车载手机充电器电路原理图

合集下载

手机充电器电路图讲解(DOC)

手机充电器电路图讲解(DOC)

手机充电器电路图讲解时间:2012-12-18 来源:作者:分析一个电源,往往从输入开始着手。

220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。

这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。

右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。

13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。

当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。

由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。

不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。

左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。

13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。

当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。

变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。

为了分析方便,我们取三极管C945发射极一端为地。

那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。

取样电压经过6.2V稳压二极管后,加至开关管13003的基极。

前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,实现了稳压输出的功能。

手机充电器电路图详解

手机充电器电路图详解

手机充电器电路图详解充电器电路手机(或其它小电器)充电器多如牛毛,不同厂家的电路结构大不相同,随着科技的进步新技术、新元件的出现又增加了新款的充电器,再加上山寨充电器充斥其中,导致小小充电器电路结构琳琅满目,让人应接不暇。

但有一款比较现代也比较简洁、很容易看懂电路图、容易查找故障的分立元件充电器,可作为经典教材进行研究,笔者使用这款充电器已有三年之久,由于后来大电流的快充的出现,现在已经不用它了,只将其作为一种研究对象进行分析,今天就将此分享给大家。

电路原理图见下图:电路图分析:一、该电路属于自励、反激式、变压器耦合型、PWM开关电源;电源变换过程:交流(AC,输入市电)→直流(DC)→交流(AC,高频)→直流(DC,输出);电路由整流、振荡、稳压、保护四大系统组成。

二、输入整流、滤波电路:由二极管VD1、电解电容器C1组成,属于半波整流电路,输出脉动直流电压,峰值电压311v,经电容滤波达到300v左右的直流电压。

VD1为1N4007这个二极管使用比较普遍,最大整流电流1A,最大反向电压1000v;电解电容器的耐压要大于300v;三、振荡电路:由R2、VT1、L1、L2、C4、R5组成,如果没有L2、C4、R5反馈支路的存在,三极管VT1过着一种平淡的田园生活,它通过偏置电阻R2提供合适的偏压,形成了一般的放大电路,但第三者---反馈电路的插足让它的生活不再平静,而是动荡不安--形成了振荡电流。

L2为反馈线圈,从图上L1、L2同名端的关系看出该反馈属于正反馈,于是形成了振荡电路,由于电容C4的存在导致该振荡电路形成的振荡是间歇振荡,不是正弦波;起振过程:电路接通时,启动电阻R2为电路提供偏置电流,于是VT1的集电极就有电流Ic通过Ic,当集电极线圈L1电流发生变化时(0→增加),就会产生自感电动势,方向上+下-,因L2与L1同绕在一个磁心上,于是L2在互感的作用下,产生下+上-的感应电动势;版权所有。

充电器及电子工程图(汽车).

充电器及电子工程图(汽车).

R2
D3 R4 LED Q1 Q4 R8
I0
RL
C2
R3
RW2
C3
-
2.分析
+
R1
占空比可调的多谐振荡器
555电路使用 Ucc=3—18V I0=200mA 4清“0”端,(低电平有效) 5控制端 , 悬空=2/3UCC
3
UCC
D1 D2 RW1
RW1’ RW1’’
8 7
i放
6 2
555
c
1 4 5
i放
ቤተ መጻሕፍቲ ባይዱ
7 6 2
555
R2
3
D3 R4
D4 R8
Q4
1 4 5
C1
-
+
LED Q1 C3 RW2 RL
i充
C2
I0 (i0)
R3
2.分析
+
R1
占空比可调的多谐振荡器
555电路使用 Ucc=3—18V I0=200mA 4清“0”端,(低电平有效) 5控制端 , 悬空=2/3UCC
3
UCC
D1 D2 RW1
-
恒流源
Ui
6V R2 D3 R4 LED Q1 RW2 0V R3 Q4
Q2、Q3组成电流负反馈恒流源 当Q1饱和时 I0=UBE3/R5=0.7/5.6=125ma (I0与负载无关) 当Q1截止时 I0=0 占空比=50%时 I0=62.5ma
+
R6 R5
R5 Q3 Q2
R8
4V
I0
RL
ui
L N
华 南 理 工 大 学
South China Universty of Technology

