,∵∠B =1802α-, ∴ADE ∠=1802α-, 故答案是:1802α-. 【点睛】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是本题的关键.3、19【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )关于原点O 的对称点是P ′(-x ,-y ),进而得出答案.【详解】解:∵点A(a,﹣3)与点B(2,b)关于原点对称,∴a=-2,b=3,∴b a= 3-2=19.故答案为:19.【点睛】本题主要考查了关于原点对称点的性质,正确记忆关于原点对称点的性质是解题关键.4、(2,-5)【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).【详解】解:根据中心对称的性质,得点P(-2,5)关于原点对称点的点的坐标是(2,-5).故答案为:(2,-5).【点睛】本题主要考查了关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆,比较简单.5、(-2,3)【分析】根据旋转的性质及直角三角形的性质解答.【详解】解:由图易知DC=AB=2,CO=AO=3,∠OCD=∠OAB=90°,∵点A在第二象限,∴点D的坐标是(−2,3),故答案为:(−2,3).注意旋转前后对应线段的长度不变,构造全等直角三角形求解即可.三、解答题1、(1)90;(2)4或16;(3)见解析,当0°≤α≤30°时,∠BON+∠COM=330°,当30°<α≤180°时,∠COM﹣∠BON=30°,当180°<α≤210°时,∠BON+∠COM=30°,当210°<α≤360°时,∠BON﹣∠COM=30°【分析】(1)根据旋转的性质知,旋转角∠MON=90°;(2)分两种情况求解即可;(3)分四种情况求解即可.【详解】解:(1)依题意知,旋转角是∠MON,且∠MON=90°.故答案为:90;(2)设运动时间为t秒,∵∠AOC:∠BOC=2:1,∴∠AOC=120°,∠BOC=60°,如图,当ME平分∠BOC时,∴∠AOM=∠BOE=12BOC=30°,∴15t=60°,解得t=4.当ME平分∠BOC时,∴∠BOM=12BOC=30°,∴15t=360°﹣120°,解得t=16.故答案为:4或16;(3)设旋转角是α,当0°≤α≤30°时,如图,∵∠BON=180°﹣α,∠COM=60°+90°+α=150°+α,∴∠BON+∠COM=330°;当30°<α≤180°时,如图,∵∠BON=180°﹣α,∠COM=120°+90°﹣α=210°﹣α,∴∠COM﹣∠BON=30°;当180°<α≤210°时,如图,∵∠BON =α﹣180°,∠COM =120°+90°﹣α=210°﹣α,∴∠BON +∠COM =30°;当210°<α≤360°时,如图,∵∠BON =α﹣180°,∠COM =α﹣210°,∴∠BON ﹣∠COM =30°.综上,当0°≤α≤30°时,∠BON +∠COM =330°,当30°<α≤180°时,∠COM ﹣∠BON =30°,当180°<α≤210°时,∠BON +∠COM =30°,当210°<α≤360°时,∠BON ﹣∠COM =30°.【点睛】本题考查了旋转的性质,角的和差,以及角平分线的定义等知识,关键是应该认真审题并仔细观察图形,找到各个量之间的关系,数形结合是解题的关键.2、(1)图见解析,()11,3A ,()13,0B ,()11,0C ;(2)9【分析】()1利用网格特点和旋转的性质画出A 、B 、C 的对应点1A 、1B 、1C ,从而得到111A B C △; ()2利用两个梯形的面积和减去一个三角形的面积计算四边形11AB A B 的面积.【详解】解:()1如图,111A B C △为所作,111A B C △各个顶点坐标为()11,3A ,()13,0B ,()11,0C ;()2如图,四边形11AB A B 的面积()()111133133169222=+⨯+⨯+⨯-⨯⨯=. 【点睛】本题考查了作图-旋转变换,根据旋转的性质画出ABC 转后对应的111A B C △是解决问题的关键.3、(1)图见解析,1(1,4)A -;1(2,3)C ;(2)135 【分析】(1)利用平移变换的性质,分别作出A ,B ,C 的对应点A 1,B 1,C 1即可;(2)设点A 1到B 1C 1的距离为h .利用面积法构建方程求解即可.【详解】(1)∵P (a ,b )平移后的对应点是1(2,5)P a b -+∴平移规则是向左移动2个单位长度,再向上移动5个单位长度∵A (1,-1),B (0,-5),C (4,-1)∴1(1,4)A -;1(2,3)C(2)由图形可知11111113441413342222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯=△115B C =设点A 1到B 1C 1的距离为h . ∵1111111322A B C S h B C =⋅=△ ∴113522h ⨯⨯= 135h =即设点A 1到B 1C 1的距离为135.本题考查作图-平移变换,三角形的面积等知识,解题的关键是掌握平移变换的性质,学会利用面积法解决求线段问题.4、(1)见解析;(2)平行【分析】(1)将△ABC 向右平移3个单位长度,再向上平移2个单位长度,画出111A B C △即可;(2)根据平移的性质:对应线段平行且相等,即可得出答案.【详解】解:(1)如图所示,△A 1B 1C 1即为所求.(2)根据平移的性质:对应线段平行且相等,故答案为:平行.【点睛】此题考查了作图﹣平移、平移的性质,熟练掌握平移的有关性质是解题的关键.5、(1)图见解析,A 1(-1,-4);(2)图见解析,A 2(4,1).【分析】(1)根据网格结构,找出点A 、B 、C 关于y 轴对称的点A 1、B 1、C 1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A 1的坐标即可;(2)根据网格结构,找出点A 、B 、C 绕点O 逆时针旋转90°的对应点A 2、B 2、C 2的位置,然后顺次连接即可,再根据平面直角坐标系写出点A 2的坐标即可.解:(1)如图所示,△A1B1C1即为所求作的三角形,点A1(-1,-4);(2)如图所示,△A2B2C2即为所求作的三角形,点A2(4,1).故答案为:(4,1).【点睛】本题考查了旋转和轴对称作图,掌握画图的方法和图形的特点是关键;注意根据对应点得到对称轴.。
(北师大版)长沙市八年级数学下册第三单元《图形的平移与旋转》测试(含答案解析)
一、选择题1.在平面直角坐标系中,将直线1:32=--l y x 沿坐标轴方向平移后,得到直线2l 与1l 关于坐标原点中心对称,则下列平移作法正确的是( ) A .将1l 向右平移4个单位长度 B .将1l 向左平移6个单位长度 C .将1l 向上平移6个单位长度D .将1l 向上平移4个单位长度2.下列图案中,是中心对称图形的是( ) A .B .C .D .3.如图,将ABC 绕点C 逆时针旋转得到DEC ,若点D 刚好落在边AB 上,CB 与DE 交于点F ,120,20ACB E ∠=︒∠=︒,则ADC ∠的度数为( )A .40︒B .50︒C .55︒D .60︒4.在线段,直角三角形,平行四边形,长方形,正五角星,正方形,等边三角形中,既是轴对称图形,又是中心对称图形的图形有( ) A .3个B .4个C .5个D .6个5.下列图形中,既是轴对称又是中心对称图形的是( ) A .B .C .D .6.点(1,2)A m --与点(3,1)B n +关于原点对称,则m n +=( ) A .1B .-1C .-5D .57.下列图形中,是中心对称图形,但不是轴对称图形的是( )A .B .C .D .8.如图,将△ABC 绕点A 旋转至△ADE 的位置,使点E 落在BC 边上,则对于结论:①DE =BC ;②∠EAC =∠DAB ;③EA 平分∠DEC ;④若DE ∥AC ,则∠DEB =60°;其中正确结论的个数是( )A .4B .3C .2D .19.在平面直角坐标系中,点A (2, -1)向右平移3个单位,再向上平移2个单位得到点B ,则线段AB 的长度是 ( ) A .8B .34C .13D .3210.下列图形中,既是轴对称图形又是中心对称图形的是( ) A .B .C .D .11.怀化是一个多民族聚居的地区,民俗文化丰富多彩.下面是几幅具有浓厚民族特色的图案,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D .12.如图所示,在ABC ∆中,70CAB ∠=︒,将ABC ∆绕点A 旋转到AB C ''∆的位置,使得C A AB '⊥,则BAB '∠的度数为( )A .10︒B .20︒C .30D .50︒二、填空题13.如图,ABC 是等边三角形.若将AC 绕点A 逆时针旋转角α后得到AC ',连接BC '和CC ',则BC C '∠的度数为________.14.如图,在平面直角坐标系中,点A ,B ,C 的坐标分别为()0,1,()1,0,()1,0-,一个电动玩具从坐标原点O 出发,第一次跳跃到点1P ,使得点1P 与点O 关于点A 成中心对称;第二次跳跃到点2P ,使得点1P 与点2P 关于点B 成中心对称;第三次跳跃到点3P ,使得点3P 与点2P 关于点C 成中心对称,第四次跳跃到点4P ,使得点4P 与点3P 关于点A 成中心对称;第五次跳跃到点5P ,使得点5P 与点4P 关于点B 成中心对称……照此规律重复下去,则点2021P 的坐标为_________.15.在线段、角、长方形、圆这四个图形中,是轴对称图形但不是中心对称图形的是_________.16.如图,在△ABC 中,∠BAC=35°,将△ABC 绕点A 顺时针方向旋转50°,得到△AB′C′,则∠B′AC 的度数是 .17.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,2),且|a ﹣c|+8b -=0,将线段PQ 向右平移a 个单位长度,其扫过的面积为24,那么a+b+c 的值为_____. 18.如图,将ABC 沿AB 方向向右平移得DEF .若11AE =,3DB =.则CF =__________.19.如图,三角形DEF 是由三角形ABC 通过平移得到,且点B ,E ,C ,F 在同一条直线上,若14BF =,4EC =,则BE 的长度是______.20.如图所示,将直角三角形A B C 沿BC 方向平移得到直角三角形DEF ,如果AB =12cm ,BE =5cm ,DH =4cm ,则图中阴影部分面积为________________cm 2.三、解答题21.在平面直角坐标系xOy 中,ABC 的顶点坐标(1,5),(3,1)A B --,(4,3)C -.(1)在图中作出ABC 关于y 轴对称的图形111A B C △;(2)在y 轴上找一点P ,使PA PB +最短,在图中标出点P 的位置(请保留作图痕迹).(3)将ABC 向下平移4个单位长度,得到DEF ,点A 的对应点为点D ,点B 的对应点为点E ,直接写出线段DF 与x 轴交点Q 的坐标. 22.如图,在平面直角坐标系中有ABC :(1)已知111A B C △和ABC 关于y 轴对称,在图中画出111A B C △;(2)将111A B C △沿x 轴向右平移4个单位,在图中画出平移后的222A B C △; (3)222A B C △和ABC 关于某条直线l 对称,在图中画出对称轴l .23.已知OC 是∠AOB 内部的一条射线,M ,N 分别为OA ,OC 上的点,线段OM ,ON 同时分别以20°/s ,10°/s 的速度绕点O 逆时针旋转一周,设旋转时间为t 秒.(1)如图①,若∠AOB =120°,当OM 、ON 逆时针旋转到OM '、ON '处. ①若OM ,ON 旋转时间t =3时,则∠BON '+∠COM '=______; ②若OM '平分∠AOC ,ON '平分∠BOC ,求∠M 'ON '的值;(2)如图②,若∠AOB =3∠BOC ,OM ,ON 分别在∠AOC ,∠BOC 内部旋转时,请猜想∠COM 与∠BON 的数量关系,并说明理由.(3)若∠AOC =70°,OM ,ON 在旋转的过程中,当∠MON =20°,求t 的值. 24.ABC 在平面直角坐标系中的位置如图,点(0,4)A ,点(2,2)B ,点(1,1)C .(1)将ABC 向左平移4个单位得到111A B C △(点A 、B 、C 的对应点分别为1A 、1B 、1C ),画出111A B C △.(2)222A B C △和111A B C △关于x 轴对称(点1A 、1B 、1C 的对称点分别为2A 、2B 、2C ),画出222A B C △.(3)在x 轴上画出一点P ,使1PA PA 的值最小,直接写出点P 的坐标为______.25.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,ABC 的顶点均在格点上,点A 的坐标是(3,1)--.(1)将ABC 关于x 轴对称得到111A B C △,画出111A B C △,并写出点1B 的坐标; (2)把111A B C △平移,使点B 平移到2(3,4)B ,请作出111A B C △平移后的222A B C △,并写出2A 的坐标;(3)已知ABC 中有一点(,)D a b ,求222A B C △中的对应点2D 的坐标.26.如图,在边长为8的等边ABC 中,点D 是AB 的中点,点E 是平面上一点,且线段2DE =,将线段EB 绕点E 顺时针旋转60°得到线段EF ,连接AF .(1)如图1,当2BE =时,求线段AF 的长;(2)将线段BE 绕点B 旋转得到图2,求证:AF CE =.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先画出图象,求出直线1l 与坐标轴交点A 、B 坐标,根据中心对称的性质得到对应点D 、C 坐标,利用待定系数法求出直线2l 解析式,直线平移的规律即可求解. 【详解】解:如图,把y=0代入32y x =--得到23x=-,把x=0代入32y x =--得到y=-2, ∴直线32y x =--与x 轴、y 轴的交点分别为A 2,03⎛⎫- ⎪⎝⎭、B (0,-2), ∵直线2l 与1l 关于坐标原点中心对称, ∴点A 关于原点对称的点D 的坐标为2,03⎛⎫⎪⎝⎭,点B 关于原点对称的点C 的坐标为(0,2) 设2l 的解析式为y kx b =+,则2032k b b ⎧+=⎪⎨⎪=⎩, 解得32k b =-⎧⎨=⎩∴2l 的解析式为32y x =-+∴直线2l 可以看做直线1l 向上平移4个单位得到.故选:D 【点睛】本题考查了求一次函数与坐标轴的交点、待定系数法、一次函数的平移、中心对称的性质等知识,熟知一次函数的知识和中心对称的性质是解题关键.2.A解析:A 【分析】根据中心对称图形的概念解答. 【详解】A 、是中心对称图形,故本选项符合题意;B 、不是中心对称图形,故本选项不符合题意;C 、不是中心对称图形,故本选项不符合题意;D 、不是中心对称图形,故本选项不符合题意; 故选:A . 【点睛】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.3.A解析:A 【分析】先根据旋转的性质可得,20AC CD B E =∠=∠=︒,再根据三角形的内角和定理可得40A ∠=︒,然后根据等腰三角形的性质即可得. 【详解】由旋转的性质得:,AC CD B E =∠=∠,120,20ACB E ∠=︒∠=︒,12041801800ACB B AC A B E ∠-∠=︒∠-∠∴∠==︒-=︒-︒, 又AC CD =,40A ADC ∠∴=∠=︒, 故选:A . 【点睛】本题考查了旋转的性质、三角形的内角和定理、等腰三角形的性质,熟练掌握旋转的性质是解题关键.4.A解析:A 【分析】根据轴对称图形与中心对称图形的概念求解. 【详解】解:线段,长方形,正方形是轴对称图形,也是中心对称图形,符合题意; 正五角星,等边三角形是轴对称图形,不是中心对称图形,不符合题意; 平行四边形不是轴对称图形,是中心对称图形,不符合题意; 直角三角形既不是轴对称图形,也不是中心对称图形,不符合题意. 共3个既是轴对称图形又是中心对称图形. 故选:A . 【点睛】考查了中心对称图形与轴对称图形的概念,判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.5.D解析:D 【分析】根据轴对称图形与中心对称图形的概念求解. 【详解】A 、是轴对称图形,不是中心对称图形,故此选项不符合题意;B 、不是轴对称图形,不是中心对称图形,故此选项不符合题意;C 、是轴对称图形,不是中心对称图形,故此选项不符合题意;D 、是轴对称图形,是中心对称图形,故此选项符合题意; 故选:D . 【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.B解析:B 【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答. 【详解】解:∵点(1,2)A m --与点(3,1)B n +关于原点对称,∴1312m n -=-⎧⎨+=⎩,∴21m n =-⎧⎨=⎩,∴211m n +=-+=-; 故选:B . 【点睛】本题考查了关于原点 对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数.7.B解析:B 【分析】根据轴对称图形与中心对称图形的概念判断即可. 【详解】A 、不是中心对称图形,是轴对称图形,不符合题意;B 、是中心对称图形,但不是轴对称图形,符合题意;C 、既是中心对称图形,又是轴对称图形,不符合题意;D 、不是中心对称图形,是轴对称图形,不符合题意; 故选:B . 【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后和原图形重合.8.A解析:A【分析】由旋转的性质可知,△ABC≌△ADE,DE=BC,可得①正确;∠CAE=∠CAB﹣∠BAE,∠DAB=∠DAE﹣∠BAE,可得∠EAC=∠DAB,可判定②正确;AE=AC,则∠AEC=∠C,再由∠C=∠AED,可得∠AEC=∠AED;可判定③正确;根据平行线的性质可得可得∠C=∠BED,∠AEC=∠AED=∠C,根据平角的定义可得∠DEB=60°;综上即可得答案.【详解】∵将△ABC绕点A旋转至△ADE的位置,使点E落在BC边上,∴△ABC≌△ADE,∴DE=BC,AE=AC,∠BAC=∠DAE,∠C=∠AED,故①正确;∴∠CAE=∠CAB﹣∠BAE,∠DAB=∠DAE﹣∠BAE,∴∠EAC=∠DAB;故②正确;∵AE=AC,∴∠AEC=∠C,∴∠AEC=∠AED,∴EA平分∠DEC;故③正确;∵DE∥AC,∴∠C=∠BED,∵∠AEC=∠AED=∠C,∴∠DEB=∠AEC=∠AED =60°,故④正确;综上所述:正确的结论是①②③④,共4个,故选:A.【点睛】本题考查旋转的性质,旋转前、后的两个图形全等,对应边、对应角相等,对应点与旋转中心所连线段的夹角等于旋转角.9.C解析:C【分析】首先确定B点坐标,然后利用勾股定理计算出线段AB的长度.【详解】点A(2,-1)向右平移3个单位,再向上平移2个单位得到点B,则B(2+3,-1+2),即B(5,1),线段AB=,故选:C.【点睛】本题主要考查了坐标与图形的变化-平移,以及勾股定理的应用,关键是掌握点的坐标的变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.10.A解析:A【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【详解】A、是轴对称图形,也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:A.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图形重合.11.C解析:C【分析】直接利用轴对称图形和中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、既是中心对称图形也是轴对称图形,故此选项正确;D、是轴对称图形,但不是中心对称图形,故此选项错误.故选C.【点睛】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.12.B解析:B【分析】先求出∠C′AC的度数,然后根据旋转的性质即可求得答案.【详解】'⊥,∵C A AB∴∠C′AB=90°,∵∠CAB=70°,∴∠C′AC=∠C′AB-∠CAB=20°,∵∠BAB′与∠C′AC都是旋转角,∴∠BAB′=∠C′AC=20°,故选B.【点睛】本题考查了旋转的性质,求出∠C′AC 的度数是解题的关键.二、填空题13.30°【分析】由旋转的性质得出AC=AC ∠CAC=α由三角形的内角和定理求出∠ACC 的度数由等边三角形的性质得出AB=AC 由等腰三角形的性质求出∠ACB 的度数则可得出答案【详解】解:∵将AC 绕点A 逆解析:30°.【分析】由旋转的性质得出AC=AC',∠CAC'=α,由三角形的内角和定理求出∠AC'C 的度数,由等边三角形的性质得出AB=AC',由等腰三角形的性质求出∠AC'B 的度数,则可得出答案.【详解】解:∵将AC 绕点A 逆时针旋转角α后得到AC',∴AC=AC',∠CAC'=α,∴∠ACC'=∠AC'C=1809022︒-αα︒-, ∵△ABC 是等边三角形,∴AB=AC ,∠BAC=60°,∴AB=AC', ∴∠AC'B=180606022αα-=︒-︒-︒, ∴∠BC'C=∠AC'C-∠AC'B=(90°−2α)−(60°−2α)=30°. 故答案为:30°.【点睛】 本题考查了等边三角形的性质,旋转的性质,等腰三角形的性质,三角形内角和定理,熟练掌握旋转的性质是解题的关键.14.(-20)【分析】计算出前几次跳跃后点P1P2P3P4P5P6P7的坐标可以得出规律继而可求出点的坐标【详解】解:根据题意得:点P1(02)P2(2-2)P3(-42)P4(40)P5(-20)P6解析:(-2,0)【分析】计算出前几次跳跃后,点P 1、P 2、P 3、P 4、P 5、P 6、P 7的坐标,可以得出规律,继而可求出点2021P 的坐标.【详解】解:根据题意得:点P 1(0,2)、P 2(2,-2)、P 3(-4,2)、P 4(4,0)、P 5(-2,0)、P 6(0,0)、P 7(0,2),,∴每6次为一个循环,∵202163365÷=,∴点2021P 的坐标与点P 5的坐标相同,即为(-2,0),故答案为:(-2,0).【点睛】此题考查坐标的变化规律探究,中心对称的定义,正确掌握中心对称的定义确定点的坐标,发现规律并运用解决问题是解题的关键.15.角【分析】根据轴对称图形和中心对称图形的定义逐个判断即可得【详解】线段是轴对称图形也是中心对称图形角是轴对称图形不是中心对称图形长方形是轴对称图形也是中心对称图形圆是轴对称图形也是中心对称图形故答案 解析:角【分析】根据轴对称图形和中心对称图形的定义逐个判断即可得.【详解】线段是轴对称图形,也是中心对称图形,角是轴对称图形,不是中心对称图形,长方形是轴对称图形,也是中心对称图形,圆是轴对称图形,也是中心对称图形,故答案为:角.【点睛】本题考查了轴对称图形和中心对称图形,熟记定义是解题关键.16.15°【分析】先根据旋转的性质求得∠BAB 的度数再根据∠BAC=35°求得∠B′AC 的度数即可【详解】∵将绕点顺时针方向旋转50°得到∴又∵∴故答案为:15°【点睛】本题主要考查了旋转的性质解题时注解析:15°【分析】先根据旋转的性质,求得∠BAB'的度数,再根据∠BAC=35°,求得∠B′AC 的度数即可.【详解】∵将ABC 绕点A 顺时针方向旋转50°得到AB C ''△,∴50BAB '∠=︒,又∵35BAC ∠=︒,∴503515B AC '∠=︒-︒=︒,故答案为:15°.【点睛】本题主要考查了旋转的性质,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.17.16【分析】利用非负数的性质可求出b 的值a =c 进而可得PQ 的长再根据平移的性质和平行四边形的面积公式即可求出a进一步即可求出答案【详解】解:∵|a﹣c|+=0又∵|a﹣c|≥0≥0∴a﹣c=0b﹣8解析:16【分析】利用非负数的性质可求出b的值,a=c,进而可得PQ的长,再根据平移的性质和平行四边形的面积公式即可求出a,进一步即可求出答案.【详解】解:∵|a﹣0,又∵|a﹣c|≥0,∴a﹣c=0,b﹣8=0,∴a=c,b=8,∴P(a,8),Q(a,2),∴PQ=6,∵线段PQ向右平移a个单位长度,其扫过的面积为24,∴624a⨯=,解得a=4,∴a=c=4,∴a+b+c=4+8+4=16.故答案为:16.【点睛】本题考查了非负数的性质、图形与坐标以及平移的性质等知识,正确理解题意、熟练掌握上述知识是解题的关键.18.4【分析】根据平移的性质可得AB=DE然后求出AD=BE再求出AD的长即为平移的距离CF【详解】解:∵△ABC沿AB方向向右平移得到△DEF∴AB=DE∴AB-DB=DE-DB即AD=BE∵AE=1解析:4【分析】根据平移的性质可得AB=DE,然后求出AD=BE,再求出AD的长即为平移的距离CF.【详解】解:∵△ABC沿AB方向向右平移得到△DEF,∴AB=DE,∴AB-DB=DE-DB,即AD=BE,∵AE=11,DB=3,∴AD=12(AE-DB)=12×(11-3)=4,即平移的距离为4.∴CF=AD=4,故答案为:4【点睛】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.19.5【分析】根据平移的性质得BE=CF再利用BE+EC+CF=BF得到BE+4+BE=14然后解方程即可【详解】∵三角形DEF是由三角形ABC通过平移得到∴BE=CF∵BE+EC+CF=BF∴BE+4解析:5【分析】根据平移的性质得BE=CF,再利用BE+EC+CF=BF得到BE+4+BE=14,然后解方程即可.【详解】∵三角形DEF是由三角形ABC通过平移得到,∴BE=CF,∵BE+EC+CF=BF,∴BE+4+BE=14,∴BE=5.故答案为5.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.20.50【解析】由题意可知△ABC≌△DEF∴DE=AB=12∠DEC=∠B=90°∴四边形ABEH是直角梯形∵DH=4∴EH=DE-DH=12-4=8∴S梯形ABEH==50∴S阴影=S梯形ABEH=解析:50【解析】由题意可知△ABC≌△DEF,∴DE=AB=12,∠DEC=∠B=90°,∴四边形ABEH是直角梯形,∵DH=4,∴EH=DE-DH=12-4=8,∴S梯形ABEH=()()·128522AB EH BE++⨯==50,∴S阴影= S梯形ABEH=50,故答案为50.【点睛】本题主要考查平移的性质,①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等,通过观察图形得出阴影部分的面积与梯形ABEH在面积一样是解题的关键.三、解答题21.(1)图形见详解;(2)点P 的位置见详解;(3) Q(52-,0). 【分析】 (1)过点A 、B 、C 作y 轴的对称点A 1、B 1、C 1,顺次连结A 1B 1、B 1C 1、C 1A 1即可得到要作的图形;(2)如图,连结AB 1交y 轴于点P ,根据轴对称性质则BP=B 1P ,AP+BP=AP+B 1P=AB 1,由两点之间,线段最短,则点P 即为所求;(3)先将△ABC 向下平移4个单位,求出D 、E 、F 的坐标,设DF 的解析式为y=kx+b ,把D 、F 坐标代入,求出DF 解析式,求直线DF 与x 轴的交点即可.【详解】解(1)过点A 、B 、C 作y 轴的对称点A 1、B 1、C 1,顺次连结A 1B 1、B 1C 1、C 1A 1,则△A 1B 1C 1为所求;(2)如图,连结AB 1交y 轴于点P ,则BP=B 1P ,AP+BP=AP+B 1P=AB 1,由两点之间,线段最短,则点P 即为所求;(3) 将ABC 向下平移4个单位长度,得到DEF ,如图,∵(1,5),(3,1),(4,3)A B C ---,∴点D (-1,1)E (-3,-3)F (-4,-1).设DF 解析式为y=kx+b ,代入得:141k b k b -+=⎧⎨-+=-⎩, 解得:2353k b ⎧=⎪⎪⎨⎪=⎪⎩, DF 解析式为2533y x =+, 当y=0时,x=52-, Q(52-,0).【点睛】本题考查轴对称作图和线段和最短问题,以及平移,求一次函数解析式,求坐标轴上的坐标,掌握轴对称作图与平移作图的方法与步骤,利用轴对称性质,与两点之间线段最短构造线段BC1,以及待定系数法求一次函数是解题关键.22.(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用关于y轴对称点的性质得出对应点位置进而得出答案;(2)直接利用平移的性质得出对应点位置进而得出答案;(3)直接利用轴对称的性质得出对称轴的位置进而得出答案.【详解】解:(1)如图所示:(2)如图所示;(3)如图所示.【点睛】此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键.23.(1)①30°;②60°;(2)∠COM=3∠BON,理由见解析;(3)5或9或27或31秒.【分析】(1)①由题意可以得到∠AOM'和∠CON'的度数,然后根据角度的加减计算可以得到解答;②根据角平分线的定义可以得解;(2)设∠BOC=x,且旋转时间为ts,由题意可以把∠COM与∠BON用x和t表示出来,然后通过比较可以得到∠COM与∠BON的关系;(3)针对OM与ON的位置关系及旋转的具体情形分4种情况讨论.【详解】解:(1)①∵线段OM、ON分别以20°/s、10°/s的速度绕点O逆时针旋转3s,∴∠AOM'=3×20°=60°,∠CON'=3×10°=30°,∴∠BON'=∠BOC-30°,∠COM'=∠AOC-60°,∴∠BON'+∠COM'=∠BOC-30°+∠AOC-60°=∠AOB-90°.∵∠AOB=120°,∴∠BON'+∠COM'=120°-90°=30°.故答案为:30°;②∵OM'平分∠AOC,ON'平分∠BOC,∴∠AOM'=∠COM'=0.5∠AOC,∠BON'=∠CON'=0.5∠BOC,∴∠COM'+∠CON'=0.5∠AOC+0.5∠BOC=0.5∠AOB=0.5×120°=60°,即∠M'ON'=60°;(2)∠COM=2∠BON,理由如下:设∠BOC=x,则∠AOB=3x,∠AOC=2x.∵旋转t秒后,∠AOM=20t,∠CON=10t,∴∠COM=2x-20t=2(x-10t),∠NOB=x-10t,∴∠COM=2∠BON;(3)设旋转t秒后,当OM与ON重合之前时,可得:70°-20t+10t=20°,解得:t=5秒,当OM与ON重合之后,且OM没有到达OA时,可得:20t-10t-70°=20°,解得:t=9秒,当OM旋转一周后,ON没有经过OA时,10t+70°+20°=360°,解得:t=27秒,当OM旋转一周后,ON经过OA后时,10t+70°-20°=360°解得:t=31秒.故答案为:5或9或27或31秒.【点睛】本题考查旋转的综合应用,熟练掌握旋转的定义和性质、角度的加减计算及分类讨论思想的运用是解题关键.24.(1)见解析;(2)见解析;(3)见解析,P(-2,0)【分析】(1)利用点平移的坐标规律,分别写出点A 、B 、C 的对应点A 1、B 1、C 1的坐标,然后描点可得△A 1B 1C 1;(2)分别作出点1A 、1B 、1C 关于x 轴的对称点分别为2A 、2B 、2C ,然后顺次连接即可;(3)连接AA 2交x 轴于点P ,求出直线AA 2的解析式,令y=0即可求出点P 的坐标.【详解】解:(1)如图所示,(2)如图所示,(3)连接AA 2交x 轴于点P ,则点P 即为所求,根据题意得,A (0,4),A 2(-4,-4),设直线AA 2的解析式为y=kx+b ,将A (0,4),A 2(-4,-4)代入y=kx+b ,得444b k b =⎧⎨-+=-⎩ ,解得24k b =⎧⎨=⎩∴24y x =+令y=0,则2x+4=0,解得,x=-2,∴P (-2,0)【点睛】此题主要考查了平移作图和作轴对称图形,熟练掌握网格结构准确找出对应点的位置是解题的关键.25.(1)图见解析,点B 1的坐标为(-2,4);(2)图见解析,A 2的坐标为(2,1);(3)D 2的坐标为(a+5,-b ).【分析】(1)分别作出点A 、B 、C 关于x 轴对称得到的对应点,再顺次连接可得;(2)根据B 1(-2,4)和2(3,4)B ,可得平移方式为向右平移5个单位,分别作出△A 1B 1C 1向右平移5个单位所得对应点,再顺次连接可得;(3)根据图形的变换方式即可得出D点的变换方式,从而可得点2D的坐标.【详解】解:(1)如图所示,△A1B1C1即为所求,点B1的坐标为(-2,4);(2)如图所示,△A2B2C2即为所求,A2的坐标为(2,1);(3)△A2B2C2中的对应点D2的坐标为(a+5,-b).【点睛】本题考查坐标与图形变换—轴对称和平移.理解点的变换和对应图形变换的关系是解题关键.26.(1)213AF=;(2)见详解【分析】(1)过点F作FH⊥AB于点H,由旋转的性质可得∠FEB=60°,进而根据勾股定理及含30°角的直角三角形的性质可求EH,FH的长,然后再根据勾股定理可求解AF的长;(2)连接BF,由题意易得△BEF是等边三角形,进而可得BE=BF,∠FBE=∠ABC=60°,AB=BC,则有∠ABF=∠CBE,然后可证△ABF≌△CBE,最后根据全等三角形的性质可求证.【详解】(1)解:过点F作FH⊥AB于点H,如图所示:∵将线段EB绕点E顺时针旋转60°得到线段EF,∴∠FEB=60°,∴∠EFH=30°,∵2BE=,∴EF=2,∴112EH FE==,在Rt△EFH中,223=-=,FH FE EH∵点D是AB的中点,AB=8,∴AD=4,∵DE=2,∴AH=7,∴在Rt△AHF中,22213AF AH FH=+=;(2)连接BF,如图所示:∵将线段EB绕点E顺时针旋转60°得到线段EF,∴△BEF是等边三角形,∴BE=BF,∠FBE=60°,∵△ABC是等边三角形,∴AB=CB,∠ABC=60°,∵∠ABE是公共角,∴∠ABF=∠CBE,∴△ABF≌△CBE(SAS),∴AF=CE.【点睛】本题主要考查勾股定理、含30°角的直角三角形的性质、旋转的性质及等边三角形的判定与性质,熟练掌握勾股定理、含30°角的直角三角形的性质、旋转的性质及等边三角形的判定与性质是解题的关键.。
(必考题)初中数学八年级数学下册第三单元《图形的平移与旋转》检测题(含答案解析)(5)
