比例线段与黄金分割练习题

合集下载

浙教新版九年级上册《4.1 比例线段》2024年同步练习卷(6)+答案解析

浙教新版九年级上册《4.1 比例线段》2024年同步练习卷(6)+答案解析

浙教新版九年级上册《4.1比例线段》2024年同步练习卷(6)一、选择题:本题共5小题,每小题3分,共15分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.如果线段a::2,且线段b是线段a、c的比例中项,那么c:b等于()A.4:3B.3:2C.2:3D.3:42.已知P是线段AB的黄金分割点,且,那么的值为()A. B. C. D.3.生活中到处可见黄金分割的美,如图,在设计人体雕像时,使雕像的腰部以下a与全身b的高度比值接近,可以增加视觉美感,若图中,则a约为()A.B.C.D.4.已知如图,线段,,,,请问在D,E,F,三点中,哪一点最接近线段AB的黄金分割点()A.D点B.E点C.F点D.D点或F点5.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是,称为黄金比例,如图,著名的“断臂维纳斯”便是如此,此外,最美人体的头顶至咽喉与咽喉至肚脐的长度之比也是,若某人的身材满足上述两个黄金比例,且头顶至咽喉的长度为26cm,则其身高可能是()A.165cmB.178cmC.185cmD.190cm二、填空题:本题共3小题,每小题3分,共9分。

6.据有关实验测定,当气温处于人体正常体温的黄金比值即黄金分割值时,身体感到特别舒适,这个温度大致是______用整数填写7.如图,在五角星中,,且C、D两点都是AB的黄金分割点,,则BC的长是______.8.如图,点C在线段AB上,且,则的数值为______;如果AB的长度与舞台的宽度一样长,那么节目主持人应站在点______的位置最好.三、解答题:本题共4小题,共32分。

解答应写出文字说明,证明过程或演算步骤。

9.本小题8分已知线段,延长AB到C,使,M为AC的中点,判断线段AB是不是线段BM和BC的比例中项,并说明理由.10.本小题8分如图,已知线段AB,按照如下方法作图:经过点B作,使;连接AD,在DA上截取;在AB上截取,则点C为线段AB的黄金分割点.11.本小题8分已知线段AB,按照如下的方法作图:以AB为边作正方形ABCD,取AD的中点E,连接EB,延长DA到F,使,以线段AF为边,作正方形AFGH,那么点H是线段AB的黄金分割点吗?请说明理由.12.本小题8分下面我们做一次折叠活动:第一步,在一张宽为2的矩形纸片的一端,利用图的方法折出一个正方形,然后把纸片展平,折痕为MC;第二步,如图,把这个正方形折成两个相等的矩形,再把纸片展平,折痕为FA;第三步,折出内侧矩形FACB的对角线AB,并将AB折到图中所示的AD处,折痕为根据以上的操作过程,完成下列问题:求CD的长;求证:四边形ABQD是菱形.答案和解析1.【答案】C【解析】解:线段b是a、c的比例中项,,::c,::2,::2,::故选:根据线段比例中项的概念,a::c,再根据a::2可得b::2,即可求出答案.此题考查了比例线段,关键是根据比例中项的概念列出算式.注意线段不能是负数.2.【答案】C【解析】【分析】本题考查了黄金分割,熟练掌握黄金分割的定义是解题的关键.利用黄金分割的定义,进行计算即可解答.【解答】解:是线段AB的黄金分割点,且,,,,故选:3.【答案】D【解析】解:雕像的腰部以下a与全身b的高度比值接近,,为3米,约为米.故选:根据雕像的腰部以下a与全身b的高度比值接近,因为图中b为2米,即可求出a的值.本题考查了黄金分割,解决本题的关键是掌握黄金分割定义.4.【答案】C【解析】解:线段,,,,,,,::,AF::,点F最接近线段AB的黄金分割点.故选:先计算出,,,则E点为AB的中点,则计算BD:AB和AF:AB,然后把计算的结果与比较,则可判断哪一点最接近线段AB的黄金分割点.本题考查了黄金分割的定义:把线段AB分成两条线段AC和,且使AC是AB和BC的比例中项即AB::,叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中,并且线段AB的黄金分割点有两个.5.【答案】B【解析】【分析】依据黄金分割和题意可得某人的咽喉至肚脐的长度,再根据黄金分割和题意,可得某人的肚脐至足底的长度,最后身高=头顶至咽喉的长度+咽喉至肚脐的长度+肚脐至足底的长度.本题主要考查了黄金分割,利用黄金比例进行计算是解决问题的关键.【解答】解:设某人的咽喉至肚脐的长度为xcm,则,解得,设某人的肚脐至足底的长度为ycm,则,解得,其身高可能是,故选:6.【答案】22【解析】解:根据黄金比的值得:故本题答案为:根据黄金比的值知,身体感到特别舒适的温度应为36度的倍.本题要熟记黄金比的值为7.【答案】【解析】解:、D两点都是AB的黄金分割点,,,,故答案为:利用黄金分割的定义得到,即可求解.本题考查了黄金分割:点C把线段AB分成两条线段AC和,且使AC是AB和BC的比例中项,叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中,并且线段AB的黄金分割点有两个.8.【答案】C【解析】解:设,则,::x,解得:,的数值为,点C是线段AB的黄金分割点,故主持人应站在点C位置最好.故答案为:;假设主持人应站在点C位置最好,即C点为黄金分割点,根据黄金分割的意义,根据AB,AC,BC的关系列出方程求得用AB表示AC即可.本题考查了相似三角形的应用,比例线段,黄金分割,正确的理解黄金分割是解题的关键.9.【答案】解:线段AB是线段BM和BC的比例中项,理由:,,,,为AC的中点,,,,,,,线段AB是线段BM和BC的比例中项.【解析】根据已知条件求得,,由M为AC的中点,得到,进一步得到,由于,,于是得到,即可得到结论.本题考查了线段上两点间距离,比例线段,解题的关键是理解比例中项的含义.10.【答案】解:如图所示:点C即为线段AB的黄金分割点.【解析】根据题意先作出AB的垂直平分线与AB的交点F,经过点B作,使,再连接AD,以D为圆心,DB长为半径,交DA于E,再以A为圆心,AE长为半径,交AB于C,则点C 为线段AB的黄金分割点.本题考查了作图-基本作图,黄金分割点的作法,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本作图,逐步操作.11.【答案】解:设正方形ABCD的边长为2a,在中,依题意,得,,由勾股定理知,,;,,,所以点H是线段AB的黄金分割点.【解析】根据黄金分割点的定义,只需证明即可.本题考查黄金分割的概念,勾股定理,找出黄金分割中成比例的对应线段是解决问题的关键.12.【答案】解:,四边形MNCB是矩形,,矩形MNCB是正方形,,由折叠得:,中,由勾股定理得:,,;由折叠得:,,,,,,,,四边形ABQD是平行四边形,,平行四边形ABQD是菱形.【解析】先证明四边形MNCB为正方形,再利用折叠得:,,所以,可得结论;根据平行线的性质和折叠得:,由等角对等边得:,由一组对边平行且相等可得:四边形ABQD是平行四边形,再由,可得四边形ABQD是菱形.本题是四边形的综合题,难度适中,考查了菱形、正方形、平行四边形、矩形的判定和性质以及折叠的性质,并利用数形结合的思想解决问题.。

线段的比、黄金分割(培优训练)

线段的比、黄金分割(培优训练)

线段的比、黄金分割知识要点◆要点1 线段的比(1) 线段的比:在同一单位下,两条线的长度的比叫做这两条线段的比。

(2) 成比例线段:四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即d c b a =,那么这四条线段成比例线段,当b =c 时,有db b a =,称b 为a 与d 的比例中项。

(3) 比例尺:比例尺=图上距离:实际距离★说明:判断四条线段是否成比例,首先要把四条线段的单位化成同一单位,再计算它们的比值来判断,要注意它们的顺序。

◆要点2 比例的性质a . 比例的基本性质:()()0,02≠=⇔=≠=⇔=d c b a ac b cb b a dc b a bc ad d c b a 、、、、、、 b . 合比性质:(两边都加1或减1)dd c b b a d c b a ±=±⇒= c . 等比性质:如果()0≠+++===m d b n m d c b a ,那么b a n d b m c a =++++++ 。

◆要点3 黄金分割概念:若点C 把线段AB 分成两条线段AC 、BC (AC >BC),若ACBC AB AC =,我们称线段AB 被点C 黄金分割,C 点为该条线段的黄金分割点,较短线段与较长线段(或较长线段与原线段)的比叫做黄金比⎪⎪⎭⎫ ⎝⎛≈-618.0215。

★说明:(1)一条线段有两个黄金分割点。

黄金分割比是两个线段的比,没有单位;(2) 一条线段黄金分割后,原线段、较长线段、较短线段有其固定关系:若AB =1,.253,215-=-=BC AC 则(3)作一条线段的黄金分割点一般有两种方法,如右图XS —01、XS —02:易错易混点 (1)求线段的比时,忽视了单位的统一;(2) 不按顺序写成比例线段;运用等比性质时,忽略了成立的条件;(3) 没有理解黄金分割的定义;XS —02 XS —01例☆ 已知:k zy x y z x x z y =+=+=+,求k 的值。

专题讲练:比例线段与黄金分割

专题讲练:比例线段与黄金分割

专题讲练:比例线段与黄金分割¤题型讲练【例1】下列各组中的四条线段成比例的是( ) A.a =2,b =3,c =2,d =3 B.a =4,b =6,c =5,d =10 C.a =2,b =5,c =23,d =15 D.a =2,b =3,c =4,d =1变式训练1:1.已知a =8cm ,b =6cm ,c =4cm ,(1) 请添加一边d ,使a 、b 、c 、d 四边成比例,求d 的长度; (2) a 、c 的比例中项x 的值.【例2】若ac =bd ,则下列各式一定成立的是( ) A.d c b a = B.c c b d d a +=+C.c d ba =22D.da cd ab =变式训练2: 1.已知dcb a =,则下列式子中正确的是( ) A. a ∶b =c 2∶d 2 B. a ∶d =c ∶bC. a ∶b =(a +c )∶(b +d )D. a ∶b =(a -d )∶(b -d )【例3】已知 ,求x 的值变式训练3:1.已知524232x z z y y x -=-=-,求y x z y x -++2的值【例4】已知5:4:2::=c b a ,且632=+-a b a ,求c b a 23-+的值.变式训练4:1.已知线段x 、y ,如果(x +y )∶(x -y )=a ∶b ,求x ∶y .【例5】如图:在ABC ∆中,D 、E 分别是边AB 、AC 上的点,且 ,(1) 你能说明 吗? (2)若AB=12,AE=6,EC=4,求出AD 的长。

(3)若 ,且ABC ∆的周长为30,求出ADE ∆的周长。

【例6】已知线段AB=6,点C 为线段AB 的黄金分割点,(AC>BC),求AC -BC 的值:变式训练5:如图,以长为2的线段AB 为边作正方形ABCD ,取AB 的中点P ,连结PD ,在BA 的延长线上取点F ,使PF =PD ,以AF 为边作正方形AMEF ,点M 在AD 上. (1)求AM 、DM 的长. (2)求证:AM 2=AD ·DM .(3)根据(2)的结论你能找出图中的黄金分割点吗?ba ab b ax +=+=+=222ECAEBD AD =ACECAB BD =53===BCDE ACAE ABAD※基础训练 1.若43xx =,则x 等于( ) A.12 B.32 C.-32 D.32± 2.若5:6:=y x ,则下列等式中,不正确的是( )A 、511=+yy x B 、51=-y y xC 、6=-yx xD 、5=-x y y 3.若2:1:::===d c c b b a ,则=d a :( ) A 、1:2 B 、1:4 C 、1:6 D 、1:8 4.若3:2:1::=cb a ,则cb a cb a +---的值为( )A 、-2B 、2C 、3D 、-3 5.已知875c b a ==,且20=++c b a ,则=-+c b a 2( )A 、11B 、12C 、314D 、96.若4:3:2::=c b a ,且5=-+c b a ,则b a -是( ) A 、5 B 、-5 C 、20 D 、-20 7.已知35=y x ,则=-+)(:)(y x y x 8.如果32=b a ,且3,2≠≠b a ,那么=-++-51b a b a9.已知a b a 3)(7=-,则=ba10.如果2===c z b y a x ,那么=+-+-cb a z y x 3232※能力提升 11.有以下命题:①如果线段d 是线段a ,b ,c 的第四比例项,则dcb a = ②如果点C 是线段AB 中点,则AC 是AB 、BC 的比例中项 ③如果点C 是线段AB 的黄金分割点,且AC >BC ,那么AC 是AB 与BC 的比例中项④如果点C 是线段AB 的黄金分割点,AC >BC ,且AB =2,则AC =5-1其中正确的判断有( ) A.1个B.2 个C.3个D.4个12.已知:2,2,1三个数,请你再写一个数,使这四个数组成一个比例式,并写出这些比例式。

成比例的线段 黄金分割(复习整理)

成比例的线段  黄金分割(复习整理)