汽车充电器原理图

汽车充电器原理图

IMPORTANT NOTICE FOR TI REFERENCE DESIGNSTexas Instruments Incorporated("TI")reference designs are solely intended to assist designers(“Buyers”)who are developing systems that incorporate TI semiconductor products(also referred to herein as“components”).Buyer understands and agrees that Buyer remains responsible for using its independent analysis,evaluation and judgment in designing Buyer’s systems and products.TI reference designs have been created using standard laboratory conditions and engineering practices.TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design.TI may make corrections,enhancements,improvements and other changes to its reference designs.Buyers are authorized to use TI reference designs with the TI component(s)identified in each particular reference design and to modify the reference design in the development of their end products.HOWEVER,NO OTHER LICENSE,EXPRESS OR IMPLIED,BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT,AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT,IS GRANTED HEREIN,including but not limited to any patent right,copyright,mask work right, or other intellectual property right relating to any combination,machine,or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services,or a warranty or endorsement e of such information may require a license from a third party under the patents or other intellectual property of the third party,or a license from TI under the patents or other intellectual property of TI.TI REFERENCE DESIGNS ARE PROVIDED"AS IS".TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS,EXPRESS,IMPLIED OR STATUTORY,INCLUDING ACCURACY OR COMPLETENESS.TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY,FITNESS FOR A PARTICULAR PURPOSE,QUIET ENJOYMENT,QUIET POSSESSION,AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF.TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN.IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL,SPECIAL,INCIDENTAL,CONSEQUENTIAL OR INDIRECT DAMAGES,HOWEVER CAUSED,ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES,ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.TI reserves the right to make corrections,enhancements,improvements and other changes to its semiconductor products and services per JESD46,latest issue,and to discontinue any product or service per JESD48,latest issue.Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.All semiconductor products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its components to the specifications applicable at the time of sale,in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products.Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty.Except where mandated by applicable law,testing of all parameters of each component is not necessarily performed.TI assumes no liability for applications assistance or the design of Buyers’products.Buyers are responsible for their products and applications using TI components.To minimize the risks associated with Buyers’products and applications,Buyers should provide adequate design and operating safeguards.Reproduction of significant portions of TI information in TI data books,data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties,conditions,limitations,and notices.TI is not responsible or liable for such altered rmation of third parties may be subject to additional restrictions.Buyer acknowledges and agrees that it is solely responsible for compliance with all legal,regulatory and safety-related requirements concerning its products,and any use of TI components in its applications,notwithstanding any applications-related information or support that may be provided by TI.Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures,monitor failures and their consequences,lessen the likelihood of dangerous failures and take appropriate remedial actions.Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer’s safety-critical applications.In some cases,TI components may be promoted specifically to facilitate safety-related applications.With such components,TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements.Nonetheless,such components are subject to these terms.No TI components are authorized for use in FDA Class III(or similar life-critical medical equipment)unless authorized officers of the parties have executed an agreement specifically governing such use.Only those TI components that TI has specifically designated as military grade or“enhanced plastic”are designed and intended for use in military/aerospace applications or environments.Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer's risk,and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.TI has specifically designated certain components as meeting ISO/TS16949requirements,mainly for automotive use.In any case of use of non-designated products,TI will not be responsible for any failure to meet ISO/TS16949.Mailing Address:Texas Instruments,Post Office Box655303,Dallas,Texas75265Copyright©2014,Texas Instruments Incorporated。

手机充电器电路虽然简单,设计却很经典,值得研究和借鉴

手机充电器电路虽然简单,设计却很经典,值得研究和借鉴

手机充电器电路虽然简单,设计却很经典,值得研究和借鉴手机充电器在我们生活中算比较常见的一种的小型的电子设备,价格也便宜,今天我们就来看一下手机充电器的原理图,虽然说这个线路图比较简单,但是它所涉及的电子知识内容还是比较丰富的,要求对电子元器件掌握的知识有一定的深度。