一、选择题1.在平面直角坐标系中,A (0,3),B (4,0),把△AOB 绕点O 旋转,使点A ,B 分别落在点A ′,B ′处,若A ′B ′∥x 轴,点B ′在第一象限,则点A 的对应点A ′的坐标为( )A .(912,55-)B .(129,55-)C .(1612,55-) D .(1216,55-) 2.如图,将矩形ABCD 绕点C 顺针旋转90°到矩形A B C D ''''的位置,若4,2AB AD ==,则图中阴影部分的面积为( )A .4233π-B .4433π- C .8233π- D .8433π- 3.如图,在Rt ABC ∆中,,AC BC D E =、是斜边AB 上两点,且45DCE ∠=︒,将ACD ∆绕点C 顺时针旋转90︒后,得到BCF ∆,连接EF ,下列结论中:①45ECF ∠=︒;②ACD ∆≌BCE ∆;③CE 平分DCF ∠;④222AD BE DE +=;正确的有( )个A .1个B .2个C .3个D .4个4.下列图案中,是中心对称图形的是( )A .B .C .D . 5.如图,△ABC 中,∠BAC=90°,AB=8,将△ABC 沿直线BC 向右平移,得到△EDF ,连接AD ,若四边形ACFD 为菱形,EC=4,则平移的距离为( )A .4B .5C .6D .8 6.下列四个图形是word 软件中的自选图形,其中既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 7.图1是正方体的平面展开图,六个面的点数分别为1、2、3、4、5、6,将点数朝外折叠成一枚正方体骰子,并放置于水平桌面上,如图2所示,若骰子初始位置为图2所示的状态,将骰子向右翻滚90︒,则完成1次翻转,此时骰子朝下一面的点数是2,那么按上述规则连续完成2次翻折后,骰子朝下一面的点数是3;则连续完成2020次翻折后,骰子朝下一面的点数是( )A .2B .3C .4D .58.如图,在AOB 中,30ABO ∠=︒,8BO =,将AOB 绕点O 逆时针旋转45°到A OB ''△处,此时线段A B ''与BO 交于点E ,则线段OE 的长度为( )A .642-B 833C .4D .838 9.在线段,直角三角形,平行四边形,长方形,正五角星,正方形,等边三角形中,既是轴对称图形,又是中心对称图形的图形有( )A .3个B .4个C .5个D .6个10.如图,将ABC 沿BC 的方向平移1cm 得到DEF ,若ABC 的周长为6cm ,则四边形ABFD 的周长为( )A .6cmB .8cmC .10cmD .12cm11.如图,将△ABC 绕点A 旋转至△ADE 的位置,使点E 落在BC 边上,则对于结论:①DE =BC ;②∠EAC =∠DAB ;③EA 平分∠DEC ;④若DE ∥AC ,则∠DEB =60°;其中正确结论的个数是( )A .4B .3C .2D .112.如图所示的网格中各有不同的图案,不能通过平移得到的是( )A .B .C .D .二、填空题13.把直线3y x =-向上平移后得到直线AB ,若直线AB 经过点(,)C a b ,且36,a b +=则直线AB 的表达式为_______14.如图,在平面直角坐标系xOy 中,将四边形ABCD 先向下平移,再向右平移,得到四边形1111D C B A ,已知点()3,5A -,点()4,3B -,点()13,3A ,则点1B 的坐标为___.15.以A (﹣2,7),B (﹣2,﹣2)为端点的线段上任意一点的坐标可表示为(﹣2,y )(﹣2≤y ≤7).现将这条线段水平向右平移7个单位,所得图形上任意一点的坐标可表示为_____.16.如图①,O 为直线AB 上一点,作射线OC ,使120AOC ∠=︒,将一个直角三角尺如图摆放,直角顶点在点O处,一条直角边OP在射线OA上,将图①中的三角尺绕点O 以每秒6︒的速度按顺时针方向旋转(如图②所示),在旋转一周的过程中第t秒时OP所∠,则t的值为________.在直线恰好平分BOC-关于原点对称的点的坐标为______.17.在平面直角坐标系中,点(2,4)18.如图,在△ABC中,∠BAC=35°,将△ABC绕点A顺时针方向旋转50°,得到△AB′C′,则∠B′AC的度数是.19.如图,在平面直角坐标系xOy中,点A(2,m)绕坐标原点O逆时针旋转90°后,恰好落在图中阴影区域(包括边界)内,则m的取值范围是_____.20.在一块边长为10米的正方形草坪上修了横竖各两条宽都为2米的长方形小路(图中阴影部分)将草坪分隔成如图所示的图案,则图中未被小路覆盖的草坪的总面积为__________平方米.三、解答题21.如图,在ABC ∆中,90C ∠=︒,1AC BC ==,将ABC ∆绕点A 顺时针方向旋转60︒到△AB C ''的位置.(1)画出旋转后的△AB C '';(2)连接BC ',求证:直线BC '是线段AB '的垂直平分线;(3)求线段BC '的长.22.在如图所示的正方形网格中,ABC 的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)作出ABC 关于坐标原点O 成中心对称的111A B C △,画出111A B C △,写出1C 坐标_________;(2)将ABC 绕点O 逆时针旋转90︒得到222A B C △,写出2C 的坐标__________.23.在边长为1个单位长度的小正方形网格中,给出了△ABC (顶点是网格线的交点). (1)△ABC 的面积为 ;(2)在直线l 上找一点P ,使点P 到边AB 、BC 的距离相等;(3)画出△ABC 关于直线l 对称的图形△A 1B 1C 1;再将△A 1B 1C 1向下平移4个单位,画出平移后得到的△A 2B 2C 2.24.如图,已知等边三角形,ABC O 为ABC ∆内一点,连接,,OA OB OC ,将 BAO ∆绕点B 旋转至BCM ∆.(1)依题意补全图形;(2)若5OA =,6OB =,OC =,求 OCM ∠的度数.25.如果两个等腰三角形的顶角相等,且顶角的顶点互相重合,如图1,等腰ABC 与等腰ADE 中,BAC DAE α∠=∠=,AB AC =,AD AE =.我们把它们构成的这个图形叫做“手拉手模 型”.(1)(探究模型)如图1,线段BD 与线段CE 存在怎样的数量关系?请证明你的结论;(2)(应用模型)如图2,等腰直角三角形ABC 中,90BAC ∠=︒,43BC=P 是BC 边的中点,直线MN 经过点P ,且与直线BC 的夹角为30,点D 是直线MN 上的动点,将线段AD 绕点A 逆时针旋转90︒,得到线段AE ,连结DE .①如图3,当点E 落在BC 边上时,求C ,E 两点之间的距离.②直接写出在点D 运动过程中,点C 和点E 之间的最短距离.26.如图,在边长为1个单位长度的小正方形组成的网格中,给出了△ABC 和点D (A ,B ,C ,D 是网格线交点).(1)画出一个△DEF ,使它与△ABC 全等,且点D 与点A 是对应点,点E 与点B 是对应点,点F 与点C 是对应点(要求:△DEF 是由△ABC 经历平移、旋转得到的,两种图形变化至少各一次).(2)在(1)的条件下,网格中建立平面直角坐标系,写出点C 和点F 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】设A ′B ′交y 轴于T ′,利用勾股定理可求出A ′B ′的长度,再利用三角形面积公式求出OT 的长度,最后再利用勾股定理即可求出A ′T ′的长度,即可求出A ′点坐标 .【详解】解:如图,设A ′B ′交y 轴于T ′.∵A (0,3),B (4,0),∴OA =3,OB =4,∵∠A ′OB ′=90°,OT'⊥A ′B ′,OA =OA ′=3,OB =OB ′=4,∴AB =A ′B ′22OA OB +2234+,∵A OB S ''=12•OA ′•OB ′=12•A ′B ′•OT ′,∴OT ′=125, ∴A ′T ′=22OA OT '-=221293()55-=, ∴A ′(-95,125). 故选:A .【点睛】 本题考查坐标与图形的变化-旋转,熟练利用勾股定理解直角三角形以及三角形的面积公式是解答本题的关键.2.C解析:C【分析】连接CE ,由矩形的性质可知90A B C A D C ''''∠=∠=︒,在Rt EB C '中,可证4,2CE CD AB CB BC AD ''======,结合余弦定义解得60ECB '∠=︒,继而由正弦定义解得23B E '=,最后根据阴影面积=扇形DCE 面积Rt EB C '-面积解题.【详解】解:连接CE ,矩形A B CD '''中,90A B C A D C ''''∠=∠=︒在Rt EB C '中,4,2CE CD AB CB BC AD ''======21cos 42B C ECB CE ''∠=== 60ECB '∴∠=︒3sin 602B E CE '∴︒== 23B E '∴=22604160418=22323360236023S B C B E πππ⨯⨯''∴-⋅=-⨯⨯=-阴影, 故选:C .【点睛】本题考查旋转、特殊角的三角函数值、扇形面积等知识,是重要考点,难度较易,掌握相关知识是解题关键.3.C解析:C【分析】①根据旋转的性质可得出∠BCF=∠ACD ,由∠ACB=90°,∠DCE=45°,可得出∠BCF+∠BCE=∠ECF=45°,即可判断①;②根据旋转的性质可得出△ACD ≌△BCF ,不能推出ACD ∆≌BCE ∆,即可判断②; ③根据∠DCE=∠ECF=45°,根据角平分线定义即可判断③;④根据全等三角形的判定求出△AED ≌△AFD ,推出DE=EF ,求出∠EBF=90°,根据勾股定理推出即可.【详解】解:∵在Rt △ABC 中,BC=AC ,∴∠A=∠CBA=45°,①由旋转,可知:∠BCF=∠ACD ,∵∠ACB=90°,∠DCE=45°,∴∠ACD+∠BCE=45°,∴∠BCF+∠BCE=∠ECF=45°,故①正确;②由旋转,可知:△ACD ≌△BCF ,不能推出ACD ∆≌BCE ∆,故②错误;③∵∠DCE=∠ECF=45°,∴CE 平分∠DCF ,故③正确;④由旋转可知:AD=BF ,∠CBF=∠A=45°,∵∠CBA=45°,∴∠EBF=90°,由勾股定理得:BF 2+BE 2=EF 2,即AD 2+BE 2=EF 2,在△CDE 和△CFE 中,CE CE DCE ECF CD CF =⎧⎪∠=∠⎨⎪=⎩, ∴△CDE ≌△CFE (SAS ),∴DE=EF ,∴AD 2+BE 2=DE 2,故选:C .【点睛】本题考查了全等三角形的判定、相似三角形的判定、勾股定理、等腰直角三角形以及旋转的性质,逐一分析四条结论的正误是解题的关键.4.A解析:A【分析】根据中心对称图形的概念解答.【详解】A 、是中心对称图形,故本选项符合题意;B 、不是中心对称图形,故本选项不符合题意;C 、不是中心对称图形,故本选项不符合题意;D 、不是中心对称图形,故本选项不符合题意;故选:A .【点睛】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.5.C解析:C【分析】根据平移的性质可得8,,AB DE AC DF BC EF ====,设AC DF CF AD x ====,求得BC=4x +,再由勾股定理理出方程求解即可.【详解】解:由平移的性质可得:8,,AB DE AC DF BC EF ====又∵四边形ACFD 是菱形∴设AC DF CF AD x ====又∵4EC =∴4BC EF CF CE x ==+=+又∵∠90BAC ︒=∴222AB AC BC +=∴2228(4)x x +=+解得,6x =即6AD DF CF AC ====故平移的距离为:6AD =故选:C .【点睛】本题主要考查了平移的性质,熟练掌握平移的基本性质是解答此题的关键.6.C解析:C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、是轴对称图形,不是中心对称图形,故此选项不合题意;B 、是轴对称图形,不是中心对称图形,故此选项不合题意;C 、既是轴对称图形,又是中心对称图形,故此选项符合题意;D 、是轴对称图形,不是中心对称图形,故此选项不合题意.故选:C .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.7.C解析:C【分析】先根据平面图形确定各对面的点数,根据翻转发现规律:每四次为一个循环,用2020除以4得到翻转完成2020次后的图形,即可得到答案.【详解】由平面图形可知:1与6是对面,2与5是对面,3与4是对面,这是一个正方体,完成1次翻转时骰子朝下一面的点数是2,完成5次翻转后朝下一面的点数还是2,故每四次为一个循环,∵20204505÷=,∴连续完成2020次翻折后,与图2的位置相同,骰子朝下一面的点数是4,故选:C .【点睛】此题考查图形类规律探究,正方体展开图,旋转的性质,正确理解旋转的规律并运用规律解决问题是解题的关键.8.A解析:A【分析】利用旋转的性质得到EOB '∠=45°,过E 点作EG ⊥OB '与点G ,利用等腰直角三角形的性质求出EG ,最后利用勾股定理求出OE 的长.【详解】∵AOB 绕点O 逆时针旋转45°到A OB ''△处,∴EOB '∠=45°, 过E 点作EG ⊥OB '于点G ,设EG =x ,∴EOB '∠=45°=OEG ∠,∴OG = EG =x ,∵8BO ==OB '∴B G '=8-x ,∵在Rt B EG '中,30ABO A B O ''∠=∠=︒,∴B E '=2x ;由勾股定理得,()2223x x x -=, ∴38x x =-, 解得x 3-4;∵EOB '∠=OEG ∠=45°,EG ⊥OB ',∴由勾股定理得OE ()()22434434-+-=642-故选:A .【点睛】本题考查了旋转的性质,直角三角形的性质以及勾股定理的相关知识,熟练掌握这些知识是解题的重点. 9.A解析:A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:线段,长方形,正方形是轴对称图形,也是中心对称图形,符合题意;正五角星,等边三角形是轴对称图形,不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,不符合题意;直角三角形既不是轴对称图形,也不是中心对称图形,不符合题意.共3个既是轴对称图形又是中心对称图形.故选:A .【点睛】考查了中心对称图形与轴对称图形的概念,判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.10.B解析:B【分析】先根据平移的性质得出AD=1,BF=BC+CF=BC+1,DF=AC,再根据四边形ABFD的周长=AD+AB+BF+DF即可得出结论.【详解】∵将周长为6的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=6,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=8.故选:B.【点睛】本题考查了平移的性质,熟知把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同是解答此题的关键.11.A解析:A【分析】由旋转的性质可知,△ABC≌△ADE,DE=BC,可得①正确;∠CAE=∠CAB﹣∠BAE,∠DAB=∠DAE﹣∠BAE,可得∠EAC=∠DAB,可判定②正确;AE=AC,则∠AEC=∠C,再由∠C=∠AED,可得∠AEC=∠AED;可判定③正确;根据平行线的性质可得可得∠C=∠BED,∠AEC=∠AED=∠C,根据平角的定义可得∠DEB=60°;综上即可得答案.【详解】∵将△ABC绕点A旋转至△ADE的位置,使点E落在BC边上,∴△ABC≌△ADE,∴DE=BC,AE=AC,∠BAC=∠DAE,∠C=∠AED,故①正确;∴∠CAE=∠CAB﹣∠BAE,∠DAB=∠DAE﹣∠BAE,∴∠EAC=∠DAB;故②正确;∵AE=AC,∴∠AEC=∠C,∴∠AEC=∠AED,∴EA平分∠DEC;故③正确;∵DE∥AC,∴∠C=∠BED,∵∠AEC=∠AED=∠C,∴∠DEB=∠AEC=∠AED =60°,故④正确;综上所述:正确的结论是①②③④,共4个,故选:A .【点睛】本题考查旋转的性质,旋转前、后的两个图形全等,对应边、对应角相等,对应点与旋转中心所连线段的夹角等于旋转角.12.C解析:C【分析】根据平移的定义:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,结合各选项所给的图形即可作出判断.【详解】A 、可以通过平移得到,不符合题意;B 、可以通过平移得到,不符合题意;C 、不可以通过平移得到,符合题意;D 、可以通过平移得到,不符合题意.故选C .【点睛】本题考查平移的性质,属于基础题,要掌握图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.二、填空题13.【分析】利用平移规律列式计算即可【详解】设直线y=-3x 向上平移了m 个单位∴直线的解析式为y=-3x+m ∵直线经过点∴b=-3a+m ∵∴b=-3a+6∴-3a+m=-3a+6∴m=6∴直线AB 的解析解析:36y x =-+.【分析】利用平移规律,列式计算即可.【详解】设直线y= -3x 向上平移了m 个单位,∴直线的解析式为y= -3x+m ,∵直线AB 经过点(,)C a b ,∴b=-3a+m ,∵36,a b +=∴b=-3a+6,∴-3a+m=-3a+6,∴m=6,∴直线AB 的解析式为y=-3x+6,故答案为:y=-3x+6.本题考查了一次函数的平移,熟记平移规律,灵活确定函数的表达式是解题的关键. 14.(21)【分析】根据A 和A1的坐标得出四边形ABCD 先向下平移2个单位再向右平移6个单位得到四边形A1B1C1D1则B 的平移方法与A 点相同即可得到答案【详解】解:由A (-35)A1(33)可知四边形解析:(2,1)【分析】根据A 和A 1的坐标得出四边形ABCD 先向下平移2个单位,再向右平移6个单位得到四边形A 1B 1C 1D 1,则B 的平移方法与A 点相同,即可得到答案.【详解】解:由A (-3,5),A 1(3,3)可知四边形ABCD 先向下平移2个单位,再向右平移6个单位得到四边形A 1B 1C 1D 1,∵B (-4,3),∴B 1的坐标为(2,1),故答案为:(2,1).【点睛】此题主要考查了点的平移规律与图形的平移,关键是掌握平移规律,左右移,纵不变,横减加,上下移,横不变,纵加减.15.(﹣2≤y≤7)【分析】根据平移的特点可知向右平移横坐标变化纵坐标不变可得解;【详解】A (﹣27)B (﹣2﹣2)向右平移7个单位可得∴所得图形上任意一点的坐标可表示(﹣2≤y≤7)故答案是:(﹣2≤解析:()5,y (﹣2≤y ≤7).【分析】根据平移的特点可知,向右平移横坐标变化,纵坐标不变可得解;【详解】A (﹣2,7),B (﹣2,﹣2)向右平移7个单位可得()15,7A ,()15,2B -,∴所得图形上任意一点的坐标可表示()5,y (﹣2≤y ≤7).故答案是:()5,y (﹣2≤y ≤7).【点睛】本题主要考查了图形的平移,准确分析计算是解题的关键. 16.25或55【分析】根据平角的定义得到∠BOC =60°根据角平分线定义列出方程可求解【详解】解:∵∠AOC =120°∴∠BOC =60°∵OP 所在直线恰好平分∠BOC ∴∠BOP =∠BOC =30°或∠BO解析:25或55【分析】根据平角的定义得到∠BOC =60°,根据角平分线定义列出方程可求解.解:∵∠AOC =120°,∴∠BOC =60°,∵OP 所在直线恰好平分∠BOC ,∴∠BOP =12∠BOC =30°,或∠BOP =180°-30°=150°, ∴6t =180-30或6t =180+150,∴t =25或55,故答案为:25或55.【点睛】 本题考查了一元一次方程的应用,考查了角平分线定义,平角的定义,列出正确的方程是本题的关键.17.【分析】关于原点对称的点的横纵坐标都互为相反数据此解答【详解】点关于原点对称的点的坐标为故答案为:【点睛】此题考查关于原点对称的点的坐标特点:横纵坐标都互为相反数解析:(2,4)-【分析】关于原点对称的点的横纵坐标都互为相反数,据此解答.【详解】点(2,4)-关于原点对称的点的坐标为(2,4)-,故答案为:(2,4)-.【点睛】此题考查关于原点对称的点的坐标特点:横纵坐标都互为相反数.18.15°【分析】先根据旋转的性质求得∠BAB 的度数再根据∠BAC=35°求得∠B′AC 的度数即可【详解】∵将绕点顺时针方向旋转50°得到∴又∵∴故答案为:15°【点睛】本题主要考查了旋转的性质解题时注解析:15°【分析】先根据旋转的性质,求得∠BAB'的度数,再根据∠BAC=35°,求得∠B′AC 的度数即可.【详解】∵将ABC 绕点A 顺时针方向旋转50°得到AB C ''△,∴50BAB '∠=︒,又∵35BAC ∠=︒,∴503515B AC '∠=︒-︒=︒,故答案为:15°.【点睛】本题主要考查了旋转的性质,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.19.﹣3≤m≤﹣25【分析】如图将阴影区域绕着点O顺时针旋转90°与直线x=2交于CD两点则点A(2m)在线段CD上结合点CD的纵坐标即可求出m的取值范围【详解】如图将阴影区域绕着点O顺时针旋转90°与解析:﹣3≤m≤﹣2.5.【分析】如图,将阴影区域绕着点O顺时针旋转90°,与直线x=2交于C,D两点,则点A(2,m)在线段CD上,结合点C,D的纵坐标,即可求出m的取值范围.【详解】如图,将阴影区域绕着点O顺时针旋转90°,与直线x=2交于C,D两点,则点A(2,m)在线段CD上,又∵点D的纵坐标为﹣2.5,点C的纵坐标为﹣3,∴m的取值范围是﹣3≤m≤﹣2.5,故答案为﹣3≤m≤﹣2.5.【点睛】考查旋转的性质,根据旋转的性质,画出图形是解题的关键.20.36【分析】把四条线路平移到两侧再表示出未被小路覆盖的草坪的边长即可算出面积【详解】解:如图所示:(10-4)×(10-4)=36(平方米)故答案为:36【点睛】此题主要考查了图形的平移关键是掌握平解析:36【分析】把四条线路平移到两侧,再表示出未被小路覆盖的草坪的边长即可算出面积.【详解】解:如图所示:(10-4)×(10-4)=36(平方米),故答案为:36.【点睛】此题主要考查了图形的平移,关键是掌握平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相三、解答题21.(1)见解析;(2)见解析;(3)62=BC'-【分析】(1)根据旋转的中心,方向和角度画出图形即可.(2) 如图,连接BB',根据旋转的性质得AB=AB',∠BAB'=60°,则可判断△ABB'是等边三角形,所以AB=BB',而C'B'=C'A,于是可判断BC'垂直平分AB';(3)延长BC'交AB'于D,如图,在Rt△ACB中,由由勾股定理得AB的长,利用锐角三角函数得C'D,BD,然后计算BD-C'D即可.【详解】解:(1)见图1(2)证明:如图,连接BB',∵ΔABC绕点A顺时针方向旋转60︒得到△AB C'',AB AB∴=',60BAB,ABB是等边三角形,BA BB∴=',∴点B在线段AB'的垂直平分线上;∵C B C A''=',∴点C'在线段AB'的垂直平分线上;∴直线BC '是线段AB '的垂直平分线.(3)如图,延长BC '交AB '于点D ,在ABC ∆中,由勾股定理得:22AB =,2AB ∴=,在ABD △中,36sin 602BD AB =⨯︒== 在AC D '中,22sin 451C D AC ''=⨯︒== 62BC BD C D '∴'=-=. 【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了线段垂直平分线的性质定理的逆定理. 22.(1)作图见解析,C 1(4,1);(2)C 2(1,−4).【分析】(1)根据中心对称的性质画出各点关于原点的对称点,顺次连接各点,写出C 1坐标即可;(2)根据图形旋转的性质作出△ABC 绕点O 逆时针旋转90°的△A 2B 2C 2,即可写出C 2的坐标.【详解】解:(1)如图所示,111A B C △即为所求作的图形,并由图可知C 1(4,1).故答案为:(4,1).(2)如图所示,△A2B2C2为△ABC绕点O逆时针旋转90°的图形,并由图可知C2(1,−4).故答案为:(1,−4).【点睛】本题考查了中心对称及作图−旋转变换,熟知中心对称与图形旋转的性质是解答此题的关键.23.(1)4;(2)见解析;(3)见解析【分析】(1)利用割补法求解可得;(2)作∠ABC的平分线,与直线l的交点即为所求;(3)先作出△ABC关于直线l的对称三角形,再向下平移4个单位即可.【详解】(1)△ABC的面积为4×3-12×1×2-12×2×3-12×2×4=4,故答案为:4;(2)如图点P即为所找的点;(3)如图△A1B1C1和△A2B2C2即为所画的三角形.【点睛】本题主要考查了作图-轴对称变换和平移变换,解题的关键是掌握轴对称变换与平移变换的定义和性质,并据此得出变换后的对应点.24.(1)见解析;(2)90°【分析】(1)根据题目的条件要求直接补全图形即可;(2)连接OM ,易证BCM ∆为等边三角形,再根据勾股定理的逆定理即可证明OMC 是直角三角形,进而可求出 OCM ∠的度数.【详解】解:(1) 依题意补全图形、如图所示:(2)如图示,连接OMABC ∆为等边三角形、60ABC ︒∴∠=BAO ∆旋转得到BCM ∆,5OA 6OB =, 5MC OA ,6MBOB , 60OBM ABC ︒∠=∠= OBM ∴∆为等边三角形、 6OM OB在OMC ∆中,1OC =,5MC = 6OM =222156 222OC MC OM ∴==90OCM ︒∴∠=,【点睛】本题考查旋转变换,等边三角形的性质和判定,勾股定理的逆定理等知识,灵活运用所学知识解决问题是解题的关键.25.(1)BD CE =,见解析;(2)①2;②3【分析】(1)先证明BAD CAE ∠=∠,然后根据“SAS”证明DAB EAC ≅,根据全等三角形的对应边相等可证结论成立;(2)①连结BD ,证明DAB EAC ≅,可知CE=BD ,证明∠PBD=90°,在Rt △BPD 中求出BD 的长即可;②当BD ⊥MN 时,BD 最短,即CE 最短,根据含30°角的直角三角形的性质求解即可.【详解】解:(1)BD CE =,证明:∵BAC DAE ∠=∠,∴BAC DAC DAE DAC ∠+∠=∠+∠,即BAD CAE ∠=∠,在△DAB 和△EAC 中AB AC BAD EAC AD AE =⎧⎪∠=∠⎨⎪=⎩,∴DAB EAC ≅∴BD CE =;(2)①连结BD ,∵90BAC DAE ∠=∠=︒,∴90DAB EAC BAE ∠=∠=︒-∠∵等腰直角三角形ABC 中,AB AC =,45ABC ACB ∠=∠=︒∵旋转得:AD AE =,在△DAB 和△EAC 中AB AC BAD EAC AD AE =⎧⎪∠=∠⎨⎪=⎩,∴DAB EAC ≅,∴BD CE =,45DBA ACE ∠=∠=︒,∴90DBC ∠=︒.∵43BC =,点P 是BC 边的中点,∴23BP =,∵30BPD ∠=︒,∴PD=2BD .∵BD 2+BP 2=PD 2,∴BD 2+(23)2=4BD 2,∴2BD =,∴2CE =;②当BD MN ⊥时,BD 最短,∵BD MN ⊥,30BPD ∠=︒,∴BD 最小=12BP 3=, 即点C 和点E 的最小距离为3.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,含30°角的直角三角形的性质,勾股定理,垂线段最短的性质,以及全等三角形的判定与性质等知识,熟练掌握全等三角形的判定与性质是解答本题的关键.26.(1)见解析;(2)C (0,0),F (4,2)【分析】(1)将△ABC 向右平移2个格,向上平移2个格,绕点D 旋转180︒作图;(2)如以点C 为原点,根据点在坐标系中的位置直接得到点坐标.【详解】解:(1)答案不唯一,如:.(2)C (0,0),F (4,2)..【点睛】此题考查平移作图,旋转作图,确定直角坐标系中的点的坐标,掌握平移的性质、旋转的性质是解题的关键.。
(必考题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试(有答案解析)
一、选择题1.如图,根据ABC 的已知条件,按如下步骤作图:(1)以A 圆心,AB 长为半径画弧;(2)以C 为圆心,CB 长为半径画弧,两弧相交于点P ;(3)连接BP ,与AC 交于点O ,连接AP 、CP .以下结论:①BP 垂直平分AC ;②AC 平分BAP ∠;③四边形ABCP 是轴对称图形也是中心对称图形;④ABC APC ≌△△,请你分析一下,其中正确的是( )A .①④B .②③C .①③D .②④2.如图,在平面直角坐标系xOy 中,点P 的坐标为22,⎛⎫ ⎪ ⎪⎝⎭,将线段1OP ,绕点O 按顺时针方向旋转45,再将其长度伸长为1OP 的2倍,得到线段2OP ;又将线段2OP 绕点O 按顺时针方向旋转45,长度伸长为2OP 的2倍,得到线段3OP ;如此下去,得到线段4OP 、5OP 、、2021OP ,则20202021OP P ∆的面积为( )A .4038224B .40392C 403722D .40382 3.如图,将△ABC 绕点C 顺时针旋转得到△DEC ,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列四个结论:①AC =AD ;②AB ⊥EB ;③BC =EC ;④∠A =∠EBC ;其中一定正确的是( )A .①②B .②③C .③④D .②③④4.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=9,把三角板DCE 绕点C 顺时针旋转15°得到△D 1CE 1(如图乙),此时AB 与CD 1交于点O ,则点O 到AD 1的距离为( )A .3B .35C .65D .5 5.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( ) A .()2,0- B .()2,2- C .()2,0 D .()5,1 6.下列图形是我国国产汽车的标识,在这四个汽车标识中,是中心对称图形的是( ) A . B .C .D .7.在线段,直角三角形,平行四边形,长方形,正五角星,正方形,等边三角形中,既是轴对称图形,又是中心对称图形的图形有( )A .3个B .4个C .5个D .6个8.下列图形中,是中心对称图形的有( )A .1个B .2个C .3个D .4个9.关于平移后对应点所连的线段,下列说法正确的是()①对应点所连的线段一定平行,但不一定相等;②对应点所连的线段一定相等,但不一定平行,有可能相交;③对应点所连的线段平行且相等,也有可能在同一条直线上;④有可能所有对应点的连线都在同一条直线上.A.①③B.②③C.③④D.①②10.在下列四种图形变换中,如图图案包含的变换是()A.平移、旋转和轴对称B.轴对称和平移C.平移和旋转D.旋转和轴对称11.怀化是一个多民族聚居的地区,民俗文化丰富多彩.下面是几幅具有浓厚民族特色的图案,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.12.把△ABC沿BC方向平移,得到△A′B′C′,随着平移距离的不断增大,△A′CB的面积大小变化情况是()A.增大B.减小C.不变D.不确定二、填空题13.如图,把ABC绕点A顺时针旋转50°得到ADE,点B的对应点是D,则直线BC与DE所夹的锐角是______.14.如图,等边三角形ABC 中,点O 是ABC 的中心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①OD OE =;②ODE BDE S S =;③四边形ODBE 的面积始终等于定值;④当OE BC ⊥时,BDE 周长最小.上述结论中正确的有__________(写出序号).15.如图,将△ABC 绕点A 顺时针旋转一定的角度至△ADE 处,使得点C 恰好在线段DE 上,若∠ACB =75°,则旋转角为________度.16.以A (﹣2,7),B (﹣2,﹣2)为端点的线段上任意一点的坐标可表示为(﹣2,y )(﹣2≤y ≤7).现将这条线段水平向右平移7个单位,所得图形上任意一点的坐标可表示为_____.17.如图,在△ABC 中,∠BAC =105°,将△ABC 绕点A 逆时针旋转得到△AB ′C ′.若点B 恰好落在BC 边上,且AB ′=CB ′,则∠C ′的度数为_____°.18.如图,把正方形铁片OABC 置于平面直角坐标系中,顶点A 的坐标为(3,0),点()1,2P 在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置,…,则正方形铁片连续旋转2019次后,则点P 的坐标为_________.19.如图,在平面直角坐标系中,三角形ABC 经过平移后得到三角形A′B′C′,且平移前后三角形的顶点坐标都是整数.若点P (12,﹣15)为三角形ABC 内部一点,且与三角形A′B′C′内部的点P′对应,则对应点P′的坐标是_____.20.已知等边△ABC 的边长为4,点P 是边BC 上的动点,将△ABP 绕点A 逆时针旋转60°得到△ACQ ,点D 是AC 边的中点,连接DQ ,则DQ 的最小值是_____.三、解答题21.如图,已知ABC 的三个顶点的坐标分别为(5,0)A -,(2,3)B -,(1,0)C -.(1)画出ABC 关于原点O 成中心对称的图形A B C ''';(2)将ABC 绕原点O 顺时针旋转90︒,画出对应的A B C ''''''△,并写出点B ''的坐标_____________.22.如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (1,1)、B (5,1)、C (4,4),按下列要求作图:(1)将△ABC 向左平移5个单位得到△A 1B 1C 1,并写出点A 1的坐标;(2)将△ABC 绕原点O 逆时针旋转90°后得到△A 2B 2C 2,并写出点B 2的坐标;23.如图,在平面直角坐标系中,已知ABC 的顶点的坐标分别是A (5-,2),B (2-,4),C (1-,1).(1)在图中作出111A B C △,使111A B C △和ABC 关于x 轴对称;(2)画出将ABC 以点O 为旋转中心,顺时针旋转90︒对应的222A B C △; (3)直接写出点B 关于点C 对称点的坐标.24.如图,已知线段MN =4,点A 在线段MN 上,且AM =1,点B 为线段AN 上的一个动点.以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,旋转角分别为α和β.若旋转后M 、N 两点重合成一点C (即构成△ABC ),设AB =x .(1)△ABC 的周长为 ;(2)若α+β=270°,求x 的值;(3)试探究△ABC 是否可能为等腰三角形?若可能,求出x 的值;若不可能,请说明理由.25.在如图所示的方格纸中,(1)作出ABC 关于MN 对称的111A B C △;(2)222A B C △是由111A B C △经过怎样的平移得到的?并求出111A B C △在平移过程中所扫过的面积.26.如图,Rt ABC △中,90C ∠=︒,AC BC =,ABC 绕点A 逆时针旋转45°得到ADE (B ,D 两点为对应点).(1)画出旋转后的图形;(2)连接BD ,求BDE ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由题意得:AB=AP ,CB=CP ,从而可判断①;根据等腰三角形的性质,可判断②;根据轴对称和中心对称图形的定义,可判断③;根据SSS ,可判断④.【详解】由题意得:AB=AP ,CB=CP ,∴点A 、C 在BP 的垂直平分线上,即:AC 垂直平分BP ,故①错误;∵AB=AP ,AC ⊥BP ,∴AC 平分BAP ∠,故②正确;∵AC 垂直平分BP ,∴点B 、P 关于直线AC 对称,即:四边形ABCP 是轴对称图形,但不是中心对称图形,故③错误;∵AB=AP ,CB=CP ,AC=AC ,∴ABC APC ≌△△,故④正确;故选D .【点睛】本题主要考查垂直平分线的判定定理。
