机械振动(有答案)

合集下载

机械振动习题与答案(20210317093030)

机械振动习题与答案(20210317093030)

第一章概述1. 一简谐振动,振幅为0.20cm ,周期为0.15s,求最大速度和加速度。

解:1x max = w* X max = 2* 二* f * X max= 2* 二* * A = 8.37cm/ s.. 2 2 1 2 2 X max =W * X max x = (2* 二* 〒)2* A = 350.56cm/s22 . 一加速度计指示结构谐振在80HZ时具有最大加速度50g,(g=10m/s2 )解: X max =W2* X max =(2* 二* f )'* X maxx max二X max/(2* 二* f)2 =(50*10) /(2*3.14*80) 2 = 1.98mm3. 一简谐振动,频率为10Hz ,最大速度为4.57m/s ,求谐振动的振幅度。

解:x ma^X max/(2* ■: * f) =4.57/(2*3.14*10) -72.77mm1 1T 0.1sf 10 求振动的振幅。

、周期、最大加速2X max =w* X max = 2* ;■.工* f * X max = 2*3.14*10*4.57 = 287.00m / s4. 机械振动按激励输入类型分为哪几类?按自由度分为哪几类?答:按激励输入类型分为自由振动、强迫振动、自激振动按自由度分为单自由度系统、多自由度系统、连续系统振动5. 什么是线性振动?什么是非线性振动?其中哪种振动满足叠加原理?答:描述系统的方程为线性微分方程的为线性振动系统,如I^ mgav -0描述系统的方程为非线性微分方程的为非线性振动系统10也-mgasin v - 0线性系统满足线性叠加原理6•请画出同一方向的两个运动:治⑴=2sin(4二t),x2(t)=4sin(4二t)合成的的振动波形642-2-4-60 0.5 1 1.57•请画出互相垂直的两个运动x/t)二2sin(4 二t),X2(t)=2sin(4 二t)合成的结果。

(完整版)机械振动习题答案

(完整版)机械振动习题答案

机械振动测验一、填空题1、 所谓振动,广义地讲,指一个物理量在它的①平均值附近不停地经过②极大值和③极小值而往复变化。

2、 一般来说,任何具有④弹性和⑤惯性的力学系统均可能产生机械振动。

3、 XXXX 在机械振动中,把外界对振动系统的激励或作用,①激励或输入;而系统对外界影响的反应,称为振动系统的⑦响应或输出。

4、 常见的振动问题可以分成下面几种基本课题:1、振动设计2、系统识别3、环境预测5、 按激励情况分类,振动分为:①自由振动和②强迫振动;按响应情况分类,振动分为:③简谐振动、④周期振动和⑤瞬态振动。

6、 ①惯性元件、②弹性元件和③阻尼元件是离散振动系统三个最基本的元件。

7、 在系统振动过程中惯性元件储存和释放①动能,弹性元件储存和释放②势能,阻尼元件③耗散振动能量。

8、 如果振动时系统的物理量随时间的变化为简谐函数,称此振动为①简谐振动。

9、 常用的度量振动幅值的参数有:1、峰值2、平均值3、均方值4、均方根值。

10、 系统的固有频率只与系统的①质量和②刚度有关,与系统受到的激励无关。

二、 试证明:对数衰减率也可以用下式表示,式中n x 是经过n 个循环后的振幅。

1ln nx xn δ=三、 求图示振动系统的固有频率和振型。

已知12m m m ==,123k k k k ===。

北京理工大学1996年研究生入学考试理论力学(含振动理论基础)试题自己去查双(二)自由度振动J,在平面上在弹簧k的限制下作纯滚动,如图所示,四、圆筒质量m。

质量惯性矩o求其固有频率。

五、物块M质量为m1。

滑轮A与滚子B的半径相等,可看作质量均为m2、半径均为r的匀质圆盘。

斜面和弹簧的轴线均与水平面夹角为β,弹簧的刚度系数为k。

又m1 g>m2 g sinβ , 滚子B作纯滚动。

试用能量法求:(1)系统的微分方程;(2)系统的振动周期。

六、在下图所示系统中,已知m和k。

计算系统的基频。

机械振动试题(含答案)

机械振动试题(含答案)

机械振动试题(含答案)一、机械振动 选择题1.如图所示为某物体系统做受迫振动的振幅A 随驱动力频率f 的变化关系图,则下列说法正确的是A .物体系统的固有频率为f 0B .当驱动力频率为f 0时,物体系统会发生共振现象C .物体系统振动的频率由驱动力频率和物体系统的固有频率共同决定D .驱动力频率越大,物体系统的振幅越大2.某同学用单摆测当地的重力加速度.他测出了摆线长度L 和摆动周期T ,如图(a)所示.通过改变悬线长度L ,测出对应的摆动周期T ,获得多组T 与L ,再以T 2为纵轴、L 为横轴画出函数关系图像如图(b)所示.由此种方法得到的重力加速度值与测实际摆长得到的重力加速度值相比会( )A .偏大B .偏小C .一样D .都有可能3.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。