首先我们来看一下这上面每个电子元器件的作用:•二极管D1在这里是电流方向的。

相当于一个半波整流,交流电的正半轴从二极管D1这里流过。

•电容C1为滤波电容,将脉动的交流变成平滑的直流。

•电阻R2为三极管Q1的限流电阻。

•电容C4、电阻R5、二极管D5、组成RCD尖峰消除电路,消除变压器T1的尖峰电压。

•变压器T1是将电源输入的250v电压变为5V的电压。

•电容C5在这里主要是滤出高频杂波。

•电阻R6为发光二极管LED的限流电阻。

•二极管D7为续流二极管,同时还能够在充电器充电时控制电流的流向,避免充电器接头插反而造成手机损坏。

•变压器的5脚与6脚组成的线圈为电压取样的线圈,通过取样、反馈及比较后将充电器的输出电压控制在5Ⅴ稳定的范围内。

•电容C2为滤波电容。

•电阻R4及电容C3为RC串联电路,电容C3为隔直流通交流,电阻R4为三级管Q2集电极的限流电阻。

•IC1为稳压二级管,当电压大于4.3Ⅴ时,稳压二级管击穿。

•电阻R1与R3为三极管Q1及Q2的限流电阻。

•F1为延时保险,当电路中流过大电流时,保险熔断。

我们再来分析一下这个电路的工作流程:电源220V经过二级管D1及电容C1后形成相对平滑的直流电压到达变压器T1的初级,变压器初级线圈开始储能,当变压器取样的线圈感应到的电压大于5Ⅴ时,稳压二级管反向导通,三级管Q2基级电流增大,从而Q2集电级电流增大,发射极电流增大,三级管Q1的基级电流增大,从而导致三级管Q1的集电极与发射极电流增大,流经电阻R3的电流增大,三级管Q1与Q2形成正反馈,直到三级管Q1截止,变压器初级开始储能,当充电电压低于5V时,Q1导通,初级线圈电能释放,此时插上的手机开始充电后变压器初级线圈储存的能量感应到次级线圈,手机开始充电!总结:在这个电路里面最关键的是正反馈电路,这个是电路比较经典的部分,也相对难以掌握。

手机充电器电路图

手机充电器电路图

手机充电器电路图交流输入,一端一个4007半波整流,另一端一个10欧的电阻后,由10uF电容滤波。

10欧的电阻用来做保护的,出现故障等导致过流,那么电阻将被烧断,从而避免引起更大的故障。

右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。

13003为开关管(完整的名应该是MJE13003),用来控制原边绕组与电源的通、断。

当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。

图中没有标明绕组的同名端,不能看出是正激式还是反激式。

不过,从电路的结构来看,可以推测出来,电源应该是反激式的。

左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。

13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。

当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。

变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。

分析方便,我们取三极管C945发射极一端为地。

那么这取样电压负的(-4V左右),并且输出电压越高时,采样电压越负。

取样电压6.2V稳压二极管后,加至开关管13003的基极。

前面说了,当输出电压越高时,那么取样电压就越负,当负到程度后,6.2V稳压二极管被击穿,从而将开关13003 的基极电位拉低,这将导致开关管断开推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,实现了稳压输出的功能。

而下方的1KΩ电阻跟串联的2700pF电容,则是正反馈支路,从取样绕组中取出感应电压,加到开关管的基极上,以维持振荡。

自制高效车用手机充电器

自制高效车用手机充电器

自制高效车用手机充电器fu-80 2012-11-27 11:08:59开车时用手机导航,经常觉得即使在充电,手机的电量还是嗖嗖往下掉?没关系,只要在原有车用充电器 的基础上做一点改造,就可以得到一个高效率大电流的车用充电器了。

   DIYer: fu-80 制作时间: 2 小时 制作难度: ★★★☆☆ GEEK 指数: ★★★☆☆最近一直出差, 感觉长时间开车没有个合适的手机充电器还真是个麻烦事情。

原有的车用手 机充电器输出只有 500MA(绝大多数的市售车用手机充电器都这样,能上 1A 的都很少,而 且价钱很贵),手机开导航的时候,经常碰到插着充电器电量还是一个劲的往下掉的情况, 充电都不够用的。

双向电梯    1 2 3 4 5材料和工具 KIS3R33S 同步降压模块 改装车充插头 总结 DIYer 签到处1     材料和工具KIS 3R33S 同步降压模块 x1 车用充电的插头 x1 USB 插座 x2 小盒子 x1 常用电阻,电容少许 胶带,环氧胶,电烙铁,导线,焊锡等等2KIS3R33S 同步降压模块最近 KIS 3R33S 这个模块很是红火,开关式稳压模块,价格便宜(最便宜 2 块不到,内部 单个零件都比这贵),性能好,效率最高能到 95%以上。