成比例的线段 黄金分割一、梳理知识1、线段的比的定义在同一单位长度下,两条线段 的比叫做这两条线段的比。

2、比例线段的定义 在四条线段中,如果其中两条线段的 等于另外两条线段的 ,那么这四条线段叫做成比例线段,简称 .在a :b=c :d 中,a 、d 叫做比例的 ,b 、c 叫做比例的 ,称d 为a 、b 、c 的 . 3、比例的性质(1)比例的基本性质:如果a ∶b =c ∶d ,那么 ,特别地,若a ∶b=b ∶c ,即 ,则b 叫a ,c 的比例中项. (2)合(分)比性质:若dcb a =,则 . (3)等比性质:若nm f e d c b a ==== ,且 ,则 .4、黄金分割(1)黄金分割的意义:点C 把线段AB 分成两条线段AC 和BC ,如果 ,那么称线段AB 被点C 黄金分割.其中点C 叫做线段AB 的 ,AC 与AB 的比叫做 .二、典例解析例1 (1)已知线段a=2,b=3,c=5时,若a ,b ,c ,d 四条线段成比例,则d=_______. (2)已知1,5,5三个数,如果再添一个数,使之能与已知的三个数成比例,则这个数应该是 .(3)在比例尺为1:n 的某市地图上,规划出一块长5cm ×2cm 的矩形工业区,则该工业区的实际面积是 平方米. 例2 比例的性质(1)若2a=3b ,则(a-b ):(a+b )的值是________.(2)在线段AB 上取一点P ,使AP :PB=1:4,则AP :AB=_____,AB :PB=_______. (3)若5:2=(3-x ):x ,则x=_______ 【仿练】1.如果a=15cm ,b=10cm ,且b 是a 和c 的比例中项,则c=________. 2.已知(a-b ):b=2:3,则a :b=_______.3.在比例尺为1:2 700 000的海南地图上量得海口与三亚间的距离约为8cm ,则海口与三亚两城间的实际距离为________km例3 已知P 是线段AB 上一点,且AP :PB=3:5,求AB :PB 的值.【仿练】若点P 在线段AB 上,点Q 在线段AB 的延长线上,AB =10,23==BQ ΑQ BP AP ,求线段PQ 的长.例4 (1)已知x ∶y ∶z =3∶4∶5,①求zyx +的值; ②若x +y +z =6,求x 、y 、z .【仿练】已知实数x ,y ,z 满足x+y+z=0,3x-y+2z=0,则x :y :z=________.(2)已知a 、b 、c 是非零实数,且k cb a dd a b c d c a b d c b a =++=++=++=++,求k 的值.【仿练】如果k cb a dd b a c d c a b d c b a =++=++=++=++,试求k 的值.(3)若a 、b 、c 是非零实数,并满足ac b a b c b a c c b a ++-=+-=-+,且a b c a c c b b a x ))()((+++=,求x 的值.【仿练】已知实数a ,b ,c 满足cb a b ac a c b +=+=+,求a cb +的值.例5 如图,若点P 是AB 的黄金分割点,则线段A P 、PB 、AB 满足关系式________,即AP 是________与________的比例中项.三、课堂练习1、如果53=-b b a ,那么b a =________.2、若a =2,b =3,c =33,则a 、b 、c 的第四比例项d 为________.3、若753z y x ==,则zy x z y x -++-=________. 4、已知dcb c=,则下列式子中正确的是( ) A.a ∶b =c 2∶d 2 B.a ∶d =c ∶bC.a ∶b =(a +c )∶(b +d )D.a ∶b =(a -d )∶(b -d )5、如图,已知直角三角形的两条直角边长的比为a ∶b =1∶2,其斜边长为 45 cm ,那么这个三角形的面积是________cm 2.( )A.32B.16C.8D.46、若875c b a ==,且3a -2b +c =3,则2a +4b -3c 的值是( )A.14B.42C.7D.3147、如图,等腰梯形ABCD 的周长是104 cm ,AD ∥BC ,且AD ∶AB ∶BC =2∶3∶5,则这个梯形的中位线的长是________.cm.( )A.72.8B.51C.36.4D.288、已知四条线段a 、b 、c 、d 的长度,试判断它们是否成比例?(1)a =16 cm ,b =8 cm ,c =5 cm ,d =10 cm ; (2)a =8 cm ,b =5 cm ,c =6 cm ,d =10 cm . 9、若65432+==+c b a ,且2a -b +3c =21,试求a ∶b ∶c .10、已知线段AB=a ,在线段AB 上有一点C ,若AC=a 253-,则点C 是线段AB 的黄金分割点吗?为什么?四、课后作业1.等边三角形的一边与这边上的高的比是( )A.3∶2B.3∶1C.2∶3D.1∶32.下列各组中的四条线段成比例的是( )A.a =2,b =3,c =2,d =3B.a =4,b =6,c =5,d =10C.a =2,b =5,c =23,d =15D.a =2,b =3,c =4,d =13.已知线段a 、b 、c 、d 满足ab =cd ,把它改写成比例式,错误的是( )A.a ∶d =c ∶bB.a ∶b =c ∶dC.d ∶a =b ∶cD.a ∶c =d ∶b 4.若ac =bd ,则下列各式一定成立的是( )A.dc b a = B.c cb d d a +=+ C.cd ba =22D.da cd ab = 5.已知点M 将线段AB 黄金分割(AM >BM ),则下列各式中不正确的是( )A.AM ∶BM =AB ∶AMB.AM =215-AB C.BM =215-AB D.AM ≈0.618AB 6.在1∶500000的地图上,A 、B 两地的距离是64 cm ,则这两地间的实际距离是________. 7.正方形ABCD 的一边与其对角线的比等于________. 8.若2x -5y =0,则y ∶x =________,xyx +=________. 9.若53=-b b a ,则b a =________.10.若AEACAD AB =,且AB =12,AC =3,AD =5,则AE =________. 11.已知342=+x y x ,求yx.12.以长为2的线段AB 为边作正方形ABCD ,取AB 的中点P ,连结PD ,在BA 的延长线上取点F ,使PF =PD ,以AF 为边作正方形AMEF ,点M 在AD 上,如图。

黄金分割及比例线段

黄金分割及比例线段
1、“黄金分割”之美2、“黄金分割”应用两例
3、黄金分割矩形4、人体中的黄金分割之美
5、美妙的黄金分割和黄金数6、线段黄金分割点的几种求法
7、中考黄金分割问题两例8、“黄金分割”考题透视
9、“比例线段”变式多多10、证明比例线段方法多多
11、巧用面积比来证线段比12、巧用面积比,妙解几何题
1、“黄金分割”之美
所谓的黄金分割矩形,是指矩形的长∶宽= ∶1,黄金分割矩形有一种特别的性质:在这种矩形中分出一个以宽为边长的正方形后,余下的矩形仍然是一个黄金分割矩形(如图2),由于它具有这一特性,因此每次余下的矩形都与原矩形相似,也就是说黄金分割矩形具有碎形自相似性的特质。
图2图3图4图5
至于黄金螺旋,则是将黄金矩形依黄金比例的长宽比往外扩张,然后将正方形顶点依序连接起来,就成为“黄金螺旋”如图3,4,5。同样地,黄金螺旋也普遍存在于自然界中,如下右图6的鹦鹉螺即是最著名的例子
析解:由黄金分割的定义可知 的数值为 。依据“黄金分割”知识可知节目主持人站在线段AB的黄金点C,这样台下的观众看上去感觉最好.
点评:本题实际上是属于黄金分割问题,即若点C把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.
3、黄金分割矩形
美丽宜人的黄金分割矩形是古希腊时代被认为地球上最具有调和性而美丽的比例。在古希腊时代,除了著名的巴特农神殿之外(如右图1),有许多建筑物、美术品、工艺品都具有十分接近黄金分割的作品。文艺复兴时代的万能艺术家达文西(Leonardo da Vinci,1452~1519)据说用黄金分割的长方形绘画。黄金分割不仅是几何学,也是整个数学的重要内容。十七世纪德国著名的天文学家、数学家开普勒(kepler,1571~1630)曾经这样说过:“几何学里有两件宝,一是勾股定理,另一个是黄金分割”。

《黄金分割》专题练习

《黄金分割》专题练习

《黄金分割》专题练习一、选择题1.已知C 是线段AB 的一个黄金分割点,则AC ∶AB 为( ) A .215- B .253- C .215+ D .215-或253- 2.若=+-1y y x 黄金数,则y x的值是( ) A .55B .21 C .25D .5 3.把2米的线段进行黄金分割,则分成的较短的线段长为( ) A .53-B .15-C .51+D .53+4.美是一种感觉,本应没有什么客观的标准,但在自然界里,物体形状的比例却提供了在匀称与协调上的一种美 感的参考,在数学上,这个比例称为黄金分割。

在人体躯干(由脚底至肚脐的长度)与身高的比例上,肚脐是 理想的黄金分割点,也就是说,若此比值越接近0.618,就越给别人一种美的感觉。

如果某女士身高为1.60m , 躯干与身高的比为0.60,为了追求美,她想利用高跟鞋达到这一效果,那么她选的高跟鞋的高度约为( ) A .2.5cm B .5.1cm C .7.5cm D .8.2cm 5.如图,在正五边形ABCDE 中,对角线AD 、AC 与EB 分别相交于点M 、N .下列命题: ①四边形EDCN 是菱形; ②四边形MNCD 是等腰梯形; ③△AEN 与△EDM 全等; ④△AEM 与△CBN 相似;⑤点M 是线段AD 、BE 、NE 的黄金分割点, 其中假命题有( )A .0个B .1个C .2个D .4个二、填空题1.C 是AB 的黄金分割点,则=BCAC。

2.P 为线段AB =10cm 的黄金分割点,则AP = cm (保留两个有效数字)。

3.当人的肚脐到脚底的距离与身高的比等于黄金分割比0.618时,身材是最完美的。

一位身高为165cm ,肚脐到 头顶高度为65cm 的女性,应穿鞋跟为 cm 的高跟鞋才能使身材最完美(精确到1cm )。

4.如图,节目主持人现站在舞台AB 的一端A 点,在主持节目时,站在舞台的黄金分割点处可获得最佳美学效果, 若舞台AB 长20米,主持人要想站在舞台的黄金分割点处,她应走到距A 点至少 米处,如果向 B 点再走 米,也处在舞台的黄金分割点处(结果精确到0.1米)5.如图,在平行四边形ABCD中,点E是边BC上的黄金分割点,且BE>CE,AE与BD相交于点F.那么BF:FD的值为。

初中黄金分割试题及答案

初中黄金分割试题及答案

初中黄金分割试题及答案黄金分割是指将一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比,其比值约为0.618。

这个比例在自然界和艺术设计中非常常见,被认为是一种美学上的比例。

以下是关于黄金分割的几道初中试题及答案:1. 已知线段AB的长度为10厘米,按照黄金分割点C将线段分割,求AC的长度。

答案:根据黄金分割的定义,AC的长度为10 × (√5 - 1) / 2 ≈ 6.18厘米。

2. 如果一个矩形的长宽比符合黄金分割,且长为20厘米,求宽的长度。

答案:设矩形的宽为x厘米,根据黄金分割的定义,有20 / x = (x + 20) / 20。

解这个方程,我们可以得到x = 20 × (√5 - 1) / 2 ≈ 12.36厘米。

3. 在一个正方形中,按照黄金分割点将正方形的一边分割,求分割后较小部分的长度。

答案:设正方形的边长为a厘米,按照黄金分割点分割后,较小部分的长度为a × (√5 - 1) / 2 厘米。

4. 一个等腰三角形的顶角为36°,底角为72°,求这个三角形的高与底边的比例。

答案:根据黄金分割的定义,这个等腰三角形的高与底边的比例为(√5 - 1) / 2 ≈ 0.618。

5. 已知一个五边形的边长都相等,且每个内角都为108°,求这个五边形的对角线与边长的比例。

答案:这个五边形的对角线与边长的比例符合黄金分割,即对角线长度与边长的比例为(√5 + 1) / 2 ≈ 1.618。

这些题目涵盖了黄金分割在不同几何图形中的应用,通过计算和理解黄金分割的定义,可以解决这些问题。

比例线段黄金分割习题

比例线段黄金分割习题

⽐例线段黄⾦分割习题例1.下列各组中的四条线段成⽐例的是( )A.a =2,b =3,c =2,d =3B.a =4,b =6,c =5,d =10C.a =2,b =5,c =23,d =15D.a =2,b =3,c =4,d =1例2. 已知线段a 、b 、c 、d 满⾜ab =cd ,把它改写成⽐例式,错误的是( )A.a ∶d =c ∶bB.a ∶b =c ∶dC.d ∶a =b ∶cD.a ∶c =d ∶b 例3. 若a =2,b =3,c =33,则a 、b 、c 的第四⽐例项d 为________例4. 若ac =bd ,则下列各式⼀定成⽴的是( )A.dc b a =B.ccb d d a +=+ C.c d b a =22 D.dacd ab = 例5. 已知dcb a =,则下列式⼦中正确的是() A. a ∶b =c 2∶d 2B. a ∶d =c ∶bC. a ∶b =(a +c )∶(b +d )D. a ∶b =(a -d )∶(b -d )例6.已知5:4:2::=c b a ,且632=+-a b a ,求c b a 23-+的值。

例7.在⽐例尺为1∶500000的地图上,A 、B 两地的距离是64 cm ,则这两地间的实际距离是______ 例8.在⼀张地图上,甲、⼄两地的图上距离是3 cm,⽽两地的实际距离为1500 m ,那么这张地图的⽐例尺为________.例9.(1)已知ba ab b a x +=+=+=222,求x 的值(2)已知524232xz z y y x -=-=-,求y x z y x -++2的值例10.已知点M 将线段AB 黄⾦分割(AM >BM ),则下列各式中不正确的是( ) A .AM ∶BM =AB ∶AM B.AM =215-AB C.BM =215-AB D.AM ≈0.618AB 例11.如图,线段AB=2,点C 是AB 的黄⾦分割点(AC <BC ),点D (不同于C 点)在AB 上,且AB BD AD ?=2,A CDB求:ACCD的值【经典练习】1.如果bc ad =,那么下列⽐例中错误的是()A 、d b c a =B 、b a d c =C 、b d c a =D 、cd a b =2.若5:6:=y x ,则下列等式中,不正确的是()A 、511=+y y x B 、51=-y y x C 、6=-yx x D 、5=-x y y3.若2:1:::===d c c b b a ,则=d a :()A 、1:2B 、1:4C 、1:6D 、1:8 4.若3:2:1::=c b a ,则cb a cb a +---的值为()A 、-2B 、2C 、3D 、-35.已知875cb a ==,且20=++c b a ,则=-+c b a 2() A 、11 B 、12 C 、314D 、96.若4:3:2::=c b a ,且5=-+c b a ,则b a -的值是()A 、5B 、-5C 、20D 、-20 7.若43xx =,则x 等于() A 、12 B 、32 C 、-32 D 、32± 8.已知AB=1,)15(2 1-=AC ,且BC AB AC ?=2,则BC 的长为() A 、215- B 、215+ C 、)53(21- D 、)53(21+ 9.已知P 是线段AB 的黄⾦分割点,且15-=AP ,则AB 的长为()A 、2B 、15+C 、2或15+D 、以上都不对 10.已知572zy x ==,设x z y x C y z x B z y x y A -+=+=++=,,,那么A 、B 、C 的⼤⼩顺序为() A 、A>B>C B 、AA>B D 、A35=y x ,则=-+)(:)(y x y x 12.如果32=b a ,且3,2≠≠b a ,那么=-++-51b a b a 13.已知a b a 3)(7=-,则=ba14.如果2===c z b y a x ,那么=+-+-cb a z y x 3232 15.已知:2,2,1三个数,请你再填⼀个数,可写成⼀个⽐例式,这个数是 16.把长为5的线段进⾏黄⾦分割,则较短的线段长是17.若65432+==+c b a ,且2a -b +3c =21.试求a ∶b ∶c . 19. 若54,23,43===d c c b b a ,则22db ac+等于多少?20. 已知xbc a x a c b x c b a =+=+=+,,,求x 的值1.如果线段a=3,b=12,那么线段a 、b 的⽐例中项x=___________。