物体带动纸带一起向左运动时,让单摆小幅度前后摆动,于是在纸带上留下如图所示的径迹。

图乙为某次实验中获得的纸带的俯视图,径迹与中央虚线的交点分别为A 、B 、C 、D ,用刻度尺测出A 、B 间的距离为x 1;C 、D 间的距离为x 2。

已知单摆的摆长为L ,重力加速度为g ,则此次实验中测得的物体的加速度为( )A .212()x x gLπ- B .212()2x x gLπ- C .212()4x x gLπ- D .212()8x x gLπ- 4.如图所示,弹簧的一端固定,另一端与质量为2m 的物体B 相连,质量为1m 的物体A 放在B 上,212m m =.A 、B 两物体一起在光滑水平面上的N 、N '之间做简谐运动,运动过程中A、B之间无相对运动,O是平衡位置.已知当两物体运动到N'时,弹簧的弹性势能为pE,则它们由N'运动到O的过程中,摩擦力对A所做的功等于()A.p E B.12pE C.13pE D.14pE5.如图所示,弹簧下面挂一质量为m的物体,物体在竖直方向上做振幅为A的简谐运动,当物体振动到最高点时,弹簧正好处于原长,弹簧在弹性限度内,则物体在振动过程中A.弹簧的弹性势能和物体动能总和不变B.物体在最低点时的加速度大小应为2gC.物体在最低点时所受弹簧的弹力大小应为mgD.弹簧的最大弹性势能等于2mgA6.如图甲所示,一个有固定转动轴的竖直圆盘转动时,固定在圆盘上的小圆柱带动一个T形支架在竖直方向振动,T形支架的下面系着一个由弹簧和小球组成的振动系统.圆盘静止时,让小球做简谐运动,其振动图像如图乙所示.圆盘匀速转动时,小球做受迫振动.小球振动稳定时.下列说法正确的是()A.小球振动的固有频率是4HzB.小球做受迫振动时周期一定是4sC.圆盘转动周期在4s附近时,小球振幅显著增大D.圆盘转动周期在4s附近时,小球振幅显著减小7.在“用单摆测定重力加速度”的实验中,用力传感器测得摆线的拉力大小F随时间t变化的图象如图所示,已知单摆的摆长为l,则重力加速度g为( )A .224l t πB .22l t πC .2249l t π D .224l tπ8.公路上匀速行驶的货车受一扰动,车上货物随车厢底板上下振动但不脱离底板.一段时间内货物在竖直方向的振动可视为简谐运动,周期为T .取竖直向上为正方向,以t =0时刻作为计时起点,其振动图像如图所示,则A .t =14T 时,货物对车厢底板的压力最大 B .t =12T 时,货物对车厢底板的压力最小 C .t =34T 时,货物对车厢底板的压力最大 D .t =34T 时,货物对车厢底板的压力最小 9.如图所示,在一条张紧的绳子上悬挂A 、B 、C 三个单摆,摆长分别为L 1、L 2、L 3,且L 1<L 2<L 3,现将A 拉起一较小角度后释放,已知当地重力加速度为g ,对释放A 之后较短时间内的运动,以下说法正确的是( )A .C 的振幅比B 的大 B .B 和C 的振幅相等 C .B 的周期为2π2L g D .C 的周期为2π1L g10.沿某一电场方向建立x 轴,电场仅分布在-d ≤x ≤d 的区间内,其电场场强与坐标x 的关系如图所示。

机械振动考试题和答案

机械振动考试题和答案

机械振动考试题和答案一、单项选择题(每题2分,共20分)1. 简谐运动的振动周期与振幅无关,与()有关。

A. 质量B. 频率C. 弹簧常数D. 初始条件答案:C2. 阻尼振动中,振幅逐渐减小的原因是()。

A. 系统内部摩擦B. 外部阻力C. 系统内部摩擦和外部阻力D. 系统内部摩擦或外部阻力答案:C3. 两个简谐运动合成时,合成运动的频率等于()。

A. 两个简谐运动频率之和B. 两个简谐运动频率之差C. 两个简谐运动频率中较大的一个D. 两个简谐运动频率中较小的一个答案:D4. 受迫振动的频率与()有关。

A. 驱动力频率B. 系统固有频率C. 驱动力大小D. 系统阻尼系数答案:A5. 阻尼振动中,阻尼系数越大,振动周期()。

A. 越大B. 越小C. 不变D. 无法确定答案:B6. 受迫振动中,当驱动力频率接近系统固有频率时,会发生()。

A. 共振B. 反共振C. 振动增强D. 振动减弱答案:A7. 简谐运动的振动周期与()成正比。

B. 频率C. 弹簧常数D. 质量的平方根答案:D8. 阻尼振动中,阻尼系数越小,振动周期()。

A. 越大B. 越小C. 不变D. 无法确定答案:C9. 受迫振动中,当驱动力频率等于系统固有频率时,振动的振幅()。

A. 最小C. 不变D. 无法确定答案:B10. 简谐运动的振动周期与()无关。

A. 质量B. 频率C. 弹簧常数D. 初始条件答案:D二、多项选择题(每题3分,共15分)11. 简谐运动的振动周期与以下哪些因素有关?()A. 质量C. 弹簧常数D. 初始条件答案:AC12. 阻尼振动中,振幅逐渐减小的原因包括()。

A. 系统内部摩擦B. 外部阻力C. 系统内部摩擦和外部阻力D. 系统内部摩擦或外部阻力答案:CD13. 两个简谐运动合成时,合成运动的频率等于以下哪些选项?()A. 两个简谐运动频率之和B. 两个简谐运动频率之差C. 两个简谐运动频率中较大的一个D. 两个简谐运动频率中较小的一个答案:BD14. 受迫振动的频率与以下哪些因素有关?()A. 驱动力频率B. 系统固有频率C. 驱动力大小D. 系统阻尼系数答案:AB15. 阻尼振动中,阻尼系数越大,振动周期的变化情况是()。