这就是模块的真面目,内部就是个 MP2307 芯片和一个高效功率电感组成的一个基本电路, 模块默认输出是 3.3V。

MP2307 输入电压最高 23V,输出连续 3A,脉冲 4A 电流,340KHZ 的 开关频率,大电流输出情况下效率大于 95%。

基本电路图左,效率曲线图右,性能看上去还是非常不错的。

那么,要得到我们需要的 5V 电压输出,就需要进行合理的改造才行。

借用一下网上前辈们 实验得出的结果。

经过以上的改装,去掉一个 332 电阻,两个 513 电阻,一个肖特基输出二极管,一个输出电 容,那么基本就完成了最初的改装,也就是取消掉稳压部分的取样电路,来重新设置输出电 压。

工人宿舍手机充电方案 v usb接口手机电池充电系统

工人宿舍手机充电方案 v usb接口手机电池充电系统

工人宿舍手机充电方案‐5v usb接口手机电池充电系统一 、‐5v usb接口手机电池充电系统说明现如今手机普及率高,基本人手一个手机。

农民工在外出打工时主要居住在临时搭建的板房中,如果用交流220V来给工人手机充电势必会造成用电安全隐患。

为保证工人宿舍区用电安全,消除用电隐患,中建总公司要求所有工人宿舍不提供220v交流电,避免工人使用电热毯、电炉子等易引发火灾的电器。

跟其他中建的项目进行交流和学习时,发现他们也没有好的办法,大多采用专门设置2间屋子,里面提供很多的插排,然后工人集中充电。

这样集中充电,带来了很多的弊端,包括现在的工地农民工都比较多,几百人,至上千人,都集中到一个屋子里去充电,则需要至少1-2名人员去管理这些充电电池,而且可能出现混乱。

工人到充电室充电,只能在上下班的时候去更换电池,因此会出现拥堵,混乱等。

经过中建安装东北公司几名员工的研究和探讨最终设计出如下方案以解决建筑工地民工手机、手机电池充电的问题。

我们简称为5Vusb口充电系统。

5Vusb口充电系统的工作灵感产生主要是现在几乎所有的手机充电器都标称220转5v直流充电器,(图1)如果工人宿舍使用220V 交流电源为手机充电,起不到对工人人身安全的保护。

而如何保证工人居住安全同时又能方便工人手机充电是我们考虑的问题。

如何将使用电压降下来成为手机充电的一大难题。

现在车载手机充电很多,它是采用直流12V-24V输入,直流5V-6V输出,并配备USB标准接口,可适应不同手机充电需要。

既然车载手机充电可以实现,那么我们是否可以以它作为借鉴,实现工人手机充电。

现在好多的手机充电器都是充电器和充电线通过usb口连接,且可分离。

(图2)而民工使用的手机大多是便宜一些的手机,而便宜手机更是大多数都采用usb线转小口usb线即可充电因此。

我们所做的是。

1、很多项目按照中建总公司的要求提供36v交流电,这时候,只需将36v交流电转换成5v直流电。

车载充电机的工作原理ppt课件.pptx

车载充电机的工作原理ppt课件.pptx

2.车辆就绪
1)在电动汽车和供电设备建立电气连接和车载充电机完成自检后并 通过图中检测点2 的PWM信号确认充电额定电流值(根据充电装置 的交流电特性)。车载充电机给电动车辆控制装 置发送充电感应请 求信号,同时或延时(例100ms)后给车辆控制装置供电。根据充电 协议进行信息 确认,若需充电则电动车辆控制装置发送需充电报文 并控制充电接触器闭合,车载充电机按所需功 率输出。
3.充电过程监测
充电过程中,车辆控制装置可以对图中检测点3的电压值PWM信号占 空比进行监测,供电 控制装置可以对图中检测点1的电压值进行监测 。
4.充电系统的停止
在充电过程中,当充电完成或者因为其他不满足充电条件时,车辆 控制装置发出充电停止信号 给车载充电机,车载充电机停止直流输 出、CAN通信和低压辅助电源输出。
谢谢观看
知识点
01 连接确认 02 车辆就绪 03 充电过程监测 04 充电系统的停止
1.连接确认
1)车辆插头与插座插合,使车辆处于不可行驶状态 将车辆插头与车辆插座插合后,车辆的总体设计方案可以自动启动某种触 发条件(如打开充电门、插头与插座连接或者对车辆的充电按钮、开关 等进行功能触发设置),通过互锁或者其他控完全连接 电动汽车车辆控制装置通过测量图中检测点3的电压值,判断车辆插头与 车辆插座是否已完全连接。
1.连接确认
3)确认充电连接装置是否已完全连接。 在操作人员对供电设备完成充电启动设置后,如供电设备无故障,并且供 电接口已完全连接,则闭合S1,供电控制装置发出PWM信号。电动汽车车辆 控制装置通过测量图中检测点2的PWM信号,判断充电连接装置是否已完全 连接。