最新-九年级数学上册 191-192 比例线段与黄金分割 同

最新-九年级数学上册 191-192 比例线段与黄金分割 同

“比例线段与黄金分割”同步练习A 组1.正方形的对角线与它的边长之比是( )A .2∶1B .1∶2C .1∶2D . 2∶12.已知32=b a ,那么=+bb a ( ) A .23 B .34 C .53 D .35 3.已知23y x =,那么下列式子中一定成立的是( ) A .y x 32= B .y x 23= C .y x 2= D .xy=64.已知432∶∶=x ,那么x = . 5.把长为10cm 的线段黄金分割后,较长线段的长等于 cm .6.若)0(32≠+==q n q p n m ,则=++qn p m . 7.在一张比例尺为1∶10000的地图上,量得张老师家到学校的距离是8cm ,求张老师家到学校的实际距离.8.如果某古塔在地面上的影长为50米,同一时刻,高为1.5米的测杆影长为1米,你能求出古塔的高度吗?如果能,请求出古塔的高度;如果不能,请说明理由.B 组1. 已知bc ad =(a 、b 、c 、d 不等于零),那么下列各式中不正确的是( )A .d d c b b a +=+B .d d b c c a +=+C .d d b c c a -=-D .dd b a c a -=- 2. 在⊿ABC 中,∠A =900,BC =10,AC =8,那么⊿ABC 中的最短的边与最长的边之比是 .3.已知532z y x ==,且15=++z y x ,则x= ,y= ,z= . 4.如图13-4,用直尺和圆规作出线段AB 的黄金分割点C ,使AC >BC .5.已知ba c c abc b a x +=+=+=,求x 的 值.C 组1. 已知C 是线段AB 上的黄金分割点,且215-=AB AC ,求AC CB 的值.如图13-5,在Rt ⊿ABC 中,CD 是斜边AB 上的高线,试猜想线段AC 、AB 、CD 、BC 是否对应成比例?如果对应成比例,请写出这个比例式,并进行验证;如果不能,请说明理由.2. 已知⊿ABC 和⊿A /B /C /中,32//////===C A AC C B BC B A AB ,且⊿A /B /C /的周长为80c m ,求⊿ABC 的周长. 参考答案:A 组1.D 2.D 3.A 4.23 5.)15(5-或6.18 6.32 7.设张老师家到学校的距离为xcm ,则有1000018=x ,解得80000=x ,即张老师家到学校的距离为800米 8.能.根据物高与影长对应成比例可得,1505.1=古塔高度,∴古塔高度=75米. B 组1.D 2.3∶5 3.3 ,4.5,7.5 4.略 5.当0≠++c b a 时,21)(2=++++=c b a c b a x ,当0=++c b a 时,c b a -=+,则1-=-=+=c c c b a x ,即121-=或x . C 组1.∵215-=AB AC ∴BC= AB-BC =253-,∴25-=ACBC 2.线段AC 、AB 、CD 、BC 对应成比例.即AB BC AC CD =(提示:根据三角形的面积公式,得BC AC CD AB ⨯=⨯2121,然后化成比例式即可) 3.由于0≠''+''+''C A C B B A ,根据等比性质,得C A C B B A AC BC AB ''+''+''++=32,即3280=ABC C ▲,∴C ⊿ABC =cm 3160.。

3.2.2比例的基本性质,黄金分割

3.2.2比例的基本性质,黄金分割

活动五:变式训练 发展思维
bc ac ab 1 已知: 、 k , 求k的值. a b c
2 探索: 当a b c 0时,k _______
当a b c 0时,k
-1 _________
活动六:归纳小结 反思提高
这节课学习到了什么知识? 1、比例的性质
基本性质:
a 如果 b a c 反比性质:若 ,则 b d 合比性质:若 a c ,则 b d 更比性质:若 a c ,则 b d
c ,那么aLeabharlann =bc db d a c
ab cd b d
a b c a
a c m (b d n 0) 等比性质:若 b d n a c m a 则 b d n b
2、运用比例的性质解决有关比例问题
探究
古希腊数学家、天文学家欧多克塞斯提出一个问题: 能否将一条线段AB分成不相等的两部分,使较短线 段CB与较长线段AC的比等于AC原线段AB 的比.即,使 得
CB AC AC AB
成立?如果这能做到的话,那么线段AB被点C黄金分割, 点C叫作线段AB的黄金分割点,较长线段AC与原线段AB 的比叫作黄金分割比.
巴 黎 圣 母 院
京剧演员经常选择舞台宽度的一个 黄金分割点作为出场亮相的位置.
乐器与黄金分割 小提琴是一种 造型优美、声音诱 人的弦乐器,它的 共鸣箱的一个端点 正好是整个琴身的 B 黄金分割点。
A
C
摄影与黄金分割
蜗牛的外壳呈 黄金螺线形。
人体与黄金分割
1 :人体肚脐不但是美化身型的黄金点有时还是医疗效果 黄金点,许多民间名医在肚脐上贴药治好了某些疾病。 2:人体最感舒适的温度是23℃,也是正常人 体温(37℃)的黄金点(23=37×0.618)。

比例线段(四大题型总结)(压轴题专项讲练)(北师大版)(原卷版)2024-2025学年九年级数学上册

比例线段(四大题型总结)(压轴题专项讲练)(北师大版)(原卷版)2024-2025学年九年级数学上册

比例线段(四大题型总结)(压轴题专项讲练)【题型一:比例的性质】1.(24-25九年级上·上海·阶段练习)已知线段a 、b 、c 、d 、m ,如果ab =cd ,m ≠0,那么下列各式中成立的是( )A =B .a―m b=c―m dC .a+m b+m =cdD .a 2b =c 2d2.(23-24九年级上·河南郑州·期末)已知2ab+c =2ba+c =2ca+b =k ,则k =( )A .1B .±1C .1或―2D .23.(23-24九年级上·辽宁丹东·阶段练习)已知ab =cd =ef =5,且b +d +f ≠0,若a +c +e =30,则b +d +f =.4.(2024·四川南充·模拟预测)已知实数a 、b 、c 满足1a+1=2b+2=3c―3,则a ―2b +c 的值为 .5.(24-25九年级上·全国·单元测试)根据下列条件求x:y:z 的值.(1)x:y =3:7,y:z =4:7;(2)x:y =13:12,x:z =0.3:0.2.【题型二:比例线段】6.(23-24九年级上·广东佛山·阶段练习)下列各组中的四条线段a ,b ,c ,d 是成比例线段的是( )A .a =1,b =1,c =1,d =5B .a =1,b =c =d =8C .a =2,b =c =d =D .a =b =3,c =2,d =87.(23-24九年级上·四川成都·阶段练习)线段a 、b 、c 、d 成比例,其中b =3cm ,c =2cm ,d =6cm ,则a =cm .8.(24-25九年级上·全国·单元测试)已知线段a=0.3m,b=60cm,c=12dm.(1)求线段a与线段b的比和线段b与线段c的比;(2)如果线段a、b、c、d成比例,求线段d的长.(3)在比例式a:b=b:c或b2=ac中,我们把b称为a、c的比例中项,那么本题中b是a和c的比例中项吗?为什么?9.(23-24九年级上·山西晋中·阶段练习)如图,一块矩形绸布的长AB=a m,宽AD=2m,按照图中所示的方式将它裁成相同的三面矩形彩旗,且使裁出的每面彩旗的宽与长的比与原绸布的宽与长的比相同,即AE AD =ADAB,那么a的值应当是多少?10.(23-24九年级上·江苏无锡·阶段练习)如图,已知点D ,E 分别在边AB ,AC 上,BE ,CD 交于点O ,ADAB =DE BC =DOCO,AB =7,DB =4,BC =9,CD =10.(1)求DE ,CO 的长;(2)若△ABC 的面积为70,求△BOC 的面积.【题型三:黄金分割】11.(24-25九年级上·河北秦皇岛·阶段练习)若点C 是线段AB 的黄金分割点,且AB =2,则AC =( )A 1B .3―CD 1或312.(23-24九年级上·上海长宁·期末)已知点C 在线段AB 上,且满足AC 2=BC ⋅AB ,那么下列式子成立的是( )A .ACBC =B .ACAB =C .BCAB =D .BCAC =13.(23-24九年级上·四川成都·阶段练习)在欧几里得的《几何原本》中给出一个找线段的黄金分割点的方法.如图所示,以线段AB 为边作正方形ABCD ,取AD 的中点E ,连接BE ,延长DA 至F ,使得EF =BE ,以AF 为边作正方形AFGH ,则点H 即是线段AB 的黄金分割点.若AD =20,记正方形AFGH 的面积为S 1,矩形BCIH 的面积为S 2,则S 1与S 2的和为.14.(2024·四川乐山·一模)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与较短的一段GN 的比例中项,即满足MGMN =GNMG =“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.如图,在△ABC 中,已知AB =AC =3,BC =4,若D ,E 是边BC 的两个“黄金分割”点,则△ADE 的面积为 .15.(23-24八年级下·湖北武汉·0.618)的矩形称为黄金矩形.黄金矩形给我们以协调、匀称的美感.世界上很多著名建筑,为了取得最佳的视觉效果,都采用了黄金矩形的设计,如希腊帕特农神庙等.(1)如图,经测量,帕特农神庙的面宽约为31米,那么它的高度大约是______米.(结果取整数)实验操作:折一个黄金矩形第一步,在矩形纸片的一端利用图1的方法折出一个正方形MNCB ,然后把纸片展平;第二步:如图2,将正方形折成两个相等的矩形,再将其展平;第三步:折出内侧矩形的对角线AB ,并将AB 折到图3所示的AD 处;第四步,展平纸片,按照所得的点D 折出DF ,矩形BCDF 就是黄金矩形(如图4).问题思考:(2)图4中是否还存在其它黄金矩形,请判断并说明理由;(3)以图3中的折痕AQ 为边,构造黄金矩形,若MN =2,则这个矩形的面积是______(直接写出结果).【题型四:平行线分线段成比例】16.(2023·黑龙江哈尔滨·模拟预测)如图,在△ABC 中,DE∥BC ,DF∥AC ,则下列比例式中正确的是( )A .BDAD =DF FCB .DE FB =AEACC .BF FC =CEAED .ADFC =AB AC17.(23-24九年级下·江苏南京·自主招生)如图,在梯形ABCD 中,AD ∥BC ,M 、N 分别是AD 、BC 中点,试判断BA 、NM 、CD 延长线是否交于一点,并证明.18.(24-25九年级上·上海·假期作业)已知如图,点D 是ΔABC 边BC 上一点,且BD:DC =2:3,过点C 任作一条直线与AB 、AD 分别交于点F 和E ,求证:AEED =5AF3BF .19.(23-24九年级下·广东深圳·开学考试)如图,将正方形ABCD 沿着BE ,BF 将BC ,AB 翻折,使A ,C 两点恰好落在点P ,过点P 作MN∥BC ,交BF 于点Q .若QP =12BC ,则FQQB =.20.(23-24九年级上·山西太原·阶段练习)由四个全等的直角三角形和一个小正方形组成的大正方形ABCD 如图所示.将小正方形对角线EF 双向延长,分别交边AB ,和边BC 的延长线于点G ,H .若大正方形与小正方形的面积之比为5,GH =,则大正方形的边长为.。