机械振动期末考试题及答案

机械振动期末考试题及答案

机械振动期末考试题及答案一、选择题(每题2分,共20分)1. 简谐振动的周期与振幅无关,这是由哪个定律决定的?A. 牛顿第二定律B. 牛顿第三定律C. 胡克定律D. 能量守恒定律答案:C2. 下列哪个不是阻尼振动的特点?A. 振幅逐渐减小B. 频率逐渐增大C. 能量逐渐减少D. 振幅随时间呈指数衰减答案:B3. 一个物体做自由振动,若其振幅逐渐减小,这表明振动受到了:A. 阻尼B. 共振C. 强迫振动D. 非线性振动答案:A4. 质点的振动方程为 \( y = A \sin(\omega t + \phi) \),其中\( \omega \) 表示:A. 振幅B. 频率C. 角频率D. 相位答案:C5. 弹簧振子的振动周期与下列哪个参数无关?A. 弹簧的劲度系数B. 振子的质量C. 振子的振幅D. 振子的初始相位答案:C6. 阻尼振动的振幅随时间呈指数衰减,其衰减速率与什么有关?A. 振幅大小B. 阻尼系数C. 振动频率D. 振动周期答案:B7. 以下哪个不是振动系统的自由度?A. 1B. 2C. 3D. 无穷大答案:D8. 共振现象发生在以下哪种情况下?A. 系统固有频率等于外部激励频率B. 系统阻尼系数最大C. 系统振幅最小D. 系统能量最大答案:A9. 以下哪个是简谐振动的特有现象?A. 振幅不变B. 频率不变C. 能量不变D. 周期不变答案:A10. 一个物体在水平面上做简谐振动,其振动能量主要由以下哪两个因素决定?A. 振幅和频率B. 振幅和阻尼系数C. 阻尼系数和频率D. 振幅和劲度系数答案:A二、填空题(每空2分,共20分)11. 简谐振动的周期公式为 \( T = \frac{2\pi}{\omega} \),其中\( \omega \) 为________。

答案:角频率12. 当外部激励频率接近系统的________时,系统将产生共振现象。

答案:固有频率13. 阻尼振动的振幅随时间的变化规律可表示为 \( A(t) = A_0 e^{-\beta t} \),其中 \( \beta \) 为________。

大学机械振动考试题目及答案

大学机械振动考试题目及答案

大学机械振动考试题目及答案一、选择题(每题2分,共10分)1. 在简谐振动中,振幅与振动的能量关系是()。

A. 无关B. 成正比C. 成反比D. 振幅越大,能量越小答案:B2. 下列哪个不是机械振动系统的自由度?()。

A. 转动B. 平动C. 振动D. 形变答案:C3. 一个单自由度系统在受到初始条件激励后,其振动形式是()。

A. 简谐振动B. 阻尼振动C. 受迫振动D. 自由振动答案:D4. 在阻尼振动中,如果阻尼系数增加,振动的振幅将()。

A. 增加B. 不变C. 减小D. 先增加后减小答案:C5. 对于一个二自由度振动系统,其振动模态数量是()。

A. 1B. 2C. 3D. 4答案:B二、填空题(每题2分,共10分)6. 一个物体做自由振动时,其频率称为______。

答案:固有频率7. 当外力的频率与系统的固有频率相等时,系统发生的振动称为______。

答案:共振8. 阻尼力与速度成正比的阻尼称为______阻尼。

答案:线性9. 振动系统的动态响应可以通过______分析法求解。

答案:傅里叶10. 在转子动力学中,临界转速是指转子发生______振动的转速。

答案:自激三、简答题(每题5分,共20分)11. 简述什么是简谐振动,并说明其运动方程的形式。

答案:简谐振动是一种周期性的振动,其加速度与位移成正比,且方向相反。

在数学上,简谐振动的运动方程可以表示为:x(t) = A * cos(ωt + φ)其中,A 是振幅,ω 是角频率,t 是时间,φ 是初相位。

12. 解释什么是阻尼振动,并说明其特点。

答案:阻尼振动是指在振动系统中存在能量耗散,导致振幅随时间逐渐减小的振动。

其特点包括振幅逐渐衰减,振动频率可能会随着振幅的减小而发生变化,且阻尼力通常与振动速度成正比。

13. 描述什么是受迫振动,并给出其稳态响应的条件。

答案:受迫振动是指系统在周期性外力作用下的振动。

当外力的频率接近系统的固有频率时,系统将发生共振,此时振幅会显著增大。

机械振动现象练习题(含答案)

机械振动现象练习题(含答案)

机械振动现象练习题(含答案)1. 一个弹簧常数为3000 N/m, 质量为0.2 kg的物体,在弹簧下端受到一个向下的力2 sin(10t) N,其中t为时间(秒)。

求物体的振动方程。

根据牛顿第二定律,可以得到物体的振动方程为:m * x'' + k * x = F(t)其中,m是物体的质量,x是物体的位移,x''是位移对时间的二阶导数,k是弹簧的常数,F(t)是作用在物体上的外力。

根据题目中给出的数据,代入上述公式,我们可以得到:0.2 * x'' + 3000 * x = 2 sin(10t)这就是物体的振动方程。

2. 一个质点在受到一个力F(t) = 0.1 cos(3t) N的作用下进行振动,已知质点的质量为0.5 kg。

求质点的角频率和振动周期。

根据振动方程的形式,我们可以知道物体的振动频率和周期与力的形式有关。

在这个题目中,我们可以看出力的形式为cos(3t),它是一个正弦函数。

如果将cos(3t)函数展开,我们可以得到下面的表达式:F(t) = a cos(wt)其中,a是振幅,w是角频率。

根据题目中给出的数据,我们可以得到:a = 0.1 N,w = 3 rad/s由于振动的频率与角频率之间是有关联的,振动的周期T可以表示为:T = 2π/w代入上述数据,我们可以得到:T = 2π/3 s这就是质点的振动周期。

3. 一个质点质量为0.3 kg,在一竖直方向上的弹簧中振动,弹簧的劲度系数为2000 N/m。

当质点受到一个外力F(t) = 0.5 cos(5t) N时,求质点的振动方程。

根据题目中给出的数据,我们可以得到:m = 0.3 kg,k = 2000 N/m,F(t) = 0.5 cos(5t)代入振动方程的一般形式,我们可以得到:0.3 * x'' + 2000 * x = 0.5 cos(5t)这就是质点的振动方程。

机械振动题库(含答案)

机械振动题库(含答案)
2
…………2分 …………2分 …………2分 …………2分
16.有两个同方向、同频率的简谐振动,它们的振动表式为:
x1
0.05cos 10t
3 4
x2
0.06 cos 10t
1
4
(SI)
(1)求它们合成振动的振幅和初相位。