北师大版八年级数学下册《第三章图形的平移与旋转》单元检测题-附答案
北师大版八年级数学下册《第三章图形的平移与旋转》单元检测题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.如左图是新疆维吾尔自治区第十四届运动会的会徽.平移此会徽中的图形,可以得到的是()A.B.C.D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.在平面直角坐标系中,将点A(3,−2)向右平移4个单位长度后的对应点的坐标是()A.(−1,−2)B.(7,−2)C.(3,−6)D.(3,2)4.如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为14cm,则四边形ABFD的周长为()A.14cm B.17cm C.20cm D.23cm5.在平面直角坐标系中,以原点为中心,若将点Q(4,5)按逆时针方向旋转90°得到点P,则P的坐标是()A.(−5,4)B.(−4,−5)C.(−5,−4)D.(5,−4)6.如图,在△ABD中∠BAD=90°,将△ABD绕点A逆时针旋转后得到△ACE,此时点C恰好落在BD边上.若∠BAC=48°,则∠E的度数为()A.20°B.24°C.28°D.32°7.如图,△ABC的边BC长为5cm.将△ABC向上平移2cm得到△A′B′C′,且BB′⊥BC,则阴影部分的面积为()A.50cm2B.25cm2C.20cm2D.10cm28.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上.将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(3,0),B(0,4),点B2024的坐标为()A.(12132,0)B.(12144,4)C.(12140,4)D.(12152,0)二、填空题9.在平面直角坐标系中,已知点A(2a−b,−8)与点B(−2,a+3b)关于原点对称,a+b=.10.为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的长方形荷塘上架设小桥.若荷塘周长为600m,且桥宽忽略不计,则小桥总长为m.11.如图,将Rt△ABC沿着点B到C的方向平移到△DEF的位置AB=9,DO=4阴影部分面积为35,则平移距离为.12.在平面直角坐标系中,已知线段AB的两个端点分别是A(1,2),B(2,0),将线段AB平移后得到线段CD,其中,点A的对应点为点C,若C(3,a),D(b,1),则a−b的值为.13.如图,将△ABC沿BA方向平移得到△DEF.若DB=15,AE=2则平移的距离为.14.如图,在Rt△ABC中∠ACB=90°,AC=4,BC=5将△ABC绕点A逆时针旋转α(0°<α<90°)得到△ADE,延长BC交ED于点F.若∠EAB=90°,则线段EF的长为.15.如图,在△ABC,∠C=90°,将Rt△ABC绕顶点A顺时针旋转一定角度得到Rt△AB′C′,此时点C的对应点C′恰好落在AB边上,连接BB′,若∠BB′C′=35°,则∠BAC=°.16.如图,△ABC的顶点坐标分别为A(2,4),B(0,1),C(0,4),将△ABC绕某一点旋转可得到△A′B′C′,△A′B′C′的三个顶点都在格点上,则旋转中心的坐标是.三、解答题17.如图,在4×4的方格中,有4个小方格被涂黑成“L形”.(1)在图1中再涂黑4格,使新涂黑的图形与原来的“L形“关于对称中心点O成中心对称;(2)在图2和图3中再分别涂黑4格,使新涂黑的图形与原来的“L形”所组成的新图形既是轴对称图形又是中心对称图形(两个图各画一种).18.如图,在△ABC中∠B=40°,∠BAC=80°将△ABC绕点A逆时针旋转一定角度后得到△ADE.(1)求∠E的度数;(2)当AB∥DE时,求∠DAC的度数.19.如图,在12×8的正方形网格中,每个小正方形的边长都是1个单位长度,点A,B,C,O都在格点上.按下列要求画图:(1)画出将△ABC向右平移8个单位长度后的△A1B1C1;(2)画出将△ABC以点O为旋转中心、顺时针旋转90°后的△A2C2B2(3)△A1B1C1与△A2C2B2是否成轴对称?若是,请画出对称轴.20.如图,在△ABC中∠BAC=80°,三个内角的平分线交于点O.(1)∠BOC的度数为________.(2)过点O作OD⊥OB交BC于点D.①探究∠ODC与∠AOC之间的数量关系,并说明理由;②若∠ACB=60°,将△BOD绕点O顺时针旋转α得到△B′OD′(0°<α<90°),当B′D′所在直线与OC平行时,求α的值.21.如图,在平面直角坐标系中,已知A(−1,0),B(3,0),M为第三象限内一点.(1)若点M(2−a,2a−10)到两坐标轴的距离相等.①求点M的坐标;②若MN∥AB且MN=AB,求点N的坐标.(2)若点M为(n,n),连接AM,BM.请用含n的式子表示三角形AMB的面积;(3)在(2)的条件下,将三角形AMB沿x轴方向向右平移得到三角形DEF(点A,M的对应点分别为点D,E),若三角形AMB的周长为m,四边形AMEF的周长为m+4,求点E的坐标(用含n的式子表示).22.如图,在锐角△ABC中∠A=60°,点D,E分别是边AB,AC上一动点,连接BE交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,K为射线CD上一点CK=BE.①求证:BD=BK;②求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想.参考答案1.解:根据平移的性质可知:能由如图经过平移得到的是B.故选:B2.解:A、是中心对称图形,但不是轴对称图形,故不符合题意;B、既是轴对称图形又是中心对称图形,故符合题意;C、是轴对称图形,但不是中心对称图形,故不符合题意;D、是轴对称图形,但不是中心对称图形,故不符合题意;故选B.3.解:将点A(3,−2)向右平移4个单位长度后的对应点的坐标是(3+4,−2),即(7,−2)故选:B.4.解:由平移的性质得:AD=BE=CF=3cm,AC=DF∵△ABC的周长为14cm∵AB+BC+AC=14cm∵四边形ABFD的周长为AB+BC+CF+DF+AD=AB+BC+AC+CF+AD=14+3+3=20cm.故选:C.5.解:如图,过点Q作QM⊥x轴,过点P作PN⊥x轴∴∠PNO=∠QMO=90°∵Q(4,5)∴OM=4由旋转的性质可知OQ=OP,∠POQ=90°∴∠PON+∠QOM=90°∵∠PON+∠OPN=90°∴∠OPN=∠QOM∴△PON≌△OQM(AAS)∴ON=QM=5,PN=OM=4∵点P在第二象限∴点P的坐标是(−5,4)故选:A.6.解:∵△ABD旋转得到△ACE∵AB=AC,∠ABC=∠ACE,∠E=∠D∵∠BAC=48°∴∠ABD=∠ACD=180°−∠BAC=66°2∵∠BAD =90°∵∠D =180°−∠ABC −∠BAD =24°∵∠E =∠D =24°.故选:B .7.解:三角形ABC 的边BC 的长为5cm .将三角形ABC 向上平移2cm 得到三角形A ′B ′C ′,且BB ′⊥BC 则:S △ABC =S △A ′B ′C ′,四边形BCC ′B ′是长方形,BB ′=2∵S 阴影=S △A ′B ′C ′+S 长方形BB ′C ′C −S △ABC =S 长方形BB ′C ′C =BC ×BB ′=5×2=10(cm 2)故选D .8.解:∵点A(3,0),B(0,4)∵OA =3,OB =4∵AB =√32+42= 5∵OA +AB 1+B 1C 2=3+5+4=12观察图象可知B 、B 2、B 4…每偶数之间的B 的横坐标相差12个单位长度,点B 2n 的纵坐标为4∵2024÷2=1012∵点B 2024的横坐标为1012×12=12144,点B 2024的纵坐标为4∵点B 2024的坐标为(12144,4).故选:B .9.解:依题意可得:{2a −b =−(−2)a +3b =−(−8)∴{a =2b =2∴a +b =2+2=4故答案为:4.10.解:由平移的性质得,小桥总长=长方形周长的一半∵600÷2=300m∵小桥总长为300m .故答案为:300.11.解:∵Rt △ABC ,沿着点B 到C 点的方向平移到△DEF 的位置∵△ABC≌△DEF∵AB =DE ,S △ABC =S △DEF∵S阴影=S梯形ABEO=35∵AB=9,DO=4∵OE=DE−OH=9−4=5∵12(5+9)×BE=35解得:BE=5,即为平移的距离;故答案为:5.12.解:由题意得,线段AB向右平移2个单位,向上平移1个单位得到线段CD∴2+2=b,2+1=a∴a=3,b=4∴a−b=3−4=−1故答案为:−1.13.解:平移的性质可得:AD=BE又∵DB=15,AE=2∵AD=BE=DB−AE2=6.5即平移的距离为6.5故答案为:6.5.14.解:连接AF∵∠ACB=90°,AC=4,BC=5∵AB=√42+52=√41由旋转的性质得AE=AC,∠E=∠ACB=90°∵∠E=∠ACF=90°∵AF=AF∵Rt△AFE≌Rt△AFC(HL)∵EF=FC,∠EFA=∠CFA∵∠EAB=90°∵DE∥AB∵∠EFA=∠FAB∵∠BFA=∠FAB∵BF=AB=√41∵EF=FC=BF−BC=√41−5故答案为:√41−5.15.解:∵将Rt△ABC绕顶点A顺时针旋转一定角度得到Rt△AB′C′,此时点C的对应点C′恰好落在AB边上∵AB=AB′,∠BC′B′=90°,∠B′AC′=∠BAC∵∠ABB′=∠AB′B而∠BB′C′=35°∵∠ABB′=90°−35°=55°∵∠B′AC′=∠BAC=180°−55°×2=70°.故答案为:70.16.解:如图所示:连接AA′,BB′,然后作AA′,BB′的垂直平分线,这两条垂直平分线交于一点,记为点P,为旋转中心,此时旋转中心的坐标是(−1,0)故答案为:(−1,0)17.解:(1)所求图形,如图所示.(2)所求图形,如图所示.18.(1)解:由旋转可得:∠E=∠C.∵∠B=40°,∠BAC=80°∵∠C=180°−∠B−∠BAC=60°∵∠E=60°.(2)如图1,当DE在AB下方时.由旋转可得:∠D=∠B=40°.∵AB∥DE∵∠BAD=∠D=40°∵∠DAC=∠BAC−∠BAD=80°−40°=40°.如图2,当DE在AB上方时.∵AB∥DE∵∠BAD+∠D=180°∵∠BAD=180°−∠D=180°−40°=140°∵∠DAC=360°−∠BAC−∠BAD=360°−80°−140°=140°.综上所述,∠DAC的度数为40°或140°.19.(1)解:如图,∴△A1B1C1为所求画的三角形;(2)解:如图∴△A2C2B2为所求画的三角形;(3)解:成轴对称,如图∴直线OD为所求画的对称轴.20.(1)解:∵三个内角的平分线交于点O,(∠ABC+∠ACB)∵∠OBC+∠OCB=12∵∠BAC=80°∵∠ABC+∠ACB=180°−∠BAC=100°∵∠OBC+∠OCB=50°∵∠BOC=180°−(∠OBC+∠OCB)=180°−50°=130°故答案为:130°;(2)解:①∠ODC=∠AOC,理由如下:∵三个内角的平分线交于点O,(∠BAC+∠ACB)∵∠OAC+∠OCA=12∵∠BAC+∠ACB=180°−∠ABC∵∠OAC+∠OCA=12(180°−∠ABC)=90°−12∠ABC∵∠AOC=180°−(∠OAC+∠OCA)=180°−(90∘−12∠ABC)=90°+12∠ABC∵OD⊥OB∵∠BOD=90°∵∠ODC=∠BOD+∠OBD=90°+12∠ABC∵∠ODC=∠AOC;②如图∵OC平分∠ACB,∠ACB=60°∵∠OCD=12∠ACB=30°由(1)知∠BOC=130°∵∠BOD=90°∵∠COD=40°∵∠BDO=∠COD+∠OCD=70°由旋转性质可知:∠BDO=∠B′D′O=70°∵B′D′∥OC∵∠COD′=∠B′D′O=70°∵∠DOD′=∠COD′−∠COD=30°,即此时旋转角度α=30°∵α的值为30°.21.(1)解:①∵M(2−a,2a−10)到两坐标轴的距离相等,且在第三象限∵−(2−a)=−(2a−10)∵a=4∵M(−2,−2);②∵A A(−1,0),B(3,0)∵AB=4∵MN∥AB,MN=AB,M(−2,−2)∵N(−6,−2)或(2,−2);(2)解:∵M(n,n)在第三象限∵n<0∵三角形AMB的面积为12×4×(−n)=−2n;(3)解:∵△AMB沿x轴方向向右平移得到△DEF ∵BM=EF,AD=ME=BF.∵△AMB的周长为m∵AM+MB+AB=m.∵四边形AMEF的周长为m+4∵AM+ME+EF+AF=m+4,即2ME=4∵解得ME=2∵点E的坐标为(n+2,n).22.(1)解:①证明:在△BCE与△CBK中{BE=CK ∠BCK=∠CBE BC=CB∵△BCE≌△CBK(SAS)∵CE=BK∵BD=CE∵BD=BK;②由①知:BD=BK,∵∠BKD=∠BDK∵△BCE≌△CBK(SAS)∵∠BKC=∠CEB∵∠BDK=∠CEB∵∠BDK=∠ADC∴∠ADC=∠CEB∵∠CEB+∠AEF=180°∴∠ADF+∠AEF=180°∴∠A+∠EFD=180°∵∠A=60°∴∠EFD=120°∴∠CFE=180°−∠EFD=180°−120°=60°;(2)解:结论:BF+CF=2CN.理由:如图2中∵AB=AC,∠A=60°∴△ABC是等边三角形∴AB=CB=AC,∠A=∠CBD=∠ACB=60°∵AE=BD∴△ABE≌△BCD(SAS)∴∠BCF=∠ABE∴∠FBC+∠BCF=60°∴∠BFC=120°∵∠BFD=60°由旋转可得:AC=CM∵BC=CM,∠BCM=∠ACB+∠ACM=120°如图2中,延长CN到Q,使得NQ=CN,连接FQ∵NM=NF,∠CNM=∠FNQ,CN=NQ∴△CNM≌△QNF(SAS)∴CM=QF,∠MCN=∠NQF∴CM=BC延长CF到P,使得PF=BF∵PF=BF∵△PBF是等边三角形∵∠BPC=60°∴∠PBC+∠PCB=∠PCB+∠FCM=120°∴∠FCM=∠PBC∵∠PFQ=∠FCQ+∠CQF=∠FCQ+∠MCN=∠FCM∵∠PFQ=∠PBC∵PB=PF∴△PFQ≌△PBC(SAS)∴PQ=PC,∠CPB=∠QPF=60°∴△PCQ是等边三角形∴BF+CF=PC=QC=2CN.。
北师大版八年级下册数学第三章 图形的平移与旋转含答案(考试真题)
北师大版八年级下册数学第三章图形的平移与旋转含答案一、单选题(共15题,共计45分)1、下列图形中,是中心对称图形的是()A. B. C. D.2、如图,平移折线AEB,得到折线CFD,则平移过程中扫过的面积是()A.4B.5C.6D.73、下列地铁标志图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.4、下列四个著名数学图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.5、随着人民生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A. B. C. D.6、下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形7、下列四个图形中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个8、如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC= ,则△ABC移动的距离是()A. B. C. D. ﹣9、京剧脸谱、剪纸等图案一般蕴含着对称美,下列选取的图片中既是轴对称图形,又是中心对称图形的是()A. B.C. D.10、始于唐代的青花瓷给人以古朴、典雅之美.关于如图所示的青花瓷图案,下列说法正确的是()A.它是中心对称图形,但不是轴对称图形B.它是轴对称图形,但不是中心对称图形C.它既是中心对称图形,又是轴对称图形D.它既不是中心对称图形,又不是轴对称图形11、如图,△DEF是由△ABC经过平移后得到的,则平移的距离是()A.线段BC的长度B.线段EC的长度C.线段BE的长度D.线段EF的长度12、下列现象是数学中的平移的是()A.树叶从树上落下B.电梯从底楼升到顶楼C.碟片在光驱中运行 D.卫星绕地球运动13、下列图形中,是中心对称图形的是()A. B. C. D.14、△ABC在如图所示的平面直角坐标系中,将△ABC向右平移3个单位长度后得△A1B1C1,再将△A1B1C1绕点O旋转180°后得到△A2B2C2.则下列说法正确的是()A.A1的坐标为(3,1) B.S四边形ABB1A1=3 C.B2C=2D.∠AC2O=45°15、如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()A.16cmB.22cmC.20cmD.24cm二、填空题(共10题,共计30分)16、如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为________.17、如图,将△OAB绕着点O逆时针连续旋转两次得到△OA″B″,每次旋转的角度都是50°.若∠B″OA=120°,则∠AOB=________.18、如图,将直角三角形 ABC 沿 AB 方向平移 AD 的长度得到三角形DEF,已知BE=5, EF=8, CG=2,则图中阴影部分的面积为________.19、如图的组合图案可以看作是由一个正方形和正方形内通过一个“基本图案”半圆进行图形的“运动”变换而组成的,这个半圆的变换方式是________ .20、如图,在△ABC中,AC=4,将△ABC绕点C按逆时针旋转30°得到△FGC,则图中阴影部分的面积为________.21、平移不改变图形的________和________,只改变图形的________.22、如图,一处长方形展览大厅内,修建了宽为米的通道,其余部分摆放展品,则可供摆放展品的面积为________平方米.23、已知三点A、B、O.如果点A'与点A关于点O对称,点B'与点B关于点O 对称,那么线段AB与A'B'的关系是________.24、如图,正方形ABCD中,AB=2,将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B顺时针旋转90°得到线段BF,连接EF,则图中阴影部分的面积是________.25、如图,在长20米、宽10米的长方形草地内修建了宽2米的道路,则草地的面积是________平方米.三、解答题(共5题,共计25分)26、如图,将△ABC绕点C顺时针旋转90°后得△DEC,若BC∥DE,求∠B的度数.27、如图,将一副三角板,如图放置在桌面上,让三角板OAB的30°角顶点与三角板OCD的直角顶点重合,边OA与OC重合,固定三角板OCD不动,把三角板OAB绕着顶点O顺时针转动,直到边OB落在桌面上为止。
北师大版初中数学八年级下册第三单元《图形的平移与旋转》(较易)(含答案解析)
北师大版初中数学八年级下册第三单元《图形的平移与旋转》(较易)(含答案解析)考试范围:第三单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 如图,把图 ①中的⊙A经过平移得到⊙O(如图 ②),如果图 ①中⊙A上一点P的坐标为(m,n),那么平移后在图 ②中的对应点P′的坐标为.( )A. (m+2,n+1)B. (m−2,n−1)C. (m−2,n+1)D. (m+2,n−1)2. 如图,将周长为20的△ABC沿BC方向平移3个单位长度得到△DEF,则四边形ABFD的周长为.( )A. 22B. 24C. 26D. 283. 如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A顺时针旋转得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为( )A. 1.6B. 1.8C. 2D. 2.64. 如图,△ABC顺时针旋转角度α变成△A1B1C1,α的值是.( )A. 30∘B. 45∘C. 60∘D. 90∘5. 如图,这个图案是由四个相同的直角三角形拼成的,下面关于此图形的说法正确的是.( )A. 它是轴对称图形,但不是中心对称图形B. 它是中心对称图形,但不是轴对称图形C. 它既是轴对称图形,又是中心对称图形D. 它既不是轴对称图形,又不是中心对称图形6. 下列图形中,是轴对称图形但不是中心对称图形的是( )A. B. C. D.7. 在俄罗斯方块游戏中,已拼好的图案如图所示,现又出现了一个小方格体正向下运动,为了使所有图案消失,你必须进行的操作是.( )A. 顺时针旋转90∘,向右平移B. 逆时针旋转90∘,向右平移C. 顺时针旋转90∘,向下平移D. 逆时针旋转90∘,向下平移8. 下列基本图形中,经过平移、旋转或轴对称变换后,不能得到如图所示图案的是( )A. B. C. D.9. 如图,△ABC经过如下平移能得到△DEF的是.( )A. 把△ABC向左平移4个单位长度,再向下平移2个单位长度B. 把△ABC向右平移4个单位长度,再向下平移2个单位长度C. 把△ABC向右平移4个单位长度,再向上平移2个单位长度D. 把△ABC向左平移4个单位长度,再向上平移2个单位长度10. 将某图形各顶点的横坐标保持不变,纵坐标减2,可将该图形.( )A. 向左平移2个单位长度B. 向右平移2个单位长度C. 向上平移2个单位长度D. 向下平移2个单位长度11. 如图,将△ABC绕点A顺时针旋转角α,得到△ADE,若点E恰好在CB的延长线上,则∠BED 等于( )A. α2B. 23α C. α D. 180°−α12. 如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是( )A. (0,4)B. (2,−2)C. (3,−2)D. (−1,4)第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 点P(−2,1)向右平移2个单位长度后到达点P1,则点P1关于x轴的对称点的坐标为.14. 如图,在△ABC中,∠BAC=105°,将△ABC绕点A按逆时针方向旋转得到△AB′C′.若点B′恰好落在BC边上,且AB=CB′,则∠AB′C′的度数为________.15. 如图,阴影部分组成的图案既是关于x轴成轴对称的图形,又是关于坐标原点O成中心对称的图形.若点A的坐标是(1,3),则点M和点N的坐标分别为16. 如图所示,在平面直角坐标系中,A(0,0),B(2,0),△AP1B是等腰直角三角形且∠P1=90°,把△AP1B绕点B顺时针旋转180°,得到△BP2C,把△BP2C绕点C顺时针旋转180°,得到△CP3D,依此类推,得到的等腰直角三角形的直角顶点P2021的坐标为______.三、解答题(本大题共9小题,共72.0分。
(必考题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试卷(包含答案解析)
一、选择题1.下列图形中,是中心对称图形的是( )A .B .C .D . 2.下列图形中,既是中心对称又是轴对称图形的是( )A .B .C .D .3.推进生态文明建设,实行垃圾分类和资源化利用是每个公民义不容辞的责任.下列四幅图是垃圾分类标志图案,每幅图案下配有文字说明.则四幅图案中既是轴对称图形,又是中心对称图形的是( )A .有害垃圾B .可回收物C .厨余垃圾D .其他垃圾4.把点()P x,y 绕原点顺时针旋转270°,点P 的对应点的坐标是( )A .(),y x -B .(),x y --C .(),y x -D .(),x y 5.下列图形中既是中心对称图形又是轴对称图形的是( )A .B .C .D . 6.下列四种多边形:①等边三角形;②正方形;③正五边形;④正六边形.其中,既是轴对称图形又是中心对称图形的个数为( )A .1B .2C .3D .47.下列图形中,是中心对称图形的有( )A .1个B .2个C .3个D .4个8.下列标志既是轴对称图形又是中心对称图形的是( )A .B .C .D . 9.下列标志中是中心对称图形的是( )A .B .C .D . 10.如图所示图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 11.怀化是一个多民族聚居的地区,民俗文化丰富多彩.下面是几幅具有浓厚民族特色的图案,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D .12.如图所示,在ABC ∆中,70CAB ∠=︒,将ABC ∆绕点A 旋转到AB C ''∆的位置,使得C A AB '⊥,则BAB '∠的度数为( )A .10︒B .20︒C .30D .50︒二、填空题13.已知点P(-3,2)关于原点的对称点是_______.14.若点()1,5P m -与点()3,2Q n -关于原点成中心对称,则m n +的值为______. 15.如图,在平面直角坐标系xOy 中,点A (2,m )绕坐标原点O 逆时针旋转90°后,恰好落在图中阴影区域(包括边界)内,则m 的取值范围是_____.16.两块大小相同,含有30°角的三角板如图水平放置,将△CDE 绕点C 按逆时针方向旋转,当点E 的对应点E′恰好落在AB 上时,△CDE 旋转的角度是______度.17.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,2),且|a ﹣8b -0,将线段PQ 向右平移a 个单位长度,其扫过的面积为24,那么a+b+c 的值为_____. 18.如图,在ABC 中,60,BAC ∠=︒将ABC 绕着点A 顺时针旋转40︒后得到,ADE 则BAE ∠的度数为_______.19.如图,将周长为8个单位的三角形ABC 沿BC 方向平移2个单位得到三角形DEF ,则四边形ABFD 的周长为_______个单位.20.在 ABC 内的任意一点 ()P a b , 经过平移后的对应点为 ()1P cd ,,已知 ()32A , 在经过此次平移后对应点 1A 的坐标为 ()51-,,则 c d a b +-- 的值为________________.三、解答题21.如图,已知ABC 的三个顶点的坐标分别为(5,0)A -,(2,3)B -,(1,0)C -.(1)画出ABC 关于原点O 成中心对称的图形A B C ''';(2)将ABC 绕原点O 顺时针旋转90︒,画出对应的A B C ''''''△,并写出点B ''的坐标_____________.22.如图,ABC 中,90C ∠=︒.ABC 绕点B 逆时针旋转,旋转角为α,点C '为点C 的对应点.(1)请用尺规作图法画出旋转后的A BC ''△;(2)若90α=︒,3BC =,4AC =.求A A '的长.23.如图,已知等边三角形,ABC O 为ABC ∆内一点,连接,,OA OB OC ,将 BAO ∆绕点B 旋转至BCM ∆.(1)依题意补全图形;(2)若5OA =,6OB =,OC =,求 OCM ∠的度数.24.综合与探究:如图,在ABC ,AB AC =,CAB α∠=,(1)操作与证明:如图①,点D 为边BC 上一动点.连接AD ,将线段AD 绕点A 逆时针旋转角度α至AE 的位置,连接DE ,CE .求证:BD CE =;(2)探究与发现:如图②,当90α=︒时,点D 变为BC 延长线上一动点,连接AD ,将线段AD 绕点A 按照逆时针旋转角度α至AE 位置,连接DE ,CE .可以发现:线段BD 和CE 的数量关系是______;(3)判断与思考:判断(2)中的线段BD 和CE 的位置关系,并说明理由.25.如图,在平面直角坐标系中有ABC :(1)已知111A B C △和ABC 关于y 轴对称,在图中画出111A B C △;(2)将111A B C △沿x 轴向右平移4个单位,在图中画出平移后的222A B C △; (3)222A B C △和ABC 关于某条直线l 对称,在图中画出对称轴l .26.如图,在平面直角坐标系中,已知ABC 的三个顶点的坐标分别为)(3,5A -,)(2,1B -,)(1,3C -.(1)ABC 的面积是______.(2)画出ABC 绕着点O 按顺时针方向旋转90°得到的222A B C △.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A 、不是中心对称图形,故本选项不符合题意;B 、是中心对称图形,故本选项符合题意;C、不是中心对称图形,故本选项不符合题意;D、不是中心对称图形,故本选项不符合题意.故选:B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.D解析:D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,不是中心对称图形.D、是轴对称图形,也是中心对称图形;故选:D.【点睛】本题考查中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,3.A解析:A【分析】根据轴对称图形与中心对称图形的概念可知.【详解】A选项既是轴对称图形也是中心对称图形B选项不是轴对称图形也不是中心对称图形C选项是轴对称图形而不是中心对称图形D选项不是中心对称图形也不是轴对称图形故选A【点睛】本题考查轴对称及中心对称的定义,掌握中心对称图形与轴对称图形的概念,要注意:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.C解析:C【分析】根据旋转中心为点O,旋转方向顺时针,旋转角度270°,作出点P的对应点P′,可得所求点的坐标.【详解】解:设P(x,y)在第一象限,作PA⊥x轴于点A.作P'B⊥x轴于点B.∵点()P x,y 绕原点顺时针旋转270°,∴∠90P OP '=︒∴90P OB POA '∠+∠=︒∵90P POA ∠+∠=︒∴∠P P OB '=∠在△OAP 和△OBP'中,90PAO P BO P BOP OP OP ∠∠'︒⎧⎪∠∠'⎨⎪'⎩====, ∴△OAP ≌△P'BO ,∴OB=PA=y ,P'B=OA=x ,∵点()P x,y 绕原点顺时针旋转270°,则P'的坐标是(-y ,x ).故选:C .【点睛】本题考查了坐标与图形的旋转,全等三角形的判定与性质,正确的作出图形是解题的关键.5.A解析:A【分析】本题利用轴对称图形和中心对称图形的概念求解即可,轴对称图形:沿某一直线折叠后直线两旁的部分互相重合;中心对称图形:将一个图形绕着中心点旋转180°后能与自身重合的图形叫做中心对称图形;【详解】A 、此图形既是中心对称图形,也是轴对称图形故此选项正确;B 、此图形是中心对称图形,但不是轴对称图形故此选项不正确;C 、此图形是轴对称图形,但不是中心对称图形故此选项不正确;D 、此图形是轴对称图形,但不是中心对称图形故此选项不正确;故选:A .【点睛】本题考查了轴对称图形和中心对称图形的概念,正确理解它们的概念是解题的关键;6.B解析:B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】①正三角形是轴对称图形不是中心对称图形;②正方形即是轴对称图形又是中心对称图形;③正五边形是轴对称图形不是中心对称图形;④正六边形即是轴对称图形又是中心对称图形,故选:B.【点睛】本题考查了中心对称图形和轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图形重合.7.B解析:B【分析】根据中心对称图形的概念求解.【详解】解:第一个图形是中心对称图形;第二个图形不是中心对称图形;第三个图形是中心对称图形;第四个图形不是中心对称图形.故共2个中心对称图形.故选:B.【点睛】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.8.A解析:A【分析】根据中心对称图形与轴对称图形的概念判断即可.【详解】解:A、既是轴对称图形,又是中心对称图形.故正确;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、不是轴对称图形,也不是中心对称图形.故错误.故选:A.【点睛】本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.9.B解析:B【分析】根据中心对称图形的定义即可解答.【详解】解:A、是轴对称图形,不是中心对称的图形,不合题意;B、是中心对称图形,符合题意;C、既不是轴对称图形,也不是中心对称的图形,不合题意;D、是轴对称图形,不是中心对称的图形,不合题意.故选:B.【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.10.B解析:B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形.故不符合题意;B、是轴对称图形,也是中心对称图形.故符合题意;C、不是轴对称图形,是中心对称图形.故不符合题意;D、不是轴对称图形,也不是中心对称图形.故不符合题意.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.11.C解析:C【分析】直接利用轴对称图形和中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、既是中心对称图形也是轴对称图形,故此选项正确;D、是轴对称图形,但不是中心对称图形,故此选项错误.故选C.【点睛】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.12.B解析:B【分析】先求出∠C′AC的度数,然后根据旋转的性质即可求得答案.【详解】'⊥,∵C A AB∴∠C′AB=90°,∵∠CAB=70°,∴∠C′AC=∠C′AB-∠CAB=20°,∵∠BAB′与∠C′AC都是旋转角,∴∠BAB′=∠C′AC=20°,故选B.【点睛】本题考查了旋转的性质,求出∠C′AC的度数是解题的关键.二、填空题13.(3-2)【分析】根据关于原点对称点的坐标变化规律求解即可【详解】解:关于原点对称的两个点横坐标互为相反数纵坐标也互为相反数所以P(-32)关于原点的对称点是(3-2)故答案为:(3-2)【点睛】本解析:(3,-2)【分析】根据关于原点对称点的坐标变化规律求解即可.【详解】解:关于原点对称的两个点横坐标互为相反数,纵坐标也互为相反数,所以P(-3,2)关于原点的对称点是(3,-2),故答案为:(3,-2).