专题27.13 黄金分割(基础篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练

专题27.13 黄金分割(基础篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练

专题27.13 黄金分割(基础篇)(专项练习)一、单选题1.大自然巧夺天工,一片树叶也蕴含着“黄金分割”.如图,P为AB的黄金分割点(AP>PB),如果AB的长度为8cm,那么BP的长度是()A.12-B.9-C.4D.42.已知点C是线段AB的黄金分割点,且2<,则AC长是()AB=,AC BCA B1C.3D3523.把2米的线段进行黄金分割,则分成的较短的线段长为()A.3B1C.1D.34.已知2AB=,点P是线段AB上的黄金分割点,且AP BP>,则AP的长为()A1B C35D.325.下列说法正确的是()A.每条线段有且仅有一个黄金分割点B.黄金分割点分一条线段为两条线段,其中较长的线段约是这条线段的0.618倍C.若点C把线段AB黄金分割,则AC2=AB•BCD.以上说法都不对6.下列说法正确的是()A.每一条线段有且只有一个黄金分割点B.黄金分割点分一条线段为两段,其中较短的一段是这条线段的0.618倍C.若点C把线段AB黄金分割,则AC是AB和BC的比例中项D.黄金分割点分一条线段为两段,其中较短的一段与较长的一段的比值约为0.6187.下列命题正确的是()A.任意两个等腰三角形一定相似B.任意两个正方形一定相似C .如果C 点是线段AB 的黄金分割点,那么AC AB =D .相似图形就是位似图形8.如图,线段1AB =,点1P 是线段AB 的黄金分割点(且11AP BP <),点2P 是线段1AP 的黄金分割点(212AP PP <),点3P 是线段3AP 的黄金分割点()323,,AP P P <依此类推,则线段2020AP 的长度是( )A .2020⎝⎭B .2021⎝⎭C .2020⎝⎭D .2021⎝⎭9.已知点C 把线段AB 分成两条线段AC 、BC ,且AC BC >,下列说法错误的是( ) A .如果AC BCAB AC=,那么线段AB 被点C 黄金分割 B .如果2AC AB BC =⋅,那么线段AB 被点C 黄金分割C .如果线段AB 被点C 黄金分割,那么BC 与AB 的比叫做黄金比D .0.618是黄金比的近似值10.等腰△ABC 中,AB=AC ,△A=36°,D 是AC 上的一点,AD=BD ,则以下结论中正确的有( )△△BCD 是等腰三角形;△点D 是线段AC 的黄金分割点;△△BCD△△ABC ;△BD 平分△ABC . A .1个B .2个C .3个D .4个11.在△ABC 中,△A=36°,AB=AC ,BD 是△ABC 的角平分线,下列结论: △△ABD ,△BCD 都是等腰三角形; △AD=BD=BC ; △BC 2=CD•CA ; △D 是AC 的黄金分割点 其中正确的是( )A .1个B .2个C .3个D .4个二、填空题12.在线段AB 上,点C 把线AB 分成两条线段AC 和BC ,若AC BCAB AC=,则点C 叫做线段AB 的黄金分割点.若点P 是线段MN 的黄金分割点(PM PN >),当1MN =时,PM 的长是__________.13.勾股定理与黄金分割是几何中的双宝,前者好比黄金,后者堪称珠玉,生活中到处可见黄金分割的美.如图是一种贝壳的俯视图,点C分线段AB近似于黄金分割,已知AB=10 cm,AC>BC,那么AC的长约为____________cm(结果精确到0.1 cm).14.把2米长的线段进行黄金分割,则分成的较长的线段长为__________.15.古希腊时期,(称为黄金分割比例),著名的“断臂维纳斯” 2.236≈,则黄金分割比例约为______________.(精确到0.01)16.已知AB=2,点C是线段AB的黄金分割点(AC>BC),则AC= .17.把长度为4cm的线段进行黄金分割,则较长线段的长是__________cm.18.已知线段4AB=,点P是线段AB的黄金分割点(AP BP>),那么线段AP=______.(结果保留根号)19.已知线段AB长为2cm,P是AB的黄金分割点,则较长线段PA=___;PB=______.200.61803398=…,将这个分割比保留4个有效数字的近似数是.21.若点C为线段AB的黄金分割点,且AC<BC,若AB=10,则BC=_____.22.若点P是线段AB的黄金分割点,AB=10cm,则较长线段AP的长是_____cm.三、解答题23.已知C、D是线段AB上的点,CD=(√5﹣2)AB,AC=BD,则C、D是黄金分割点吗?为什么?24.已知线段MN = 1,在MN 上有一点A ,如果AN =,求证:点A 是MN 的黄金分割点.25.(1)对于实数a 、b ,定义运算“⊕”如下:2a b a b ⊕=-.若(1)(2)8x x +⊕-=,求: 2(2)(23)x x x -⊕-的值;(2)已知点C 是线段AB 的黄金分割点(AC <BC ),若AB =4,求AC 的长.26.(1)我们知道,将一条线段AB 分割成大小两条线段AP 、PB ,使AP >PB ,点P 把线段AB 分成两条线段AP 和BP ,且=AP BP AB AP ,点P 就是线段AB 的黄金分割点,此时PAAB的值为 (填一个实数):(2)如图,Rt△ABC 中,△B=90°,AB=2BC ,现以C 为圆心、CB 长为半径画弧交边AC 于D ,再以A 为圆心、AD 长为半径画弧交边AB 于E . 求证:点E 是线段AB 的黄金分割点.27.某校要设计一座2m 高的雕像(如图),使雕像的点C (肚脐)为线段AB (全身)的黄金分割点,上部AC (肚脐以上)与下部BC (肚脐以下)的高度比为黄金比.则雕像下部设计的高度应该为______(结果精确到0.001)米. 2. 236=,结果精确到0.001).28.在等边三角形ABC中,点D,E分别在BC,AC上,且DC=AE,AD与BE交于点P,连接PC.(1)证明:ΔABE△ΔCAD.(2)若CE=CP,求证△CPD=△PBD.(3)在(2)的条件下,证明:点D是BC的黄金分割点.参考答案1.A【分析】根据黄金分割的定义得到AP AB,然后把AP的长度代入可求出AB的长.【详解】解:△P为AB的黄金分割点(AP>PB),△AP AB,△AB的长度为8cm,△AP×8=4(cm),△BP=AB-AP=8-(4)=12-故选:A.【点拨】本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC 是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点,其中AC AB.2.C【分析】利用黄金分割比的定义即可求解.【详解】由黄金分割比的定义可知BC AB===21△21)3=-=-=AC AB BC故选C【点拨】本题主要考查黄金分割比,掌握黄金分割比是解题的关键.3.A【分析】根据黄金分割的定义列式进行计算即可得解.【详解】解: 较短的线段长=2⨯(1=2故选A.【点拨】本题考查了黄金分割的概念, 熟记黄金分割的比值是解题的关键.4.A【分析】根据黄金分割点的定义和AP BP=,代入数据即可得出AP的长度.>得出AP AB【详解】解:由于P为线段AB=2的黄金分割点,且AP BP>,则21==.ABAP=故选:A.35,2.5.B【分析】根据黄金分割的定义分别进行解答即可.【详解】A.每条线段有两个黄金分割点,故本选项错误;B.黄金分割点分一条线段为两条线段,其中较长的线段约是这条线段的0.618倍,正确;C.若点C把线段AB黄金分割,则AC2=AB•BC,不正确,有可能BC2=AB•AC.故选B.【点拨】本题考查了黄金分割,熟练掌握黄金分割的定义是解题的关键.6.D【分析】根据比例中项和黄金分割的概念分析各个说法.【详解】解:A、每一条线段有两个黄金分割点,错误;B、黄金分割点分一条线段为两段,其中较长的一段是这条线段的0.618倍,错误;C、若点C把线段AB黄金分割,则AC是AB和BC的比例中项,错误;D、黄金分割点分一条线段为两段,其中较长的一段与这条线段的比值约为0.618,正确;故选D.【点拨】此题考查黄金分割问题,理解比例中项、黄金分割的概念,是解题的关键. 7.B 【分析】根据相似多边形的概念、黄金分割点及位似可直接进行排除选项. 【详解】解:A 、任意两个等腰三角形的底角或顶角相等,则这两个等腰三角形相似,故原命题错误; B 、任意两个正方形一定相似,故原命题正确;C 、如果C 点是线段AB 的黄金分割点(AC >BC ),那么AC AB =D 、相似图形不一定是位似图形,故原命题错误; 故选B .【点拨】本题主要考查相似多边形的概念、黄金分割点及位似,熟练掌握相似多边形的概念、黄金分割点及位似是解题的关键. 8.C 【分析】根据把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线叫做黄金比进行解答即可. 【详解】解:根据黄金比的比值,1BP =则11AP ==2323,,AP AP ==⎝⎭⎝⎭…依此类推,则线段20202020AP =⎝⎭,故选C .【点拨】本题考查的是黄金分割的知识,理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键. 9.C 【解析】【分析】根据黄金分割的定义判断即可.【详解】根据黄金分割的定义可知A、B、D正确;C.如果线段AB被点C黄金分割(AC>BC),那么AC与AB的比叫做黄金比,所以C错误.所以C选项是正确的.【点拨】本题考查了黄金分割的概念:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB 的黄金分割点.注意线段AB的黄金分割点有两个.10.D【详解】△AB=AC,△△ABC=△C=12(180°-△A)=12(180°-36°)=72°,△AD=BD,△△DBA=△A=36°,△△BDC=2△A=72°,△△BDC=△C,△△BCD为等腰三角形,所以△正确;△△DBC=△ABC-△ABD=36°,△△ABD=△DBC,△BD平分△ABC,所以△正确;△△DBC=△A,△BCD=△ACB,△△BCD△△ABC,所以△正确;△BD:AC=CD:BD,而AD=BD,△AD:AC=CD:AD,△点D是线段AC的黄金分割点,所以△正确.故选D.11.D【解析】试题分析:在△ABC,AB=AC,△A=36°,BD平分△ABC交AC于点D,可推出△BCD,△ABD 为等腰三角形,可得AD=BD=BC,利用三角形相似解题.解:如图,△AB=AC,△A=36°,△△ABC=△C=72°,△BD平分△ABC交AC于点D,△△ABD=△CBD=△ABC=36°=△A,△AD=BD,△BDC=△ABD+△A=72°=△C , △BC=BD ,△△ABD ,△BCD 都是等腰三角形,故△正确; △BC=BD=AD ,故△正确; △△A=△CBD ,△C=△C , △△BCD△△ACB , △,即BC 2=CD•AC ,故△正确; △AD=BD=BC ,△AD 2=AC•CD=(AD+CD )•CD , △AD=CD ,△D 是AC 的黄金分割点.故△正确, 故选D .考点:相似三角形的判定与性质;黄金分割.12 【分析】根据若点P 是线段MN 的黄金分割点(PM PN >),则PM MN 计算即可. 【详解】当PM >PN 时,,.是解题的关键. 13.6.2 【分析】黄金分割又称黄金率,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1:0.618或1.618:1,即长段为全段的0.618,0.618被公认为最具有审美意义的比例数字.上述比例是最能引起人的美感的比例,因此被称为黄金分割.【详解】由题意知AC:AB=BC:AC,△AC:AB≈0.618,△AC=0.618×10cm≈6.2(结果精确到0.1cm)故答案为6.2.【点拨】本题考查黄金分割,解题关键是掌握黄金分割定理.14.米【解析】【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分叫做黄金比.【详解】解:△将长度为2米的线段进行黄金分割,△较长的线段=2⨯米.是解的关键.15.0.62【分析】把黄金分割比例按要求进行计算即可.【详解】解: 2.236≈,≈2.23612-≈0.62,故答案为:0.62.【点拨】本题考查了求一个数的近似值,有理数的除法,正确计算是解题的关键.161【解析】21AC==17.()2cm.【解析】根据黄金分割的定义得到较长线段的长=×4,然后进行二次根式的运算即可.解:较长线段的长=×4=(2)cm.故答案为(2)cm.18.2【分析】计算即可.【详解】解:△点P是线段AB的黄金分割点(AP>BP)△AP2AB==故答案为:2.【点拨】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.19.)1cm (3cm【分析】根据黄金分割的概念得到较长线段AB,则PB=AB-352AB,然后把AB=2cm代入计算即可.【详解】解:△P是AB的黄金分割点,△较长线段AB,△PB=AB-352AB,而AB=2cm,△PA=)1cm,PB=(3cm.故答案为:)1cm;(3cm.【点拨】本题考查了黄金分割的概念:一个点把一条线段分成两段,其中较长线段是较短线段与整个线段的比例中项,那么就说这条线段被这点黄金分割,这个点叫这条线段的黄金分倍.20.0.6180【解析】根据有效数字的定义,运用四舍五入法保留4个有效数字,需观察第五位有效数字,由于第五位有效数字是,不需往前面进一位.所以0.61803398…≈0.618021.5【分析】根据黄金分割点的定义,知BC为较长线段;则BC AB,代入数据即可得出AC的值.【详解】解:由于C为线段AB=10的黄金分割点,且AC<BC,BC为较长线段;则BC==5.故答案为:5.【点拨】本题考查黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AB≈0.618AB,并且线段AB的黄金分割点有两个.22.5【解析】△P是线段AB的黄金分割点,AP>BP,AB,△AB=10cm,△AP=105=.故答案为5.点睛:若点P 是线段AB 的黄金分割点,且AP>BP ,则AP 2=BP·AB ,即AB. 23.C 、D 是黄金分割点.【解析】【分析】 根据题意求出AC 与AB 的关系,计算出AD 与AB 的关系,根据黄金比值进行判断即可.【详解】解:C 、D 是黄金分割点,△AC+CD+BD =AB ,CD =(√5﹣2)AB ,AC =BD ,△AC =3−√52AB , AD =AC+CD =3−√52AB+(√5﹣2)AB =√5−12AB , △D 是AB 的黄金分割点,同理C 也是AB 的黄金分割点.【点拨】本题考查黄金分割,关键是掌握黄金分割的概念和黄金比.24.见解析【解析】试题分析:先求得AM=√5−12,即可得到AM MN =AN AM =√5−12,结论得证。