(2)若另有一振动 x3 0.07cos(10t 3), 问 3 为何值
7、在两个相同的弹簧下各悬一物体,两物体的质量
比为4∶1,则二者作简谐振动的周期之比为___2_:_1____ 。
8. 一简谐振动的振动曲线如图所示,则由图可得其振幅为
10 cm
_________
2
,其初相为___3______

xcm
10
其周期为__2_54___s___
O
2
x 0.1cos( 5 t 2 )
(A) 6T (B) T / 6 (C) 6T
(D) T
6
4.一个质点作简谐运动,振幅为A,在起始时质点的位移为
A / 2 ,且向x轴正方向运动,代表此简谐运动的旋转矢量
为( B )
A
OA x 2
A
2O
A
x
A
2
O
A
x
A
A O
x
2
(A)
(B)
(C)
(D)
5.已知某简谐运动的振动曲线如图所示,则此简谐运动的运动
竖直放置 放在光滑斜面上
2. 如图所示,以向右为正方向,用向左的力压缩一弹簧,然后
松手任其振动,若从松手时开始计时,则该弹簧振子的初相位
为( D )
(A) 0
(B)
2

高中物理机械振动练习题(含答案)

高中物理机械振动练习题(含答案)

高中物理机械振动练习题(含答案)一、单选题1.如图,弹簧振子的平衡位置为O 点,在B 、C 两点之间做简谐运动。

B 、C 相距20cm 。

小球经过B 点时开始计时,经过0.5s 首次到达C 点。

下列说法正确的是( )A .小球振动的周期为2.0sB .小球振动的振幅为0.2mC .小球的位移一时间关系为0.1sin 2m 2x t ππ⎛⎫=+ ⎪⎝⎭D .5s 末小球位移为-0.1m2.简谐运动属于下列哪种运动( ) A .匀速直线运动 B .匀加速直线运动 C .匀变速运动D .非匀变速运动3.如图甲所示为以O 点为平衡位置,在A 、B 两点间运动的弹簧振子,图乙为这个弹簧振子的振动图像,由图可知下列说法中正确的是( )A .在t =0.2s 时,弹簧振子的加速度为正向最大B .在t =0.1s 与t =0.3s 两个时刻,弹簧振子的速度相同C .从t =0到t =0.2s 时间内,弹簧振子做加速度增大的减速运动D .在t =0.6s 时,弹簧振子有最小的位移4.一质点做简谐振动,其位移x 与时间t 的关系曲线如图。

由图可知( )A.质点振动的频率是4HzB.质点振动的振幅是4cmC.在t=3s时,质点的速度为最大D.在t=4s时,质点所受的回复力为零5.做简谐运动的物体,回复力和位移的关系图是()A.B.C.D.6.当一弹簧振子在竖直方向上做简谐运动时,下列说法中正确的是()A.振子在振动过程中,速度相同时,弹簧的长度一定相等B.振子从最低点向平衡位置运动过程中,弹簧弹力始终做负功C.振子在运动过程中的回复力由弹簧的弹力提供D.振子在运动过程中,系统的机械能守恒7.为使简谐运动单摆的周期变长,可采取以下哪种方法()A.振幅适当加大B.摆长适当加长C.摆球质量增大D.将单摆从上海移到北京8.做简谐振动的物体经过与平衡位置对称的两个位置时,可能相同物理量是()A.位移B.速度C.加速度D.回复力二、多选题9.弹簧振子在光滑水平面上做简谐振动,把小钢球从平衡位置向左拉一段距离,放手让其运动,从小钢球第一次通过平衡位置时开始计时,其振动图像如图所示,下列说法正确的是()A .在t 0时刻弹簧的形变量为4 cmB .钢球振动半个周期,回复力做功为零C .钢球振动一个周期,通过的路程等于10 cmD .钢球振动方程为y =5sin πt cm10.如图所示,摆长为1m 的单摆做小角度的摆动,振动过程的最大位移为6cm ,不计空气阻力,重力加速度22πm/s g =,从摆球向右通过最低点开始计时,则从 1.0s t =到2.0s t =的过程中( )A .摆球的重力势能先减小后增大B .摆球的动能先减小后增大C .摆球振动的回复力先减小后增大D .摆球的切向加速度先增大后减小11.弹簧振子做机械振动,若从平衡位置O 开始计时,经过0.3 s 时,振子第一次经过P 点,又经过了0.2 s ,振子第二次经过P 点,则到该振子第三次经过P 点可能还需要多长时间( ) A .13sB .1.0 sC .0.4 sD .1.4 s第II 卷(非选择题)请点击修改第II 卷的文字说明三、解答题12.如图甲所示,轻弹簧上端固定,下端系一质量为m =0.1kg 的小球,小球静止时弹簧伸长量为10cm。