学习单元2.3 车载充电机结构原理与检修

学习单元2.3  车载充电机结构原理与检修
【学习导航】
充电机是对新能源汽车动力蓄电池充电的设备。按照是否安装在车上,充电机因此可分为 车载式和固定式。固定式充电机是安装在充电桩内的大型充电机,主要以大功率和快速充电为 主。而车载式充电机安装在车内,其优势是可以在车库、住宅等任何地方随时充电,功率相对 较小。本课程主要学习车载充电机的结构及检修方法。
图2-3-4 直流输出端子
图2-3-5 交流输入端
2.3.1 车载充电机的结构原理
(3)车载充电机低压通信控制端子 该端子接口共有16个针脚,如图2-3-6所示。车载充电机低压通信控制端各针脚定义分别为 :1脚为新能源CAN-L、2脚为新能源CAN-GND、5脚为高压互锁输出(到高压控制盒低压插件)、 8脚为GND(充电机搭铁线)、9脚为新能源CAN-H、11脚为CC信号输出(即CC线与VCU36脚连接, 慢充连接确认线)、13脚为高压互锁输入(来至空调压缩机低压插件)、15脚为慢充唤醒信号 线唤醒电压为12V、16脚为充电机电源12V。其余各脚预留或未使用。
车载充电机内部主要由主电路、控制电路、线束及标准件三部分组成。
2.3.1 车载充电机的结构原理
三、车载充电机电路原理 1、车载充电机电压转换过程 车载充电机在对车辆进行充电时,首先将民用的交流220V电整流成稳定的直流电压;然后 通过高频开关电路将直流电转换为高频交流电;再将高频交流电转换为合适的交流电压;最后 通过整流得到合适的直流充电电压。 车辆在慢充充电过程中,由于采用高频电路转换电压,不采用传统的变压器提升电压,所 以可减小充电机体积、降低重量、提高转换效率。充电转换过程,如图2-3-7所示。
2.3.2 车载充电机的检修
一、车载充电机的故障检查 1、根据车载充电机指示灯判断故障 车载充电机上有三个指示灯,如图2-3-9所示,用来显示充电状态。 (1)各指示灯功能 POWER灯:电源指示灯(绿色),当接通交流电后,电源指示灯点亮。 RUN灯:正常工作指示灯(绿色),当充电机接通动力蓄电池进入充电状态,充电指示灯点亮。 FAULT灯:警告指示灯(红色),当充电机内部有故障时点亮。

手机万能充电路原理图

手机万能充电路原理图

手机万能充电路原理图满意答案好评率:93%手机万能充电器的电子电路图与工作原理该充电器具有镍镉、镍氢、锂离子电池充电转换开关,并具有放电功能。

在150~250V、40mA的交流市电输入时,可输出300±50mA的直流电流。

该充电器采用了RCC型开关电源,即振荡抑制型变换器,它与PWM型开关电源有一定的区别。

PWM型开关电源由独立的取样误差放大器和直流放大器组成脉宽调制系统;而RCC型开关电源只是由稳压器组成电平开关,控制过程为振荡状态和抑制状态。

由于PWM型开关电源中的开关管总是周期性的通断,系统控制只是改变每个周期的脉冲宽度,而RCC型开关电源的控制过程并非线性连续变化,它只有两个状态:当开关电源输出电压超过额定值时,脉冲控制器输出低电平,开关管截止;当开关电源输出电压低于额定值时,脉冲控制器输出高电平,开关管导通。

当负载电流减小时,滤波电容放电时间延长,输出电压不会很快降低,开关管处于截止状态,直到输出电压降低到额定值以下,开关管才会再次导通。

开关管的截止时间取决于负载电流的大小。

开关管的导通/截止由电平开关从输出电压取样进行控制。

因此这种电源也称非周期性开关电源。

220V市电经VD1~VD4桥式整流后在V2的集电极上形成一个300V左右的直流电压。

由V2和开关变压器组成间歇振荡器。

开机后,300V直流电压经过变压器初级加到V2的集电极,同时该电压还经启动电阻R2为V2的基极提供一个偏置电压。

由于正反馈作用,V2 Ic 迅速上升而饱和,在V2进入截止期间,开关变压器次级绕组产生的感应电压使VD7导通,向负载输出一个9V左右的直流电压。

开关变压器的反馈绕组产生的感应脉冲经VD5整流、C1滤波后产生一个与振荡脉冲个数呈正比的直流电压。

此电压若超过稳压管VD17的稳压值,VD17便导通,此负极性整流电压便加在V2的基极,使其迅速截止。

V2的截止时间与其输出电压呈反比。

VD17的导通/截止直接受电网电压和负载的影响。

手机充电器电路工作原理PPT(35张)