【点睛】本题考查了关于原点对称坐标变化,熟记点在坐标系中的几何变换的坐标变化规律是解题关键.14.5【分析】根据关于原点对称的点的横坐标互为相反数纵坐标互为相反数可得答案【详解】解:∵点P(m-15)与点Q(32-n)关于原点对称∴m-1=-32-n=-5解得:m=-2n=7则m+n=-2+7=解析:5【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:∵点P(m-1,5)与点Q(3,2-n)关于原点对称,∴m-1=-3,2-n=-5,解得:m=-2,n=7,则m+n=-2+7=5.故答案为:5.【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.15.﹣3≤m≤﹣25【分析】如图将阴影区域绕着点O顺时针旋转90°与直线x=2交于CD两点则点A(2m)在线段CD上结合点CD的纵坐标即可求出m的取值范围【详解】如图将阴影区域绕着点O顺时针旋转90°与解析:﹣3≤m≤﹣2.5.【分析】如图,将阴影区域绕着点O顺时针旋转90°,与直线x=2交于C,D两点,则点A(2,m)在线段CD上,结合点C,D的纵坐标,即可求出m的取值范围.【详解】如图,将阴影区域绕着点O顺时针旋转90°,与直线x=2交于C,D两点,则点A(2,m)在线段CD上,又∵点D的纵坐标为﹣2.5,点C的纵坐标为﹣3,∴m的取值范围是﹣3≤m≤﹣2.5,故答案为﹣3≤m≤﹣2.5.【点睛】考查旋转的性质,根据旋转的性质,画出图形是解题的关键.16.30【分析】根据旋转性质及直角三角形两锐角互余可得△E′CB是等边三角形从而得出∠ACE′的度数再根据∠ACE′+∠ACE´=90°得出△CDE旋转的度数【详解】解:根据题意和旋转性质可得:CE´=解析:30【分析】根据旋转性质及直角三角形两锐角互余,可得△E′CB是等边三角形,从而得出∠ACE′的度数,再根据∠ACE′+∠ACE´=90°得出△CDE旋转的度数.【详解】解:根据题意和旋转性质可得:CE´=CE=BC,∵三角板是两块大小一样且含有30°的角,∴∠B=60°∴△E′CB是等边三角形,∴∠BCE′=60°,∴∠ACE′=90°﹣60°=30°,故答案为:30.【点睛】本题考查了旋转的性质、等边三角形的判定和性质,本题关键是得到△ABC等边三角形.17.16【分析】利用非负数的性质可求出b的值a=c进而可得PQ的长再根据平移的性质和平行四边形的面积公式即可求出a进一步即可求出答案【详解】解:∵|a﹣c|+=0又∵|a﹣c|≥0≥0∴a﹣c=0b﹣8解析:16【分析】利用非负数的性质可求出b的值,a=c,进而可得PQ的长,再根据平移的性质和平行四边形的面积公式即可求出a,进一步即可求出答案.【详解】解:∵|a﹣0,又∵|a﹣c|≥0,∴a﹣c=0,b﹣8=0,∴a=c,b=8,∴P(a,8),Q(a,2),∴PQ=6,∵线段PQ向右平移a个单位长度,其扫过的面积为24,a⨯=,解得a=4,∴624∴a=c=4,∴a+b+c=4+8+4=16.故答案为:16.【点睛】本题考查了非负数的性质、图形与坐标以及平移的性质等知识,正确理解题意、熟练掌握上述知识是解题的关键.18.100°【分析】根据旋转角可得∠CAE=40°然后根据∠BAE=∠BAC+∠CAE代入数据进行计算即可得解【详解】解:∵△ABC绕着点A顺时针旋转40°后得到△ADE∴∠CAE=40°∵∠BAC=6解析:100°【分析】根据旋转角可得∠CAE=40°,然后根据∠BAE=∠BAC+∠CAE,代入数据进行计算即可得解.【详解】解:∵△ABC绕着点A顺时针旋转40°后得到△ADE,∴∠CAE=40°,∵∠BAC=60°,∴∠BAE=∠BAC+∠CAE=60°+40°=100°.故答案为:100°.【点睛】本题考查旋转的性质,是基础题,确定出∠CAE=40°是解题关键.19.12【分析】根据平移前后图形的大小不发生改变可知AC=DF题意中平移的距离为2个单位长度即AD=CF=2由此可得到四边形ABCF的周长可拆解为三角形的周长和平移距离的2倍的和进行求解【详解】∵采用平解析:12【分析】根据平移前后图形的大小不发生改变,可知AC=DF,题意中平移的距离为2个单位长度即AD=CF=2,由此可得到四边形ABCF的周长可拆解为三角形的周长和平移距离的2倍的和进行求解.【详解】∵采用平移得到的△DEF,∴AC=DF∵平移距离为2个单位长度∴AD=CF=2∵△ABC周长为8个单位长度∴AB+BC+AC=AB+BC+DF=8∴四边形ABFD的周长为AB+BF+FD+AD=(AB+BC+DF)+AD+CF=8+2+2=12.故答案为:12.【点睛】考查平移的性质以及平移的距离的知识点,学生掌握平移不变性是解题的关键,并准确表示出平移的距离才可解出题目.20.-1【分析】由A(32)在经过此次平移后对应点A1的坐标为(5-1)可得△ABC的平移规律为:向右平移2个单位向下平移3个单位由此得到结论【详解】解:由A(32)在经过此次平移后对应点A1的坐标为(解析:-1【分析】由A (3,2)在经过此次平移后对应点A 1的坐标为(5,-1),可得△ABC 的平移规律为:向右平移2个单位,向下平移3个单位,由此得到结论.【详解】解:由A (3,2)在经过此次平移后对应点A 1的坐标为(5,-1)知c=a+2、d=b -3, 即c -a=2、d -b=-3,则c+d -a -b=2-3=-1,故答案为:1-.【点睛】本题考查的是坐标与图形变化——平移,牢记平面直角坐标系内点的平移规律:上加下减、右加左减是解题的关键.三、解答题21.(1)图见解析;(2)图见解析,(3,2).【分析】(1)利用关于原点对称的点的坐标特征写出A '、B '、C '点的坐标,然后描点即可; (2)利用网格特点和旋转的性质画出A 、B 、C 的对应点A ''、B ''、C '',根据图象可得点B ''的坐标.【详解】解:(1)如图,A B C '''为所作;(2)如图,A B C ''''''△为所作,点B ''的坐标为(3,2).故答案为(3,2).【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.22.(1)作图见解析,(2)52【分析】(1)作BA′=BA ,A′C′=AC 即可;(2)根据勾股定理求出AB ,由旋转可知,△AB A′是等腰直角三角形,根据勾股定理可求A A '.【详解】解:(1)旋转后的A BC ''△如图所示;(2)∵90C ∠=︒,3BC =,4AC =, ∴2222435AB AC BC =+=+=,由旋转可知,∠ABA′=90°,AB=A′B=5,22225552AA AB A B ''=+=+=.【点睛】本题考查了旋转作图和性质,勾股定理,解题关键是熟练运用旋转性质和勾股定理. 23.(1)见解析;(2)90°【分析】(1)根据题目的条件要求直接补全图形即可;(2)连接OM ,易证BCM ∆为等边三角形,再根据勾股定理的逆定理即可证明OMC 是直角三角形,进而可求出 OCM ∠的度数.【详解】解:(1) 依题意补全图形、如图所示:(2)如图示,连接OMABC ∆为等边三角形、60ABC ︒∴∠=BAO ∆旋转得到BCM ∆,5OA 6OB =, 5MC OA ,6MBOB , 60OBM ABC ︒∠=∠= OBM ∴∆为等边三角形、 6OM OB在OMC ∆中,1OC =,5MC = 6OM =222156 222OC MC OM ∴==90OCM ︒∴∠=,【点睛】本题考查旋转变换,等边三角形的性质和判定,勾股定理的逆定理等知识,灵活运用所学知识解决问题是解题的关键.24.(1)见解析;(2)BD CE =;(3)BD CE ⊥,理由见解析【分析】(1)由旋转的性质得AD AE =,DAE CAB ∠=∠,从而证明BAD CAE ≌,即可得到结论;(2)同第(1)小题的方法,证明BAD CAE ≌,即可得到结论;(3)先证明BAD CAE ≌,从而得45B ACE ∠=∠=︒,进而即可得到结论.【详解】(1)证明:由旋转可知,AD AE =,DAE CAB α∠=∠=∴CAB CAD DAE CAD ∠-∠=∠-∠,则BAD CAE ∠=∠在BAD 和CAE 中∵AB AC =,BAD CAE ∠=∠,AD AE =∴()BAD CAE SAS ≌△△ ∴BD CE =(2)由旋转可知,AD AE =,DAE CAB α∠=∠=,∴CAB CAD DAE CAD ∠+∠=∠+∠,则BAD CAE ∠=∠在BAD 和CAE 中∵AB AC =,BAD CAE ∠=∠,AD AE =∴()BAD CAE SAS ≌△△ ∴BD CE =,故答案是:BD CE =;(3)BD CE ⊥理由如下:∵90CAB α∠==︒,AB AC =.∴45B ACB ∠=∠=︒由旋转,可得AD AE =,90DAE CAB ∠=∠=︒∴CAB CAD DAE CAD ∠+∠=∠+∠,则BAD CAE ∠=∠在BAD 和CAE 中∵AB AC =,BAD CAE ∠=∠,AD AE =∴()BAD CAE SAS ≌△△ ∴45B ACE ∠=∠=︒∴90BCE ACB ACE ∠=∠+∠=︒∴BD CE ⊥【点睛】本题主要考查全等三角形的判定和性质,等腰三角形的性质,掌握SAS 证明三角形全等,是解题的关键.25.(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用关于y 轴对称点的性质得出对应点位置进而得出答案;(2)直接利用平移的性质得出对应点位置进而得出答案;(3)直接利用轴对称的性质得出对称轴的位置进而得出答案.【详解】解:(1)如图所示:(2)如图所示;(3)如图所示.【点睛】此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键.26.(1)3;(2)见解析【分析】(1)用割补法即可得出△ABC的面积;(2)依据旋转的性质,找出A、B、C的对应点A2、B2、C2,然后用线段顺次连接即可得到△ABC绕着点O按顺时针方向旋转90°得到的△A2B2C2.【详解】解:(1)△ABC的面积是2×4-12×2×2-12×4×1-12×1×2=3,故答案为:3;(2)如图,【点睛】本题考查了作图-旋转变换,根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.。
(典型题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试卷(有答案解析)
一、选择题1.下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下面是几种病毒的形态模式图,这些图案中既不是轴对称图形也不是中心对称图形的是()A.B.C.D.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.矩形B.等边三角形C.正五边形D.角'''关于原点O成中心对称的是()4.在平面直角坐标系xOy中,ABC与A B CA.B.C.D .5.下列图形中既是中心对称图形又是轴对称图形的是( )A .B .C .D . 6.点(1,2)A m --与点(3,1)B n +关于原点对称,则m n +=( )A .1B .-1C .-5D .57.如图,点O 为平面直角坐标系的原点,点A 在x 轴上,OAB 是边长为4的等边三角形,以O 为旋转中心,将OAB 按顺时针方向旋转60°,得到OA B ''△,那么点A '的坐标为( )A .(2,23)B .(2,4)-C .(2,22)-D .(2,23)- 8.下列图形中,是中心对称图形,但不是轴对称图形的是( )A .B .C .D . 9.下列说法错误的是( )A .对顶角相等B .两直线平行,同旁内角相等C .平移不改变图形的大小和形状D .同一平面内,垂直于同一直线的两条直线平行10.将ABC ∆沿BC 方向平移3个单位得DEF ∆,若ABC ∆的周长等于20,则四边形ABFD 的周长为( )A .28B .26C .24D .2011.如图,四边形ABCD 与四边形FGHE 关于一个点成中心对称,则这个点是( )A .O 1B .O 2C .O 3D .O 412.如图,线段AD 由线段AB 绕点A 按逆时针方向旋转90得到,EFG ∆由ABC ∆沿CB 方向平移得到,且直线EF 过点D .则BDF ∠=( )A .30B .45C .50D .60二、填空题13.如果规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,就称此图形为旋转对称图形那么下列图形中:①正三角形;②正方形;③正六边形是旋转对称图形,且有一个旋转角为90︒的是______(填序号).14.如图,在平面直角坐标系中,点A ,B ,C 的坐标分别为()0,1,()1,0,()1,0-,一个电动玩具从坐标原点O 出发,第一次跳跃到点1P ,使得点1P 与点O 关于点A 成中心对称;第二次跳跃到点2P ,使得点1P 与点2P 关于点B 成中心对称;第三次跳跃到点3P ,使得点3P 与点2P 关于点C 成中心对称,第四次跳跃到点4P ,使得点4P 与点3P 关于点A 成中心对称;第五次跳跃到点5P ,使得点5P 与点4P 关于点B 成中心对称……照此规律重复下去,则点2021P 的坐标为_________.15.已知点P(-3,2)关于原点的对称点是_______.16.如图,在平面直角坐标系中,第1次将边长为1的正方形OABC 绕点O 逆时针旋转45°后,得到正方形OA 1B 1C 1;第2次将正方形OA 1B 1C 1绕点O 逆时针旋转45°后,得到正方形OA 2B 2C 2;.....按此规律,绕点O 旋转得到正方形OA 2020B 2020C 2020,则点B 2020的坐标为______.17.如图,ODC ∆是由OAB ∆绕点O 顺时针旋转40︒后得到的图形,若点D 恰好落在AB 上,且105AOC ∠=︒,则C ∠的度数是_______.18.如图所示,大长方形的长为8cm ,宽为4cm ,则阴影部分的面积是________.19.如图,将△ABC 沿BC 方向平移1个单位得到△DEF ,若△ABC 的周长等于8,则四边形ABFD 的周长等于_______.20.已知:如图,在AOB ∆中,9034AOB AO cm BO cm ︒∠===,,,将AOB ∆绕顶点O ,按顺时针方向旋转得到11A OB ∆,线段1OB 与边AB 相交于点D ,则线段1B D 最大值为=________cm三、解答题21.如图,点E 是等边△ABC 内一点,3EA =,2EC =,1EB .求BEC ∠的度数.22.如图网格中,AOB 的顶点均在格点上,点A 、B 的坐标分别是(3,2)A 、()1,3B .(1)点A 关于点O 中心对称点的坐标为(_______,_______);(2)AOB 绕点O 顺时针旋转90︒后得到11AOB ,在方格纸中画出11AOB ,并写出点1B 的坐标(______,_______);(3)在y 轴上找一点P ,使得PA PB +最小,请在图中标出点P 的位置,并求出这个最小值.23.ABC 在平面直角坐标系中的位置如图所示.(1)请作出ABC 关于y 轴对称的111A B C △,并写出111,,A B C 三点的坐标:1A _______,1B ________,1C _________;(2)将ABC 向右平移6个单位长度,作出作出平移后的222A B C △;(3)观察111A B C △与222A B C △,它们是否关于某直线对称?若是,请在图上画出这条对称轴.24.如图1是实验室中的一种机械装置,BC 在地面上,所在等腰直角三角形ABC 是固定支架,机械臂AD 可以绕点A 旋转,同时机械臂DM 可以绕点D 旋转,已知90,6,1∠=︒==BAC AD DM .(1)在旋转过程中,①当A 、D 、M 三点在同一直线上时,直接写出线段AM 的长;②当以A 、D 、M 为顶点的三角形是直角三角形时,求AM 的长;(2)如图2,把机械臂AD 顺时针旋转90︒,点D 旋转到点E 处,连结DE ,当135,7∠=︒=AEC CE 时,求BE 的长.25.如图所示,在正方形网格中,ABC 的顶点坐标分别为()2,4,()1,2,()4,1.请在所给直角坐标系中按要求画图和解答下列问题:(1)以点P 为旋转中心,将ABC 按逆时针方向旋转90︒得到A B C ''',请在图中画出A B C ''',并写出点B 的对应点B '的坐标为_________.(2)在y 轴上求作一点M ,使MA MB +的值最小,点M 的坐标为_________.26.如图,在边长为1个单位长度的小正方形组成的网格中,给出了△ABC 和点D (A ,B ,C ,D 是网格线交点).(1)画出一个△DEF ,使它与△ABC 全等,且点D 与点A 是对应点,点E 与点B 是对应点,点F 与点C 是对应点(要求:△DEF 是由△ABC 经历平移、旋转得到的,两种图形变化至少各一次).(2)在(1)的条件下,网格中建立平面直角坐标系,写出点C 和点F 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据轴对称图形与中心对称图形的概念结合各图形的特点求解即可.【详解】解:A、是中心对称图形,不是轴对称图形,故本选项不合题意;B、不是中心对称图形,但是轴对称图形,故本选项不合题意;C、是中心对称图形,又是轴对称图形,故本选项合题意;D、既不是中心对称图形,也不是轴对称图形,故本选项不符合题意;故选:C.【点睛】本题考查了中心对称图形和轴对称图形的知识,注意掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.C解析:C【分析】根据轴对称图形和中心对称图形的定义进行判定即可;【详解】A、是轴对称图形不是中心对称图形,故不符合题意;B、是轴对称图形不是中心对称图形,故不符合题意;C、既不是轴对称图形也不是中心对称图形,故符合题意;D、既是轴对称图形又是中心对称图形,故不符合题意;故选:C.【点睛】本题考查了轴对称图形和中心对称图形,正确理解轴对称图形和中心对称图形的定义是解题的关键;3.A解析:A【分析】根据轴对称图形与中心对称图形的概念依次判断即可得.【详解】解:A. 矩形是轴对称图形,也是中心对称图形.故正确.B. 等边三角形是轴对称图形,不是中心对称图形.故错误;C. 正五边形是轴对称图形,不是中心对称图形.故错误;D. 角是轴对称图形,不是中心对称图形.故错误;故选:A.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.D解析:D【分析】根据关于y轴对称的点的坐标特征对A进行判断;根据关于x轴对称的点的坐标特征对B 进行判断;根据关于原点对称的点的坐标特征对C、D进行判断.【详解】解:A、△ABC与△A'B'C'关于y轴对称,所以A选项不符合题意;B、△ABC与△A'B'C'关于x轴对称,所以B选项不符合题意;C、△ABC与△A'B'C'关于(-12,0)对称,所以C选项不符合题意;D、△ABC与△A'B'C'关于原点对称,所以D选项符合题意;【点睛】本题考查了中心对称:把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.中心对称的性质:关于中心对称的两个图形能够完全重合;关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.5.A解析:A【分析】本题利用轴对称图形和中心对称图形的概念求解即可,轴对称图形:沿某一直线折叠后直线两旁的部分互相重合;中心对称图形:将一个图形绕着中心点旋转180°后能与自身重合的图形叫做中心对称图形;【详解】A、此图形既是中心对称图形,也是轴对称图形故此选项正确;B、此图形是中心对称图形,但不是轴对称图形故此选项不正确;C、此图形是轴对称图形,但不是中心对称图形故此选项不正确;D、此图形是轴对称图形,但不是中心对称图形故此选项不正确;故选:A.【点睛】本题考查了轴对称图形和中心对称图形的概念,正确理解它们的概念是解题的关键;6.B解析:B【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【详解】解:∵点(1,2)A m --与点(3,1)B n +关于原点对称,∴1312m n -=-⎧⎨+=⎩, ∴21m n =-⎧⎨=⎩, ∴211m n +=-+=-;故选:B .【点睛】本题考查了关于原点 对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数.7.D解析:D【分析】根据旋转得到A '与点B 重合,过点B 作BC AO ⊥于点C ,利用等边三角形的性质求出OC 和BC 的长,得到坐标.【详解】解:如图,AOB 绕着点O 顺时针旋转60︒得到OA B ''△,此时A '与点B 重合, 过点B 作BC AO ⊥于点C ,∵△OAB 是边长为4的等边三角形,∴AB=BO ,BC AO ⊥,∴AC=OC=2, 根据勾股定理,2216423BC BO OC =-=-=,∴()2,23A '-.故选:D .【点睛】本题考查图形的旋转和等边三角形的性质,解题的关键是掌握等边三角形的性质. 8.B解析:B【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】A、不是中心对称图形,是轴对称图形,不符合题意;B、是中心对称图形,但不是轴对称图形,符合题意;C、既是中心对称图形,又是轴对称图形,不符合题意;D、不是中心对称图形,是轴对称图形,不符合题意;故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后和原图形重合.9.B解析:B【分析】根据图形的有关性质和变化解题.【详解】根据平行线的性质,两直线平行,同旁内角互补,所以B错误;由对顶角的性质知A正确;由平移的性质知C正确;由垂直的性质知D正确.故选B.【点睛】本题考查图形的有关性质和变化,准确记忆图形的性质和图形变化的性质是解题关键.10.B解析:B【分析】先根据平移的性质得AD=CF=3,AC=DF,然后AB+BC+AC=20,通过等线段代换计算四边形ABFD的周长.【详解】解:∵△ABC沿BC方向平移3个单位得△DEF,∴AD=CF=3,AC=DF,∵△ABC的周长等于20,∴AB+BC+AC=20,∴四边形ABFD的周长=AB+BF+DF+AD=AB+BC+CF+AC+AD=20+3+3=26.故选:B.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.11.A解析:A【分析】连接任意两对对应点,连线的交点即为对称中心.【详解】如图,连接HC和DE交于O1,故选A.【点睛】此题考查了中心对称的知识,解题的关键是了解成中心对称的两个图形的对应点的连线经过对称中心,难度不大.12.B解析:B【分析】由旋转的性质得,AD=AB,∠ABD=45°,再由平移的性质即可得出结论.【详解】解:∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB,∴∠ABD=45°,∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF,∴∠BDF=∠ABD=45°;故选B【点睛】此题主要考查了图形的平移与旋转,平行线的性质,等腰直角三角形的判定和性质.二、填空题13.②【分析】根据旋转的性质判断出正三角形正方形和正六边形的旋转角找出旋转角是的图形即可【详解】①正三角形的最小旋转角是;②正方形的最小旋转角是;③正六边形的最小旋转角是故答案为:②【点睛】本题考查了旋解析:②【分析】根据旋转的性质判断出正三角形,正方形和正六边形的旋转角,找出旋转角是90︒的图形即可.【详解】①正三角形的最小旋转角是120︒;②正方形的最小旋转角是90︒;③正六边形的最小旋转角是60︒故答案为:②.【点睛】本题考查了旋转对称图形的知识,解答本题的关键是掌握旋转角的定义,求出每个图形的旋转角.14.(-20)【分析】计算出前几次跳跃后点P1P2P3P4P5P6P7的坐标可以得出规律继而可求出点的坐标【详解】解:根据题意得:点P1(02)P2(2-2)P3(-42)P4(40)P5(-20)P6解析:(-2,0)【分析】计算出前几次跳跃后,点P1、P2、P3、P4、P5、P6、P7的坐标,可以得出规律,继而可求出P的坐标.点2021【详解】解:根据题意得:点P1(0,2)、P2(2,-2)、P3(-4,2)、P4(4,0)、P5(-2,0)、P6(0,0)、P7(0,2),,∴每6次为一个循环,÷=,∵202163365∴点P的坐标与点P5的坐标相同,即为(-2,0),2021故答案为:(-2,0).【点睛】此题考查坐标的变化规律探究,中心对称的定义,正确掌握中心对称的定义确定点的坐标,发现规律并运用解决问题是解题的关键.15.(3-2)【分析】根据关于原点对称点的坐标变化规律求解即可【详解】解:关于原点对称的两个点横坐标互为相反数纵坐标也互为相反数所以P(-32)关于原点的对称点是(3-2)故答案为:(3-2)【点睛】本解析:(3,-2)【分析】根据关于原点对称点的坐标变化规律求解即可.【详解】解:关于原点对称的两个点横坐标互为相反数,纵坐标也互为相反数,所以P(-3,2)关于原点的对称点是(3,-2),故答案为:(3,-2).【点睛】本题考查了关于原点对称坐标变化,熟记点在坐标系中的几何变换的坐标变化规律是解题关键.16.(-1-1)【分析】根据图形可知:点B在以O为圆心以OB为半径的圆上运动由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形OABC相当于将线段OB绕点O逆时针旋转45°可得对应点B的坐标解析:(-1,-1)【分析】根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形O A1B1C1,相当于将线段OB绕点O逆时针旋转45°,可得对应点B的坐标,根据规律发现是8次一循环,可得结论.【详解】解:∵四边形OABC是正方形,且OA=1,∴B(1,1);连接OB,由勾股定理得:OB= 2,由旋转得:OB= OB1= OB2=OB3= (2)∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O=∠B1O B2=…=45°,逆时针旋转45°,依次得到∠AOB=∠BO B1∴B(0,2),B2(-1,1),B3(-2,0),B4(-1,-1),…,发现是8次一循1环,所以2020÷8=252 (4)∴点B的坐标为(-1,1).2020故答案为(-1,-1).【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角。
(必考题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试(含答案解析)(2)
一、选择题1.下列图形:①平行四边形、②矩形、③正方形、④等边三角形,其中,既是轴对称图形又是中心对称图形的有( ) A .①②B .②③C .③④D .①④2.如图,△ABC 中,∠ACB =90°,∠ABC =40°.将△ABC 绕点B 逆时针旋转得到△A ′BC ′,使点C 的对应点C ′恰好落在边AB 上,则∠CAA ′的度数是( )A .50°B .70°C .110°D .120° 3.将点(3,1)绕原点顺时针旋转90︒得到的点的坐标是( )A .(3,1)--B .(1,3)-C .(3,1)-D .(1,3)-4.如图,在平面直角坐标系xOy 中,点P 的坐标为22,⎛⎫⎪⎪⎝⎭,将线段1OP ,绕点O 按顺时针方向旋转45,再将其长度伸长为1OP 的2倍,得到线段2OP ;又将线段2OP 绕点O 按顺时针方向旋转45,长度伸长为2OP 的2倍,得到线段3OP ;如此下去,得到线段4OP 、5OP 、、2021OP ,则20202021OP P ∆的面积为( )A .4038224B .40392C 403722D .403825.如图,等边ABC 的顶点(1,1)A ,(3,1)B ,规定把等边ABC “先沿x 轴翻折,再向左平移1个单位”为一次变换,这样连续经过2021次变换后,ABC 顶点C 的坐标为( )A .(2020,13)-+B .(2020,13)---C .(2019,13)-+D .(2019,13)--- 6.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .7.下列图形是我国国产汽车的标识,在这四个汽车标识中,是中心对称图形的是( ) A .B .C .D .8.下列图形中,既是轴对称又是中心对称图形的是( ) A .B .C .D .9.如图,把△ABC 绕着点C 顺时针旋转m°,得到△EDC ,若点A 、D 、E 在一条直线上, ∠ACB=n°,则∠ADC 的度数是( )A .190-2m n ⎛⎫+︒ ⎪⎝⎭B .()m n -︒C .190-2n m ⎛⎫+︒ ⎪⎝⎭D .()180n m --︒10.下列图形中,既是轴对称图形又是中心对称图形的是( ) A .B .C .D .11.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .12.如图,在ABC 中,70,30B BAC ∠=︒∠=︒,将ABC 绕点C 顺时针旋转得到,EDC 当点B 的对应点D 恰好落在AC 上时,连接,AE 则AED ∠的度数为( )A .40B .35C .25D .20二、填空题13.如图,正方形ABCD 旋转后能与正方形CDEF 重合,那么点A ,B ,C ,D 中,可以作为旋转中心的有______个.14.如图,ABC 是等边三角形,点P 是ABC 内一点.APC △沿逆时针方向旋转后与AP B '△重合,最小旋转角等于__________︒.15.如图是某公园里一处矩形风景欣赏区ABCD ,长AB=50米,宽BC=30米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为______米.16.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,2),且|a ﹣8b -0,将线段PQ 向右平移a 个单位长度,其扫过的面积为24,那么a+b+c 的值为_____.17.如图,将△ABC 沿BC 方向平移到△DEF ,若A 、D 间的距离为1,CE =2,则BF =_____.18.如图1,在ABC ∆中,AB=AC=4, 90,,BAC D E ︒∠=分别是边AB ,AC 的中点,保持ADE ∆不动,将ABC ∆从图1位置开始绕点A 顺时针旋转90度,旋转角小于90度,连接BD ,CE从下面A ,B 两题中任选一题作答,我选择____________题A .如图2,当DB//AE 时,线段CE 的长为__________________;B .如图3,当点B 在线段ED 的延长线上时,线段CE 的长为__________________;19.在平面直角坐标系xOy 中,点A ,B 的坐标分别为(﹣4,3),(﹣1,3),将线段AB 沿x 轴正方向平移m 个单位,若线段AB 与y 轴有交点,则m 的取值范围为是_____. 20.如图,将三角形ABE 向右平移1cm 得到三角形DCF ,如果三角形ABE 的周长是10cm ,那么四边形ABFD 的周长是_____.三、解答题21.在如图所示的正方形网格中,ABC 的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)作出ABC 关于坐标原点O 成中心对称的111A B C △,画出111A B C △,写出1C 坐标_________;(2)将ABC 绕点O 逆时针旋转90︒得到222A B C △,写出2C 的坐标__________.22.如图1是实验室中的一种机械装置,BC 在地面上,所在等腰直角三角形ABC 是固定支架,机械臂AD 可以绕点A 旋转,同时机械臂DM 可以绕点D 旋转,已知90,6,1∠=︒==BAC AD DM .(1)在旋转过程中,①当A 、D 、M 三点在同一直线上时,直接写出线段AM 的长; ②当以A 、D 、M 为顶点的三角形是直角三角形时,求AM 的长;(2)如图2,把机械臂AD 顺时针旋转90︒,点D 旋转到点E 处,连结DE ,当135,7∠=︒=AEC CE 时,求BE 的长.23.(问题背景)平移、旋转和翻折是初中阶段三大基本几何变换.平移、旋转或翻折后的图形与原图形全等,所以我们又把这些几何变换称之保形变换.我市某校数学思维社团成员在学习了平面直角坐标系及一次函数以后,尝试在平面直角坐标系中研究几何变换. (初步研究)(1)本着简单到复杂的原则,他们先研究了点的变换:已知平面内一点()3,4P . ①将点Р向左平移5个单位,平移后点Р的坐标为_ ; ②点Р关于直线y x =的对称点的坐标为_ ; ③将点Р绕点О旋转90,旋转后点Р的坐标为 ; (深度探究)(2)数学思维社团成员认为线的变换只要抓住一些关键点的变换就可以了.已知如图,直线112y x =+分别与x 轴、y 轴交于点,A B 两点,直线y x =交直线AB 于点C .①直线AC 向右平移5个单位,平移后的直线表达式为 ; ②将直线AC 沿直线OC 翻折,翻折后的直线表达式为 ; ③将直线AC 绕点A 旋转90,旋转后的直线表达式为 ;④将直线AC 绕点C 逆时针旋转9()00αα︒<≤,添加一个你认为合适的角度_ ;并直接写出旋转后的直线表达式_ .24.如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (1,1)、B (5,1)、C (4,4),按下列要求作图:(1)将△ABC 向左平移5个单位得到△A 1B 1C 1,并写出点A 1的坐标; (2)将△ABC 绕原点O 逆时针旋转90°后得到△A 2B 2C 2,并写出点B 2的坐标;25.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 和△DEF 的顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)画出△ABC向上平移4个单位长度所得到的△A1B1C1,并写出点A1,B1的坐标;(2)画出△DEF关于x轴对称后所得到的△D1E1F1,并写出点E1,F1的坐标;(3)△A1B1C1和△D1E1F1组成的图形是轴对称图形,请画出它的对称轴.26.如图,已知△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,4).A B C;(1)画出△ABC关于y轴的对称图形△111A B C;(2)画出△ABC沿y轴向下平移3个单位得到△222(3)在y轴上求作一点P,使△PAC的周长最小,并直接写出点P的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:平行四边形是中心对称图形,不是轴对称图形;矩形,正方形既是轴对称图形又是中心对称图形;等边三角形是轴对称图形,不是中心对称图形.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念,正确理解中心对称图形与轴对称图形是解题的关键;2.D解析:D【分析】根据旋转可得∠A′BA=∠ABC=40°,A′B=AB,得∠BAA′=70°,根据∠CAA'=∠CAB+∠BAA′,进而可得∠CAA'的度数.