机械振动课后习题答案

机械振动课后习题答案

机械振动课后习题答案机械振动是力学中的一个重要分支,研究物体在受到外力作用后的振动特性。

在学习机械振动的过程中,课后习题是巩固知识、提高能力的重要途径。

本文将为大家提供一些机械振动课后习题的答案,希望能够帮助大家更好地理解和掌握这一知识。

1. 一个质量为m的弹簧振子在无阻尼情况下振动,其振动方程为mx'' + kx = 0,其中x为振子的位移,k为弹簧的劲度系数。

试求振动的周期。

解答:根据振动方程可知,振子的振动是简谐振动,其周期T与振子的质量m和弹簧的劲度系数k有关。

根据简谐振动的周期公式T = 2π√(m/k),可得振动的周期为T = 2π√(m/k)。

2. 一个质量为m的弹簧振子在受到外力F(t)的作用下振动,其振动方程为mx''+ kx = F(t),其中F(t) = F0cos(ωt)。

试求振动的解析解。

解答:根据振动方程可知,振子的振动是受迫振动,其解析解可以通过求解齐次方程和非齐次方程得到。

首先求解齐次方程mx'' + kx = 0的解xh(t),得到振子在无外力作用下的自由振动解。

然后根据外力F(t)的形式,假设其特解为xp(t) = Acos(ωt + φ),其中A为振幅,φ为相位差。

将特解xp(t)代入非齐次方程,求解得到A和φ的值。

最后,振动的解析解为x(t) = xh(t) + xp(t)。

3. 一个质量为m的弹簧振子在受到阻尼力和外力的作用下振动,其振动方程为mx'' + bx' + kx = F(t),其中b为阻尼系数。

试求振动的稳定解。

解答:根据振动方程可知,振子的振动是受到阻尼力和外力的作用,其稳定解可以通过求解齐次方程和非齐次方程得到。

首先求解齐次方程mx'' + bx' + kx = 0的解xh(t),得到振子在无外力和阻尼作用下的自由振动解。

然后根据外力F(t)的形式,假设其特解为xp(t) = Acos(ωt + φ),其中A为振幅,φ为相位差。

机械振动试题及答案

机械振动试题及答案

机械振动试题及答案⼀、填空题1、机械振动按不同情况进⾏分类⼤致可分成(线性振动)和⾮线性振动;确定性振动和(随机振动);(⾃由振动)和强迫振动,连续振动和离散系统。

2、(弹性元件)元件、(惯性元件)元件、(阻尼元件)元件是离散振动系统的三个最基本元素。

3、在振动系统中,弹性元件存储(势能)、惯性元件存储(动能)、(阻尼元件)元件耗散能量。

4、系统固有频率主要与系统的(质量)和(刚度)有关,与系统受到的激励⽆关。

5、研究随机振动的⽅法是(数理统计),⼯程上常见的随机过程的数字特征有:(均值)(⽅差)(⾃相关函数)和(互相关函数)。

6、周期运动的最简单形式是(简谐运动),它是时间的单⼀(正弦)或(余弦)函数。

7、单⾃由度系统⽆阻尼⾃由振动的频率只与(质量)和(刚度)有关,与系统受到的激励⽆关。

8、简谐激励下单⾃由度系统的响应由(瞬态响应)和(稳态响应)组成。

9、⼯程上分析随机振动⽤(数学统计)⽅法,描述随机过程的最基本的数字特征包括均值、⽅差、(⾃相关函数)和(互相关函数)。

10、机械振动是指机械或结构在(静平衡)附近的(弹性往复)运动。

11、单位脉冲⼒激励下,系统的脉冲响应函数和系统的(频响函数)函数是⼀对傅⾥叶变换对,和系统的(传递函数)函数是⼀对拉普拉斯变换对。

12、叠加原理是分析(线性振动系统)和(振动性质)的基础。

⼆、简答题1、什么是机械振动?振动发⽣的内在原因是什么?外在原因是什么?答:机械振动是指机械或结构在它的静平衡位置附近的往复弹性运动。

振动发⽣的内在原因是机械或结构具有在振动时储存动能和势能,⽽且释放动能和势能并能使动能和势能相互转换的能⼒。

外在原因是由于外界对系统的激励或者作⽤。

2、机械振动系统的固有频率与哪些因素有关?关系如何?答:机械振动系统的固有频率与系统的质量矩阵、刚度矩阵和阻尼有关。

质量越⼤,固有频率越低;刚度越⼤,固有频率越⾼;阻尼越⼤,固有频率越低。

3、从能量、运动、共振等⾓度简述阻尼对单⾃由度系统振动的影响。

机械振动期末试题及答案

机械振动期末试题及答案

机械振动期末试题及答案1. 选择题1.1 哪种情况下,系统的振动是简谐振动?A. 有耗尽能量的情况B. 存在非线性的力恢复系统中C. 无外部干扰D. 系统的振幅随时间而增长答案:C1.2 振动系统达到稳态的条件是:A. 初始位移为零B. 扰动力为零C. 初始速度为零D. 振幅随时间减小答案:B1.3 一个简谐振动的周期与振幅的关系是:A. 周期与振幅无关B. 周期与振幅成正比C. 周期与振幅成反比D. 周期与振幅正弦相关答案:A2. 判断题2.1 简谐振动的周期和角频率之间满足正比关系。

A. 对B. 错答案:B2.2 简谐振动的中心力是恒力。

A. 对B. 错答案:A2.3 当振动系统有阻尼情况时,振幅会随时间增大。

A. 对B. 错答案:B3. 简答题3.1 什么是简谐振动?它的特点是什么?答案:简谐振动是指振动系统在没有外力干扰的情况下,其平衡位置附近以某一频率固定幅度上下振动的现象。

它的特点包括振动周期与振幅无关,且系统的振动可由正弦或余弦函数进行描述。

3.2 请简要说明受迫振动的原理。

答案:受迫振动是指振动系统在外力作用下的振动。

外力的频率与系统的固有频率相近或相等时,会发生共振现象。

在共振时,外力的能量会以最大幅度传递给振动系统,导致振动幅度增大。

4. 计算题4.1 一个弹簧振子平衡位置附近的势能函数为U(x) = 4x^2 + 3,求振子的振动周期。

答案:根据简谐振动的势能函数表达式,势能函数为U(x) =1/2kx^2,其中k为弹簧的劲度系数。

将已知的势能函数与标准表达式进行比较,可得4x^2 = 1/2kx^2,解得k = 8。

由振动周期公式T =2π√(m/k),代入m和k的值,可计算出振子的振动周期。

5. 算法题设计一个程序,计算一个简谐振动系统的振动频率和振幅,并将结果打印输出。

// 输入参数float k; // 弹簧的劲度系数float m; // 系统的质量// 计算振动频率float omega = sqrt(k / m);// 计算振幅float A = 1; // 假设振幅为1// 打印输出结果print("振动频率:", omega);print("振幅:", A);经过以上计算,我们可以得到一个简谐振动系统的振动频率和振幅。

机械振动学(参考答案).docx

机械振动学(参考答案).docx

机械振动学试题(参考答案)一、判断题:(对以下论述,正确的打“J”,错误的打“X”,每题2 分,共20分)1、多自由度振动系统的运动微分方程组中,各运动方程间的耦合,并不是振动系统的固有性质,而只是广义坐标选用的结果。