4.1 比例线段 第3课时 比例中项与黄金分割练习题 2021—2022学年浙教版九年级数学上

4.1 比例线段   第3课时 比例中项与黄金分割练习题  2021—2022学年浙教版九年级数学上

第3课时比例中项与黄金分割【基础练习】知识点1比例中项1.如果a︰b=3︰2,且b是a,c的比例中项,那么b︰c等于()A.4 3B.3 4C.2 3D.3 22.如果a=3,b=2,且b是a,c的比例中项,那么c=.3.已知三个数a,b,c,其中a=1,b=4,c是a,b的比例中项,则c=.4.已知线段a=2 cm,b=8 cm,它们的比例中项c为cm.知识点2黄金分割5.已知点C是线段AB的黄金分割点,且AC>BC,则下面的等式成立的是()A.AB2=AC·BCB.BC2=AC·ABC.AC2=BC·ABD.AC2=2AB·BC6.图5是意大利著名画家达·芬奇的名画《蒙娜丽莎》.画中脸部被围在矩形ABCD内,点F 是AB的黄金分割点,BF>AF,若AB=10,则BF的长为.图57.已知点E是线段AB的黄金分割点,且BE>AE,若AB=2,则AE=.【能力提升】8.已知线段AB及AB上一点P,再添加一个条件,使P为AB的黄金分割点,其中错误的是()A.AP=√5-12AB B.PB=3-√52AB C.APPB=√5-12D.ABAP=√5-129.如果三条线段的长a,b,c满足ba =cb=√5-12,那么a,b,c叫做“黄金线段组”.黄金线段组中的三条线段()A.必构成锐角三角形B.必构成直角三角形C.必构成钝角三角形D.不能构成三角形10.如图6,已知P是线段AB的黄金分割点,且P A>PB,若S1表示以P A为一边的正方形的面积,S2表示长是AB,宽是PB的矩形的面积,则S1S2(填“>”“=”或“<”).图611.已知顶角为36°的等腰三角形称为黄金三角形(底边长与腰长的比值为黄金分割比).如图7,△ABC,△BDC,△DEC都是黄金三角形,已知AB=1,求CE的长度.图712.如图8,用纸折出黄金分割点:裁一张正方形的纸片ABCD,先折出BC的中点E,再折出线段AE,然后通过折叠使EB落在线段EA上,折出点B的新位置B',因而EB'=EB.类似地,在AB上折出点B″,使AB″=AB'.这时点B″就是线段AB的黄金分割点.请你证明这个结论.图8答案1.D [解析] ∵a ∶b=3∶2,b 是a ,c 的比例中项,∴a ∶b=b ∶c ,∴b ∶c=3∶2. 2.433.±2 [解析] 根据比例中项的概念,得c 2=a ×b=4×1,解得c=±2.4.4 [解析] 根据比例中项的概念得c 2=ab ,则c 2=2×8,解得c=±4. ∵线段长是正数,∴c=4 cm .5.C6.5√5-5 [解析] ∵点F 是AB 的黄金分割点,BF>AF , ∴BF=√5-12AB=√5-12×10=5√5-5. 7.3-√5 [解析] ∵E 是线段AB 的黄金分割点,且BE>AE , ∴BE AB =√5-12,则BE=√5-12AB=√5-12×2=√5-1,故AE=AB -BE=3-√5.8.D9.D [解析] ∵ba =cb =√5-12, ∴b=√5-12a ,c=√5-12b=3-√52a , ∴b+c=√5-12a+3-√52a=a , ∴长为a ,b ,c 的三条线段不能构成三角形. 故选D .10.= [解析] ∵P 是线段AB 的黄金分割点,且P A>PB ,∴P A 2=PB ·AB.又∵S 1表示以P A 为一边的正方形的面积,S 2表示长是AB ,宽是PB 的矩形的面积, ∴S 1=P A 2,S 2=PB ·AB ,∴S 1=S 2.11.解:∵△ABC ,△BDC ,△DEC 都是黄金三角形, ∴DE=CD ,BC AB =√5-12,CD BC=√5-12,CE CD =√5-12. ∵AB=1, ∴BC=√5-12AB=√5-12, ∴CD=√5-12BC=√5-122=3-√52, ∴CE=√5-12CD=√5-12×3-√52=√5-2.12.证明:设正方形ABCD的边长为2.∵E为BC的中点,∴BE=1,∴AE=√AB2+BE2=√5.又∵B'E=BE=1,∴AB'=AE-B'E=√5-1,∴AB″=AB'=√5-1,∴AB″∶AB=(√5-1)∶2,∴点B″是线段AB的黄金分割点.。

比例线段+黄金分割+相似概念测试

比例线段+黄金分割+相似概念测试

比例线段及相似形测试1、若四条比例线段为a ,b ,c ,d ,且a =3cm ,b =2cm ,c =6cm ,则线段d 的长为.2、若2x -5y =0,则y ∶x =________,x y x +=________,22-x y xy=________.3、某校一年级有64人,分成甲、乙、丙三队,其人数比为4∶5∶7. 若由外校转入1人加入乙队,则后来乙与丙的人数比为.4、设14ac e bd f ===,则a c e b d f+-=+-_____. 5、若a d d c c b b a ===,则d c b a dc b a +-+-+-的值是. 6、已知43322a c cb b a -=-=+,则ba cb a 98765+-+=.7、设a 、b 、c 是三个互不相同的正数,如果ab ba c bc a =+=-,那么( )A 、3b=2cB 、3a=2bC 、2b=cD 、2a=b8、如图,DE BC ∥,且DB AE =,若510AB AC ==,,则AE 的长为.第8题图第9题图9、如图,△ABC 中若DE ∥BC ,EF ∥AB ,则下列比例式正确的选项为.A .AD BF DB FC =B .AD EF BC BF =C .AE DEEC FC= D .BCDEAB EF =10、如图,△ABC 中,AD 是BC 边上的中线,F 是AD 边上一点,且61=EB AE ,射线CF 交AB 于E 点,则FDAF等于______.第10题图第11题图11、如图,已知在平行四边形ABCD 中,M 、N 为AB 的三等分点,DM 、DN 分别交EDCBAAC 于P 、Q 两点,则AP ∶PQ ∶QC =.12、请写出一定相似的三角形(写两种)和一定相似的四边形(写一种): .13、如图,ABC ∆中,BC a =,若11D E ,分别是AB AC ,的中点,则1112D E a =;若22D E 、分别是11D B E C 、的中点,则2213224aD E a a ⎛⎫=+= ⎪⎝⎭; 若33D E 、分别是22D B E C 、的中点,则33137248D E a a a ⎛⎫=+= ⎪⎝⎭;若n n D E 、分别是-1-1n n D B E C 、的中点,则n n D E =_________.14、已知a ∶b ∶c =4∶3∶2,且a +3b -3c =14.求4a -3b +c 的值.15、若0≠abc ,且b ac a c b c b a +=+=+,求abca c cb b a ))()((+++的的值.16、已知:a cb d=,求证:ab cd +是2222a c b d ++和的比例中项.E n D n E 3D 3E 2D 2E 1D 1CBA17、如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证:111cab=+.18、如图,AD 是ABC ∆的中线,点E 在AD 上,F 是BE 延长线与AC 的交点. (1)如果E 是AD 的中点,求证:12AF FC =; (2)由(1)知,当E 是AD 中点时,12AF AEFC ED=⋅成立,若E 是AD 上任意一点(E 与A 、D 不重合),上述结论是否仍然成立,若成立请写出证明,若不成立,请说明理由.19、如图,已知在△ABC 中,AE :EB=1:3,BD :DC=2:1,AD 与CE 相交于F ,求的值.FE DCBAF E DCBAFDAFFC EF+20、已知△ABC 中,AB =AC ,∠A =36゜,该三角形的底BC 与腰AB 的比等于黄金比,这样我们称顶角为36度的等腰三角形为黄金三角形. 若BD 是∠ABC 的角平分线,可以得到如下结论:△BCD 和△ABD 都是等腰三角形,且△ABC 相似于△BCD ,从而得到这两个相似三角形的对应边成比例.利用上述知识,试求证黄金三角形的底BC 与腰AB 的比为黄金比.21、心理学测试表明,黄金矩形令人赏心悦目,它给我们以协调,匀称的美感,现将同学们在教学活动中,折叠黄金矩形的方法归纳出以下作图步骤(如图所示): 第一步:作一个任意正方形ABCD ;第二步:分别取AD BC ,的中点M N ,,连接MN ;第三步:以N 为圆心,ND 长为半径画弧,交BC 的延长线于E ; 第四步:过B 作EF AD ⊥交AD 的延长线于F ;请你根据以上作法,证明矩形DCEF 为黄金矩形,(可取2AB =)ABCDEFMN(第21题图)。

比例线段及黄金分割点压轴题型全攻略(解析版)

比例线段及黄金分割点压轴题型全攻略(解析版)

比例线段及黄金分割点压轴题型全攻略【考点导航】1.目录【典型例题】1【考点一比例线段的识别】【考点二比例线段的计算】【考点三黄金分割点的定义】【考点四黄金分割点的应用】【考点五黄金分割点的拓展提高】【过关检测】4【典型例题】【考点一比例线段的识别】1【若a:b=2:3,则下列各式中正确的式子是( )A.2a=3bB.3a=2bC.ba =23D.a-bb=13【分析】根据比例的性质,对选项一一分析,选择正确答案.【答案】B.【详解】A、2a=3b⇒a:b=3:2,故选项错误;B、3a=2b⇒a:b=2:3,故选项正确;C、ba =23⇒b:a=2:3,故选项错误;D、a-bb =13⇒a:b=3:2,故选项错误.故选B.【点睛】考查了比例的性质.在比例里,两个外项的乘积等于两个内项的乘积.1.已知ab=52,那么下列等式中,不一定正确的是( ).A.2a=5bB.a5=b2C.a+b=7D.a+bb=72【答案】C.2.由5a=6b(a≠0),可得比例式()A.b6 =5aB.b5 =6aC.ab =56D.a-bb=15【答案】D .【解析】A 、b 6 =5a⇒ab =30,故选项错误;B 、b 5 =6a ⇒ab =30,故选项错误;C 、a b =56⇒6a =5b ,故选项错误;D 、a -b b=15⇒5(a -b )=b ,即5a =6b ,故选项正确.故选D .【考点二比例线段的计算】1设x 2=y 3=z4,求2x 2-3yz +z 2x 2-2xy -z 2的值.【分析】由已知条件利用解方程的思想不能求出x ,y ,z 的值,因此用设参数法代入化简.【详解】设x 2=y 3=z4=k则x =2k ,y =3k ,z =4k 原式=2×2k 2-3×3k ×4k +4k 22k 2-2×2k ×3k -4k2=-12k 2-24k 2=12【点睛】解此类题学生容易误认为设k 后,未知数越多更不易解出,实际上分子、分母能产生公因式约去.1.若x -y 13=y 7,则x +yy=( ).A.137B .207C . 277D . 无法确定【答案】C .2.已知x 2=y 3=z4,(1)求x -2y z 的值;(2)如果x +3=y -z ,求x 的值.(1)令x 2=y 3=z4=k ,则x =2k ,y =3k ,z =4k ,再代入代数式进行计算即可;(2)把x =2k ,y =3k ,z =4k 代入x +3=y -z ,求出k 的值即可.【解析】解:(1)∵x 2=y 3=z4,∴令x 2=y 3=z4=k ,则x =2k ,y =3k ,z =4k ,∴x -2y z =2k -6k 4k =-4k 4k=-1;(2)∵x =2k ,y =3k ,z =4k ,x +3=y -z ,∴x +3=(y -z )2,即2k +3=(3k -4k )2,解得k =-1或k =3(舍去),∴x =-2.【点睛】本题考查的是比例的性质,根据题意得出x =2k ,y =3k ,z =4k 是解答此题的关键.举一反三:3.已知:a b +c =b a +c =ca +b=k .求k 值.【答案】可分a+b+c=0和a+b+c≠0两种情况代入求值和利用等比性质求解.【答案与解析】①当a+b+c=0时,b+c=-a,c+a=-b,a+b=-c,∴k为其中任何一个比值,即k=a-a=-1;②a+b+c≠0时,k=a+b+cb+c+c+a+a+b =a+b+c2(a+b+c)=12.∴k=-1或12.【点睛】考查比例性质的应用;分两种情况探讨此题是解决本题的易错点.【考点三黄金分割点的定义】1已知点P是线段AB的一个黄金分割点(AP>PB),则PB:AB的值为( ).A.5-12B.3-52C.1+52D.3-54【答案】B.【详解】根据题意得AP=5-12AB,所以PB=AB-AP=3-52AB,所以PB:AB=3-5 2.1.已知线段AB=10cm,C是AB的一个黄金分割点,且AC<BC,求AC长为cm;【答案】根据黄金分割点的定义,知AC是较短线段,由黄金分割的公式:较短的线段=原线段的3-5 2倍,可得AC=10×3-52,计算即可;【解析】∵线段AB=10cm,C是AB的一个黄金分割点,且AC<BC,∴AC=10×3-52=15-55(cm);【点睛】本题考查了黄金分割,应该识记黄金分割的公式:较短的线段=原线段的3-52倍,较长的线段=原线段的5-12倍.2.已知线段AB=1,C是线段AB的黄金分割点,则AC的长度为()A.5-12B. 3-52C.5-12或3-52D. 以上都不对【答案】C.【解析】∵线段AB=1,C是线段AB的黄金分割点,当AC>BC,∴AC=5-12AB=5-12;当AC<BC,∴BC=5-12AB=5-12,∴AC=AB-BC=1-5-12=3-52.【考点四黄金分割点的应用】2美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165cm,下半身长x与身高l的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为( ).A.4cmB.6cmC.8cmD.10cm【答案】C.【详解】根据已知条件得下半身长是165×0.60=99cm,设需要穿的高跟鞋是ycm,则根据黄金分割的定义得:99+y165+y=0.618,解得:y≈8cm.故选C.1.如图是一种贝壳的俯视图,点C分线段AB近似于黄金分割.已知AB=10cm,则AC的长约为cm(结果精确到0.1cm).【答案】6.2或3.8【解析】由题意知AC:AB=BC:AC,∴AC:AB≈0.618,∴AC=0.618×10cm≈6.2(结果精确到0.1cm)或AC=10-6.2=3.8.故答案为:6.2或3.8.2.如图,△ABC顶角是36°的等腰三角形(底与腰的比为5-12的三角形是黄金三角形),若△ABC、△BDC、△DEC都是黄金三角形,已知AB=4,则DE=.【答案】6-25.【解析】根据题意可知,BC=5-12AB,∵△ABC顶角是36°的等腰三角形,∴AB=AC,∠ABC=∠C=72°,又∵△BDC也是黄金三角形,∴∠CBD=36°,BC=BD,∴∠ABD=∠ABC-∠CBD=36°=∠A,∴BD=AD,同理可证DE=DC,∴DE=DC=AC-AD=AB-BC=AB-5-12AB=6-25.故答案为:6-25.【考点五黄金分割点的拓展提高】3是黄金矩形(即ABBC=5-12≈0.618),如果在其内作正方形CDEF,得到一个小矩形ABFE,试问矩形ABFE是否也是黄金矩形?【分析】(1)矩形的宽与长之比值为5-12,则这种矩形叫做黄金矩形.(2)要说明ABFE是不是黄金矩形只要证明AEAB =5-12即可.【答案与详解】矩形ABFE是黄金矩形.理由如下:因为AEAB=AD-EDAB=ADAB-EDAB=25-1-1=25+15-15+1-1=5+12-1=5-12所以矩形ABFE也是黄金矩形.【点睛】判断四边形是否是黄金矩形,要根据实际条件灵活选择判断方法.1.如图,扇子的圆心角为x°,余下扇形的圆心角为y°,x与y的比通常按黄金比来设计,这样的扇子外形比较美观,若黄金比取0.6,则x为( ).A.144°B. 135°C. 136°D. 108°【答案】B.【解析】由扇子的圆心角为x°,余下扇形的圆心角为y°,黄金比为0.6,根据题意得:x:y=0.6=3:5,又∵x+y=360,则x=360×38=135【总结升华】此题考查了黄金分割,以及比例的性质,解题的关键是根据题意列出x与y的关系式.2.图1是一张宽与长之比为5-12:1的矩形纸片,我们称这样的矩形为黄金矩形.同学们都知道按图2所示的折叠方法进行折叠,折叠后再展开,可以得到一个正方形ABEF和一个矩形EFDC,那么EFDC这个矩形还是黄金矩形吗?若是,请根据图2证明你的结论;若不是,请说明理由.矩形EFDC是黄金矩形,【解析】证明:∵四边形ABEF是正方形,∴AB=DC=AF,又∵ABAD=5-12,∴AF AD =5-12,即点F是线段AD的黄金分割点.∴FD AF =AFAD=5-12,∴FD DC =5-12,3.以长为2的线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上,如图所示,(1)求AM,DM的长,(2)试说明AM2=AD·DM(3)根据(2)的结论,你能找出图中的黄金分割点吗?【答案】(1)∵正方形ABCD的边长是2,P是AB中点,∴AD=AB=2,AP=1,∠BAD=90°,∴PD=AP2+AD2=5。