【详解】解:∵∠ACB=90°,∠ABC=40°,∴∠CAB=90°−∠ABC=90°−40°=50°,∵将△ABC绕点B逆时针旋转得到△A′BC′,∴∠A′BA=∠ABC=40°,A′B=AB,∴∠BAA′=∠BA′A=1(180°−40°)=70°,2∴∠CAA'=∠CAB+∠BAA′=50°+70°=120°.故选:D.【点睛】本题考查了旋转的性质、等腰三角形的性质等知识,解决本题的关键是熟练掌握旋转的性质并能准确利用旋转性质得出线段与角的等量关系.3.B解析:B【分析】根据旋转的性质即可确定点坐标.【详解】解:点绕原点旋转90度的坐标变换规律:横、纵坐标互换位置,且纵坐标变为相反数,则点(3,1)绕原点O顺时针旋转90°得到的点的坐标为(1,-3),如图,故选:B . 【点睛】本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.4.C解析:C 【分析】根据题意得出OP 1=1,OP 2=2,OP 3=4,如此下去,得到线段OP 4=8=23,OP 5=16=24…,OP n =2n-1,由此即可解决问题. 【详解】解:根据题意得出OP 1=1,OP 2=2,OP 3=4,如此下去,得到线段OP 4=8=23,OP 5=16=24…,OP n =2n-1, ∴△OP n P n+1的面积=12×2n-1×22×2n =24×22n-1, 则20202021OP P ∆的面积为12×21919×22×22020=24×40392403722, 故选C . 【点睛】本题考查坐标与图形变化-旋转,规律型问题,解直角三角形等知识,解题的关键是理解题意,学会探究规律的方法.5.D解析:D 【分析】先求出点C 坐标,第一次变换,根据轴对称判断出点C 变换后在x 轴下方然后求出点C 纵坐标,再根据平移的距离求出点C 变换后的横坐标,最后写出第一次变换后点C 坐标,同理可以求出第二次变换后点C 坐标,以此类推可求出第n 次变化后点C 坐标. 【详解】∵△ABC 是等边三角形AB=3-1=2 ∴点C 到x 轴的距离为1+3213=+2∴C(2,1+由题意可得:第1次变换后点C的坐标变为(2-1,1),即(1,1-,第2次变换后点C的坐标变为(2-21),即(0,1+第3次变换后点C的坐标变为(2-3,1),即(-1,1--第n次变换后点C的坐标变为(2-n,1)(n为奇数)或(2-n,1+为偶数),∴连续经过2021次变换后,等边ABC的顶点C的坐标为(-2019,1-,故选:D.【点睛】本题考查了利用轴对称变换(即翻折)和平移的特点求解点的坐标,在求解过程中找到规律是关键.6.D解析:D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,不是中心对称图形,故此选项不符合题意;D、是轴对称图形,是中心对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.C解析:C【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【详解】A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故本选项不合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.8.D解析:D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、不是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,不是中心对称图形,故此选项不符合题意;D、是轴对称图形,是中心对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 9.A解析:A【分析】根据旋转的性质即可得到∠ACD和∠CAD的度数,再根据三角形内角和定理进行解答即可.【详解】∵将△ABC绕点C顺时针旋转m°得到△EDC.∴∠DCE=∠ACB=n°,∠ACE=m°,AC=CE,∴∠ACD=m°-n°,∵点A,D,E在同一条直线上,∴∠CAD=12(180°-m°),∵在△ADC中,∠ADC+∠DAC+∠DCA=180°,∴∠ADC=180°-∠CAD-∠ACD=180°-12(180°-m°)-(m°-n°)=90°+n°-12 m°=(90+n-12 m)°,故选:A.【点睛】本题考查了旋转的性质,等腰三角形的性质以及三角形内角和定理,关键是根据旋转的性质和三角形内角和解答.解题时注意:对应点与旋转中心所连线段的夹角等于旋转角,旋转前、后的图形全等.10.A【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【详解】A、是轴对称图形,也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:A.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图形重合.11.B解析:B【分析】观察四个选项中的图形,根据轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合;找出既是轴对称图形又是中心对称图形的那个即可得出结论.【详解】A是中心对称图形;B既是轴对称图形又是中心对称图形;C是轴对称图形;D不是轴对称图形,是中心对称图形.故选:B.【点睛】此题考查中心对称图形以及轴对称图形,牢记轴对称及中心对称图形的特点是解题的关键.12.D解析:D【分析】由三角形内角和定理可得∠ACB=80°,由旋转的性质可得∠ACE=∠ACB=80°,AC=CE,∠BAC=∠CED=30°,由等腰三角形的性质得到∠AEC=50°,由角的和差即可求解.【详解】解:∵∠B=70°,∠BAC=30°,∴∠ACB=80°,∵将△ABC绕点C顺时针旋转得△EDC,∴∠ACE=∠ACB=80°,AC=CE,∠BAC=∠CED=30°,∴∠CEA=50°,∴∠AED=∠AEC-∠CED=20°,【点睛】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是本题的关键.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.【分析】根据旋转的性质分类讨论确定旋转中心【详解】解:把正方形ABCD绕点D逆时针旋转90°能与正方形CDEF重合则旋转中心为点D;把正方形ABCD绕点C顺时针旋转90°能与正方形CDEF重合则旋转解析:【分析】根据旋转的性质,分类讨论确定旋转中心.【详解】解:把正方形ABCD绕点D逆时针旋转90°能与正方形CDEF重合,则旋转中心为点D;把正方形ABCD绕点C顺时针旋转90°能与正方形CDEF重合,则旋转中心为点C;综上,可以作为旋转中心的有2个.故答案为:2.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.14.60【分析】根据等边三角形的性质求出∠BAC=确定两个旋转的图形中的对应点即可得到答案【详解】由旋转知旋转角为∠BAC∵是等边三角形∴∠BAC=故答案为:60【点睛】此题考查旋转的性质等边三角形的性解析:60【分析】根据等边三角形的性质求出∠BAC=60︒,确定两个旋转的图形中的对应点即可得到答案.【详解】由旋转知旋转角为∠BAC,∵ABC是等边三角形,∴∠BAC=60︒,故答案为:60.【点睛】此题考查旋转的性质,等边三角形的性质,正确理解图形中的旋转关系是解题的关键.15.98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析水平距离等于AB铅直距离等于(AD-1)×2又∵长AB=50米宽BC=25米∴小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为50解析:98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析,水平距离等于AB,铅直距离等于(AD-1)×2,又∵长AB=50米,宽BC=25米,∴小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为50+(25-1)×2=98米,故答案为98.16.16【分析】利用非负数的性质可求出b的值a=c进而可得PQ的长再根据平移的性质和平行四边形的面积公式即可求出a进一步即可求出答案【详解】解:∵|a﹣c|+=0又∵|a﹣c|≥0≥0∴a﹣c=0b﹣8解析:16【分析】利用非负数的性质可求出b的值,a=c,进而可得PQ的长,再根据平移的性质和平行四边形的面积公式即可求出a,进一步即可求出答案.【详解】解:∵|a﹣0,又∵|a﹣c|≥0,∴a﹣c=0,b﹣8=0,∴a=c,b=8,∴P(a,8),Q(a,2),∴PQ=6,∵线段PQ向右平移a个单位长度,其扫过的面积为24,a⨯=,解得a=4,∴624∴a=c=4,∴a+b+c=4+8+4=16.故答案为:16.【点睛】本题考查了非负数的性质、图形与坐标以及平移的性质等知识,正确理解题意、熟练掌握上述知识是解题的关键.17.4【分析】根据平移的性质由AD=1得到BE=1CF=1再根据BF=BE+EC+CF计算即可得到答案;【详解】解:根据平移的性质由AD=1得:BE=1CF=1由∵BF=BE+EC+CF∴BF=1+2+解析:4【分析】根据平移的性质,由AD=1得到BE=1,CF=1,再根据BF= BE+EC+CF,计算即可得到答案;【详解】解:根据平移的性质,由AD=1得:BE=1,CF=1,由∵BF= BE+EC+CF,∴BF= 1+2+1=4,故答案为:4;【点睛】本题主要考查了平移的性质,能根据AD=1得到BE=1,CF=1是解题的关键.18.A/B【分析】A根据已知条件得到∠DAE=90°AD=AE=2根据平行线的性质得到∠ADB=∠DAE=90°由勾股定理得到BD=根据旋转的想知道的∠BAD=∠CAE根据全等三角形的性质即可得到结论;解析:A/ B【分析】A、根据已知条件得到∠DAE=90°,AD=AE=2,根据平行线的性质得到∠ADB=∠DAE=90°,由勾股定理得到==∠BAD=∠CAE,根据全等三角形的性质即可得到结论;B、根据全等三角形的性质得到BD=CE,∠ADB=∠AEC=135°,求得∠BEC=90°,根据勾股定理即可得到结论.【详解】解:A、∵AB=AC=4,∠BAC=90°,D,E分别是边AB,AC的中点,∴∠DAE=90°,AD=AE=2,∵DB∥AE,∴∠ADB=∠DAE=90°,∴==∵将△ABC从图1位置开始绕点A顺时针旋转,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴故答案为:B、∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△BAD和△CAE中,AB ACBAD CAE AD AE⎪∠⎪⎩∠⎧⎨===,∴△BAD≌△CAE(SAS),∴BD=CE,∠ADB=∠AEC=135°,∴∠BEC=90°,∵,∴()2+CE2=()2,解得:(负值舍去),【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,正确的识别图形是解题的关键.19.1≤m≤4【分析】由平移后的线段与y轴有交点可得出关于m的一元一次不等式组解答即可【详解】因为点AB的坐标分别为(﹣43)(﹣13)将线段AB 沿x轴正方向平移m个单位若线段AB与y轴有交点可得:解得解析:1≤m≤4【分析】由平移后的线段与y轴有交点,可得出关于m的一元一次不等式组,解答即可.【详解】因为点A,B的坐标分别为(﹣4,3),(﹣1,3),将线段AB沿x轴正方向平移m个单位,若线段AB与y轴有交点,可得:11[1(4)] mm≥⎧⎨≤+---⎩,解得:1≤m≤4,故答案为:1≤m≤4【点睛】此题考查平移的性质的问题,解题的关键是找出关于m的一元一次不等式组.20.12cm【分析】根据平移的性质可得DF=AE然后判断出四边形ABFD的周长=△ABE的周长+AD+EF然后代入数据计算即可得解【详解】解:∵△ABE向右平移1cm得到△DCF∴DF=AE∴四边形AB解析:12cm【分析】根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.【详解】解:∵△ABE向右平移1cm得到△DCF,∴DF=AE,∴四边形ABFD的周长=AB+BE+DF+AD+EF,=AB+BE+AE+AD+EF,=△ABE的周长+AD+EF,∵平移距离为1cm,∴AD=EF=1cm,∵△ABE的周长是10cm,∴四边形ABFD的周长=10+1+1=12cm.故答案为12cm.【点睛】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.三、解答题21.(1)作图见解析,C 1(4,1);(2)C 2(1,−4).【分析】(1)根据中心对称的性质画出各点关于原点的对称点,顺次连接各点,写出C 1坐标即可;(2)根据图形旋转的性质作出△ABC 绕点O 逆时针旋转90°的△A 2B 2C 2,即可写出C 2的坐标.【详解】解:(1)如图所示,111A B C △即为所求作的图形,并由图可知C 1(4,1).故答案为:(4,1).(2)如图所示,△A 2B 2C 2为△ABC 绕点O 逆时针旋转90°的图形,并由图可知C 2(1,−4).故答案为:(1,−4).【点睛】本题考查了中心对称及作图−旋转变换,熟知中心对称与图形旋转的性质是解答此题的关键.22.(1)①7或5;3537;(2)11【分析】(1)①分两种情形分别求解即可;②显然∠MAD 不能为直角.当∠AMD 为直角时,根据AM 2=AD 2−DM 2,计算即可,当∠ADM =90°时,根据AM 2=AD 2+DM 2,计算即可. (2)连接CD ,首先利用勾股定理求出CD ,再利用全等三角形的性质证明BE =CD ,进而即可求解.【详解】(1)①当A 、D 、M 三点在同一直线上时,AM =AD +DM =7,或AM =AD−DM =5; ②显然∠MAD 不能为直角.当∠AMD 为直角时,AM 2=AD 2−DM 2=62−12=35,∴AM =35, 当∠ADM =90°时,AM 2=AD 2+DM 2=62+12=37,∴AM =37,综上所述,满足条件的AM 的值为35或37; (2)如图2中,连接CD ,由题意:∠DAE =90°,AD =AE =6,∠AED =45°,∴DE =2∵∠AEC =135°,∴∠CED =90°,∴CD 22227(62)11CE DE +=+=,∵∠BAC =∠EAD =90°,∴∠BAC−∠CAE =∠EAD −∠CAE ,∴∠BAE =∠CAD , ∵AB =AC ,AE =AD ,∴△BAE ≌△CAD (SAS ),∴BE =CD =11.【点睛】本题是旋转变换综合题,考查了等腰直角三角形的性质,勾股定理,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.23.(1)①()2,4-;②()4,3;③(4,3-)或()4,3-;(2)①1322y x =-;②22y x =-;③24y x =--;④90,26y x =-+(答案不唯一)【分析】(1)①根据点的平移规律,直接求解即可;②根据点关于直线y=x 的变化规律,直接求解即可;③分两种情况:当点Р绕点О顺时针旋转90时,当点Р绕点О逆时针旋转90时,分别求解即可;(2)①根据一次函数图像的平移规律,直接求解即可;②先求出A 点关于直线OC 的对称点A′(0,-2),B 点关于直线OC 的对称点B′(1,0),再根据待定系数法求解即可;③分别求出点B 绕点A 顺时针旋转90°后,B′(-1,-2),点B 绕点A 逆时针旋转90°后,B′′(-3,2),再根据待定系数法求解即可;④先求出将直线AC 绕点C 逆时针旋转90︒,点A 的对应点A′(3,0),再根据待定系数法求解即可.【详解】(1)①点P 向左平移5个单位,则纵坐标不变,横坐标减5,即3-5=-2,∴平移后点P 的坐标为:()2,4-;②点P 关于直线y=x 的对称点坐标为:()4,3;③当点Р绕点О顺时针旋转90时,过点P 作PN ⊥x 轴,过P′作P′M ⊥x 轴,连接OP ,OP′,如图:则∠POP′=∠PON+∠MOP′=90°,又∵∠PON+∠OPN=90°,∴∠OPN=∠MOP′,又∵∠ONP=∠P′MO=90°,OP=OP′,∴∆ONP ≅∆ P′MO ,∴ON=P′M=3,PN=OM=4,∴P′(4,-3).同理:当点Р绕点О逆时针旋转90时,P′(-4,3).故答案是:①()2,4-;②()4,3;③(4,3-)或()4,3-;(2)①直线AC 向右平移5个单位,平移后的直线表达式为:1(5)12y x =-+, 即:1322y x =-, ②对于直线112y x =+,当y=0时,x=-2;当x=0时,y=1, ∴A (-2,0),B (0,1), ∵A 点关于直线OC 的对称点A′(0,-2),B 点关于直线OC 的对称点B′(1,0), ∴根据待定系数法,可得,将直线AC 沿直线OC 翻折,翻折后的直线表达式为:22y x =-;③由第(1)③可知:点B 绕点A 顺时针旋转90°后,B′(-1,-2),根据待定系数法,得,将直线AC 绕点A 顺时针旋转90,旋转后的直线表达式为:24y x =--,同理:点B 绕点A 逆时针旋转90°后,B′′(-3,2),根据待定系数法,得,将直线AC 绕点A 逆时针旋转90,旋转后的直线表达式为:24y x =--,综上所述:将直线AC 绕点A 旋转90,旋转后的直线表达式为:24y x =--; ④将直线AC 绕点C 逆时针旋转90︒,则点A 的对应点A′(3,0),根据待定系数法,得,将直线AC 绕点C 逆时针旋转90,旋转后的直线表达式为:26y x =-+.故答案是:①1322y x =-;②22y x =-;③24y x =--;④90,26y x ︒=-+. 【点睛】本题主要考查点的平移,旋转以及轴对称,一次函数图像的平移,旋转以及轴对称规律,熟练掌握三种图形变换的性质以及一次函数的待定系数法,是解题的关键.24.(1)见解析;A 1(﹣4,1);(2)见解析,B 2(﹣1,5)【分析】(1)直接利用平移的性质,将A 、B 、C 三点往左平移5个单位,则A 、B 、C 各个顶点对应的横坐标分别减5即可得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案.【详解】解:(1)先把点A 、B 、C 向左平移5个单位,得到A 1、B 1、C 1,再顺次连结A 1B 1,B 1C 1,C 1A 1,如图所示:△A 1B 1C 1,即为所求,点A 1(﹣4,1)(2)连结OA ,OB ,OC ,先把点A 、B 、C 绕点O 逆时针方向旋转90,得到A 2、B 2、C 2,再顺次连结A 2B 2,B 2C 2,C 2A 2,如图所示:△A 2B 2C 2,点B 2(﹣1,5).【点睛】本题考查了平移、旋转图形的变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.25.(1)图见解析,A 1(3,2),B 1(4,1);(2)图见解析,E 1(﹣2,﹣3),F 1(0,﹣2);(3)见解析【分析】(1)利用点平移的坐标变换规律写出点A 1,B 1,C 1的坐标,然后描点即可;(2)利用关于x 轴对称的点的坐标特征写出点D 1,E 1,F 1的坐标,然后描点即可; (3)直线C 1F 1和C 1F 1的垂直平分线都是△A 1B 1C 1和△D 1E 1F 1组成的图形的对称轴.【详解】解:(1)如图,△A 1B 1C 1为所作,A 1(3,2),B 1(4,1);(2)如图,△D 1E 1F 1为所作,E 1(﹣2,﹣3),F 1(0,﹣2);(3)如图,直线l 和直线l ′为所作.【点睛】本题考查了作图-轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了平移变换.26.(1)见解析;(2)见解析;(3)见解析;P (0,74). 【分析】(1)保持纵坐标不变,横坐标取相反数,确定对应的对称点,顺次连接三个对称点即得对称图形;(2)按照上加下减原理,在各点的纵坐标上实施这一运算,得到平移变换后的各点,依次连接三个点即得到平移后的三角形;(3)连接A 1C 或C 1A ,与y 轴的交点就是点P ,利用一次函数的解析式与y 轴的交点即可求得点P 的坐标.【详解】(1)∵A (1,1)、B (4,2)、C (3,4),∴关于y 轴的对称点分别为1A (-1,1),1B (-4,2), 1C (-3,4),顺次连接1A ,1B ,1C ,得到△111A B C ,如图示;(2)∵A (1,1)、B (4,2)、C (3,4),∴向下平移3个单位后的坐标分别为2A (1,-2),2B (4,-1), 2C (3,1),顺次连接2A ,2B ,2C ,得到△2A 2B 2C ,如图示;(3)连接A 1C ,交y 轴于点P ,此时△PAC 的周长最小,如图;设直线A 1C 的解析式为y=kx+b,根据题意,得134k b k b +=⎧⎨-+=⎩, 解得 3474k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线的解析式为y=34-x+74, 当x=0时,y=74, ∴P 的坐标为(0,74), 故P 7(0)4,.【点睛】本题考查了坐标系中的点对称,点的平移,动点到两个定点距离之和最小,一次函数解析式的确定,一次函数与y 轴的交点,熟记对称点确定的基本原则,平移的基本规律和线段之和最小原理是解题的关键.。
(北师大版)石家庄市八年级数学下册第三单元《图形的平移与旋转》检测卷(有答案解析)
一、选择题1.下列图案中,既是中心对称图形,又是轴对称图形的是( )A .B .C .D . 2.下列图形:①平行四边形、②矩形、③正方形、④等边三角形,其中,既是轴对称图形又是中心对称图形的有( )A .①②B .②③C .③④D .①④ 3.如图,将ABC ∆绕顶点C 旋转得到DEC ∆,点A 对应点D ,点B 对应点E ,点B 刚好落在DE 边上,24,48A BCD ∠=︒∠=︒,则ABC ∠等于( )A .68︒B .70︒C .72︒D .74︒ 4.将点(3,1)绕原点顺时针旋转90︒得到的点的坐标是( ) A .(3,1)--B .(1,3)-C .(3,1)-D .(1,3)- 5.下列图形中,既是轴对称图形又是中心对称图形的是( )A .矩形B .等边三角形C .正五边形D .角 6.如图,△ABC 中,∠BAC=90°,AB=8,将△ABC 沿直线BC 向右平移,得到△EDF ,连接AD ,若四边形ACFD 为菱形,EC=4,则平移的距离为( )A .4B .5C .6D .87.如图,点A ,B 的坐标分别为(1,1)、(3,2),将△ABC 绕点A 按逆时针方向旋转90°,得到△A'B'C',则B'点的坐标为( )A .(﹣1,3)B .(-1,2)C .(0,2)D .(0,3) 8.把点()P x,y 绕原点顺时针旋转270°,点P 的对应点的坐标是( )A .(),y x -B .(),x y --C .(),y x -D .(),x y 9.如图,点O 为平面直角坐标系的原点,点A 在x 轴上,OAB 是边长为4的等边三角形,以O 为旋转中心,将OAB 按顺时针方向旋转60°,得到OA B ''△,那么点A '的坐标为( )A .(2,23)B .(2,4)-C .(2,22)-D .(2,23)- 10.下列图形中,既是轴对称图形又是中心对称图形的是( ) A . B . C . D . 11.如图,△ABC 沿线段BA 方向平移得到△DEF ,若AB =6,AE =2.则平移的距离为( )A .2B .4C .6D .812.已知点A 的坐标为(1,3),点B 的坐标为(2,1).将线段AB 沿某一方向平移后,点A 的对应点的坐标为(﹣2,1).则点B 的对应点的坐标为( )A .(5,3)B .(﹣1,﹣2)C .(﹣1,﹣1)D .(0,﹣1)二、填空题13.如图,将△ABC 绕着点C 顺时针旋转一定角度后得到△A′B′C ,若∠A=45°.∠B′=110°,则∠ACB 的度数是______.14.把一副三角板放置在如图的位置,若把DCE 绕点C 按逆时针方向旋转,旋转的角度为α()0180α︒<<︒若要使得DCE 中有一条边与AB 所在的直线垂直,则α=________度.15.平面直角坐标系xOy 中,先作出点P (2,3)-关于y 轴的对称点,再将该对称点先向下平移1个单位,再向左平移2个单位得到点P 1,称为完成一次图形变换,再将点P 1进行同样的图形变换得到点P 2,以此类推,则点P 2020的坐标为___________.16.如图,已知ABC 中,4AB =、5AC =、6BC =,将ABC 沿直线BC 向右平移得到A B C ''',点A 、B 、C 的对应点分别是A '、B '、C ',连接AA '.如果四边形AA C B ''的周长为19,那么四边形AA C B ''的面积与ABC 的面积的比值是________.17.如图,在平面直角坐标系中,已知ABC 的三个顶点的坐标分别为()2,4A -,(1,0)B -,()0,2C .将ABC 绕着点O 按顺时针方向旋转90°得到111A B C △,写出111A B C △的顶点1A 的坐标是______.18.如图,ABC 是等边三角形,点P 是ABC 内一点.APC △沿逆时针方向旋转后与AP B '△重合,最小旋转角等于__________︒.19.如图所示,将直角三角形A B C 沿BC 方向平移得到直角三角形DEF ,如果AB =12cm ,BE =5cm ,DH =4cm ,则图中阴影部分面积为________________cm 2.20.如图,在ABC ∆中,8AB =,6AC =,30BAC ∠=,将ABC ∆绕点A 逆时针旋转60得到11AB C ∆,连接1BC ,则1BC 的长为__________.三、解答题21.如图所示,△ABC 三个顶点的坐标分别为A (-4,4),B (-2,0),C (-1,2).(1)如果△A 1B 1C 1与△ABC 关于原点中心对称,画出△A 1B 1C 1并写出A 1,B 1 ,C 1三点的坐标;(2)画出将△ABC 绕原点O 按逆时针方向旋转90所得的△A 2B 2C 2 .22.在ABC 中,AB AC =,CG BA ⊥交BA 的延长线于点G .特例感知(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F ,一条直角边与AC 重合,另一条直角边恰好经过点B .通过观察、测量BF 与CG 的长度,得到BF CG =.请给予证明.猜想论证(2)当三角尺沿AC 方向移动到图2所示的位置时,一条直角边仍与AC 边重合,另一条直角边交BC 于点D ,过点D 作DE BA ⊥垂足为E .此时请你通过观察、测量DE 、DF 与CG 的长度,猜想并写出DE 、DF 与CG 之间存在的数量关系,并证明你的猜想. 联系拓展(3)当三角尺在图2的基础上沿AC 方向继续移动到图3所示的位置(点F 在线段AC 上,且点F 与点C 不重合)时,请你判断(2)中的猜想是否仍然成立?并说明理由. 23.如图所示,在正方形网格中,ABC 的顶点坐标分别为()2,4,()1,2,()4,1.请在所给直角坐标系中按要求画图和解答下列问题:(1)以点P 为旋转中心,将ABC 按逆时针方向旋转90︒得到A B C ''',请在图中画出A B C ''',并写出点B 的对应点B '的坐标为_________.(2)在y 轴上求作一点M ,使MA MB +的值最小,点M 的坐标为_________.24.如图,ABC 三个顶点的坐标分别为(2,4),(1,1),(4,3)A B C .(1)请画出ABC 关于x 轴对称的111A B C △,并写出点1A 的坐标;(2)请画出ABC 绕点B 逆时针旋转90 后的22A BC ;25.ABC 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)ABC 关于x 轴对称图形为111A B C △,画出111A B C △的图形;(2)将ABC 向右平移4个单位,再向下平移3个单位,得到图形为222A B C △,画出222A B C △的图形;(3)求ABC 的面积.26.在建立平面直角坐标系的方格纸中,每个小方格都是边长为1的小正方形,ABC ∆的顶点均在格点上,点P 的坐标为(1,0)-,请按要求画图与作答(1)把ABC ∆绕点P 旋转180°得A B C '''∆.(2)把ABC ∆向右平移6个单位得A B C ''''''∆.(3) A B C '''∆与A B C ''''''∆是否成中心对称,若是,找出对称中心P ',并写出其坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据中心对称图形和轴对称图形的概念进行判断即可;【详解】A 、是中心对称图形,不是轴对称图形,故本选项错误;B 、既是中心对称图形,又是轴对称图形,故本选项正确;C 、是中心对称图形,不是轴对称图形,故本选项错误;D 、是中心对称图形,不是轴对称图形,故本选项错误;故选:B .【点睛】本题考查了中心对称图形和轴对称图形的概念,正确掌握知识点是解题的关键; 2.B解析:B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:平行四边形是中心对称图形,不是轴对称图形;矩形,正方形既是轴对称图形又是中心对称图形;等边三角形是轴对称图形,不是中心对称图形.故选:B .【点睛】本题考查了中心对称图形与轴对称图形的概念,正确理解中心对称图形与轴对称图形是解题的关键;3.C解析:C【分析】先通过旋转得到24,ABC=DEC,∠=∠=︒∠∠=D A CE CB ,再通过等边对等角以及三角形外角的性质得到∠=∠=∠+∠E CBE BCD D ,最后代入已知的数据即可求解本题.【详解】解:由ABC ∆绕顶点C 旋转得到DEC ∆可知:24,ABC=DEC,∠=∠=︒∠∠=D A CE CB ,∴∠=∠=∠+∠E CBE BCD D ,∵48∠=︒BCD ,∴244872∠=︒+︒=︒CBE ,故ABC=DEC=72∠∠︒;故选:C .【点睛】本题考查了旋转的性质、等腰三角形的性质、三角形的外角,熟练掌握旋转的性质即可得到结论.4.B解析:B【分析】根据旋转的性质即可确定点坐标.【详解】解:点绕原点旋转90度的坐标变换规律:横、纵坐标互换位置,且纵坐标变为相反数, 则点(3,1)绕原点O 顺时针旋转90°得到的点的坐标为(1,-3),如图,故选:B .【点睛】本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°. 5.A解析:A【分析】根据轴对称图形与中心对称图形的概念依次判断即可得.【详解】解:A. 矩形是轴对称图形,也是中心对称图形.故正确.B. 等边三角形是轴对称图形,不是中心对称图形.故错误;C. 正五边形是轴对称图形,不是中心对称图形.故错误;D. 角是轴对称图形,不是中心对称图形.故错误;故选:A .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.C解析:C【分析】根据平移的性质可得8,,AB DE AC DF BC EF ====,设AC DF CF AD x ====,求得BC=4x +,再由勾股定理理出方程求解即可.【详解】解:由平移的性质可得:8,,AB DE AC DF BC EF ====又∵四边形ACFD 是菱形∴设AC DF CF AD x ====又∵4EC =∴4BC EF CF CE x ==+=+又∵∠90BAC ︒=∴222AB AC BC +=∴2228(4)x x +=+解得,6x =即6AD DF CF AC ====故平移的距离为:6AD =故选:C .【点睛】本题主要考查了平移的性质,熟练掌握平移的基本性质是解答此题的关键.7.D解析:D【分析】根据题意画出图形,然后结合直角坐标系即可得出B'的坐标.【详解】解:如图,根据图形可得:点B′坐标为(0,3),故选:D .【点睛】本题考查了旋转作图的知识及旋转后坐标的变化,解答本题的关键是根据题意所述的旋转三要素画出图形,然后结合直角坐标系解答.8.C解析:C【分析】根据旋转中心为点O ,旋转方向顺时针,旋转角度270°,作出点P 的对应点P′,可得所求点的坐标.【详解】解:设P (x ,y )在第一象限,作PA ⊥x 轴于点A .作P'B ⊥x 轴于点B .∵点()P x,y 绕原点顺时针旋转270°,∴∠90P OP '=︒∴90P OB POA '∠+∠=︒∵90P POA ∠+∠=︒∴∠P P OB '=∠在△OAP 和△OBP'中,90PAO P BO P BOP OP OP ∠∠'︒⎧⎪∠∠'⎨⎪'⎩====, ∴△OAP ≌△P'BO ,∴OB=PA=y ,P'B=OA=x ,∵点()P x,y 绕原点顺时针旋转270°,则P'的坐标是(-y ,x ).故选:C .【点睛】本题考查了坐标与图形的旋转,全等三角形的判定与性质,正确的作出图形是解题的关键.9.D解析:D【分析】根据旋转得到A '与点B 重合,过点B 作BC AO ⊥于点C ,利用等边三角形的性质求出OC 和BC 的长,得到坐标.【详解】解:如图,AOB 绕着点O 顺时针旋转60︒得到OA B ''△,此时A '与点B 重合, 过点B 作BC AO ⊥于点C ,∵△OAB 是边长为4的等边三角形,∴AB=BO ,BC AO ⊥,∴AC=OC=2, 根据勾股定理,2216423BC BO OC =-=-=∴()A'-.2,23故选:D.【点睛】本题考查图形的旋转和等边三角形的性质,解题的关键是掌握等边三角形的性质.10.A解析:A【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【详解】A、是轴对称图形,也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:A.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图形重合.11.B解析:B【分析】根据平移变换的性质解决问题即可.【详解】解:∵AB=6,AE=2,∴BE=AB﹣AE=6﹣2=4,∴平移的距离为4,故选:B.【点睛】此题考查平移的要素:距离,平移前后对应点所连的线段的长度即为平移的距离. 12.C解析:C【分析】根据点A、点A的对应点的坐标确定出平移规律,然后根据规律求解点B的对应点的坐标即可.【详解】∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∵点B(2,1)的对应点的坐标为(﹣1,﹣1),故选C.【点睛】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.