(丁)2、一个单盘的轴盘系统,在高速旋转时,由于盘的偏心质量使轴盘做弓形回旋时,引起轴内产生交变应力,这是导致在临界转速时,感到剧烈振动的原因。

(X)3、单自由度线性无阻尼系统的自由振动频率由系统的参数确定,与初始条件无关。

(丁)4、当激振力的频率等于单自由度线性阻尼系统的固有频率时,其振幅最大值。

(X)5、一个周期激振力作用到单自由度线性系统上,系统响应的波形与激振力的波形相同,只是两波形间有一定的相位差。

(X)6、当初始条件为零,即*产;=0时,系统不会有自由振动项。

(X)7、对于多自由度无阻尼线性系统,其任何可能的自由振动都可以被描述为模态运动的线性组合。

(丁)8、任何系统只有当所有自由度上的位移均为零时,系统的势能才可能为零。

(X )9、隔振系统的阻尼愈大,则隔振效果愈好。

(X)10、当自激振动被激发后,若其振幅上升到一定程度并稳定下来,形成一种稳定的周期振动,则这种振幅自稳定性,是由于系统中的某些非线性因素的作用而发生的。

(J)二、计算题:1、一台面以f频率做垂直正弦运动。

如果求台面上的物理保持与台面接触,则台面的最大振幅可有多大?(分)解:台面的振动为:x = X sin(tyZ - cp)x = —a>2X sin(or —cp)最大加速度:无max = "X如台面上的物体与台面保持接触,贝U :九《=g (9・81米/秒2)。

所以,在f 频率(/=仝)时,最大振幅为:2nX max =x< g/4^72= 9.81/4* 严(米)2、质量为ni 的发电转子,它的转动惯量J 。

的确定采用试验方法:在转子经向Ri 的 地方附加一小质量mi 。

试验装置如图1所示,记录其振动周期。

机械振动试题(参考答案)(最新整理)

机械振动试题(参考答案)(最新整理)

6、 共振具体指的是振动系统在什么状态下振动?简述其能量集聚过程?
(10 分)
答:共振是指系统的外加激励与系统的固有频率接近时发生的振动;共振过程中,外加激励的能量被
系统吸收,系统的振幅逐渐加大。
7、 简述刚度矩阵[K]中元素 kij 的意义。
(10 分)
答:如果系统的第 j 个自由度沿其坐标正方向有一个单位位移,其余各个自由度的位移保持为零,为
保持系统这种变形状态需要在各个自由度施加外力,其中在第 i 个自由度上施加的外力就是 kij。
8、 简述随机振动问题的求解方法,以及与周期振动问题求解的区别。
(10 分)
答:随机振动的振动规律只能用概率统计方法描述,因此,只能通过统计的方法了解激励和响应统计
值之间的关系。而周期振动可以通过方程的求解,由初始条件确定未来任意时刻系统的状态。
频率方程:
32 m k
( 2 ) k 1
0
1 2 2 2 m
k 1
0 1 0 32 m
k
即: (3 2 m )2 (2 2 m ) 2(3 2 m ) 0
k
k
k
固有频率:
12 (2
2) k m
<
22
3
k m
<
32 (2
2) k m
2 1 1 1 0.414 1 1
(4 分)
4)求出系统振型矩阵,画出振型图。 (4 分)
3.3、(15 分)根据如图所示微振系统,
图2
1)求系统的质量矩阵和刚度矩阵和频率方程; (5 分)
2)求出固有频率;
(5 分)
3)求系统的振型,并做图。
(5 分)
图3 参考答案及评分细则:

机械振动基础课后习题答案

机械振动基础课后习题答案

机械振动基础课后习题答案1. 简谐振动的特点是什么?简述简谐振动的基本方程。

答:简谐振动是指振动系统在无外力作用下,自身受到弹性力作用而产生的振动。

其特点有以下几点:振动周期固定、振幅不变、振动轨迹为正弦曲线。

简谐振动的基本方程为x = A*cos(ωt + φ),其中x为振动的位移,A为振幅,ω为角频率,t为时间,φ为初相位。

2. 简述自由振动、受迫振动和阻尼振动的区别。

答:自由振动是指振动系统在无外力作用下,自身受到弹性力作用而产生的振动。

受迫振动是指振动系统在外力作用下,产生与外力频率相同的振动。

阻尼振动是指振动系统在有阻尼力作用下,产生的振动。

三者的区别在于外力的有无和阻尼力的存在与否。

3. 什么是振动的自由度?简述单自由度振动和多自由度振动的特点。

答:振动的自由度是指描述振动系统所需的独立坐标的个数。

单自由度振动是指振动系统所需的独立坐标只有一个,可以用一个坐标来描述整个振动系统。

多自由度振动是指振动系统所需的独立坐标大于一个,需要多个坐标来描述整个振动系统。

单自由度振动的特点是简单、容易分析,而多自由度振动具有更复杂的动力学特性。

4. 简述振动系统的自然频率和强迫频率。

答:振动系统的自然频率是指系统在无外力作用下自由振动时的频率。

自然频率只与系统的质量、刚度和几何形状有关。

强迫频率是指系统在受到外力作用下振动的频率。

强迫频率可以是任意频率,与外力的频率相同或不同。

5. 什么是共振?简述共振现象的发生条件。

答:共振是指振动系统在受到外力作用下,当外力的频率接近系统的自然频率时,振动幅度达到最大的现象。

共振现象发生的条件包括:外力的频率接近系统的自然频率,外力的幅度足够大,系统的阻尼较小。

6. 简述振动系统的阻尼对振动的影响。

答:阻尼对振动有以下几种影响:阻尼可以减小振幅,使振动逐渐衰减;阻尼可以改变振动的频率,使其偏离自然频率;阻尼可以引起相位差,使振动的相位发生变化。

7. 什么是振幅衰减?简述振幅衰减的特点。

机械振动试题(含答案)

机械振动试题(含答案)