手机充电器电路工作原理PPT(35张)

在Q2导通期间,L3中的感应电动势极性为上 负下正,D7截止;在Q2截止期间,L3中的 感应电动势极性为上正下负,D7导通,向 外供电。 图1中,VD1、Q1等元件组成稳压 电压。若输出电压过高,则L2绕组的感应 电压也将升高,D1整流、C4滤波所得电压 升高。由于VD1两端始终保持5.6V的稳压值, 则Q1 b极电压升高,Q1导通程序加深,即 对Q2 b极电流的分流作用增强,Q2提前截 止,输出电压下降 若输出电压降低,其稳 压控制过程与上述相反。
VD17的导通/截止直接受电网电压和负载的 影响。电网电压越低或负载电流越大,VD17 的导通时间越短,V2的导通时间越长,反之, 电网电压越高或负载电流越小,VD5的整流 电压越高,VD17的导通时间越长,V2的导通 时间越短。V1是过流保护管,R5是V2 Ie的 取样电阻。当V2 Ie过大时,R5上的电压降 使V1导通,V2截止,可有效消除开机瞬间的 冲击电流,同时对VD17的控制功能也是一种 补偿。VD17以电压取样来控制V2的振荡时间, 而V1是以电流取样来控制V2振荡时间的。
按下SW2,V5基极瞬间得一低电平而导通,可 充电池上的残余电压通过V5的ec极在R17上 放电,同时放电指示灯VD14点亮。在按下 SW2后会随即释放,这时可充电池上的残余 电压通过R16、R13分压,C9滤波后为V4的基 极提供一个高电平,V4导通,这相当于短接 SW2。随着放电时间的延长,可充电池上的 残余电压也越来越低,当V4基极上的电压不 能维持其继续导通时,V4截止,放电终止, 充电器随即转入充电状态。
由于集成块IC1 的2、3、4脚和电容C4共同组成振荡 谐振电路,其2脚输出的振荡脉冲经电阻R16送至 充电指示灯LED--发光二极管(绿)的正极,其负 极接到集成块IC1的8脚。 在电池刚接人电路时, 集成块IC1的8脚输出的电平越低,充电指示灯 LED1闪烁发光强。随着充电时间延长,电池所充 的电压慢慢升高,集成块IC1的8脚 输出电压慢慢 升高,充电指示灯LED1闪烁发光逐渐变弱。当电 池E慢慢充到4.2V左右时,集成块IC1的6脚电位也 达到其内部的参考电压1.8V.此时,集成块IC1内 部电路动作,使其8脚电压输出高电平,三极管 VT3截止,充电指示灯LED1不再闪烁发光而熄灭, 充满指极管VT2及开关变压器1等组 成。接通源后,交流220V经二极管VD2半波整 流,形成100V左右的直流电压。该电压经开 关变压器T的1初级绕组加到了三极管VT2的c 极,同时该电压经启动电阻R4为VT2的b极提 供一个正向偏置电压,使VT2导通。此时,三 极管VT2和开关变压器 T1组成的间歇振荡电 路开始工作,开关变压器T的1-1初级绕组中 有电流通过。