二、填空题13.25°【分析】由旋转的性质和三角形内角和定理即可解决问题【详解】解:∵△ABC绕着点C顺时针旋转一定角度后得到△A′B′C∴∠B=∠B′=110°在△ABC中∠ACB=180°−∠A−∠B=180°解析:25°【分析】由旋转的性质和三角形内角和定理即可解决问题.【详解】解:∵△ABC绕着点C顺时针旋转一定角度后得到△A′B′C,∴∠B=∠B′=110°,在△ABC中,∠ACB=180°−∠A−∠B=180°−45°−110°=25°,故答案为:25°.【点睛】本题考查了旋转的性质,三角形的内角和定理,熟记旋转变换的对应的角相等是解题的关键.14.15或60或105【分析】分①CD⊥AB时根据同位角相等两直线平行可得DE∥AB再解答即可;②CE⊥AB时根据直角三角形两锐角互余列式求解即可;③DE⊥AB时先根据直角三角形两锐角互余求出∠1再根据解析:15或60或105.【分析】分①CD⊥AB时,根据同位角相等两直线平行可得DE∥AB,再解答即可;②CE⊥AB时,根据直角三角形两锐角互余列式求解即可;③DE⊥AB时,先根据直角三角形两锐角互余求出∠1,再根据三角形内角和定理列式进行计算即可得解.【详解】①CD⊥AB时,则DE∥AB,∴∠BFE=∠E=45°,∴∠α=∠BFE−∠B=45°−30°=15°;②CE⊥AB时,α=90°−∠B=90°−30°=60°;③DE⊥AB时,∠1=90°−∠E=90°−45°=45°,所以,α=180°−∠1−∠B=180°−45°−30°=105°,所以,α=15或60或105.故答案为:15或60或105.【点睛】本题考查了旋转的性质,直角三角形的性质,三角形内角和定理以及三角形外角的性质,熟悉三角板的度数是解题的关键,难点在于要分情况讨论.15.【分析】按程序先作y轴对称求出点坐标横坐标-2纵坐标-1完成一次图形变换求出P变换后的坐标找出几次变换后规律奇次变换点的横坐标x=0偶次变换点的横坐标x=-2纵坐标变一次下移一个单位【详解】解:完成--解析:(2,2017)【分析】按程序先作y轴对称,求出点坐标,横坐标-2,纵坐标-1,完成一次图形变换求出P变换后的坐标,找出几次变换后规律奇次变换点的横坐标x=0,偶次变换点的横坐标x=-2,纵坐标变一次下移一个单位.【详解】-关于y轴的对称点(2,3),横坐标2-2=0,纵坐标3-解:完成1次图形变换,点P (2,3)1=2,P1(0,2),完成2次图形变换,点P1(0,2)关于y轴的对称点(0,2),横坐标0-2=-2,纵坐标2-1=1,P2(-2,1),完成3次图形变换,点P2(-2,1)关于y轴的对称点(2,1),横坐标3-3=0,纵坐标1-1=0,P3(0,0),完成4次图形变换,点P3(0,0)关于y轴的对称点(0,0),横坐标0-2=-2,纵坐标0-1=-1,P4(-2,-1),……,完成2020次图形变换,点P2019(0,3-2019)关于y轴的对称点(0,-2016),横坐标0-2=-2,纵坐标-2016-1=-2017,P2020(-2,-2017).故答案为:(-2,-2017).【点睛】本题考查图形规律探索问题,掌握图形程序变换的轴对称性质和平移特征,关键是找到变换规律奇次变换点的横坐标x=0,偶次变换点的横坐标x=-2,纵坐标变一次下移一个单位.16.【分析】过点A作BC上的高根据平移的性质可得=且然后根据已知周长可得=2从而求出然后根据梯形的面积公式和三角形的面积公式即可求出结论【详解】解:过点A作BC上的高由平移的性质可得=且∴四边形为梯形∵解析:53【分析】过点A作BC上的高h,根据平移的性质可得AA'=CC',且//AA CC'',5A C AC''==,然后根据已知周长可得AA'=2,从而求出BC',然后根据梯形的面积公式和三角形的面积公式即可求出结论.【详解】解:过点A作BC上的高h由平移的性质可得AA'=CC',且//AA CC'',5A C AC''==∴四边形AA C B''为梯形∵四边形AA C B''的周长为19,∴AA'+A C''+BC'+AB=19∴AA'+5+6+CC'+4=19∴2AA'=4∴AA'=2∴CC'=2∴BC'=BC+CC'=8∴四边形AA C B''的面积与ABC的面积的比为()128521632h AA BChBC''++==故答案为:53.【点睛】此题考查的是图形的平移问题,掌握平移的性质是解题关键.17.(42)【分析】将绕着点O按顺时针方向旋转90°得到顶点的坐标即为点A绕着点O按顺时针方向旋转90°得到的点由此可得出结果【详解】如图点A 绕着点O按顺时针方向旋转90°得到点的坐标为(42)故答案为解析:(4,2)【分析】将ABC 绕着点O 按顺时针方向旋转90°得到111A B C △顶点1A ,1A 的坐标即为点A 绕着点O 按顺时针方向旋转90°得到的点,由此可得出结果.【详解】如图,点A 绕着点O 按顺时针方向旋转90°得到点1A ,1A 的坐标为(4,2),故答案为:(4,2).【点睛】本题主要考查点的旋转变换,属于基础题,熟练掌握旋转变换的定义是解题的关键. 18.60【分析】根据等边三角形的性质求出∠BAC=确定两个旋转的图形中的对应点即可得到答案【详解】由旋转知旋转角为∠BAC ∵是等边三角形∴∠BAC=故答案为:60【点睛】此题考查旋转的性质等边三角形的性解析:60【分析】根据等边三角形的性质求出∠BAC=60︒,确定两个旋转的图形中的对应点即可得到答案.【详解】由旋转知旋转角为∠BAC ,∵ABC 是等边三角形,∴∠BAC=60︒,故答案为:60.【点睛】 此题考查旋转的性质,等边三角形的性质,正确理解图形中的旋转关系是解题的关键. 19.50【解析】由题意可知△ABC ≌△DEF ∴DE=AB=12∠DEC=∠B=90°∴四边形ABEH 是直角梯形∵DH=4∴EH=DE-DH=12-4=8∴S 梯形ABEH==50∴S 阴影=S 梯形ABEH=解析:50【解析】由题意可知△ABC ≌△DEF ,∴DE=AB=12,∠DEC=∠B=90°,∴四边形ABEH 是直角梯形, ∵DH=4,∴EH=DE-DH=12-4=8,∴S 梯形ABEH =()()·128522AB EH BE ++⨯==50, ∴S 阴影= S 梯形ABEH =50,故答案为50.【点睛】本题主要考查平移的性质,①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等,通过观察图形得出阴影部分的面积与梯形ABEH 在面积一样是解题的关键.20.【分析】根据旋转的性质可得出在中利用勾股定理求解即可【详解】解:∵∴∵将绕点逆时针旋转得到∴∴∴在中故答案为:【点睛】本题考查的知识点是旋转的性质以及勾股定理利用旋转的性质得出是解此题的关键解析:10【分析】根据旋转的性质可得出11116,30,60AC BAC B AC BA A B C ==∠=∠=︒∠=︒,在1ABC ∆中利用勾股定理求解即可.【详解】解:∵8AB =,6AC =,30BAC ∠=,∴1116,30AC BAC B AC AC ==∠=∠=︒,∵将ABC ∆绕点A 逆时针旋转60得到11AB C ∆,∴160BAB ∠=︒∴190BAC ∠=︒∴在1ABC ∆中,110BC ===.故答案为:10.【点睛】本题考查的知识点是旋转的性质以及勾股定理,利用旋转的性质得出190BAC ∠=︒是解此题的关键. 三、解答题21.(1)见解析;A 1(4,-4),B 1(2,0),C 1(1,-2);(2)见解析【分析】(1)根据关于原点对称的点的坐标特征即可得到A 1、B 1、C 1的坐标,然后描点连线即可;(2)利用旋转的性质和格点的特征分别画出点A 、B 、C 的对应点A 2、B 2、C 2的坐标,然后描点连线即可.【详解】解:(1)如图所示,A 1(4,-4),B 1(2,0),C 1(1,-2);(2)如图所示.【点睛】本题考查了利用旋转变换作图,熟练掌握网格结构,准确找出对应顶点的位置是解题的关键.22.(1)证明见解析;(2)CG DE DF =+,证明见解析;(3)CG DE DF =+,理由见解析.【分析】(1)直接利用全等三角形的判定方法AAS 证明FAB GAC ≌,即可得到FB CG =; (2)连接AD ,由ABC ABD ADC S S S =+可以得到111222AB CG AB DE AC DF ⋅⋅=⋅⋅+⋅⋅,又因为AB AC =,即可得到结论CG DE DF =+.(3)同(2)的证明方法一样;【详解】(1)证明:如图1中,90F G ∠=∠=︒,FAB CAG ∠=∠,AB AC =,(AAS)FAB GAC ∴≌,FB CG ∴=.(2)解:结论:CG DE DF =+.理由:如图2中,连接AD .ABC ABD ADC S S S =+,DE AB ⊥,DF AC ⊥,CG AB ⊥, 111222AB CG AB DE AC DF ∴⋅⋅=⋅⋅+⋅⋅, AB AC =, CG DE DF ∴=+.(3)解:结论不变:CG DE DF =+.理由:如图3中,连接AD .ABC ABD ADC S S S =+,DE AB ⊥,DF AC ⊥,CG AB ⊥,111222AB CG AB DE AC DF ∴⋅⋅=⋅⋅+⋅⋅, AB AC =,CG DE DF ∴=+.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质、平移的性质,正确掌握知识点是解题的关键;23.(1)作图见解析,B '的坐标为()-2,3;(2) 作图见解析,点M 的坐标为80,3⎛⎫ ⎪⎝⎭【分析】(1)依次作出,,A B C 三点以点P 为旋转中心逆时针方向旋转90︒对应点,A B C ''',,按顺序连接起来即可;(2)作点()1,2B 关于y 轴的对称点()1,2B ''-,连接AB ''交y 轴于M 点,M 点即为所求,设直线AB ''的解析式为y kx b =+,代入定点求得函数解析式,从而可得M 点坐标.【详解】解:(1)如图所示,B '的坐标为()-2,3;故答案为:()-2,3;(2)如图所示,作点()1,2B 关于y 轴的对称点()1,2B ''-,连接AB ''交y 轴于M 点,点M 即为所求.设直线AB ''的解析式为y kx b =+,将()()2,4,1,2A B ''-代入解析式,得:422k b k b =+⎧⎨=-+⎩, 解得2383k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线AB ''的解析式为2833y x =+, ∴直线AB ''与y 轴的交点为80,3⎛⎫ ⎪⎝⎭,即80,3M ⎛⎫ ⎪⎝⎭, 故答案为:80,3⎛⎫ ⎪⎝⎭【点睛】本题考查了画旋转图形;一次函数等相关知识,解题的关键是正确求出一次函数的表达式. 24.(1)见解析,1(2,4)A -;(2)见解析【分析】(1)分别作出△ABC 的各个顶点关于x 轴的对称点,然后连线作图;(2)根据旋转的性质作图.【详解】解:(1)如图,111A B C △即为所求根据关于x 轴对称的点的坐标特征可知:1(2,4)A .(2)如图,22A BC 即为所求【点睛】本题考查轴对称及旋转作图,掌握点的坐标变化规律找准图形对应点正确作图是解题关键.25.(1)详见解析;(2)详见解析;(3)2.【分析】(1)分别作出A 、B 、C 关于对称轴x 的对应点A 1、B 1、C 1,再顺次连接即可得所求图形;(2)分别将A 、B 、C 三点向右平移4个单位,再向下平移3个单位,得到对应点A 2、B 2、C 2,再顺次连接即可得所求图形为222A B C △;(3)利用构图法即可求解;【详解】(1) ;(2) ;(3)ABC S =2×3-1112⨯⨯-1222⨯⨯-1132⨯⨯ 136222=--- 64=-2=.【点睛】本题考查作图—轴对称及平移变换,还涉及到三角形面积公式,解题的关键是熟练掌握轴对称的性质及平移的性质.26.(1)图见解析;(2)图见解析;(3)成中心对称,P '的坐标为(2,0)【分析】(1)根据网格结构找出点A 、B 、C 绕点P 旋转180°后的对应点A ',B ',C '位置,然后顺次连接即可;(2)根据网格结构找出点A 、B 、C 绕点P 旋转180°后的对应点A '',B '',C ''位置,然后顺次连接即可;(3)将对应点连线,观察图形即可求解.【详解】(1)如图:(2)如图:(3)如图,A B C '''∆与A B C ''''''∆成中心对称,对称中心P '的坐标为(2,0).【点睛】此题考查旋转的性质,画旋转的图形,平移的规律,画平移的图形,确定对称中心,掌握中心对称的性质及平移的规律是解题的关键.。
(好题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试卷(含答案解析)
一、选择题1.在平面直角坐标系中,A (0,3),B (4,0),把△AOB 绕点O 旋转,使点A ,B 分别落在点A ′,B ′处,若A ′B ′∥x 轴,点B ′在第一象限,则点A 的对应点A ′的坐标为( ) A .(912,55-) B .(129,55-) C .(1612,55-) D .(1216,55-) 2.将点(3,1)绕原点顺时针旋转90︒得到的点的坐标是( )A .(3,1)--B .(1,3)-C .(3,1)-D .(1,3)- 3.下面是几种病毒的形态模式图,这些图案中既不是轴对称图形也不是中心对称图形的是( )A .B .C .D .4.如图,将矩形ABCD 绕点C 顺针旋转90°到矩形A B C D ''''的位置,若4,2AB AD ==,则图中阴影部分的面积为( )A .4233π- B .4433π- C .8233π- D .8433π- 5.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 6.在平面直角坐标系xOy 中,ABC 与A B C '''关于原点O 成中心对称的是( ) A . B .C.D.7.如图,点A,B的坐标分别为(1,1)、(3,2),将△ABC绕点A按逆时针方向旋转90°,得到△A'B'C',则B'点的坐标为()A.(﹣1,3)B.(-1,2)C.(0,2)D.(0,3)8.在奔驰、宝马、丰田、三菱等汽车标志图形中,为中心对称图形的是()A.B.C.D.9.在线段,直角三角形,平行四边形,长方形,正五角星,正方形,等边三角形中,既是轴对称图形,又是中心对称图形的图形有()A.3个B.4个C.5个D.6个10.如图,点D是等腰直角三角形ABC内一点,AB=AC,若将△ABD绕点A逆时针旋转到△ACE的位置,则∠AED的度数为()A.25°B.30°C.40°D.45°11.如图,已知ABC 和A B C '''关于点O 成中心对称,则下列结论错误的是( ).A .ABC ABC '''∠=∠B .AOB A OB ''∠=∠C .AB A B ''=D .OA OB '= 12.如图,△ABC 沿线段BA 方向平移得到△DEF ,若AB =6,AE =2.则平移的距离为( )A .2B .4C .6D .8二、填空题13.如图,在Rt ABC 和Rt CDE △中,90ACB DCE ∠=∠=︒,30A ∠=︒,45E ∠=︒,B ,C ,E 三点共线,Rt ABC △ 不动,将Rt CDE △绕点C 逆时针旋转()0360a α︒<<︒,当DE //BC 时,α=____________.14.如图,在△ABC 中,∠BAC =105°,将△ABC 绕点A 逆时针旋转得到△AB ′C ′.若点B 恰好落在BC 边上,且AB ′=CB ′,则∠C ′的度数为_____°.15.平面直角坐标系xOy 中,先作出点P (2,3)-关于y 轴的对称点,再将该对称点先向下平移1个单位,再向左平移2个单位得到点P 1,称为完成一次图形变换,再将点P 1进行同样的图形变换得到点P 2,以此类推,则点P 2020的坐标为___________.16.如图,在ABC ∆中,90,3,4ACB AC BC ∠=︒==,将ABC ∆绕点C 顺时针旋转90︒得到'''A B C ∆,若P 为AB 边上一动点,旋转后点P 的对应点为点P',则线段'PP 长度的取值范围是________.17.如图,在平面直角坐标系xOy 中,点A (2,m )绕坐标原点O 逆时针旋转90°后,恰好落在图中阴影区域(包括边界)内,则m 的取值范围是_____.18.点P (m +2,2m +1)向右平移1个单位长度后,正好落在y 轴上,则m =_____. 19.已知:如图,在AOB ∆中,9034AOB AO cm BO cm ︒∠===,,,将AOB ∆绕顶点O ,按顺时针方向旋转得到11A OB ∆,线段1OB 与边AB 相交于点D ,则线段1B D 最大值为=________cm20.已知等边△ABC 的边长为4,点P 是边BC 上的动点,将△ABP 绕点A 逆时针旋转60°得到△ACQ ,点D 是AC 边的中点,连接DQ ,则DQ 的最小值是_____.三、解答题21.已知:如图1,AOB 和COD 都是等边三角形.(1)求证:①AC =BD ;②∠APB =60°;(2)如图2,在AOB 和COD 中,OA =OB ,OC =OD ,∠AOB =∠COD =α,则AC 与BD 间的等量关系为 ,∠APB 的大小为22.如图1,已知ABC 中,1,90,AB BC ABC ==∠=︒把一块含30角的直角三角板DEF 的直角顶点D 放在AC 的中点上(直角三角板的短直角边为,DE 长直角边为DF ),将直角三角板DEE 绕D 点按逆时针方向旋转.(1)在图1中.DE 交AB 于,M DF 交BC 于N .①求证:DM DN =;②在这一过程中,直角三角板DEF 与三角形ABC 的重叠部分为四边形,DMBN 请说明四边形DMBN 的面积是否发生变化?若发生变化,请说明如何变化的;若不发生变化,请求出其面积.(2)继续旋转至如图2的位置,延长AB 交DE 于,M 延长BC 交DF 于,N DM DN =是否仍然成立?(请写出结论,不用证明.)(3)继续旋转至如图3的位置,延长FD 交BC 于N ,延长ED 交AB 于,M DM DN =是否仍然成立?(请写出结论,不用证明.)23.如图,在平面直角坐标系中,已知ABC 的三个顶点坐标分別是()2,1A -,()1,2B -,()3,3C -(1)将ABC 向上平移4个单位长度得到111A B C △,请画出111A B C △;(2)请画出与ABC 关于y 轴对称的222A B C △;(3)请写出1A 、2A 的坐标.24.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,ABC 的顶点均在格点上,点A 的坐标是(3,1)--.(1)将ABC 关于x 轴对称得到111A B C △,画出111A B C △,并写出点1B 的坐标; (2)把111A B C △平移,使点B 平移到2(3,4)B ,请作出111A B C △平移后的222A B C △,并写出2A 的坐标;(3)已知ABC 中有一点(,)D a b ,求222A B C △中的对应点2D 的坐标.25.如图,在正方形ABCD 中,点E 是AB 边上的一点(与A ,B 两点不重合),将BCE 绕着点C 旋转,使CB 与CD 重合,这时点E 落在点F 处,联结EF .(1)按照题目要求画出图形;(2)若正方形边长为3,1BE =,求AEF 的面积;(3)若正方形边长为m ,BE n =,比较AEF 与CEF △的面积大小,并说明理由. 26.如图,已知ABC 的三个顶点在小方格顶点上(小方格的边长为1个单位长度),按下列要求画出图形和回答问题:(1)在图中画出:ABC 绕点C 按顺时针方向旋转90︒后的图形111A B C △; (2)在图中画出:(1)中的111A B C △关于直线MN 的轴对称的图形222A B C △; (3)在(2)中的222A B C △可以用原ABC 通过怎样的一次运动得到的?请你完整地描述这次运动的过程.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】设A′B′交y轴于T′,利用勾股定理可求出A′B′的长度,再利用三角形面积公式求出OT的长度,最后再利用勾股定理即可求出A′T′的长度,即可求出A′点坐标.【详解】解:如图,设A′B′交y轴于T′.∵A(0,3),B(4,0),∴OA=3,OB=4,∵∠A ′OB ′=90°,OT'⊥A ′B ′,OA =OA ′=3,OB =OB ′=4,∴AB =A ′B ′=22OA OB +=2234+=5,∵A OB S ''=12•OA ′•OB ′=12•A ′B ′•OT ′, ∴OT ′=125, ∴A ′T ′=22OA OT '-=221293()55-=, ∴A ′(-95,125). 故选:A .【点睛】 本题考查坐标与图形的变化-旋转,熟练利用勾股定理解直角三角形以及三角形的面积公式是解答本题的关键.2.B解析:B【分析】根据旋转的性质即可确定点坐标.【详解】解:点绕原点旋转90度的坐标变换规律:横、纵坐标互换位置,且纵坐标变为相反数, 则点(3,1)绕原点O 顺时针旋转90°得到的点的坐标为(1,-3),如图,故选:B .【点睛】本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°. 3.C解析:C【分析】根据轴对称图形和中心对称图形的定义进行判定即可;【详解】A 、是轴对称图形不是中心对称图形,故不符合题意;B 、是轴对称图形不是中心对称图形,故不符合题意;C 、既不是轴对称图形也不是中心对称图形,故符合题意;D 、既是轴对称图形又是中心对称图形,故不符合题意;故选:C .【点睛】本题考查了轴对称图形和中心对称图形,正确理解轴对称图形和中心对称图形的定义是解题的关键;4.C解析:C【分析】连接CE ,由矩形的性质可知90A B C A D C ''''∠=∠=︒,在Rt EB C '中,可证4,2CE CD AB CB BC AD ''======,结合余弦定义解得60ECB '∠=︒,继而由正弦定义解得23B E '=,最后根据阴影面积=扇形DCE 面积Rt EB C '-面积解题.【详解】解:连接CE ,矩形A B CD '''中,90A B C A D C ''''∠=∠=︒在Rt EB C '中,4,2CE CD AB CB BC AD ''======21cos 42B C ECB CE ''∠=== 60ECB '∴∠=︒3sin 60B E CE '∴︒== 23B E '∴=22604160418=22323360236023S B C B E πππ⨯⨯''∴-⋅=-⨯⨯=-阴影, 故选:C .【点睛】本题考查旋转、特殊角的三角函数值、扇形面积等知识,是重要考点,难度较易,掌握相关知识是解题关键.5.A解析:A【分析】根据轴对称图形和中心对称图形的定义即可判断结论;【详解】A是轴对称图形也是中心对称图形,故本项正确;B不是轴对称图形,也不是中心对称图形,故本项错误;C是轴对称图形不是中心对称图形,故本项错误;D不是轴对称图形,是中心对称图形,故本项错误;故选:A.【点睛】本题考查轴对称图形,中心对称图形,熟记相关概念是解题的关键.6.D解析:D【分析】根据关于y轴对称的点的坐标特征对A进行判断;根据关于x轴对称的点的坐标特征对B 进行判断;根据关于原点对称的点的坐标特征对C、D进行判断.【详解】解:A、△ABC与△A'B'C'关于y轴对称,所以A选项不符合题意;B、△ABC与△A'B'C'关于x轴对称,所以B选项不符合题意;C、△ABC与△A'B'C'关于(-12,0)对称,所以C选项不符合题意;D、△ABC与△A'B'C'关于原点对称,所以D选项符合题意;【点睛】本题考查了中心对称:把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.中心对称的性质:关于中心对称的两个图形能够完全重合;关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.7.D解析:D【分析】根据题意画出图形,然后结合直角坐标系即可得出B'的坐标.【详解】解:如图,根据图形可得:点B′坐标为(0,3),故选:D.【点睛】本题考查了旋转作图的知识及旋转后坐标的变化,解答本题的关键是根据题意所述的旋转三要素画出图形,然后结合直角坐标系解答.8.B解析:B【分析】据中心对称图形的概念,结合图形特征即可求解.【详解】A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项成文;故选:B.【点睛】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.9.A解析:A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:线段,长方形,正方形是轴对称图形,也是中心对称图形,符合题意;正五角星,等边三角形是轴对称图形,不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,不符合题意;直角三角形既不是轴对称图形,也不是中心对称图形,不符合题意.共3个既是轴对称图形又是中心对称图形.故选:A.【点睛】考查了中心对称图形与轴对称图形的概念,判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.10.D解析:D【分析】由题意可以判断△ADE 为等腰直角三角形,即可解决问题.【详解】解:如图,由旋转变换的性质知:∠EAD=∠CAB ,AE=AD ;∵△ABC 为直角三角形,∴∠CAB=90°,△ADE 为等腰直角三角形,∴∠AED=45°,故选:D .【点睛】该题考查了旋转变换的性质及其应用问题;应牢固掌握旋转变换的性质.11.D解析:D【分析】根据三角形和中心对称的性质求解,即可得到答案.【详解】∵ABC 和A B C '''关于点O 成中心对称∴ABC A B C '''∠=∠AOB A OB ''∠=∠AB A B ''=OA OA '=OB OB '=∴OA OB '=错误,其他选项正确故选:D .【点睛】本题考查了三角形和中心对称图形的知识;解题的关键是熟练掌握三角形和中心对称图形的性质,从而完成求解.12.B解析:B【分析】根据平移变换的性质解决问题即可.【详解】解:∵AB =6,AE =2,∴BE =AB ﹣AE =6﹣2=4,∴平移的距离为4,故选:B.【点睛】此题考查平移的要素:距离,平移前后对应点所连的线段的长度即为平移的距离.二、填空题13.45º或225º【分析】根据旋转方向与旋转角的度数范围可得当DE ∥BC 时画出两种符合条件的图形分别利用平行线的性质与三角形内角得定理即可求得相应的旋转角的度数【详解】解:此题可分两种情况:如图1:∵解析:45º或225º【分析】根据旋转方向与旋转角的度数范围,可得当DE ∥BC 时,画出两种符合条件的图形,分别利用平行线的性质与三角形内角得定理即可求得相应的旋转角的度数.【详解】解:此题可分两种情况:如图1:∵90DCE ∠=︒,45E ∠=︒,∴45D ∠=︒.∵DE ∥BC ,∴45BCD D ∠=∠=︒.∵90ACB ∠=︒.∴45ACD ACB BCD ∠=∠-∠=︒.即旋转角α的度数为45º.如图2:∵DE ∥BC ,∴45BCE E ∠=∠=︒.∴225?ACD ACB BCE DCE ∠=∠+∠+∠=.即旋转角α的度数为225º.综上所述,旋转角α的度数为45º或225º.故答案为:45º或225º.【点睛】此题考查了旋转角的计算,掌握旋转角的定义并能运用平行线的性质正确求出旋转角的度数是解题的关键.14.25【分析】由旋转的性质可得∠C=∠CAB=AB 由等腰三角形的性质可得∠C=∠CAB ∠B=∠ABB 由三角形的外角性质和三角形内角和定理可求解【详解】解:∵AB=CB ∴∠C=∠CAB ∴∠ABB=∠C+解析:25【分析】由旋转的性质可得∠C=∠C',AB=AB',由等腰三角形的性质可得∠C=∠CAB',∠B=∠AB'B ,由三角形的外角性质和三角形内角和定理可求解.【详解】解:∵AB'=CB',∴∠C=∠CAB',∴∠AB'B=∠C+∠CAB'=2∠C ,∵将△ABC 绕点A 按逆时针方向旋转得到△AB'C',∴∠C=∠C',AB=AB',∴∠B=∠AB'B=2∠C ,∵∠B+∠C+∠CAB=180°,∴3∠C=180°-105°,∴∠C=25°,∴∠C'=∠C=25°,故答案为:25.【点睛】本题考查了旋转的性质,等腰三角形的性质,灵活运用这些的性质解决问题是本题的关键.15.【分析】按程序先作y 轴对称求出点坐标横坐标-2纵坐标-1完成一次图形变换求出P 变换后的坐标找出几次变换后规律奇次变换点的横坐标x=0偶次变换点的横坐标x=-2纵坐标变一次下移一个单位【详解】解:完成解析:(2,2017)--【分析】按程序先作y 轴对称,求出点坐标,横坐标-2,纵坐标-1,完成一次图形变换求出P 变换后的坐标,找出几次变换后规律奇次变换点的横坐标x=0,偶次变换点的横坐标x=-2,纵坐标变一次下移一个单位.【详解】解:完成1次图形变换,点P (2,3)-关于y 轴的对称点(2,3),横坐标2-2=0,纵坐标3-1=2,P 1(0,2),完成2次图形变换,点P 1 (0,2)关于y 轴的对称点(0,2),横坐标0-2=-2,纵坐标2-1=1,P 2(-2,1),完成3次图形变换,点P 2(-2,1)关于y 轴的对称点(2,1),横坐标3-3=0,纵坐标1-1=0,P 3(0,0),完成4次图形变换,点P 3(0,0)关于y 轴的对称点(0,0),横坐标0-2=-2,纵坐标0-1=-1,P 4(-2,-1),……,完成2020次图形变换,点P 2019(0,3-2019)关于y 轴的对称点(0,-2016),横坐标0-2=-2,纵坐标-2016-1=-2017,P 2020(-2,-2017).故答案为:(-2,-2017).【点睛】本题考查图形规律探索问题,掌握图形程序变换的轴对称性质和平移特征,关键是找到变换规律奇次变换点的横坐标x=0,偶次变换点的横坐标x=-2,纵坐标变一次下移一个单位.16.【分析】过点C 作CH ⊥AB 于H 利用勾股定理求出AB 结合直角三角形的面积即可求出CH 由旋转易得为等腰直角三角形从而得出求出CP 的取值范围即可求出结论【详解】解:过点C 作CH ⊥AB 于H ∵在中∴AB=∵=解析:5PP '≤≤【分析】过点C 作CH ⊥AB 于H ,利用勾股定理求出AB ,结合直角三角形的面积即可求出CH ,由旋转90︒易得PCP '△为等腰直角三角形,从而得出PP '=,求出CP 的取值范围即可求出结论.【详解】解:过点C 作CH ⊥AB 于H ,∵在ABC 中,90,3,4ACB AC BC ∠=︒==∴225AC BC +∵ABC S =12AC·BC=12AB·CH ∴12×3×4=12×5CH 解得CH=125由旋转90︒易得PCP '△为等腰直角三角形, 所以2PP CP '=, ∵P 在线段AB 上移动,故当点P 与点B 重合时,CP 最大值等于CB 等于4;当点P 与点H 重合时,CP 最小值等于CH 等于125, ∴1222425CP ≤≤则122425PP '≤≤ 故答案为:122425PP '≤≤ 【点睛】此题考查的是勾股定理、旋转的性质、等腰直角三角形的性质,掌握勾股定理、旋转的性质、等腰直角三角形的性质是解题关键.17.﹣3≤m≤﹣25【分析】如图将阴影区域绕着点O 顺时针旋转90°与直线x =2交于CD 两点则点A (2m )在线段CD 上结合点CD 的纵坐标即可求出m 的取值范围【详解】如图将阴影区域绕着点O 顺时针旋转90°与解析:﹣3≤m≤﹣2.5.【分析】如图,将阴影区域绕着点O 顺时针旋转90°,与直线x =2交于C ,D 两点,则点A (2,m )在线段CD 上,结合点C,D 的纵坐标,即可求出m 的取值范围.【详解】如图,将阴影区域绕着点O 顺时针旋转90°,与直线x =2交于C ,D 两点,则点A (2,m )在线段CD 上,又∵点D 的纵坐标为﹣2.5,点C 的纵坐标为﹣3,∴m 的取值范围是﹣3≤m ≤﹣2.5,故答案为﹣3≤m ≤﹣2.5.【点睛】考查旋转的性质,根据旋转的性质,画出图形是解题的关键.18.-3【详解】点P (m+22m+1)向右平移1个单位长度后正好落在y 轴上则故答案为:-3解析:-3【详解】点P (m+2,2m+1)向右平移1个单位长度后(3,21)m m ++ ,正好落在y 轴上,则30,3m m +==-故答案为:-319.【分析】根据已知条件由勾股定理可得AB=5当时OD 最小由等积法可得代入数据可得即可求出线段最大值【详解】在中∴AB=∵∴OD 最小时最大当时OD 最小即OD 为的高∴即解得:∴线段最大值为:=cm 故答案为 解析:85【分析】根据已知条件由勾股定理可得AB=5,当1B O AB ⊥时,OD 最小,由等积法可得AO OB AB OD =,代入数据可得125OD =,即可求出线段1B D 最大值. 【详解】 在Rt AOB 中,34AO cm BO cm ==,,∴22345+=,∵11B D B O OD =-,14B O BO cm ==,∴OD 最小时,1B D 最大,当1B O AB ⊥时,OD 最小,即OD 为AOB 的高,∴AO OB AB OD =,即345OD ⨯=, 解得:125OD =, ∴线段1B D 最大值为:1245-=85cm , 故答案为:85. 【点睛】 本题主要考查了勾股定理,线段的最值问题,根据图形分析线段取得最值的情况是解题的关键.20.【分析】根据旋转的性质即可得到∠BCQ =120°当DQ ⊥CQ 时DQ 的长最小再根据勾股定理即可得到DQ 的最小值【详解】解:如图由旋转可得∠ACQ =∠B =60°又∵∠ACB =60°∴∠BCQ =120°∵ 解析:3【分析】根据旋转的性质,即可得到∠BCQ =120°,当DQ ⊥CQ 时,DQ 的长最小,再根据勾股定理,即可得到DQ 的最小值.【详解】解:如图,由旋转可得∠ACQ =∠B =60°,又∵∠ACB =60°,∴∠BCQ =120°,∵点D 是AC 边的中点,∴CD =2,当DQ ⊥CQ 时,DQ 的长最小,此时,∠CDQ =30°,∴CQ =12CD =1, ∴DQ 22213-=,∴DQ 的最小值是3,故答案为3.【点睛】本题主要考查线段最小值问题,关键是利用旋转、等边三角形的性质及勾股定理求解.三、解答题21.(1)①见解析,②见解析;(2)AC =BD ,α【分析】(1)①根据△AOB 和△COD 都是等边三角形,求出∠AOC=∠BOD ,根据SAS 推出△AOC ≌△BOD ,根据全等三角形的性质得出AC=BD ;②由△AOC ≌△BOD ,可得∠CAO=∠DBO ,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB ,推出∠APB=∠AOB 即可;(2)根据∠AOB=∠COD=α,求出∠AOC=∠BOD ,根据SAS 推出△AOC ≌△BOD ,根据全等三角形的性质得出AC=BD ,∠CAO=∠DBO ,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB ,推出∠APB=∠AOB 即可.【详解】证明:(1)①∵△AOB 和△COD 都是等边三角形,∴OA=OB ,OC=OD ,∠AOB =∠COD =60°,∴∠AOC =∠BOD ,在△AOC 和△BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD (SAS ),∴AC =BD ,∠CAO =∠DBO ,②设AC 与BO 交于E ,∵△AOC ≌△BOD ,∴∠CAO =∠DBO ,∵∠AEO=∠BEP ,∴∠CAO+∠AOB =∠DBO+∠APB ,∴∠APB =∠AOB =60°.