机械振动试题(含答案)一、机械振动 选择题1.做简谐运动的水平弹簧振子,振子质量为m ,最大速度为v ,周期为T ,则下列说法正确的是( ) A .从某时刻算起,在2T的时间内,回复力做的功一定为零 B .从某一时刻算起,在2T的时间内,速度变化量一定为零 C .若Δt =T ,则在t 时刻和(t +Δt )时刻,振子运动的速度一定相等 D .若Δt =2T,则在t 时刻和(t +Δt )时刻,弹簧的形变量一定相等 2.如图所示,在一条张紧的绳子上悬挂A 、B 、C 三个单摆,摆长分别为L 1、L 2、L 3,且L 1<L 2<L 3,现将A 拉起一较小角度后释放,已知当地重力加速度为g ,对释放A 之后较短时间内的运动,以下说法正确的是( )A .C 的振幅比B 的大 B .B 和C 的振幅相等 C .B 的周期为2π2L g D .C 的周期为2π1L g3.如图所示的单摆,摆球a 向右摆动到最低点时,恰好与一沿水平方向向左运动的粘性小球b 发生碰撞,并粘在一起,且摆动平面不便.已知碰撞前a 球摆动的最高点与最低点的高度差为h ,摆动的周期为T ,a 球质量是b 球质量的5倍,碰撞前a 球在最低点的速度是b 球速度的一半.则碰撞后A 56T B 65TC .摆球最高点与最低点的高度差为0.3hD .摆球最高点与最低点的高度差为0.25h4.在科学研究中,科学家常将未知现象同已知现象进行比较,找出其共同点,进一步推测未知现象的特性和规律.法国物理学家库仑在研究异种电荷的吸引力问题时,曾将扭秤的振动周期与电荷间距离的关系类比单摆的振动周期与摆球到地心距离的关系.已知单摆摆长为l ,引力常量为G ,地球质量为M ,摆球到地心的距离为r ,则单摆振动周期T 与距离r 的关系式为( ) A .T =2πrGMlB .T =2πrl GM C .T =2πGMr lD .T =2πlr GM5.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。

机械振动试题(含答案)

机械振动试题(含答案)

机械振动试题(含答案)一、机械振动选择题1.悬挂在竖直方向上的弹簧振子,周期T=2s,从最低点位置向上运动时刻开始计时,在一个周期内的振动图象如图所示,关于这个图象,下列哪些说法是正确的是()A.t=1.25s时,振子的加速度为正,速度也为正B.t=1.7s时,振子的加速度为负,速度也为负C.t=1.0s时,振子的速度为零,加速度为负的最大值D.t=1.5s时,振子的速度为零,加速度为负的最大值2.如图所示的单摆,摆球a向右摆动到最低点时,恰好与一沿水平方向向左运动的粘性小球b发生碰撞,并粘在一起,且摆动平面不便.已知碰撞前a球摆动的最高点与最低点的高度差为h,摆动的周期为T,a球质量是b球质量的5倍,碰撞前a球在最低点的速度是b球速度的一半.则碰撞后A 5 6 TB 6 5 TC.摆球最高点与最低点的高度差为0.3hD.摆球最高点与最低点的高度差为0.25h3.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。

物体带动纸带一起向左运动时,让单摆小幅度前后摆动,于是在纸带上留下如图所示的径迹。

图乙为某次实验中获得的纸带的俯视图,径迹与中央虚线的交点分别为A、B、C、D,用刻度尺测出A、B间的距离为x1;C、D间的距离为x2。

已知单摆的摆长为L,重力加速度为g,则此次实验中测得的物体的加速度为()A .212()x x gL π-B .212()2x x gL π-C .212()4x x gLπ-D .212()8x x gLπ-4.如图所示是扬声器纸盆中心做简谐运动的振动图象,下列判断正确的是A .t =2×10-3s 时刻纸盆中心的速度最大B .t =3×10-3s 时刻纸盆中心的加速度最大C .在0〜l×10-3s 之间纸盆中心的速度方向与加速度方向相同D .纸盆中心做简谐运动的方程为x =1.5×10-4cos50πt (m )5.如图1所示,轻弹簧上端固定,下端悬吊一个钢球,把钢球从平衡位置向下拉下一段距离A ,由静止释放。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械波1、机械波(1)机械波:机械振动在介质中的传播,形成机械波。

(2) 机械波的产生条件:①波源:引起介质振动的质点或物体②介质:传播机械振动的物质(3)机械波形成的原因:是介质部各质点间存在着相互作用的弹力,各质点依次被带动。

(4)机械波的特点和实质①机械波的传播特点a.前面的质点领先,后面的质点紧跟;b.介质中各质点只在各自平衡位置附近做机械振动,并不沿波的方向发生迁移;c.波中各质点振动的频率都相同;d.振动是波动的形成原因,波动是振动的传播;e.在均匀介质中波是匀速传播的。