分割黄金智力测试题(3篇)

分割黄金智力测试题(3篇)

第1篇一、选择题1. 下列关于黄金分割的描述,正确的是:A. 黄金分割是指将一条线段分为两部分,其中较大部分与整体的比例等于较小部分与较大部分的比例。

B. 黄金分割是指将一条线段分为两部分,其中较大部分与整体的比例等于较小部分与较大部分的比例,且比例为1:1。

C. 黄金分割是指将一条线段分为两部分,其中较大部分与整体的比例等于较小部分与较大部分的比例,且比例为2:1。

D. 黄金分割是指将一条线段分为两部分,其中较大部分与整体的比例等于较小部分与较大部分的比例,且比例为3:2。

2. 黄金分割的比值约为:A. 1.618B. 2.618C. 0.618D. 1.4143. 黄金分割在以下哪个领域有广泛的应用?A. 数学B. 物理C. 建筑D. 以上都是4. 下列哪个不是黄金分割的应用实例?A. 斐波那契数列B. 古希腊建筑C. 印度教神像D. 荷兰风车5. 黄金分割在音乐中的运用体现在:A. 旋律B. 和弦C. 节奏D. 以上都是6. 黄金分割在艺术创作中的运用体现在:A. 形状B. 色彩C. 线条D. 以上都是7. 下列哪个不是黄金分割的特点?A. 比例关系B. 美学价值C. 经济效益D. 生物学意义8. 黄金分割在建筑设计中的运用体现在:A. 室内布局B. 外观造型C. 结构设计D. 以上都是9. 黄金分割在植物生长中的运用体现在:A. 叶片排列B. 花朵形态C. 果实分布D. 以上都是10. 下列哪个不是黄金分割的应用领域?A. 设计B. 科学研究C. 农业种植D. 医学治疗二、填空题1. 黄金分割的比值是__________。

2. 黄金分割在数学中被称为__________。

3. 黄金分割在自然界中普遍存在,如__________、__________等。

4. 黄金分割在艺术创作中的应用实例有__________、__________等。

5. 黄金分割在建筑设计中的应用实例有__________、__________等。

比例性质、平行线分线段成比例、黄金分割压轴题六种模型—2023-2024学年九年级数学下(苏科版)

比例性质、平行线分线段成比例、黄金分割压轴题六种模型—2023-2024学年九年级数学下(苏科版)