(2)AC=BD ,∠APB=α,理由如下:∵∠AOB=∠COD=α,∴∠AOC=∠BOD ,在△AOC 和△BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD ,∴AC=BD ,∠CAO=∠DBO ,设AC 与BO 交于E ,∵∠AEO=∠BEP ,∴∠CAO+∠AOB=∠DBO+∠APB ,∴∠APB=∠AOB=α,故答案为AC=BD ,α.【点睛】本题考查三角形旋转,三角形全等判定与性质,三角形内角和,掌握三角形旋转,三角形全等判定与性质,三角形内角和是解题关键.22.(1)①见解析;②不变,14;(2)成立;(3)成立 【分析】(1)连接BD ,证明△DMB ≌△DNC .根据已知,全等条件已具备两个,再证出∠MDB=∠NDC ,用ASA 证明全等,四边形DMBN 的面积不发生变化,因为它的面积始终等于△ABC 面积的一半;(2)成立.同样利用(1)中的证明方法可以证出△DMB ≌△DNC ;(3)结论仍然成立,方法同(1).【详解】解:()1①如图,连接DB ,在Rt ABC ∆中,,,AB BC AD DC ==45,90,45A C BDC ABD CBD ∴∠=∠=︒∠=︒∠=∠=︒45,ABD C ∴∠=∠=︒,DB DC AD ∴==90,MDB BDN CDN BDN ∠+∠=∠+∠=,MDB NDC ∴∠=∠,BMD CND ∴∆≅∆DM DN ∴=;②四边形DMBN 的面积不发生变化;由①知,,BMD CND ∆≅∆BMD CND S S ∆∴∆=DBN DMB DBN DNC DMBN S S S S S ∆∆∆∆∴=+=+四边形 1111112224DBC ABC S S ∆∆===⨯⨯⨯= ()2DM = DN 仍然成立.理由如下:连接BD 由(1)知BD ⊥AC ,BD= CD ,∴∠ABD=∠ACB = 45°,∴∠ABD+∠MBD= 180°,∠ACB+∠NCD= 180°,∴∠MBD=∠NCD ,∵BD ⊥AC ,∴∠MDB +∠MDC = 90° ,又∠NDC +∠MDC = 90°,∴∠MDB=∠NDC ,在△MDB 和△NDC 中,∵∠MBD=∠NCD ,BD= CD ,∠MDB= ∠NDC.∴△MDB ≌△NDC (ASA)∴DM = DN ,()3DM = DN 成立,理由如下:连接BD ,由(1) 知BD ⊥AC ,BD= AD ,∴∠BAD=∠ABD = 45°,∴∠MBD=∠NCD= 45°,∵BD ⊥AC ,∴∠MDB +∠NDB = 90° ,又∠NDC +∠NDB = 90°,∴∠MDB=∠NDC ,在△MDB 和△NDC 中∵∠MBD=∠NCD ,BD= CD ,∠MDB= ∠NDC.∴△MDB ≌△NCD (ASA),∴DM = DN .【点睛】本题考查了利用ASA 求三角形全等,还运用了全等三角形的性质,等腰直角三角形的性质,及等腰三角形三线合一定理,勾股定理和面积公式的利用等知识.23.(1)见解析;(2)见解析;(3)1(2,3)A ,2(2,1)--A .【分析】(1)根据平移的性质先作出三角形三个顶点,然后连线作图;(2)根据轴对称的性质,先做出三角形三个顶点关于x 轴的对称点,然后连线作图; (3)根据图形写出相应的点的坐标【详解】解:(1)如图所示:111A B C △,即为所求:(2)如图所示:222A B C △,即为所求:(3)1(2,3)A ,2(2,1)--A .【点睛】本题考查平移及轴对称作图,认真审题,正确作出图形对应的顶点是解题关键. 24.(1)图见解析,点B 1的坐标为(-2,4);(2)图见解析,A 2的坐标为(2,1);(3)D 2的坐标为(a+5,-b ).【分析】(1)分别作出点A 、B 、C 关于x 轴对称得到的对应点,再顺次连接可得;(2)根据B 1(-2,4)和2(3,4)B ,可得平移方式为向右平移5个单位,分别作出△A 1B 1C 1向右平移5个单位所得对应点,再顺次连接可得;(3)根据图形的变换方式即可得出D 点的变换方式,从而可得点2D 的坐标.【详解】解:(1)如图所示,△A 1B 1C 1即为所求,点B 1的坐标为(-2,4);(2)如图所示,△A 2B 2C 2即为所求,A 2的坐标为(2,1);(3)△A 2B 2C 2中的对应点D 2的坐标为(a+5,-b ).【点睛】本题考查坐标与图形变换—轴对称和平移.理解点的变换和对应图形变换的关系是解题关键.25.(1)见解析;(2)4;(3)CEF AEF S S >△△,见解析【分析】(1)根据题意去旋转BCE ,画出图象;(2)由旋转的性质得1DF BE ==,求出AE 和AF 的长,即可求出AEF 的面积; (3)用(2)的方法表示出AEF 的面积,再用四边形AECF 的面积减去AEF 的面积得到CEF △的面积,比较它们的大小.【详解】(1)如图所示:(2)根据旋转的性质得1DF BE ==,∴312AE =-=,314AF =+=, ∴142AEF S AE AF ∆=⨯⨯=; (3)根据旋转的性质得DF BE n ==, 221111()()2222AEF AE AF m S n m n m n =⨯⨯=-+=-△, ∵CBE CDF S S =△△,∴AECF ABCD S S =四边形四边形, ∴2222211112222CEF AEF AECF S S S m m n m n ⎛⎫=-=⎪⎝--=+⎭四边形△△, ∵0n >, ∴222211112222m n m n +>-, ∴CEF AEF S S >△△.【点睛】本题考查旋转的性质,解题的关键是掌握图形旋转的性质,以及利用割补法求三角形面积的方法.26.(1)图见解析;(2)图见解析;(3)将ABC 沿着BC 翻折一次可得到222A B C △.【分析】(1)先根据旋转的定义画出点111,,A B C ,再顺次连接即可得;(2)先根据轴对称的定义画出点222,,A B C ,再顺次连接即可得; (3)先根据旋转和轴对称的性质可得1122A B B A A B ==,1122AC C C A A ==,BC 与22B C 重合,再根据翻折的定义即可得.【详解】(1)先根据旋转的定义画出点111,,A B C ,再顺次连接即可得111A B C △,如图所示: (2)先根据轴对称的定义画出点222,,A B C ,再顺次连接即可得222A B C △,如图所示: (3)由旋转和轴对称的性质得:1122A B B A A B ==,1122AC C C A A ==,BC 与22B C 重合,则将ABC 沿着BC 翻折一次即可得到222A B C △.【点睛】本题考查了画旋转图形、画轴对称图形、图形的翻折,熟练掌握图形的运动是解题关键.。
(必考题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试题(含答案解析)(1)
一、选择题1.把点()P x,y 绕原点顺时针旋转270°,点P 的对应点的坐标是( )A .(),y x -B .(),x y --C .(),y x -D .(),x y 2.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 3.已知菱形OABC 在平面直角坐标系中的位置如图所示,若2OA =,45AOC ∠=︒,将菱形OABC 绕点O 逆时针旋转180︒,得到菱形OA B C ''',则点B 的对应点B '的坐标是( )A .(22,2)+-B .(22,2)--C .(22,2)-+-D .(22,2)-- 4.中国的传统建筑许多窗格图案蕴含着对称之美,现从中选取以下四种窗格图案,其中只是中心对称图形但不是轴对称图形的是( )A .B .C .D . 5.下列说法中正确的是( )A .如果一个图形是旋转对称图形,那么这个图形一定也是轴对称图形;B .如果一个图形是中心对称图形,那么这个图形一定也是轴对称图形;C .如果一个图形是中心对称图形,那么这个图形一定也是旋转对称图形;D .如果一个图形是旋转对称图形,那么这个图形一定也是中心对称图形;6.在线段,直角三角形,平行四边形,长方形,正五角星,正方形,等边三角形中,既是轴对称图形,又是中心对称图形的图形有( )A .3个B .4个C .5个D .6个7.如图,点D 是等腰直角三角形ABC 内一点,AB =AC ,若将△ABD 绕点A 逆时针旋转到△ACE 的位置,则∠AED 的度数为( )A .25°B .30°C .40°D .45°8.如图所示图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 9.如图,ABC 面积为2,将ABC 沿AC 方向平移至DFE △,且AC=CD ,则四边形AEFB 的面积为( )A .6B .8C .10D .1210.下列语句说法正确的是 ( )A .两锐角分别相等的两个直角三角形全等B .经过旋转,对应线段平行且相等C .一个命题是真命题,它的逆命题一定也是真命题D .两条直角边分别相等的两直角三角形全等11.下列四个图案中,是轴对称图形,但不是中心对称图形的是( )A .B .C .D . 12.下列说法错误的是( )A .对顶角相等B .两直线平行,同旁内角相等C .平移不改变图形的大小和形状D .同一平面内,垂直于同一直线的两条直线平行 二、填空题13.已知A 、B 两点关于原点对称,若点A 的坐标为(-1,2),则点B 的坐标为________.14.在平面直角坐标系中,以原点为中心,把点A(4,5)逆时针旋转180°,得到的点B 的坐标为_______.15.如图,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 的方向平移2个单位后,得到A B C ''',连接A C ',则A B C ''的周长为________.16.如图,在等边三角形网格中,已有两个小等边三角形被涂黑,若再将图中其余小等边三角形涂黑一个,使涂色邮分构成一个轴对称围形,则有_______种不同的涂法.17.如图,把正方形铁片OABC 置于平面直角坐标系中,顶点A 的坐标为(3,0),点()1,2P 在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置,…,则正方形铁片连续旋转2019次后,则点P 的坐标为_________.18.如图,将△AOB 绕点O 按逆时针方向旋转50°后得到△COD ,如果∠AOB =15°,那么∠AOD 的度数为_____.19.在平面直角坐标系xOy 中,点A ,B 的坐标分别为(﹣4,3),(﹣1,3),将线段AB 沿x 轴正方向平移m 个单位,若线段AB 与y 轴有交点,则m 的取值范围为是_____.20.在 ABC 内的任意一点 ()P a b , 经过平移后的对应点为 ()1P cd ,,已知 ()32A , 在经过此次平移后对应点 1A 的坐标为 ()51-,,则 c d a b +-- 的值为________________.三、解答题21.如图所示,△ABC 三个顶点的坐标分别为A (-4,4),B (-2,0),C (-1,2).(1)如果△A 1B 1C 1与△ABC 关于原点中心对称,画出△A 1B 1C 1并写出A 1,B 1 ,C 1三点的坐标;(2)画出将△ABC 绕原点O 按逆时针方向旋转90所得的△A 2B 2C 2 .22.如图,在正方形网格中,ABC 的顶点都是在格点上,请用尺规完成以下作图(保留作图痕迹).(1)在图1中,作ABC 关于点O 的对称111A B C △;(2)在图2中,作ABC 绕点A 顺时针旋转一定角度后,顶点仍在格点上的11AB C △; (3)在图2中,判断ABC 的形状是______三角形.23.如图,已知直线y =kx +2与直线y =3x 交于点A (1,m ),与y 轴交于点B . (1)求k 和m 的值;(2)求△AOB 的周长;(3)设直线y =n 与直线y =kx +2,y =3x 及y 轴有三个不同的交点,且其中两点关于第三点对称,求出n 的值.24.如图,一次函数2y x b =+的图像经过点(1,3)M ,且与x 轴,y 轴分别交于,A B 两点.(1)填空:b=;⊥交直线l于点C,求(2)将该直线绕点A顺时针旋转45至直线l,过点B作BC AB点C的坐标及直线l的函数表达式.25.如图,将ABC绕点B顺时针旋转90°得到DBE(点A,点C的对应点分别为点D,点E).(1)根据题意补全图形;(2)连接DC,CE,如果∠BCD=45°.用等式表示线段DC,CE,AC之间的数量关系,并证明.26.(1)请画出△ABC关于原点O对称的△A1B1C1;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)写出A2 和C2两点坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据旋转中心为点O ,旋转方向顺时针,旋转角度270°,作出点P 的对应点P′,可得所求点的坐标.【详解】解:设P (x ,y )在第一象限,作PA ⊥x 轴于点A .作P'B ⊥x 轴于点B .∵点()P x,y 绕原点顺时针旋转270°,∴∠90P OP '=︒∴90P OB POA '∠+∠=︒∵90P POA ∠+∠=︒∴∠P P OB '=∠在△OAP 和△OBP'中,90PAO P BO P BOP OP OP ∠∠'︒⎧⎪∠∠'⎨⎪'⎩====, ∴△OAP ≌△P'BO ,∴OB=PA=y ,P'B=OA=x ,∵点()P x,y 绕原点顺时针旋转270°,则P'的坐标是(-y ,x ).故选:C .【点睛】本题考查了坐标与图形的旋转,全等三角形的判定与性质,正确的作出图形是解题的关键.2.C解析:C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、不是轴对称图形,是中心对称图形,故此选项不符合题意;B 、不是轴对称图形,是中心对称图形,故此选项不符合题意;C 、是轴对称图形,是中心对称图形,故此选项符合题意;D 、是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C .【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 3.A解析:A【分析】过点B 作BD x ⊥与点D ,由45AOC ∠=︒可得45BCD ∠=︒,从而得到2BD CD ==,从而可得到点B 的坐标,再根据旋转的性质,可得到B '的坐标.【详解】如图,过点B 作BD x ⊥轴于点D ,∵45AOC ∠=︒,∴45BCD ∠=︒, ∴2BD CD ==∴点B(22,2),将菱形OABC 绕O 逆时针旋转180︒,则点B '与点B 关于点 O 对称,∴点B '的坐标为(22+,2-),故答案为:A .【点睛】本题主要考察坐标与图形变化旋转,掌握旋转的性质是解题的关键.4.A解析:A【分析】本题根据中心对称图形和轴对称图形的定义可直接得出结果.【详解】A选项属于中心对称图形但不是轴对称图形,故正确;B选项既属于中心对称图形也属于轴对称图形,故不正确;C选项既属于中心对称图形也属于轴对称图形,故不正确;D选项既属于中心对称图形也属于轴对称图形,故不正确.故选:A.【点睛】本题考查了中心对称图形和轴对称图形的定义,属于基础题,熟练掌握中心对称图形和轴对称图形的定义是解题的关键.5.C解析:C【分析】根据旋转对称图形、轴对称图形、中心对称图形的定义及性质判断各选项即可得出答案.【详解】A、如果一个图形是旋转对称图形,那么这个图形不一定是轴对称图形,故选项不符合题意;B、如果一个图形是中心对称图形,那么这个图形不一定是轴对称图形,如平行四边形是中心对称图形,但不是轴对称图形,故选项不符合题意;C、如果一个图形是中心对称图形,那么这个图形一定也是旋转对称图形,故选项符合题意;D、如果一个图形是旋转对称图形,那么这个图形不一定也是中心对称图形,当一个旋转对称图形没有旋转180 则不是中心对称图形,故选项不符合题意;故选:C.【点睛】本题考查了旋转对称图形、轴对称图形、中心对称图形,属于基础题,注意掌握把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.6.A解析:A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:线段,长方形,正方形是轴对称图形,也是中心对称图形,符合题意;正五角星,等边三角形是轴对称图形,不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,不符合题意;直角三角形既不是轴对称图形,也不是中心对称图形,不符合题意.共3个既是轴对称图形又是中心对称图形.故选:A.【点睛】考查了中心对称图形与轴对称图形的概念,判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.7.D解析:D【分析】由题意可以判断△ADE 为等腰直角三角形,即可解决问题.【详解】解:如图,由旋转变换的性质知:∠EAD=∠CAB ,AE=AD ;∵△ABC 为直角三角形,∴∠CAB=90°,△ADE 为等腰直角三角形,∴∠AED=45°,故选:D .【点睛】该题考查了旋转变换的性质及其应用问题;应牢固掌握旋转变换的性质.8.B解析:B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、是轴对称图形,不是中心对称图形.故不符合题意;B 、是轴对称图形,也是中心对称图形.故符合题意;C 、不是轴对称图形,是中心对称图形.故不符合题意;D 、不是轴对称图形,也不是中心对称图形.故不符合题意.故选:B .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.9.C解析:C【分析】如图(见解析),先根据平移的性质可得//AE BF ,2BF AD AC ==,DE AC =,再根据平行线的性质可得BEF 的边BF 上的高等于BG ,然后根据三角形的面积公式分别求出ABE △和BEF 的面积即可得出答案.【详解】如图,过点B 作BG AE ⊥于点G ,连接BE , ABC 面积为2, 122AC BG ∴⋅=,即4AC BG ⋅=, 由平移的性质得://AE BF ,BF AD =,DE AC =,AC CD =,2BF AD AC CD AC ∴==+=,3AE AD DE AC =+=,113622ABE S AE BG AC BG ∴=⋅=⋅⋅=, //AE BF ,BEF ∴的边BF 上的高等于BG ,112422BEF S BF BG AC BG ∴=⋅=⋅⋅=, ∴四边形AEFB 的面积为6410ABE BEF S S +=+=,故选:C .【点睛】本题考查了平移的性质、平行线间的距离、三角形的面积公式等知识点,熟练掌握平移的性质是解题关键.10.D解析:D【分析】利用直角三角形全等、旋转的性质、逆命题分别判断后即可确定正确的选项.【详解】A 、两锐角分别相等的两个直角三角形不一定全等,原命题是假命题;B 、经过旋转,对应线段相等,原命题是假命题;C 、一个命题是真命题,它的逆命题不一定是真命题,原命题是假命题;D 、两条直角边分别相等的两直角三角形一定全等,是真命题;故选:D .【点睛】本题考查了命题与定理的知识,解题的关键是了解直角三角形全等、旋转的性质、逆命题等知识,难度不大.11.A解析:A【解析】A 、是轴对称图形,不是中心对称图形,符合题意;B 、不是轴对称图形,也不是中心对称图形,不符合题意;C 、不是轴对称图形,是中心对称图形,不符合题意;D 、是轴对称图形,也是中心对称图形,不符合题意.故选A .12.B解析:B【分析】根据图形的有关性质和变化解题.【详解】根据平行线的性质,两直线平行,同旁内角互补,所以B 错误;由对顶角的性质知A 正确;由平移的性质知C 正确;由垂直的性质知D 正确.故选B .【点睛】本题考查图形的有关性质和变化,准确记忆图形的性质和图形变化的性质是解题关键.二、填空题13.(1-2)【分析】根据关于原点对称的点横纵坐标都变为相反数计算即可【详解】∵AB 两点关于原点对称点A 的坐标为(-12)∴点B 的坐标为;故答案为【点睛】本题主要考查了关于原点对称的点的坐标准确计算是解 解析:(1,-2)【分析】根据关于原点对称的点横纵坐标都变为相反数计算即可.【详解】∵A 、B 两点关于原点对称,点A 的坐标为(-1,2),∴点B 的坐标为()1,2-;故答案为()1,2-.【点睛】本题主要考查了关于原点对称的点的坐标,准确计算是解题的关键.14.【分析】作AC ⊥x 轴于CBD ⊥x 轴于D 由点A(45)逆时针旋转180°得到的点B 推出OA=OB 点AOB 在同一直线上证明△AOC ≌△BOD 得到OD=OC=4BD=AC=5根据点B 在第三象限确定坐标【详解析:()45--,【分析】作AC ⊥x 轴于C ,BD ⊥x 轴于D ,由点A(4,5)逆时针旋转180°,得到的点B 推出OA=OB ,点A 、O 、B 在同一直线上,证明△AOC ≌△BOD ,得到OD=OC=4,BD=AC=5,根据点B 在第三象限,确定坐标.【详解】作AC ⊥x 轴于C ,BD ⊥x 轴于D ,∵点A (4,5),∴OC=4,AC=5,∵点A(4,5)逆时针旋转180°,得到的点B ,∴OA=OB ,点A 、O 、B 在同一直线上,∴∠AOC=∠BOD ,∵∠ACO=∠BDO=90︒,∴△AOC ≌△BOD ,∴OD=OC=4,BD=AC=5,∵点B 在第三象限,∴B (-4,-5),故答案为:(-4,-5)..【点睛】此题考查旋转的性质,全等三角形的判定及性质,直角坐标系中点的坐标,正确证得△AOC ≌△BOD 是解题的关键.15.12【分析】根据平移的性质得则可计算则可判断为等边三角形继而可求得的周长【详解】平移两个单位得到的又是等边三角形的周长为故答案为:12【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动会 解析:12【分析】根据平移的性质得2BB '=,4A B AB ''==,=60A B C B ∠''∠=︒,则可计算624B C BC BB '=-'=-=,则4A B B C ''='=,可判断A B C ''△为等边三角形,继而可求得A B C ''△的周长.【详解】 ABC 平移两个单位得到的A B C ''',2BB ∴'=,AB A B ='',4AB =,6BC =,4A B AB ∴''==,624B C BC BB '=-'=-=,4A B B C ∴''='=,又60B ∠=︒,60A B C ∴∠''=︒,A B C ∴''是等边三角形,A B C ∴''的周长为4312⨯=.故答案为:12.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.16.3【分析】直接利用轴对称图形的性质得出符合题意的答案【详解】如图所示:当将123涂成黑色可以构成一个轴对称图形故有种不同3的涂法故答案为:3【点睛】本题主要考查了利用轴对称设计图案正确掌握轴对称图形 解析:3【分析】直接利用轴对称图形的性质得出符合题意的答案.【详解】如图所示:当将1,2,3涂成黑色可以构成一个轴对称图形,故有种不同3的涂法.故答案为:3.【点睛】本题主要考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键. 17.(60581)【分析】首先求出P1~P5的坐标探究规律后利用规律解决问题【详解】解:第一次P1(52)第二次P2(81)第三次P3(101)第四次P4(132)第五次P5(172)…发现点P 的位置4解析:(6058,1)【分析】首先求出P 1~P 5的坐标,探究规律后,利用规律解决问题.【详解】解:第一次P 1(5,2),第二次P 2(8,1),第三次P 3(10,1),第四次P 4(13,2),第五次P5(17,2),…发现点P的位置4次一个循环,∵2019÷4=504…3,P2019的纵坐标与P3相同为1,横坐标为12×504+10=6058,∴P2019(6058,1),故答案为(6058,1).【点睛】本题考查坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.18.65°【分析】首先根据旋转变换的性质求出∠AOC的度数结合∠AOB=15°即可解决问题【详解】解:由题意及旋转变换的性质得:∠AOC=∠BOD=50°∵∠AOB=15°∴∠AOD=50°+15°=6解析:65°【分析】首先根据旋转变换的性质求出∠AOC的度数,结合∠AOB=15°,即可解决问题.【详解】解:由题意及旋转变换的性质得:∠AOC=∠BOD=50°,∵∠AOB=15°,∴∠AOD=50°+15°=65°,故答案为:65°.【点睛】本题主要考查了旋转变换的性质及其应用问题,熟练掌握旋转的性质是解题的关键.19.1≤m≤4【分析】由平移后的线段与y轴有交点可得出关于m的一元一次不等式组解答即可【详解】因为点AB的坐标分别为(﹣43)(﹣13)将线段AB 沿x轴正方向平移m个单位若线段AB与y轴有交点可得:解得解析:1≤m≤4【分析】由平移后的线段与y轴有交点,可得出关于m的一元一次不等式组,解答即可.【详解】因为点A,B的坐标分别为(﹣4,3),(﹣1,3),将线段AB沿x轴正方向平移m个单位,若线段AB与y轴有交点,可得:11[1(4)] mm≥⎧⎨≤+---⎩,解得:1≤m≤4,故答案为:1≤m≤4【点睛】此题考查平移的性质的问题,解题的关键是找出关于m的一元一次不等式组.20.-1【分析】由A(32)在经过此次平移后对应点A1的坐标为(5-1)可得△ABC的平移规律为:向右平移2个单位向下平移3个单位由此得到结论【详解】解:由A(32)在经过此次平移后对应点A1的坐标为(解析:-1【分析】由A(3,2)在经过此次平移后对应点A1的坐标为(5,-1),可得△ABC的平移规律为:向右平移2个单位,向下平移3个单位,由此得到结论.【详解】解:由A(3,2)在经过此次平移后对应点A1的坐标为(5,-1)知c=a+2、d=b-3,即c-a=2、d-b=-3,则c+d-a-b=2-3=-1,.故答案为:1【点睛】本题考查的是坐标与图形变化——平移,牢记平面直角坐标系内点的平移规律:上加下减、右加左减是解题的关键.三、解答题21.(1)见解析;A1(4,-4),B1(2,0),C1(1,-2);(2)见解析【分析】(1)根据关于原点对称的点的坐标特征即可得到A1、B1、C1的坐标,然后描点连线即可;(2)利用旋转的性质和格点的特征分别画出点A、B、C的对应点A2、B2、C2的坐标,然后描点连线即可.【详解】解:(1)如图所示,A1(4,-4),B1(2,0),C1(1,-2);(2)如图所示.【点睛】本题考查了利用旋转变换作图,熟练掌握网格结构,准确找出对应顶点的位置是解题的关键.22.(1)见解析;(2)见解析;(3)直角三角形.【分析】(1)根据对称的意义:连接,延长等于连接线段即可得到对称点;(2)根据点B 的位置特点,点C 的位置特点,选择属性一致的位置即可;(3)设网格正方形的边长为1,计算AB ,BC ,AC 的平方,根据勾股定理的逆定理判断即可.【详解】(1)连接AO ,延长AO 到1A ,使得AO=O 1A ,得到点A 的对称点,同理可得,B ,C 的对称点,作图如图1;(2)根据题意,画图如图2,;(3)设网格正方形的边长为1,根据题意,得2224220AB =+=,222125BC =+=,2224325AC =+=,∴222AC AB BC =+,∴三角形ABC 是直角三角形,故答案为:直角.【点睛】本题考查了网格正方形上的对称作图问题,旋转作图问题,三角形形状判定问题,熟练掌握中心对称的意义,旋转的意义,勾股定理的逆定理是解题的关键.23.(1)m=3,k=1;(2)C △AOB ;(3)n 的值为32或125或6. 【分析】(1)由直线y =3x 交于点A (1,m ),可得m=3,A(1,3),由直线y =kx +2与直线y =3x 交于点A (1,3),代入得3=k+2,解得k=1;(2)求出直线y =x +2与y 轴交于点B (0,2)利用勾股定理两点距离公式AB ,OA ,OB ,可求周长C △AOB(3)先求出直线y =n 与直线y =x +2,y =3x 及y 轴有三个不同的交点,E (n-2,n ),D (3n ,n ),C (0,n ),其中两点关于第三点对称,共有三种情况,①E (n-2,n ),D (3n ,n ),关于C (0,n )对称;②E (n-2,n ), C (0,n ),关于D (3n ,n )对称;③D (3n ,n ),C (0,n ),关于E (n-2,n )对称,列出两点距离等式,即可求出n 的值. 【详解】解:(1)直线y =3x 交于点A (1,m ),∴m=3,A(1,3)直线y =kx +2与直线y =3x 交于点A (1,3),∴3=k+2,∴k=1;(2)直线y =x +2与y 轴交于点B .则x=0,y=2,B (0,2),,C △AOB ;(3)直线y =n 与直线y =x +2,y =3x 及y 轴有三个不同的交点,E (n-2,n ),D (3n ,n ),C (0,n ), 其中两点关于第三点对称,共有三种情况, ①E (n-2,n ),D (3n ,n ),关于C (0,n )对称, 则n-2+3n =0, 32n =, ②E (n-2,n ), C (0,n ),关于D (3n ,n )对称,则3n = 23n n --, 23n n --=3n ±, 23n n --=3n 或23n n --=3n -, n=6或n=2舍去,③D (3n ,n ),C (0,n ),关于E (n-2,n )对称,, 则()2=23n n n ---, ()()2=23n n n ±---, 2=23n n n --+或2=23n n n -+-+, 125n =或n=0(舍去), 综合以上三种情况n 的值为32或125或6.【点睛】本题考查待定系数法求点坐标与解析式,勾股定理两点距离公式,中心对称的性质,掌握待定系数法求点坐标与解析式,勾股定理两点距离公式,中心对称的性质,会利用分类思想解决中心对称是关键.24.(1)1;(2)11,2C ⎛⎫ ⎪⎝⎭,11:36l y x =+ 【分析】 (1)直接把点(1,3)M 代入,即可求出b 的值;(2)先求出直线AB 的解析式,以及点A 、B 的坐标,过点C 作CD ⊥y 轴,垂足为D ,由旋转的性质,则AB=BC ,然后证明△ABO ≌△BCD ,得到BD=AO ,CD=BO ,即可求出点C 的坐标,然后求出直线AC 的解析式即可.【详解】解:(1)根据题意,∵一次函数2y x b =+的图像经过点(1,3)M ,∴321b =⨯+,∴1b =,故答案为:1;(2)由(1)可知,直线AB 的解析式为:21y x =+,令x=0,则y=1,令y=0,则12x =-, ∴点A 为(12-,0),点B 为(0,1), ∴OA=12,OB=1; 由旋转的性质,得AB BC =,∵BC AB ⊥∴∠ABC=90°,过点C 作CD ⊥y 轴,垂足为D ,如图:∵∠BDC=90°,∴∠CBD+∠BCD=∠CBD+∠ABD=90°,∴∠BCD=∠ABD ,同理,∠CBD=∠BAO ,∵AB=BC ,∴△ABO ≌△BCD ,∴BD=AO=12,CD=BO=1, ∴OD=11122OB BD -=-=, ∴点C 的坐标为(1,12); 设直线l 的表达式为y mx n =+,∵直线经过点A 、C ,则12102m n m n ⎧+=⎪⎪⎨⎪-+=⎪⎩,解得:1316m n ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线l 的表达式为1136y x =+. 【点睛】本题考查了旋转的性质,全等三角形的判定和性质,一次函数的性质,以及余角的性质,解题的关键是熟练掌握所学的知识,正确作出辅助线,构造全等三角形进行解题. 25.(1)见解析;(2)222DC CE AC +=;证明见解析【分析】(1)根据旋转的定义即可作图;(2)根据旋转的性质得到ABC DBE ≌,△CBE 是等腰直角三角形,得到45BCE ∠=︒,由已知条件可得90DCE ∠=︒,根据勾股定理和等量替换即可证明. 【详解】(1)根据题意补全图形(2)结论:222DC CE AC +=.证明:由题意可知ABC DBE ≌,90CBE ∠=︒.∴ AC DE =,BC BE =.∴△CBE 是等腰直角三角形.∴45BCE ∠=︒.∵45BCD ∠=︒,∴90DCE ∠=︒.在Rt △DCE 中222DC CE DE +=.∴222DC CE AC +=.【点睛】此题主要考查旋转与几何综合,解题的关键是熟知旋转的性质、全等三角形的性质、勾股定理及等腰直角三角形的性质.26.(1)见解析;(2)见解析;(3)A 2(-2,2)和C 2(-1,4)【分析】(1)根据关于中心对称的点的性质,分别找到对应点位置,再依次连接即可画出图形; (2)利用旋转的性质找到对应点位置,再依次连接即可画出图形;(3)根据A 2 和C 2两点在坐标系的位置,即可写出坐标.【详解】解:(1)如图所示:△A 1B 1C 1即为所求;(2)如图所示:△A 2BC 2即为所求;(3)由题意可知:A 2(-2,2)和C 2(-1,4).【点睛】此题主要考查了中心对称及旋转变换,掌握中心对称与旋转的定义并能准确找出对应点位置是解题的关键.。
(北师大版)石家庄市八年级数学下册第三单元《图形的平移与旋转》测试卷(含答案解析)