手机充电器电路原理图

手机充电器电路原理图

分析一个电源,往往从输入开始着手。

220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。

这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。

右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。

13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。

当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。

由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。

不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。

左端的510K Ω为启动电阻,给开关管提供启动用的基极电流。

13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。

当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。

变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。

为了分析方便,我们取三极管C945发射极一端为地。

那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。

取样电压经过6.2V稳压二极管后,加至开关管13003的基极。

前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,实现了稳压输出的功能。

五种车载充电器电路分析对比——电路图天天读83

五种车载充电器电路分析对比——电路图天天读83

五种车载充电器电路分析对比随着电动汽车的普及和电子产品的应用越来越广泛,汽车充电设备也变得越来越重要。

车载充电器是其中之一,通过将汽车电源转换为适合电子设备的电源,为电子设备充电提供了很大的便利。

本文将介绍五种常见的车载充电器电路,包括线性稳压电路、开关电源电路、闪光LED电路、USB直接充电电路、并联降压充电电路,并分析它们的优缺点和适用范围。

线性稳压电路线性稳压电路是最简单的车载充电器电路之一。

它采用了一个稳压器,将汽车电源的电压稳定到所需要的电压。

该电路的优点是结构简单、成本低廉,适用于较小的电子设备的充电。

以下是线性稳压电路的电路图:┌───┬──┬───┐ ┌───────┐│VIN├──┤R1 ├──+─VOUT┤ │└───┴──┴───┘ | └───────┘─┴── GND其中VIN是汽车电源电压,R1是电流限制电阻,VOUT是输出电压。

电路图中的稳压器可以是任何类型的稳压器,如LM317、LM7805等。

稳压器的输入电压应该高于稳定的输出电压,并根据所需的输出电流选择不同的稳压器。

为了保护充电器以及所充电设备,可以在电路中加入保险丝和输入输出滤波电容。

线性稳压电路的缺点是效率较低,由于稳压器需要消耗多余的电压,因此此类电路在输出大于2V的电压时效率很低。

此外,稳压器的散热问题也需要特别注意,因为稳压器的热损耗很大,所以需要选择合适的散热方式。

开关电源电路开关电源电路是一种高效的车载充电器电路,它采用了开关管、电感和电容等各种元件组成的电路,将汽车电源的电压转换为适合电子设备的电源。

开关电源电路的优点是高效、体积小、重量轻、适用性广。

以下是开关电源电路的电路图:┌─────┐┌───┐ │Q1 │ ┌─────┐│VIN├──┤ ├──┬┤L1 │├───┤ │┌───┐│ ├┤ ├│C1 ├─┬─┤│ ├┤ ├┤C2 │└───┘ │ │ ││ │└─────┘│ │ ││ ││ │ ││ ││ └───┘│ │└──────┴──┘VOUT其中VIN是汽车电源电压,Q1是开关管,L1是电感,C1和C2是电容。

一文带你认识新能源汽车充配电总成

一文带你认识新能源汽车充配电总成

一文带你认识新能源汽车充配电总成由于关乎车辆的性能和成本,汽车零部件的集成化、标准化一直是业界努力的方向,要实现快速的产品迭代和平台化应用,标准化和集成化都是两大利器。

所谓集成化,就是对原本分立的系统进行集成,从而使得汽车相关组件数量精简,体积变小,质量变轻,效率提升。

比如比亚迪基于“e 平台”打造的电动汽车,正是通过高度集成、一体控制,实现了整车重量的减轻、整车布局的优化,能耗效率的提升和可靠性的提高,最终加速推动电动汽车的普及。

高压充配电总成三合一一般包括车载充电机(OBC)、高压配电盒(PDU)以及DC-DC转换器。

有些充配电总成还会在三合一的基础之上再集成双向交流逆变式电机控制器(VTOG),也就是俗称的四合一。

一、车载充电机的组成和原理车载充电机内部可分为主电路、控制电路、线束及标准件三部分。

主电路前端将交流电转换为恒定电压的直流电,主电路后端为DC/DC变换器,将前端转出的直流高压电变换为合适的电压及电流供给动力蓄电池。

新能源汽车的车载充电机控制电路具有控制场效应管开关,它与BMS之间进行通信,监测充电机工作状态以及与充电桩握手等。

线束及标准件用于主电路与控制电路的连接,固定元器件及电路板。

车载充电机工作原理如图所示。

车载充电机的工作均由BMS发出指令进行控制,包括工作模式指令、动力蓄电池允许最大电压、充电充许最大电流、加热状态的电流值等。

充电机通过CAN总线与车辆进行通信,通信内容包括蓄电池单体、模块和总成的相关技术参数,充电过程中动力蓄电池的状态参数,充电机工作状态参数以及车辆基本信息等。

充电前,系统会自动检测动力蓄电池箱体内部的动力蓄电池温度,若温度高于55℃或低于0℃时,动力蓄电池管理系统将自动切断充电回路,此时无法充电。

若有低于0℃的温度点,则启动加热模式,加热继电器闭合进行加热,待所有电芯温度点都高于5℃时停止加热,然后启动充电程序,充电过程中充电桩电流显示为12~13A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档