比例性质、平行线分线段成比例、黄金分割压轴题六种模型全攻略【考点导航】目录【典型例题】 (1)【考点一 比例的性质之等比性质】 (1)【考点二 由平行判断成比例的线段】 (4)【考点三 由平行截线求相关线段的长或比值】 (6)【考点四 构造平行线截线求相关线段的长或比值】 (9)【考点五 利用黄金分割求线段的长】 (12)【考点六 与黄金分割有关的证明】 (13)【过关检测】 (18)【典型例题】【考点一 比例的性质之等比性质】【答案】6或3−【分析】分两种情况:当0x y z ++≠时,当0x y z ++=时,分别求出m 的值即可.【详解】解:当0x y z ++≠时,根据比例的等比性可得:3333336x y y z z x m z x y +++++==++; 当0x y z ++=时,可得x y z +=−,∴()333x y z m z z +−===−.【点睛】本题主要考查比例的等比性质,但需要注意对式子用等比性时一定要注意根据分母是否为0进行分类讨论.【变式训练】【答案】12【分析】根据比例的性质解答即可;【详解】解:由 0346x y z ==≠,可设 0346x y z k ==≠=,即 34,6x k y k z k ===,, 把3,4,6x k y k z k ===代入3131262x k y z k k ==−−,故答案为:12.【点睛】此题考查比例的性质,关键是根据比例的性质解答.【答案】6【分析】将已知等式35a c e b d f ===变形为53b d f a c e ===,得到555,,333b a d c f e ===,代入计算即可. 【详解】解:∵35a c e b d f ===, ∴53b d f a c e ===, ∴555,,333b a d c f e ===, ∵10b d f ++=,∴55510333a c e ++=,∴()5103a c e ++=,∴6a c e ++=故答案为:6.【点睛】此题考查了比例的性质,正确理解题意得到555,,333b a d c f e ===是解题的关键.【答案】8或1−【分析】观察 ()()()a b b c c a c a b +++== 与 ()()()+++a b b c c a abc 发 现,后者是通过前者相乘得来,那么只要找出 ()()()a b b c c a c a b +++== 的值解出,因此设()()()a b b c c a k c a b +++=== 通过变换化为 ()(2)0a b c k ++−= 那么可能是 0a b c ++= 或 2k = 对这两种情况分别讨论;【详解】设,a b b c c a k c a b +++===则 ,,a b kc b c ka c a kb +=+=+=()()()a b b c c a kc ka +++++=+kb +2()()a b c k a b c ++=++即()(2)0a b c k ++−=所以 0 a b c ++=或2k =当0a b c ++=时,则,a b c +=−1, a b c +=−同理1, b c a +=−1c a b +=−所以()()()()a b b c c a a b abc c ++++=()()(1)(1)b c c a a b ++⨯⨯=−⨯−(1)1⨯−=− 当 2 k =时,()()()2a b b c c a c a b +++===所以()()()()a b b c c a a b abc c ++++=()()2228b c c a a b ++⨯⨯=⨯⨯=故答案为 8 或 -1【点睛】做好本题的关键是找出a 、b 、c 三个变量间的关系,因而假设,a b b c c a k c a b +++===做到这步已经成功了一半,因而同学们在解题中一定要仔细观察已知与结论找出其存在或隐含的关系【考点二 由平行判断成比例的线段】 九年级统考开学考试)如图,在ABC 中, A .BD DF AD AC = B .BF FC 【答案】D【分析】根据平行线分线段成比例判断各项即可.【详解】解:A .由DF AC ∥,得BD DF BA AC =,故A 选项错误; B .由DF AC ∥,得BF BD FC DA =,又由DE BC ∥,得BD CE DA EA =,则 BF CE FCEA =,故B 选项错误,D 选项正确; C .由DF AC ∥,得BF DF BC AC =,故C 选项错误;故选:D .【点睛】本题考查了平行线分线段成比例,两条直线被一组平行线所截,所得的对应线段成比例,平行于【变式训练】A .AB DE AF EA = B .【答案】D【分析】根据平行四边形的性质得出CD AB ∥,AD BC ∥,AD BC =,AB CD =,利用平行线分线段成比例定理逐项进行判断即可.【详解】解:A .∵四边形ABCD 为平行四边形,∴CD AB ∥,AD BC ∥,AD BC =,AB CD =,∵CD AB ∥, ∴CD DE AF EA =, ∵AB CD =, ∴AB DE AF EA =,故A 正确,不符合题意; B .∵AE BC ∥, ∴AE AF BC FB =, ∵AD BC =, ∴AE AF AD FB =,故B 正确,不符合题意; C .∵AE BC ∥, ∴FA FE AB EC =,故C 正确,不符合题意;D .∵AE BC ∥, ∴FA AE FB BC =, 即FA AE FA AB BC =+,∵AB CD =, ∴FA AE FA CD BC =+, ∴C FA CD AE B ≠,故D 错误,符合题意. 故选:D .【点睛】本题主要考查了平行四边形的性质,平行线分线段成比例定理,解题的关键是灵活运用平行线分线段成比例定理. 2.(2023秋·广东佛山·九年级统考期末)如图,直线a b c ∥∥,分别交直线m 、n 于点A 、C 、E 、B 、D 、F ,下列结论不正确的是( )A .AC BD CE DF =【答案】B【分析】利用平行线分线段成比例定理解决问题即可.【详解】解:a b c ∥∥,∴=AC BD CE DF ,AC BD AE BF =,CE DF AE BF =,AE BF AC BD =;∴选项A 、C 、D 正确,故选:B .【点睛】本题考查平行线分线段成比例定理,熟练运用平行线分线段成比例定理是解题的关键.【考点三 由平行截线求相关线段的长或比值】【答案】10【分析】利用平行线分线段成比例定理即可解决问题.【详解】解:AB CD EF ,∴BE AF CE DF =,6CE =,4EO =,5BO =,6AF =,∴966DF =,4DF ∴=,6410AD AF DF ∴=+=+=.故答案为:10.【点睛】本题考查平行线分线段成比例定理,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【变式训练】【答案】6【分析】由平行线所截线段对应成比例可知AB DE BC EF =,然后代入4DE =求解即可.【详解】解:∵AD BE CF ∥∥,∴23AB DE BC EF ==,∵4DE =,∴6EF =,故答案为:6.【点睛】本题主要考查平行线所截线段对应成比例,熟练掌握比例线段的计算是解决本题的关键. 分别在ABC 的边【答案】43/4:3/113【分析】设CG 、AB 交于点H ,结合2BD AD =可得BH DH AD ==;由平行线分线段成比例定理可得2AG BC =,即有2AG BC =,再证明EF CG ∥,进一步可得13AF AE AG AC ==,易知23AF BC =,可得43FG AG AF BC =−=,即可获得答案.【详解】解:如下图,设CG 、AB 交于点H ,∵2BD AD =,CG 平分线段BD , ∴12BH DH BD AD ===,∵AF BC ∥, ∴2AG AH AD DH BC BH BH +===,∴2AG BC =,∵DE BC ∥,∴AED ACB ∠=∠,13AE AD AD AC AB AD BD ===+,∵EF 平分AED ∠,CG 平分ACB ∠ ∴12AEF AED ∠=∠,12ACG ACB ∠=∠,∴AEF ACG ∠=∠,∴EF CG ∥, ∴13AF AE AG AC ==, ∴1233AF AG BC ==, ∴24233FG AG AF BC BC BC =−=−=, ∴4433BC FG BCBC ==. 故答案为:43.【点睛】本题主要考查了平行线分线段成比例定理、平行线的判定、角平分线的定义等知识,熟练运用平行线分线段定理是解题关键.【考点四 构造平行线截线求相关线段的长或比值】 例题:(2023·广东深圳·模拟预测)如图,在ABC 中,D 为BC 边的中点,点E 在线段AD 上,BE 的延长线交AC 边于点F ,若13AE ED :=:,2AF =,则线段FC 的长为 .【答案】12【分析】过点D 作DG BF ∥于点G ,由平行线分线段成比例定理得AE AF ED FG =,求得6FG =,再结合中点进一步可得12GF GC FC ==,从而得到答案.【详解】解:如图,过点D 作DG BF ∥于点G ;则AE AF ED FG =; 而13AE ED =,2AF =, 6FG ∴=;D 为BC 边的中点,12GF GC FC ∴==,212CF FG ∴==,故答案为:12.【点睛】本题考查平行线分线段成比例定理,正确构造平行线是解决此题的关键.【变式训练】 是ABC 边BC【答案】78/0.875【分析】过D 作DG BE ∥,交AC 于G ,依据平行线分线段成比例定理,即可得到::BD CD EG GC =,::DF AF EG AE =,进而可得CEAE 的值.【详解】解:如图所示,过D 作DG BE ∥,交AC 于G ,则::2:5BD CD EG GC ==,即:52CG EG =,72EC CG EG EG =+=,::1:4DF AF EG AE ==,即:4AE EG =,∴77248EG CE AE EG ==.故答案为:78.【点睛】本题考查的是平行线分线段成比例定理,平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.灵活运用定理、找准对应关系是解题的关键.在ABC 中,【答案】32【分析】先过E 作EG BC ∥,交AD 于G ,再作∥DH A B 交CE 于H ,由平行线分线段成比例定理的推论,再结合已知条件,可分别求出EF FC 和AFFD 的值,相加即可.【详解】解:作EG BC ∥交AD 于G ,作∥DH A B 交CE 于H ,如图所示:∵:1:3AE EB =, ∴14AE AB =,∵EG BC ∥, ∴14EG AE BD AB ==, ∴14EG BD=,∵:2:1BD DC =, ∴12EG CD=,∵EG BC ∥, ∴12EF EG FC CD ==, ∵:2:1BD DC =, ∴13CD BC =, ∵∥DH A B , ∴13DH CD BE BC ==, ∴13DH BE AE==, ∵∥DH A B ,∴1AF AEFD DH ==, ∴13122EF AF FC FD +=+=. 故答案为:32.【点睛】本题考查了平行线分线段成比例,解题的关键是熟练的掌握平行线分线段成比例定理.【考点五 利用黄金分割求线段的长】例题:(2023·全国·九年级假期作业)一本书的宽与长之比为黄金比,书的长为14cm ,则它的宽为( )【答案】D【分析】根据黄金比例求解即可.【详解】解:∵一本书的宽与长之比为黄金比,书的长为14cm ,∴它的宽()147cm ==,故选:D .【点睛】本题考查的是黄金分割,掌握黄金比值是是解题的关键.【变式训练】【答案】C【分析】较长的线段MP 的长为x cm ,则较短的线段长是(2)cm x −.根据黄金分割的定义即可列方程求解. 【详解】解:较长的线段MP 的长为x cm ,则较短的线段长是(2)cm x −.则22(2)x x =−,解得1x =或1(舍去).较短的线段长是21)3−=故选:C .【点睛】本题考查了黄金分割,与一元二次方程的解法,正确理解黄金分割的定义是关键.2.(2023春·河南郑州·九年级郑州外国语中学校考开学考试)鹦鹉螺曲线的每个半径和后一个半径的比都是黄金比例,是自然界最美的鬼斧神工.如图,P 是AB 的黄金分割点()AP BP >,若线段AB 的长为4cm ,则AP 的长为( )【答案】A【分析】根据黄金分割的定义可得AP =据此求解即可.【详解】解:∵P 是AB 的黄金分割点()AP BP >,4cm AB =,∴()42cm AP ==;故选:A .【点睛】本题主要考查了黄金分割比例,熟知黄金分割比例是解题的关键.【考点六 与黄金分割有关的证明】九年级假期作业)ABC 中,ACD ABD ABCABDS SSS=,则称为ABC 的黄为ABC 的黄金分割线,则(2)若20ABCS=,求ACD 的面积.(结果保留根号)【答案】(1)见解析(2)30−【分析】(1)先由等高的两个三角形面积之比等于底之比,可得ABD ABCSBDS BC =,ACD ABDS CDSBD =,又因为ACD ABD ABCABDS S SS=,等量代换得出BD CDBC BD =,根据黄金分割点的定义即可证明D 是BC 的黄金分割点; (2)由(1)知BDCDBC BD =,那么BD =,DC BC BD BC BC =−==,又等高的两个三角形面积之比等于底之比ACD ABCSCD S BC ==,将20ABCS=代入,即可求出ACD 的面积.【详解】(1)证明:∵ABD ABCSBD S BC =,ACD ABDSCD SBD =,又∵ACD ABD ABCABDS S SS=,∴BD CDBC BD =, ∴D 是BC 的黄金分割点; (2)解:由(1)知BD CDBC BD =, ∴BD,∴DC BC BD BC =−==,∵ACD ABCSCD S BC ==,∴3535203022ACDABCSS =−−==−【点睛】本题考查了黄金分割的概念:把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.也考查了三角形的面积.【变式训练】1.(2022秋·九年级单元测试)如图所示,以长为2的定线段AB 为边作正方形ABCD ,取AB 的中点P ,连接PD ,在BA 的延长线上取点F ,使PF PD =,以AF 为边作正方形AMEF ,点M 在AD 上.(1)求,AM DM 的长;(2)点M 是AD 的黄金分割点吗?为什么?【答案】(1)AM 1,DM 的长为3 (2)点M 是AD 的黄金分割点,理由见解析【分析】(1)要求AM 的长,只需求得AF 的长,又AF PF AP =−,PF PD ==,则1,3AM AF DM AD AM ===−=(2)根据(1)中的数据得:AM AD=,根据黄金分割点的概念,则点M 是AD 的黄金分割点. 【详解】(1)在Rt APD 中,1,2AP AD ==,由勾股定理知∶PD∴1AM AF PF AP PD AP ==−=−=,3DM AD AM =−=故AM 1,DM 的长为3(2)点M 是AD 的黄金分割点.∵AM AD=, ∴点M 是AD 的黄金分割点.【点睛】此题综合考查了正方形的性质、勾股定理和黄金分割的概念.先求得线段,AM DM 的长,然后求得线段AM 和AD 之间的比,根据黄金分割的概念进行判断.【答案】(1)见解析;(2)3【分析】(1)在直角三角形△ABD 中设BD x =则2AB x = ,利用勾股定理求出AD =,再求出)1AE x=,即)1AC x=,则AC AB=,即可得出结论;(2)若BD =1,则22AB BD == ,把AB 代入到AC AB =即可求出AC ,进而可求出BC . 【详解】解:(1)∵BD ⊥AB ,∴△ABD 是直角三角形,∵BD =12AB ,∴设BD x =则2AB x = ,∴AD ,∵DE =DB ,AC =AE , ∴DE x = ,∴)1AE x =∴)1AC x=,∴)12x ACAB x= ,故C 是线段AB 的黄金分割点. (2)若BD =1,则22AB BD == ,由(1)知AC AB =,∴2AC =,∴1AC = ,∴)213BC AB AC =−=−=.【点睛】本题考查黄金分割、勾股定理等知识,解题关键是正确理解题意,掌握黄金分割的定义.【过关检测】一、单选题【答案】B【分析】根据 12x y =,可以得到2y x =,代入x y x y −+即可求解; 【详解】解:∵12x y =, 2y x ∴=,21.233x y x x x x y x x x −−−∴===−++故选:B .【点睛】把两个未知数的问题转化为一个未知数的问题,消元是解决本题的基本思想.九年级校考阶段练习)如图,在ABC 中, A .AD DGDB CG= B .【答案】C【分析】根据平行四边形的性质得出DE BF =,,EF AB DE BC ∥∥,,根据相似三角形的判定得出DGE CGF ∽,再根据平行线分线段成比例定理和相似三角形的性质逐个判断即可.【详解】解:A .四边形BDEF 是平行四边形,DE BF ∴=,,EF AB DE BC ∥∥,∴AD AE BFDB EC FC ==,DGE CGF ∽, ∴DG DE BFCG CF CF ==,∴AD DGDB CG =,故本选项错误;B .四边形BDEF 是平行四边形,DE BF ∴=,,EF AB DE BC ∥∥,∴AD AE BFDB EC FC ==,DGE CGF ∽, ∴EG DE BFGF CF CF ==,∴AD EGDB GF =,故本选项错误;C .DE BC ∥,DE BF =,∴AD DE BF ADAB BC BC DB ==≠,故本选项正确;D .,EF AB DE BC ∥∥Q DE BF =, ∴AD AE BF DEDB EC FC FC ===,故本选项错误; 故选:C .【点睛】本题考查了平行线分线段成比例定理,相似三角形的性质和判定,平行四边形的性质的应用,能灵活运用定理进行推理是解此题的关键.A .32B .【答案】A【分析】利用平行线分线段成比例定理求解即可. 【详解】解:∵AB EF CD ∥∥, ∴BE AFEC FD =, ∵2AO =,1OF =,2FD =, ∴2+13=22BE EC =, 故选:A .【点睛】本题考查平行线分线段成比例定理,熟练掌握平行线分线段成比例性质是解答的关键.4.(2023春·江苏无锡·七年级校考阶段练习)如图所示,3BE EC =,D 是线段AC 的中点,BD 和AE 交于点F ,已知ABC 的面积是28,求四边形DCEF 的面积( )A .4B .5C .7D .8【答案】B【分析】如图,过D 点作DH ∥,交BC 于H ,先证得EH CH =,再证明6BEEH =,由此得到11281422ABD ABC S S ==⨯=,根据3BE CE =, 求出ACE ∆的面积,即可得到答案.【详解】如图,过D 点作DH AE ∥,交BC 于H ,∵点D 是AC 的中点,∴1AD EH CD CH ==,即EH CH =,∵3BE CE =,∴32BE BE CE EH ==, ∴6BE EH =, ∴6BF BE DF EH ==, ∵11281422ABD ABC S S ==⨯=,∴1114277ADF ABD S S ==⨯=,∵3BE CE =,∴1128744ACE ABC S S ==⨯=, ∴725ACE ADF DCEF S S S =−=−=四边形,故选:B .【点睛】此题考查了平行线分线段成比例,三角形中线的性质,根据线段比的关系求出三角形的面积,题中由中点引出辅助线是解题的关键. ,我们把这样的等腰三角形称为黄金三角形.