一、选择题1.在平面直角坐标系中,将点A (-1,2)向下平移3个单位长度,再向右平移2个单位长度,得到点A ′,则点A ′的坐标是( ) A .(-3,-1)B .(1,-1)C .(-1,1)D .(-4,4)2.如图,一个斜边长为6cm 的红色直角三角形纸片,一个斜边长为10cm 的蓝色直角三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形,则红、蓝两张纸片的面积之和是( )A .230cmB .240cmC .250cmD .260cm3.如图,在△ABC 中,AB=3,BC=5.2,∠B=60°,将△ABC 绕点A 逆时针旋转△ADE ,若点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .0.8B .2C .2.2D .2.84.如图,在平面直角坐标系xOy 中,点P 的坐标为22,22⎛⎫⎪⎪⎝⎭,将线段1OP ,绕点O 按顺时针方向旋转45,再将其长度伸长为1OP 的2倍,得到线段2OP ;又将线段2OP 绕点O 按顺时针方向旋转45,长度伸长为2OP 的2倍,得到线段3OP ;如此下去,得到线段4OP 、5OP 、、2021OP ,则20202021OP P ∆的面积为( )A .4038224B .40392C 403722D .403825.如图,△ABC 中,∠BAC=90°,AB=8,将△ABC 沿直线BC 向右平移,得到△EDF ,连接AD ,若四边形ACFD 为菱形,EC=4,则平移的距离为( )A.4 B.5 C.6 D.86.如图,指针OA,OB别从与x轴和y轴重合的位置出发,绕着原点O顺时针转动,已知OA每秒转动45°,OB的转动速度是OA的13,则第2020秒时,OA与OB之间夹角的度数为()A.130°B.145°C.150°D.165°7.在平面直角坐标系xOy中,ABC与A B C'''关于原点O成中心对称的是()A.B.C .D .8.下列说法中正确的是( )A .如果一个图形是旋转对称图形,那么这个图形一定也是轴对称图形;B .如果一个图形是中心对称图形,那么这个图形一定也是轴对称图形;C .如果一个图形是中心对称图形,那么这个图形一定也是旋转对称图形;D .如果一个图形是旋转对称图形,那么这个图形一定也是中心对称图形; 9.下列标志既是轴对称图形又是中心对称图形的是( ) A .B .C .D .10.下列标志中是中心对称图形的是( ) A .B .C .D .11.如图所示图形中,既是轴对称图形,又是中心对称图形的是( ) A .B .C .D .12.下列语句说法正确的是 ( ) A .两锐角分别相等的两个直角三角形全等 B .经过旋转,对应线段平行且相等C .一个命题是真命题,它的逆命题一定也是真命题D .两条直角边分别相等的两直角三角形全等二、填空题13.如图①,O 为直线AB 上一点,作射线OC ,使60BOC ∠=︒,将一个直角三角尺如图摆放,直角顶点在点O处,一条直角边OP在射线OA上.将图①中的三角尺绕点O以每秒10°的速度按逆时针方向旋转(如图②所示),在旋转一周的过程中,第t秒时,OQ所在直线恰好平分AOC,则t的值为_______.14.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C旋转得到△EDC,使点D在AB边上,斜边DE交AC边于点F,则图中△CDF的周长为_____.15.已知正方形ABCD中,点E在CD边上,AD=3,DE=2,将线段AE绕点A旋转,使点E落在直线BC上的点F处,则DF的长为_____.16.如图,在平面直角坐标系中,将△ABC绕点A顺时针旋转到△AB1C1的位置,点B,O (分别落在点B1,C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,再将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去,…,若点A(3,0),B(0,4),AB=5,则点B2021的坐标为________.17.如图,已知点A(2,1),B(0,2),将线段AB绕点M逆时针旋转到A1B1,点A与A1是对应点,则点M的坐标是_____.18.已知点(),1A a a +在直线122y x =+上,则点关于原点的对称点的坐标是_________ 19.如图,边长为4的等边ABC 和等边DEF 互相重合,现将ABC 沿直线l 向左平移m 个单位,将DEF 沿直线向右平移m 个单位,若m=1,则BE=____________;当E 、C 是线段BF 的三等分点时,m 的值为___________20.如图,在正方形ABCD 中,AB=4,点M 在CD 的边上,且DM=1,ΔAEM 与ΔADM 关于AM 所在的直线对称,将ΔADM 按顺时针方向绕点A 旋转90°得到ΔABF ,连接EF ,则线段EF 的长为_________三、解答题21.在直角坐标系中,将ABC 平移后得到A B C ''',它们的三个顶点坐标如表所示:ABC(),5A a ()1,3B()2,6CA B C '''()4,3A '()6,B b '(),C c d 'a =(2)ABC 向______平移______个单位长度,再向______平移______个单位长度可以得到A B C ''';(3)在坐标系中画出ABC 及平移后的A B C '''.22.如图,在边长为1的小正方形网格中,ABC ∆的顶点都在格点上,建立适当的平面直角坐系xOy ,使得点A 、B 的坐标分别为()2,3、()3,2.(1)画出平面直角坐标系;(2)画出将ABC ∆沿y 轴翻折,再向左平移1个单位长度得到的A B C ''';(3)点()P m n ,是ABC ∆内部一点,写出点P 经过(2)中两次变换后的对应点P 的坐标__________.23.在如图所示的正方形网格中,ABC 的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)作出ABC 关于坐标原点O 成中心对称的111A B C △,画出111A B C △,写出1C 坐标_________;(2)将ABC 绕点O 逆时针旋转90︒得到222A B C △,写出2C 的坐标__________.24.如图,在平面直角坐标系中,已知ABC 的三个顶点坐标分別是()2,1A -,()1,2B -,()3,3C -(1)将ABC 向上平移4个单位长度得到111A B C △,请画出111A B C △; (2)请画出与ABC 关于y 轴对称的222A B C △; (3)请写出1A 、2A 的坐标.25.如图,在平面直角坐标系中,已知ABC 的三个顶点的坐标分别为)(3,5A -,)(2,1B -,)(1,3C -.(1)ABC 的面积是______.(2)画出ABC 绕着点O 按顺时针方向旋转90°得到的222A B C △.26.(1)请画出△ABC关于原点O对称的△A1B1C1;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)写出A2 和C2两点坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】利用点平移的坐标规律,把A点的横坐标加2,纵坐标减3即可得到点A′的坐标.【详解】解:将点A(-1,2)向下平移3个单位长度,再向右平移2个单位长度2得到点A′,则点A的坐标是(-1+2,2-3),即A′(1,-1)故选:B.【点睛】此题主要考查坐标与图形变化平移,掌握平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.2.A解析:A【分析】如图,因为DF=DE,∠AFD=∠DEB=90°,所以将三角形DEB绕点D逆时针旋转90°后,得到△FDT,此时A,F,T共线,证明∠ADT=90°,求出△ADT的面积即可.【详解】解:如图,因为DF=DE,∠AFD=∠DEB=90°,所以将三角形DEB绕点D逆时针旋转90°后,得到△FDT,此时A,F,T共线.DT=DB=6∵∠EDF=90°,∴∠ADF+∠EDB=90°,∵∠EDB=∠FDT,∴∠ADF+∠FDT=90°∴红、蓝两张纸片的面积之和=△ADT的面积=1×10×6=30.2故选:A.【点睛】本题考查了正方形的性质,三角形的面积等知识,解题的关键是学会利用旋转法添加辅助线,属于中考常考题型.3.C解析:C【分析】根据旋转的性质得到△ABD为等边三角形,得到BD=AB=3,再根据线段和差计算得到答案即可.【详解】∵△ABC绕点A逆时针旋转△ADE,∴AB=AD,∵∠B=60°,∴△ABD为等边三角形,即BD=AB=3,∴CD=BC-BD=5.2-3=2.2;故选:C.【点睛】此题考查旋转的性质,等边三角形的判定及性质,线段的和差计算,掌握旋转的性质证得△ABD 为等边三角形是解题的关键.4.C解析:C 【分析】根据题意得出OP 1=1,OP 2=2,OP 3=4,如此下去,得到线段OP 4=8=23,OP 5=16=24…,OP n =2n-1,由此即可解决问题. 【详解】解:根据题意得出OP 1=1,OP 2=2,OP 3=4,如此下去,得到线段OP 4=8=23,OP 5=16=24…,OP n =2n-1,∴△OP n P n+1的面积=12×2n-1×2×2n =4×22n-1,则20202021OP P ∆的面积为12×21919×2×22020=4×4039240372, 故选C . 【点睛】本题考查坐标与图形变化-旋转,规律型问题,解直角三角形等知识,解题的关键是理解题意,学会探究规律的方法.5.C解析:C 【分析】根据平移的性质可得8,,AB DE AC DF BC EF ====,设AC DF CF AD x ====,求得BC=4x +,再由勾股定理理出方程求解即可.【详解】解:由平移的性质可得:8,,AB DE AC DF BC EF ==== 又∵四边形ACFD 是菱形 ∴设AC DF CF AD x ==== 又∵4EC =∴4BC EF CF CE x ==+=+ 又∵∠90BAC ︒= ∴222AB AC BC += ∴2228(4)x x +=+ 解得,6x =即6AD DF CF AC ==== 故平移的距离为:6AD = 故选:C . 【点睛】本题主要考查了平移的性质,熟练掌握平移的基本性质是解答此题的关键.6.C解析:C【分析】先求出线段OA、OB第2020秒时旋转的度数,再除以360°,即可确定最终状态时OA、OB 的位置,再求其夹角度数即可.【详解】由题意可知OB的速度为每秒转动145153⨯︒=︒.则第2020秒时,线段OA旋转度数=2020×45°=90900°,线段OB旋转度数=2020×15°=30300°.90900°÷360°=252⋯⋯180°,30300°÷360°=84⋯⋯60°,此时OA、OB的位置如图所示,OA与OB之间的夹角度数=90°+60°=150°.故选:C.【点睛】本题考查线段的旋转,解题的关键是利用旋转周期确定最终状态时OA、OB所在位置.7.D解析:D【分析】根据关于y轴对称的点的坐标特征对A进行判断;根据关于x轴对称的点的坐标特征对B 进行判断;根据关于原点对称的点的坐标特征对C、D进行判断.【详解】解:A、△ABC与△A'B'C'关于y轴对称,所以A选项不符合题意;B、△ABC与△A'B'C'关于x轴对称,所以B选项不符合题意;C、△ABC与△A'B'C'关于(-12,0)对称,所以C选项不符合题意;D、△ABC与△A'B'C'关于原点对称,所以D选项符合题意;【点睛】本题考查了中心对称:把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.中心对称的性质:关于中心对称的两个图形能够完全重合;关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.8.C解析:C【分析】根据旋转对称图形、轴对称图形、中心对称图形的定义及性质判断各选项即可得出答案.【详解】A、如果一个图形是旋转对称图形,那么这个图形不一定是轴对称图形,故选项不符合题意;B、如果一个图形是中心对称图形,那么这个图形不一定是轴对称图形,如平行四边形是中心对称图形,但不是轴对称图形,故选项不符合题意;C、如果一个图形是中心对称图形,那么这个图形一定也是旋转对称图形,故选项符合题意;D、如果一个图形是旋转对称图形,那么这个图形不一定也是中心对称图形,当一个旋转对称图形没有旋转180 则不是中心对称图形,故选项不符合题意;故选:C.【点睛】本题考查了旋转对称图形、轴对称图形、中心对称图形,属于基础题,注意掌握把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.9.A解析:A【分析】根据中心对称图形与轴对称图形的概念判断即可.【详解】解:A、既是轴对称图形,又是中心对称图形.故正确;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、不是轴对称图形,也不是中心对称图形.故错误.故选:A.【点睛】本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.10.B解析:B【分析】根据中心对称图形的定义即可解答.【详解】解:A、是轴对称图形,不是中心对称的图形,不合题意;B、是中心对称图形,符合题意;C、既不是轴对称图形,也不是中心对称的图形,不合题意;D、是轴对称图形,不是中心对称的图形,不合题意.故选:B.【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.11.B解析:B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形.故不符合题意;B、是轴对称图形,也是中心对称图形.故符合题意;C、不是轴对称图形,是中心对称图形.故不符合题意;D、不是轴对称图形,也不是中心对称图形.故不符合题意.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.12.D解析:D【分析】利用直角三角形全等、旋转的性质、逆命题分别判断后即可确定正确的选项.【详解】A、两锐角分别相等的两个直角三角形不一定全等,原命题是假命题;B、经过旋转,对应线段相等,原命题是假命题;C、一个命题是真命题,它的逆命题不一定是真命题,原命题是假命题;D、两条直角边分别相等的两直角三角形一定全等,是真命题;故选:D.【点睛】本题考查了命题与定理的知识,解题的关键是了解直角三角形全等、旋转的性质、逆命题等知识,难度不大.二、填空题13.3或21【分析】过点O 作直线DE 平分∠AOC 根据及DE 平分∠AOC 求得∠AOE=∠BOD=当OQ 与OD 重合时所在直线恰好平分;当OQ 与OE 重合时所在直线恰好平分式求值即可【详解】过点O 作直线DE 平分解析:3或21【分析】过点O 作直线DE 平分∠AOC ,根据60BOC ∠=︒及DE 平分∠AOC ,求得∠AOE=∠BOD=60︒,当OQ 与OD 重合时,OQ 所在直线恰好平分AOC ∠,;当OQ 与OE 重合时,OQ 所在直线恰好平分AOC ∠,式求值即可.【详解】过点O 作直线DE 平分∠AOC ,如图,∵60BOC ∠=︒,∴120AOC ∠=︒∵DE 平分∠AOC ,∴∠AOE=∠BOD=60︒,当OQ 与OD 重合时,OQ 所在直线恰好平分AOC ∠,∴t=1809060310--=(秒); 当OQ 与OE 重合时,OQ 所在直线恰好平分AOC ∠,∴36090602110t --==, 故答案为:3或21. .【点睛】此题考查旋转角度计算,平分线的性质,有理数的混合运算,正确理解图形中旋转所得角度及OQ 所在的位置是解题的关键.14.【分析】先根据已知条件求出AC 的长及∠B 的度数再根据图形旋转的性质及等边三角形的判定定理判断出△BCD 的形状进而得出∠DCF 的度数由直角三角形的性质可判断出DF 是△ABC 的中位线求出DF =1CF =则解析:3+【分析】先根据已知条件求出AC 的长及∠B 的度数,再根据图形旋转的性质及等边三角形的判定定理判断出△BCD 的形状,进而得出∠DCF 的度数,由直角三角形的性质可判断出DF 是△ABC 的中位线,求出DF =1,CF【详解】解:∵△ABC 是直角三角形,∠ACB =90°,∠A =30°,BC =2,∴∠B=60°,AB =2BC =4,AC =∵△EDC 是△ABC 旋转而成,∴BC =CD =BD =12AB =2, ∵∠B =60°,∴△BCD 是等边三角形,∴∠BCD =60°,∴∠DCF =30°,∠DFC =90°,即DE ⊥AC ,∴DE ∥BC ,∵BD =12AB =2, ∴DF 是△ABC 的中位线,∴DF =12BC =12×2=1,CF =12AC =12×, ∴△DCF 的周长为213DC DF CF ++=++=.故答案为:3.【点睛】本题考查的是图形旋转的性质及直角三角形的性质、三角形中位线定理及三角形的面积公式,熟知图形旋转的性质是解答此题的关键,即:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.15.或【分析】分点F 在BC 上和在CB 的延长线上两种情形求解【详解】如图所示当点F 在线段BC 上时∵AD=ABAE=∠ADE=∠AB=90°∴△ADE ≌△AB ∴DE=B=2∴C=1在直角三角形DC 中D==;【分析】分点F 在BC 上和在CB 的延长线上两种情形求解.如图所示,当点F 在线段BC 上时,∵AD=AB ,AE=1AF ,∠ADE=∠AB 1F =90°,∴△ADE ≌△AB 1F ,∴DE=B 1F =2,∴C 1F =1,在直角三角形DC 1F 中,D 1F 2222113FC DC +=+10; 当点F 在线段CB 的延长线上时,同理可证,△ADE ≌△AB 2F ,∴DE=B 2F =2,∴C 2F =3+2=5,在直角三角形DC 2F 中,D 2F 2222253F C DC +=+34 1034【点睛】本题考查了正方形背景下的线段旋转问题,直角三角形的HL 法证全等,勾股定理,熟练掌握旋转的意义,灵活使用分类思想,勾股定理是解题的关键.16.(121280)【分析】首先根据已知求出三角形三边长度然后通过旋转发现BB2B4…每偶数之间的B 相差12个单位长度根据这个规律可以求得B2021的坐标【详解】解:∵AO=3BO=4∠AOB=90°∴解析:(12128,0)【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B 、B 2、B 4…每偶数之间的B 相差12个单位长度,根据这个规律可以求得B 2021的坐标.解:∵AO=3,BO=4,∠AOB=90°∴AB=223+4=5,∴OA+AB1+B1C2=3+5+4=12,∴B2的横坐标为:12,且B2C2=4,∴B4的横坐标为:2×12=24,∵2021÷2=1010…1,∴点B2021的横坐标为:1010×12+3+5=12128.2021÷3=673…2,∴点B2021的纵坐标为0,∴B2021(12128,0),故答案为:(12128,0).【点睛】此题考查了点的坐标规律变换,通过图形旋转,找到所有B点之间的关系是本题的关键.题目难易程度适中,可以考查学生观察、发现问题的能力.17.(1﹣1)【分析】根据作图即可求出旋转中心点【详解】解:如图连接作线段的垂直平分线线段的垂直平分线交点即为点M旋转中心M即为所求M(1﹣1)故答案为:(1﹣1)【点睛】此题考查了旋转对称的性质准确分解析:(1,﹣1).【分析】根据作图即可求出旋转中心点.【详解】解:如图,连接AA'、BB',作线段AA'的垂直平分线,线段BB'的垂直平分线,交点即为点M,旋转中心M即为所求.M(1,﹣1).故答案为:(1,﹣1).【点睛】此题考查了旋转对称的性质,准确分析作图是解题的关键.18.(-2-3)【分析】首先把点代入中计算出的值再根据关于原点对称的点的坐标特点可以直接得到答案【详解】解:点在直线上点关于原点的对称点的坐标是故答案为:【点睛】此题主要考查了关于原点对称的点的坐标特点解析:(-2,-3)【分析】首先把点(,1)A a a +代入122y x =+中,计算出a 的值,再根据关于原点对称的点的坐标特点可以直接得到答案.【详解】解:点(,1)A a a +在直线122y x =+上, 1122a a ∴+=+, 2a ∴=,(2,3)A ∴,∴点A 关于原点的对称点的坐标是(2,3)--,故答案为:(2,3)--.【点睛】此题主要考查了关于原点对称的点的坐标特点,以及一次函数图象上点的坐标特征,关键是掌握两个点关于原点对称时,它们的坐标符号相反.19.1或4【分析】(1)根据点平移的性质可得出BE=2m 代入m 的值即可得出结论;(2)分点EC 的位置不同两种情况来考虑根据线段间的关系结合BC=4即可得出关于m 的一元一次方程解方程即可得出结论【详解】(解析:1或4【分析】(1)根据点平移的性质可得出BE=2m ,代入m 的值即可得出结论;(2)分点E 、C 的位置不同,两种情况来考虑,根据线段间的关系结合BC=4即可得出关于m 的一元一次方程,解方程即可得出结论.【详解】(1)∵点B 向左平移m 个单位,点E 向右平移m 个单位,∴BE=2m ,∵m=1,∴BE=2m=2.故答案为:2;(2)E 、C 是线段BF 的三等分点分两种情况:①点E 在点C 的左边时,如图1所示.∵E 、C 是线段BF 的三等分点,∴BE=EC=CF ,∵BC=4,BE=2m,∴2m=4÷2,解得:m=1;②点E在点C的右边时,如图2所示.∵E、C是线段BF的三等分点,∴BC=CE=EF,∵BC=4,BE=2m,∴2m=4×2,解得:m=4.综上可知:当E、C是线段BF的三等分点时,m的值为1或4.故答案为:1或4.【点睛】本题考查了平移的性质,解题的关键是:(1)找出BE=2m;(2)分两种情况考虑.本题属于中档题,难度不大,解决(2)时,很多同学往往忘记考虑到第二种情况,造成失分.20.5【分析】连接BM先判定△FAE≌△MAB(SAS)即可得到EF=BM在Rt△BCM中利用勾股定理即可得到BM的值【详解】如图连接BM∵△AEM与△ADM关于AM所在的直线对称∴AE=AD∠MAD=解析:5【分析】连接BM.先判定△FAE≌△MAB(SAS),即可得到EF=BM.在Rt△BCM中,利用勾股定理即可得到BM的值.【详解】如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠FAB=∠MAD,∴∠FAB=∠MAE,∴∠FAB+∠BAE=∠BAE+∠MAE,∴∠FAE=∠MAB,∴△FAE≌△MAB(SAS),∴EF=BM.因为正方形ABCD的边长为4,则MC=4-1=3,BC=4.在Rt△BCM中,∵BC2+MC2=BM2,∴42+32=BM2,解得:BM =5,∴EF=BM=5.故答案为:5.【点睛】本题考查了正方形的性质,勾股定理,全等三角形的判定与性质以及旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.三、解答题21.(1)1 ,1;(2)下、2,右,5;(3)答案见解析【分析】(1)利用根据A,B两点的坐标变化A(a,5),A′(4,3);B(1,3),B′(6,b),可知向下平移2个单位长度,再向右平移5 个单位长度;(2)根据A,B两点的坐标变化可知向下平移2个单位长度,再向右平移5 个单位长度,(3)根据(1)中图象变化,得出△A′B′C′;【详解】解:(1)根据A,B两点的坐标变化:A(a,5),A′(4,3);B(1,3),B′(6,b);△ABC向下平移2个单位长度,再向右平移5个单位长度可以得到△A′B′C′;∴a=﹣1,b=1,故答案为:﹣1、1;(2)△ABC向下平移2个单位长度,再向右平移5个单位长度可以得到△A′B′C′;故答案为:下、2、右、5;(3)如图所示:【点睛】此题主要考查了图形的平移变换的性质与作法以及三角形面积求法,根据A ,B 两点坐标变化得出图象平移变化位置是解题关键.22.(1)见解析;(2)见解析;(3)()1,m n --【分析】(1)根据A 、B 两点坐标,确定平面直角坐标系即可;(2)分别作出A 、B 、C 三点沿y 轴翻折,再向左平移1个单位长度得到A B C '''、、,顺次连接A B C '''、、,即可得到A B C ''';(3)根据点的坐标沿着y 轴翻折以及点的坐标平移规律,即可得出答案.【详解】解:(1)如图所示:该平面直角坐标系为所求作;(2)如图所示: A B C '''为所求作;(3)点()P m n ,是ABC ∆内部一点,写出点P 经过(2)中两次变换后的对应点P 的坐标为:()1,m n --,故答案为:()1,m n --.【点睛】本题考查了平面直角坐标系中图形的变换,掌握图形变换是解题的关键.23.(1)作图见解析,C 1(4,1);(2)C 2(1,−4).【分析】(1)根据中心对称的性质画出各点关于原点的对称点,顺次连接各点,写出C 1坐标即可;(2)根据图形旋转的性质作出△ABC 绕点O 逆时针旋转90°的△A 2B 2C 2,即可写出C 2的坐标.【详解】解:(1)如图所示,111A B C △即为所求作的图形,并由图可知C 1(4,1).故答案为:(4,1).(2)如图所示,△A 2B 2C 2为△ABC 绕点O 逆时针旋转90°的图形,并由图可知C 2(1,−4).故答案为:(1,−4).【点睛】本题考查了中心对称及作图−旋转变换,熟知中心对称与图形旋转的性质是解答此题的关键.24.(1)见解析;(2)见解析;(3)1(2,3)A ,2(2,1)--A .【分析】(1)根据平移的性质先作出三角形三个顶点,然后连线作图;(2)根据轴对称的性质,先做出三角形三个顶点关于x 轴的对称点,然后连线作图; (3)根据图形写出相应的点的坐标【详解】解:(1)如图所示:111A B C △,即为所求:(2)如图所示:222A B C △,即为所求:(3)1(2,3)A ,2(2,1)--A .【点睛】本题考查平移及轴对称作图,认真审题,正确作出图形对应的顶点是解题关键. 25.(1)3;(2)见解析【分析】(1)用割补法即可得出△ABC 的面积;(2)依据旋转的性质,找出A 、B 、C 的对应点A 2、B 2、C 2,然后用线段顺次连接即可得到△ABC 绕着点O 按顺时针方向旋转90°得到的△A 2B 2C 2.【详解】解:(1)△ABC 的面积是2×4-12×2×2-12×4×1-12×1×2=3, 故答案为:3;(2)如图,【点睛】本题考查了作图-旋转变换,根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.26.(1)见解析;(2)见解析;(3)A 2(-2,2)和C 2(-1,4)【分析】(1)根据关于中心对称的点的性质,分别找到对应点位置,再依次连接即可画出图形;(2)利用旋转的性质找到对应点位置,再依次连接即可画出图形;(3)根据A2 和C2两点在坐标系的位置,即可写出坐标.【详解】解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2BC2即为所求;(3)由题意可知:A2(-2,2)和C2(-1,4).【点睛】此题主要考查了中心对称及旋转变换,掌握中心对称与旋转的定义并能准确找出对应点位置是解题的关键.。
八年级下数学第11章图形的平移与旋转测试题及答案
八下数学第11章图形的平移与旋转测试题一、选择题(每小题3分,共36分)1、下列现象是数学中的平移的是()A、冰化成水B、电梯由一楼升到二楼C、导弹击中目标后爆炸D、卫星绕地球运动2、下列运动是属于旋转的是()A、滾动过程中篮球的滚动B、钟表的钟摆的摆动C、气球升空的运动D、一个图形沿某直线对折过程3、P是正AABC内的一点,将△PBC逆时针方向旋转到△P1BA,则ZPBP1的度数是()A.45°B.60°C.90°D.120°4、下列说法正确的是()A.若△ABC^△DEF,则△ABC可以看作是由ADEF平移得到的B.若ZA=ZB,则ZA可以看作是由ZB平移得到的C.若ZA经过平移后为ZA',则ZA=ZA'D.若线段a//b,则线段a可以看作由线段b平移得到的5、.下列图形中,是由(1)仅通过平移得到的是()6、在如图所示的单位正方形网格中,△ABC经过平移后得到厶A1B1C1,已知在AC上一点P(2.42)平移后的对应点为P],点P]绕点0逆时针旋转180°得到对应点P2,则P2点的坐标为()A.(1.4,-1)B.(1.5,2)C.(1.6,1)D.(2.4,1)AP1BC旋转90。
得到△DCF,连结EF ,若ZBEC=6O o ,则ZEFD 的度数为()A 、100 B 、150 C 、200D 、250 7题图8、如图, 甲图案变成乙图案,既能用平移,又能用旋转的是OO甲乙9、下列图形中,绕某个点旋转180 ①正方形 A.5个10、如图,的度数为(A.60°XBC能与自身重合 ②长方形③等边三角形④线段B.2个C.3个D.4个将△ABC 绕点A 逆时针旋转一定角度,得到△ADE ,若ZCAE=65°,ZE=70°). B.75°C.85°D.90°11、如图,两个边长相等的两个正方形ABCD 和OEFG ,若将正方形OEFG 绕点0按逆时针方向旋转150°,两个正方形的重叠部分四边形OMCN 的面积(A.不变B.先增大再减小C.先减小再增大) D.不断增大 7、如图,在正方形ABCD 中,E 为DC 边上的点,连结BE ,将△BCE 绕点C 顺时针方向乙,且AD 丄BC ,则ZBACAGB11题图F三、 21、.O12、如图,在直角坐标系中,点A 、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,当△ABC 的周长最小时,点C 的坐标是()A.(0,0)B.(0,1)C.(0,2)D.(0,3)二、填空题(每小题3分,共24分)13、图形的平移、旋转、中心对称中,其相同的性质是14、经过平移,对应点所连的线段;经过旋转,对应点到旋转中心的距离 15、等边三角形绕着它的三边中线的交点旋转至少度,能够与本身重合.16、甲图向上平移2个单位得到乙图,乙图向左平移2个单位得到丙图,丙图向下平移2个单位得到丁那么丁图向平移个单位可以得到甲图..19、如图,在等边厶ABC 中,AB=6,D 是BC 的中点,将△ABD 绕点A 旋转后得到△ACE ,那么线段DE 的长度为20、如图,把,QQ ”笑脸放在直角坐标系中,已知左眼A 的坐标是(-2,3),嘴唇C 点的坐标为(-1,1),贝U 将此叫Q ” 笑脸向右平移3个单位后,右眼B 的坐标是解答题(60分) (6分)经过平移,AABC 的边AB 移到了E .作出平移后的三角形.22、(6分)如图,四边形ABCD 的ZBAD=ZC=90,AB=AD,AE 丄BC 于E,BEA 旋转后能与DFA 重合.(1)旋转中心是哪一点? (2)旋转了多少度?3)若AE=5cm,求四边形AECF 的面积.23、(8分)如图,在平面直角坐标系xoy 中,A (1,),B (1,),①求出△ABC 的面积.② 作出△ABC 向下平移1个单位,再向左平移2个单位后ABC.19题图18、、如图,将矩形ABCD 绕点A 顺时针旋转到矩形''勺位置,旋转角为20题图(0〈<90)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的平移与旋转》水平测试
一、精心选一选(每小题 3 分,共30 分。
请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的)
1.下列那组字母是通过旋转得到的(
4. 能够通过图1 平移得到的图形是
A)
b d
B) b p C) p q D) b q
2.下列四个图形中,不能通过基本图形平移得到的是(
中的张旋转180 °后得到
B)4 C)6 D)8
5. 下列运动是属于旋转的是
(
(A)滾动过程中的篮球
)
(B)钟表的钟摆的摆
动
C)气球升空的运动D)一个图形沿某直线对折过程
6. 如图2 所
示,
(A)30°
(B)60°
(C)90°
图形旋转定角度能与自身重合,则旋转的角度可能是
D)120°
B
3.小明将下列4 张牌
,没有动的牌是
(
A)2
D
图5
10.
下列汽车标志中,是中心对称图形但不是轴对称图形的有(
)
(A )2 个 (B )3 个 (C )4 个 (D )5个
二、耐心填一填 (每小题 3 分,共 30 分。
在每题所给出的四个选项中,只有一 项是符合题意的 .把所选项前的字母代号填在题后的括号内 . 相信你一定会选 对!)
1.如图 5,若△ ABC 绕点 A 旋转能与△ ADE 重合,其中 AB 与AD 重合,AE 与 AC 重合,∠EAD=120°,则∠ CAB= ________ ;若∠ CAE=35°,则∠ BAD= ____ 。
图4
8. 某人从平面镜里看到对面的电子钟示数的像如图 是( )
(A )10: 21 (B )10:51 (C )21: 10
4 所示, 这时的实际时刻应
该
D )12:01
9. 下列图形中,不能由图形
M 经过一次平移或旋转得到的是
(A) (B)
(C) (D)
7. 下列四幅图中是由图( 3)平移得到的是
(
M
2.如图 6,A 图经过 然后再
3. 在旋转过程中,要确定一个图形的旋转后的位置,除了知道原来图形的.位.置...和旋.转.方.向.外,还需要知道
和。
4. 如图7,A 图经过然后再变成 B 图。
A B
图7
5. 从8:45到9:15,钟表的分针转动的角度是,时针转动的角度是。
6. 如图8,△ABC 中,AD 是BC 边上的中线,△ABD 旋转后,能与△ ECD 重合,旋转中心是,旋转角度是度;如果P是BD 的中点,那么经过上述的旋转后,点P 到达了位置.
7. 如图9,以左边图案的中心为旋转中心,将图案按方向旋转即可得到左边图
案
B
图11
8. 如图10,△ABC 和△ DCE是等边三角形,则在此图中,△ ACE 绕着
点旋转度可得到△ 。
9. 如图11,是自行车轴承中的三个滚珠A,B,C 构成的图形它(填”是”
或”不是”中)心对称图形.
10. 已知△ ABC 和其外一点P,△ A′B′C′与△ ABC 是关于点P成中心对称,l 为过点P一直线(不与△ABC 的一边相交),△A"B"C" 是△A′B′C′关于直线l 轴对称的.则△ A"B"C" 与
A′B′C′的关系是.
三、认真答一答(只要你认真思考, 仔细运算, 一定会解答正确的!共60分)1.(5 分)如图12,将四边形ABCD 绕O 点旋转后得到一个四边形,请在图中依次标上点A,B,C, D 的对应点E,F,G,H:
图5
2. (5 分)如图 13,经过平移,小船上的点 A 移到了点 B ,作出平移后的小船
3. (5分)平移方格纸中的图形,使 A 点平移到 A ′点处,画出平移后的图形,
图 14
4. (8 分)如图 15,已知 Rt △ABC 中,∠C=90°,BC=4,AC=4,现将△ ABC
沿 CB 方向平移到△ A 'B 'C 的'位置。
若平移距离为 3,(1)求△ ABC 与△ A 'B 'C ' 的重叠部分的面积;(2)若平移距离为 x (0≤x ≤)4,求△ABC 与△ A 'B 'C 的'重叠
并写上一句贴切、诙谐的解说词.
解说词:
部分的面积 y ,则 y 与 x 有怎样关系式
C / B
B /
图 13
A /
C
5. (8 分)将RtΔABC 沿斜边AB 向右平移5cm,得到RtΔDEF已. 知
AB=10cm,BC=8cm,求图中重合部分三角形的周长。
6. (8 分)(1)分别观察甲组4个小题中的图形,看看每小题中的深色三角形是经过怎样的变换,变成浅色三角形的,并将各小题图形变换的规律填在横线上。
(如,平移变换,旋转变换,中心对称,轴对称或几种变换的组合)按照你找出的甲组中各小题图形变换规律,将乙组对应小题中的图形进行相应的变换,并用阴影表示出变换后的图形。
(即用甲组第 1 小题的图形变换规律,将乙组第 1 小题的图形变换,并画出图形,依次类推)
变换规律: 1. 2. 3. 4.
7. (10分)如图,凯特同学在黑板上画△ ABC 绕其外一点P旋转60°角的旋转图,当她完成A、 B 两点旋转后的对应点A′B后′,不小心擦了旋转中心点P,没有了旋转中心,凯特不知道如何继续画下去,请聪明的你帮助凯特找到旋转中心P,并完成剩下的图形.
例如:
8. (11 分)现有如图所示的六种瓷砖,请用其中的 4 块或
6
块瓷砖(准许使用相
同的),设计出美丽的图案
参考答案
1.D;2.D;3.C;4.B;5.B;6.C;7.C;8.B;9.C;10.A.
二、 1.120 °、35°;2.平移、旋转 3.旋转中心、旋转角度; 4.平移、旋转或旋转、平移; 5.180 °、15°;6.点D、180°、CD中点;7.顺时针90°或逆时针270°;8.C、逆时针、60°、BCD;9.不是;10.成轴对称
1 1 1
三、1.略2.略3.略; 4. ⑴2;⑵y=2 (4-x) 2或y=2 x2-4x+8(0 ≤x≤;4)
5.12;
6. ⑴变换规律、平移、旋转、中心对称、平移和轴对称;⑵略
7. 提示:作AA ,,BB,的两条垂直平分线,交于点P,即为旋转中心;8.略。