如图,在ABC 中,,ABC 看,BCD 看作第二个黄金三角形;作,CDE 看作第三个黄金三角形;⋯⋯【答案】A【分析】由黄金三角形的定义得BC AB ==,同理BCD △是第二个黄金三角形,CDE 看作第三个黄金三角形,则2CD ==,得出规律,即可得出结论.【详解】1AB AC ==,36A ∠=︒,ABC 是第一个黄金三角形,∴底边与腰之比等于,即BC AB=,BC AB ∴=,同理:BCD △是第二个黄金三角形,CDE 是第三个黄金三角形,则2CD ==,即第一个黄金三角形的腰长为01=,第二个黄金三角形的腰长为第一个黄金三角形的腰长为1,第三个黄金三角形的腰长为,⋯,∴第2023个黄金三角形的腰长是20231−,即2022,故选:A .【点睛】本题考查了黄金三角形,等腰三角形的性质,规律型等知识;熟练掌握黄金三角形的定义,得出规律是解题的关键.二、填空题【答案】53/213 【分析】设235a b c k ===,则2a k =,3b k =,5c k =,代入a b c a +−求解即可. 【详解】解:设235a b c k ===,则2a k =,3b k =,5c k =, ∴23555233a b k k k c a k k k ++===−−. 故答案为:53.【点睛】本题主要考查了比例的性质,能选择适当的方法求解是解答本题的关键. 7.(2023春·江苏淮安·九年级校联考阶段练习)如图,直线123l l l ∥∥,直线AC 和DF 被直线1l 、2l 、3l 所截,2AB =,5BC =,6EF =,则DE 的长为 .【答案】125【分析】根据平行线分线段成比例定理得出比例式,代入求出即可.【详解】解:直线123l l l ∥∥,AB DE BC EF ∴=,2AB =,5BC =,6EF =, 256DE ∴=,125DE ∴=,故答案为:125.【点睛】本题考查了平行线分线段成比例定理,能根据平行线分线段成比例定理得出正确的比例式是解此题的关键.【答案】35/0.6 【分析】根据题意可得333,,555a b c d e f ===,再代入,即可求解. 【详解】解:∵35a c e b d f ===, ∴333,,555a b c d e f ===, ∴2323a c eb d f −+−+3232335535b d f b d f −⨯+⨯=−+()335223b d f b d f −+=−+35=. 故答案为:35【点睛】本题考查比例的基本性质,能够熟练掌握整体代入思想是解决本题的关键.【分析】根据黄金分割定义,由黄金分割点的位置离A 近,根据黄金分割比列式求解即可得到答案.【详解】解:由题意可知,当黄金分割点C 离A 近,如图所示:20m AB =,∴由黄金分割比可知AC BC BC AB =,设m AC x =,则()20m BC x =−,代入得到202020xx x−=−, 解得123030x x =−=+经检验,123030x x =−=+30AC ∴=−3020AC =+>(舍弃);综上所述,主持人站在离A 点(30m −处最自然得体,故答案为:(30−.【点睛】本题考查利用黄金分割解决实际问题,还考查了解分式方程,解一元二次方程,读懂题意,熟练掌握黄金分割比与黄金分割点是解决问题的关键.【答案】4或9/9或4【分析】分当52CE CF ==时,当52CE EF ==时,当CF EF =时三种情况求解即可. 【详解】当52CE CF ==时,如图,∵点F 为AC 的中点,∴25AC CF ==,∵四边形ABCD 是矩形,∴90D Ð=°,AB CD =,∴4AB CD =;当52CE EF ==时,如图,作FH CD ⊥于点H ,∵90D Ð=°,∴FH AD∥,∴1 CH CFHD AF==,∴CH DH=,∴EF是ACD的中位线,∴1322 FH AD==,∴2 HE==,∴92 CH HE CE=+=∴99922AB CD==+=;当CF EF=时,∵点F为AC的中点,∴DF CF=,∴DF EF=,∴点D与点E重合,∴52CD CE==,这与3AB CD=>矛盾,故不符合题意,舍去.综上可知,AB的长度为4或9.故答案为:4或9.【点睛】本题考查了矩形的性质,直角三角形斜边的中线等于斜边的一半,勾股定理,三角形中位线的性质,以及平行线分线段成比例定理,分类讨论是解答本题的关键.三、解答题【答案】(1)2(2)10【分析】(1)利用等比性质,进行计算即可解答;(2)利用等比性质,进行计算即可解答.【详解】(1)解:2a c e b d f ===,且0b d f ++≠,∴2a c e b d f ++=++, ∴a c eb d f ++++的值为2;(2)解:2a c e b d f ===,∴23223a c e b d f −===−, ∴23223a c e b d f −+=−+,235b d f −+=,232510a c e ∴−+=⨯=,23a c e ∴−+的值为10.【点睛】本题考查了比例的性质,熟练掌握等比性质是解题的关键. 12.(2023秋·河北邢台·九年级统考阶段练习)如图,已知直线1l ,2l ,3l 分别截直线4l 于点A ,B ,C ,截直线5l 于点D ,E ,F ,且123l l l ∥∥.(1)如果4AB =,8BC =,12EF =,求DE 的长;(2)如果:2:3DE EF =,25AC =,求AB 的长.【答案】(1)6DE =(2)10AB =【分析】对于(1),根据平行线分线段成比例的性质得AB DE BC EF =,再代入计算; 对于(2),根据平行线分线段成比例得性质得AB DE BC EF =,再代入计算即可. 【详解】(1)∵123l l l ∥∥,4AB =,=8BC ,=12EF , ∴AB DE BC EF =, 即4812DE =, 解得6DE =;(2)∵123l l l ∥∥,2=3DE EF ,=25AC , ∴AB DE BC EF =, 即2253AB AB =−,解得10AB =.【点睛】本题主要考查了平行线分线段成比例定理,理解定理是解题的关键.即一组平行线被两条直线所截,所得的对应线段成比例.【答案】-9或6. 【分析】当a+b+c+d≠0时,依据等比性质可得2()3()a b c d a b c d ++++++=k ,当a+b+c+d=0时,得b+c+d=﹣a ,代入即可计算出k 的值.【详解】∵2222a b c d b c d a c d a b d a b c ===++++++++=k ,∴当a+b+c+d≠0时,由等比性质可得,2()3()a b c d a b c d ++++++=k , k=2()3()a b c d a b c d ++++++=23;当a+b+c+d=0时,b+c+d=﹣a ,∴k=22a a b c d a =++−=-2;当k=23时,2222343433k k ⎛⎫−−=−⨯−=− ⎪⎝⎭509; 当2k =−时,()()223423246k k −−=−−⨯−−=.【点睛】本题主要考查了比例的性质的运用,解决问题的关键是掌握比例的性质. 14.(2023秋·全国·九年级专题练习)美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165cm ,下半身长x 与身高l 的比值是0.6.(1)求该女士下半身长x ;(2)为尽可能达到美的效果,求她应穿的高跟鞋的高度.(结果精确到0.1)【答案】(1)该女士下半身x 为99cm ;(2)她应穿的高跟鞋的高度为7.8cm .【分析】(1)列式计算即可求解;(2)设需要穿的高跟鞋是cm y ,列方程求解即可.【详解】(1)解:1650.699cm x =⨯=;答:该女士下半身x 为99cm ;(2)解:设需要穿的高跟鞋是cm y ,则:()990.618165y y +=+,解得:7.8y ≈,答:她应穿的高跟鞋的高度为7.8cm .【点睛】本题主要考查了黄金分割的应用.明确黄金分割所涉及的线段的比是解题关键.15.(2023秋·四川自贡·九年级四川省荣县中学校校考阶段练习)阅读下面的材料:如图1,在线段AB 上找一点C ()AC BC >,若::BC AC AC AB =,则称点C 为线段AB 的黄金分割点,这我们可以这样作图找到已知线段的黄金分割点:如图,在OEF 中,且12EF OE =,连接OF ;以F 为圆心,EF 长为半径作弧,【答案】(1)EF FH =,OH OP =(2)1OP =(3)见解析【分析】(1)由题意知,EF FH =,OH OP =,然后作答即可;(2)由勾股定理得OF =OP OH OF FH ==−,计算求解即可;(3)由1OP ,可得)2216OP ==−,)213PE OE OP =−=−=,(236OE PE ⋅=−=−2·OP OE PE =,即::PE OP OP OE =,进而结论得证.【详解】(1)解:由题意知,EF FH =,OH OP =,故答案为:EF FH =,OH OP =;(2)解:∵EF OE ⊥,∴90OEF ∠=︒∵2OE =,∴112EF OE ==,由勾股定理得OF =∵1FH EF ==∴1OP OH OF FH ==−,∴1OP .(3)证明:∵1OP =,∴)2216OP ==−)213PE OE OP =−=−=−(236OE PE ⋅==−∴2·OP OE PE =,即::PE OP OP OE =,∴点P 是线段OE 的黄金分割点.【点睛】本题考查了画线段,勾股定理,黄金分割.解题的关键在于对知识的熟练掌握与灵活运用.为边AB 上的点,过点于点O .若2AE =,中,点G 在DA 的延长线上,直线点G 是边AD 上任意一点,连接GB 、GC 分别交EF 于点M 、N ,则GMN ∆周长的最小值是 .【答案】(1)2.7;(2)见解析;(33【分析】(1)ABCD Y ,AD BC ∥,EF AD ∥,EF AD BC ∥∥,AE GO EB OH =,即可求得OH ;(2)ABCD Y ,AD BC ∥,ODG OBC ∆∆∽,OD GO OB CO =,同理OBE ODC ∆∆∽,OD OC OB OE =,即可证明GO OC CO OE =;(3)过点C 作以AD 所在直线为对称轴的对称点C ',交AD 于点M ',易得GC GC '=,EF BC ∥,且E 、F 分别是边AB ,CD 的中点,MN 为GBC ∆的中位线,12MNG BCG C C ∆∆=,连接BC ',此时与AD 的交点G ,此时BCG ∆周长最小,根据勾股定理即可求出BCC '∆进而求出MNG C ∆作答.【详解】解(1):ABCD ,AD BC ∴∥,又EF AD ∥,EF AD BC ∴∥∥,∴AE GO EB OH =,即2 1.83OH =, 2.7OH ∴=,故答案为:2.7;(2)证明:ABCD ,AD BC ∴∥,ADB CBD ∴∠=∠,DGO OCB ∠=∠,ODG OBC ∴∆∆∽,∴OD GO OB CO =,同理OBE ODC ∆∆∽,∴OD OC OB OE =, ∴GO OC CO OE =;(3)解:过点C 作以AD 所在直线为对称轴的对称点C ',交AD 于点M ',易得GC GC '=,如图,EF BC ∥,且E 、F 分别是边AB ,CD 的中点,MN ∴为GBC ∆的中位线,11()22MNG BCG C MN MG GN BC BG GC C ∆∆∴=++=++=,连接BC ',此时与AD 的交点G ,此时BCG ∆周长最小,60ABC ∠=︒,90BCC '∠=︒,30DCM '∴∠=︒,4CM '==2CC CM ''∴==在Rt AOE '中,BC '=111()6)3222MNG BCG C C BC BC ∆∆'∴==+==,3.【点睛】本题考查平行四边形的性质,中位线,平行线的性质,三角形等综合问题,解题的关键是对将军饮马问题的灵活运用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年8月22日数学随堂练习试卷一、选择题(共8小题;共40分)1. 若3x=4y(xy≠0),则下列比例式成立的是( )A. x4=y3B. x3=4yC. xy=34D. x3=y42. 如图是一只美丽的蝴蝶图片,任强同学通过测量发现,蝴蝶的身体长度与它展开的双翅的长度之比是黄金分割比,已知蝴蝶展开的双翅的长度是7cm,则蝴蝶身体的长度约是A. 4.2cmB. 4.3cmC. 4.4cmD. 2.7cm3. 已知5x=6y(y≠0),那么下列比例式中正确的是( )A. x5=y6B. x6=y5C. xy=56D. x5=6y4. 已知:2x=3y(y≠0),那么下列比例式中成立的是( )A. x2=y3B. x3=y2C. xy=23D. x2=3y5. 已知线段AB=10cm,点C是线段AB的黄金分割点(AC>BC),则AC的长为A. (5√5−10)cmB. (15−5√5)cmC. (5√5−5)cmD. (10−2√5)cm6. 如果4a=5b(ab≠0),那么下列比例式变形正确的是( )A. 5a =4bB. a4=b5C. ab=45D. 4a=b57. 根据有关测定,当外界气温处于人体正常体温的黄金比值时,人体感到最舒适(人体正常体温约为37∘C),这个气温大约为A. 23∘CB. 28∘CC. 30∘CD. 37∘C8. 如图所示,P为线段AB的黄金分割点(PB>PA),四边形AMNB、四边形PBFE都为正方形,且面积分别为S1,S2.四边形APHM、四边形APEQ都为矩形,且面积分别为S3,S4,下列说法正确的是A. S2=√5−12S1 B. S2=S3 C. S3=√5−12S4 D. S4=√5−12S1二、填空题(共8小题;共40分)9. 若3a=4b,则a:b=.10. 已知线段a、b满足2a=3b,则ab=.11. 已知3x=2y,那么xx+y=.12. 若1+xx =75,则x=.13. 若2a−3b=0,b≠0,则a:b=.14. 已知2x=5y,则xy=.15. 若ab =35,则a+bb的值是.16. 若x2=y3=z4(x,y,z均不为0),则x+2y−zz的值为.三、解答题(共10小题;共130分)17. 已知四条线段a=0.5m,b=25cm,c=0.2m,d=10cm,试判断四条线段是否成比例.18. 求下列各式中的x.(1)3:x=(x−5):2(2)4:x=x:919. 小丽家住在花园小区离站前小学的直线距离是5km.(1)请你先量一量花园小区到站前小学的图上距离(四舍五入,保留整厘米),再求出这幅图的比例尺;(2)将求出的比例尺用线段比例尺表示出来.20. 已知a,b,c是△ABC的三边长,且a5=b4=c6≠0.(1)求2a+b3c的值;(2)若△ABC的周长为90,求各边的长.21. 证明:如果ab =cd,那么a+ba=c+dc.22. (1)若(2x−3y):(x+y)=1:2,求x:y.(2)已知三角形三边长分别为a,b,c,且a:b:c=2:3:4,三角形的周长为18cm,求各边的长.(3)若a+bc =b+ca=a+cb=k,求k的值.(4)已知2x =3y=7z=k,求xy+xz+yzx2+y2+z2的值.23. 如图,乐器上的一根弦AB=80cm,两个端点A,B固定在乐器板面上,支撑点C是靠近点B的黄金分割点,支撑点D是靠近点A的黄金分割点,试确定支撑点C到端点B的距离以及支撑点D到端点A的距离.24. 如图,在△ABC中,点D、E分别在边AB、AC上,ADDB =AEEC.求证:(1)ABDB =ACEC;(2)ADAB =AEAC.25. (1)已知ab =32,那么a+bb、a−bb、a+ba−b等于多少?(2)已知ab =cd,你能得出哪些结论?26. 三个有理数a,b,c满足a:b:c=2:3:5,且a2+b2+c2=abc,求a+b+c的值.答案第一部分 1. A 2. B 【解析】由题意得,7×0.618≈4.3(cm ). 3. B4. B5. C【解析】∵ 点 C 是线段 AB 的黄金分割点 (AC >BC ),∴ AC =√5−12AB . 而 AB =10 cm ,∴ AC =√5−12×10=(5√5−5)(cm ).6. A7. A【解析】根据黄金比值知,身体感到特别舒适的温度应约为 37∘C 的 0.618 倍,即37×0.618≈23(∘C ).8. B 【解析】根据黄金分割得出:PB =√5−12AB ,设 AB =x ,则 PB =√5−12x ,PA =(1−√5−12)x ,所以 S 1=x 2,S 2=(√5−12x)2,S 3=(1−√5−12)x ⋅x ,S 4=(1−√5−12)x ⋅√5−12x ,所以 S 2S 1=3−√52,故A错误;S2S 3=1,故B 正确;S3S 4=√5+12,故C 错误;S4S 1=√5−2,故D 错误.故选B .第二部分 9. 4:3 10. 32 11. 2512. 52 13. 3:2 14. 52 15. 85 16. 1【解析】由已知得: x =z2,y =3z 4,x+2y−zz =z2+3z2−zz=1.第三部分17. 是.∵0.525=0.210,∴ab =cd.∴成比例.18. (1)∵3:x=(x−5):2,∴x(x−5)=6解得x1=6或x2=−1;(2)∵4:x=x:9∴x2=36解得x=±6.19. (1)图上距离是5厘米,实际距离是5km,5千米=500000厘米,比例尺为:5:500000=1:100000.(2)5÷5=1(千米),线段比例尺为:20. (1)设a5=b4=c6=k(k≠0),a=5k,b=4k,c=6k.所以2a+b3c =10k+4k18k=79.(2)由题意得,5k+4k+6k=90,解得k=6.所以a=30,b=24,c=36.21. 因为ab =cd,可设ab=cd=k,所以a=bk,c=dk,所以a+bb =bk+bb=b(k+1)b=k+1,c+d d =dk+dd=d(k+1)d=k+1,所以a+ba =c+dc.22. (1)∵(2x−3y):(x+y)=1:2,∴x+y=4x−6y.∴xy =73.(2)∵a:b:c=2:3:4,可设a=2x,b=3x,c=4x,∵三角形的周长为18cm,∴2x+3x+4x=18.解得x=2.∴a=4cm,b=6cm,c=8cm.(3)∵a+bc =b+ca=a+cb=k,∴a+bc +1=b+ca+1=a+cb+1=k+1.即a+b+cc =b+c+aa=a+c+bb=k+1.①当a=b=c时,解得k=2,②当a+b+c=0时,解得k=−1.(4)∵2x =3y=7z=k,∴x2=y3=z7=1k.∴x=2k ,y=3k,z=7k.∴原式=4162.23. ∵C是AB的黄金分割,∴ACAB =√5−12,∵AB=80.∴AC=40(√5−1).∴BC=AB−AC=(120−40√5)(cm),同理AD=(120−40√5)cm.24. (1)因为ADBD =AEEC,所以AD+BDBD =AE+ECEC,所以ABDB =ACEC.(2)因为ADDB =AEEC,所以DBAD =ECAE,所以AD+DBAD =AE+ECAE,所以ABAD =ACAE,所以ADAB =AEAC.25. (1)a+bb =ab+1=32+1=52;a−b b =ab−1=32−1=12;因为ab =32所以2a=3b所以a+ba−b =2a+2b2a−2b=3b+2b3b−2b=5.(2)ad=bc;a+bb =c+dd;a−bb=c−dd;a+ba−b=c+dc−d等.26. ∵a:b:c=2:3:5,设a=2x,b=3x,c=5x,∵a2+b2+c2=abc,∴(2x)2+(3x)2+(5x)2=2x⋅3x⋅5x..解得x=1915.∴a+b+c=383。

相关文档
最新文档