②机械波的实质a.传播振动的一种形式;b.传递能量的一种方式。

(5)机械波的基本类型:横波和纵波①横波:质点的振动方向跟波的传播方向垂直的波,叫做横波。

表现形式:其中凸起部分的最高点叫波峰,凹下部分的最低点叫波谷。

横波表现为凹凸相间的波形。

实例:沿绳传播的波、迎风飘扬的红旗等为横波。

②纵波:质点的振动方向跟波的传播方向在同一直线上的波,叫做纵波。

表现形式其中质点分布较稀的部分叫疏部,质点分布较密的部分叫密部。

纵波表现为疏密相间的波形。

实例:沿弹簧传播的波、声波等为纵波。

2、波的图象(1)波的图象的建立①横坐标轴和纵坐标轴的含意义横坐标x表示在波的传播方向上各个质点的平衡位置;纵坐标y表示某一时刻各个质点偏离平衡位置的位移。

从形式上区分振动图象和波动图象,就看横坐标。

②图象的建立:在xOy坐标平面上,画出各个质点的平衡位置x与各个质点偏离平衡位置的位移y的各个点(x,y),并把这些点连成曲线,就得到某一时刻的波的图象。

(2)波的图象的特点①横波的图象特点横波的图象的形状和波在传播过程中介质中各质点某时刻的分布形状相似。

波形中的波峰也就是图象中的位移正向最大值,波谷即为图象中位移负向最大值。

波形过平衡位置的质点在图象中也恰处于平衡位置。

在横波的情况下,振动质点在某一时刻所在的位置连成的一条曲线,就是波的图象,能直观地表示出波形。

波的图象有时也称波形图或波形曲线。

②纵波的图象特点在纵波中,如果规定位移的方向与波的传播方向一致时取正值,位移的方向与波的传播方向相反时取负值,同样可以作出纵波的图象。

纵波的图象与纵波的“形状”并无相同之处。

(3)波的图象的物理意义波的图象表示在波的传播过程中各个质点在同一时刻偏离各自平衡位置的位移,或表示某一时刻各个质点偏离平衡位置的情况。

(4)(5)简谐波 ①简谐波波源做简谐运动时,介质中的各个质点随着做简谐运动,所形成的波就是简谐波。

②简谐波的特点简谐波的图象──波形曲线是正弦(或余弦曲线)。

简谐波是一种最简单、最基本的波。

3、质点的振动方向、波的传播方向与波形之间的关系根据“前面的质点领先,后面的质点紧跟”这一原则,结合波的传播方向与波形,可判断各质点在某时刻的振动方向。

如右图所示,a 、b 两点相比较,a 点是前面的质点,b 点是后面的质点。

图示时刻a 点的正向位移比b 点的正向位移大,可知b 点向上振动。

找出a 点前面的质点,同理可知a 点也向上振动。

总结:①波峰、波谷点瞬时静止,波峰点下一时刻向下振动,波谷点下一时刻向上振动; ②在波峰与波谷间质点的振动方向一致,在波峰(或波谷)的两侧质点的振动方向相反。

③某一时刻的波形、波的传播方向与质点的振动方向称之为波的三要素,三者之间相互制约。

④简捷判断法则:“逆向上下坡”、“同侧法则”、“班主任来了”、“三角形法则”等。

三角形法则简介: 如图所示,假设波沿x 轴正方向传播,根据波的特点可知:MN 曲线上各质点振动方向向上(M 、N 除外),用带箭头的CA 表示,NQ 曲线上各质点振动方向向下,用带箭头的BC 表示,A →B 表示波的传播方向。

易见,有向线段AB 、BC 、CA 刚好构成一个带箭头,且首尾相连的封闭三角形。

4、波的图象的变化情况(1)振动描点作图法依据在波的传播过程中质点上下振动而不随波迁移的特点,在正弦(或余弦)波中找出波峰(或波谷)及邻近的平衡位置,根据质点的振动方向,让它们同时振动到所求时刻,然后根据波的连续性和周期性,即可画出所求的波形图线。

(2)波形平移法将某一时刻的波的图象沿波的传播方向移动一段距离Δx =v ·Δt ,就得到t +Δt 时刻的波形图象。

将波形沿着波的传播方向的反方向移动一段距离Δx =v ·Δt ,就可以得到t -Δt 时刻的波形图。

若Δt >T ,根据波的周期性,只需平移Δx =v(Δt -nT)即可。

波形平移后,根据波的连续性和周期性,将缺少的部分补上或将多余的部分去掉。

5、波长、波速、频率(1)波长:在波动中,对平衡位置的位移总是相等的两个相邻质点间的距离,叫做波长。

波长的物理实质是相距一个(或整数个)波长的两个质点的振动位移在任何时刻都相等,而且振动速度的大小和方向也相同,它们的振动步调一致。

波长反映了波的空间周期性。

⑵频率:在波动中,各个质点的振动周期(或频率)是相同的,它们都等于波源的振动周期(或频率),这个周期(或频率)也叫做波的周期(或频率)。

波的频率仅由波源决定,与介质无关。

波的周期和频率反映了波的时间周期性。

⑷波速①波速:振动在介质中传播的速度,叫做波速。

②公式 v =Δx Δt =λT v =λf③决定波速的因素①波速由介质本身的性质决定,同一列波在不同的介质中传播时波速可以不同,波长可以不同,但波从一种介质进入另种介质时频率不变。

②波速还与波的类型有关⑷关于波长、频率和波速之间关系的应用总结:在解决波的图象问题时,一定要抓住“双向性”和“周期性”。

总结:在解决波的图象问题时,一定要抓住“双向性”和“周期性”。

本题若未明确波沿直线ab 向右传播,也需讨论波向左传播的情况,在考虑两点之间波的形状时,一定要注意传播方向与质点振动方向之间的关系。

6波的衍射⑴波的衍射波可以绕过障碍物继续传播,这种现象叫做波的衍射。

⑵发生明显衍射的条件①产生明显衍射的条件:只有缝、孔的宽度或障碍物的尺寸跟波长相差不多,或者比波长更小时,才能观察到明显的衍射现象。

②说明a、衍射现象总是存在的,只有明显与不明显的差异。

障碍物或孔的尺寸大小,并不是决定衍射能否发生的条件,仅是使衍射现象明显表现的条件。

波长较大的波容易产生显著的衍射现象;b、波传到小孔(或障碍物时),小孔或障碍物仿佛是一个新的波源,由它发出与原来同频率的波(称为子波)在孔或障碍物后传播,于是就出现了偏离直线传播方向的衍射现象;c、当孔的尺寸远小于波长时尽管衍射十分突出,但由于能量的减弱,衍射现象不容易观察到。

⑶衍射是波特有的现象一切波都能发生衍射,衍射是波特有的现象。

7、波的干涉⑴波的叠加原理①波的叠加原理几列波相遇时能够保持各自的运动状态,继续传播,在它们重叠的区域里,介质的质点同时参与这几列波引起的振动,质点的位移等于这几列波单独传播时引起的位移的矢量和。

②说明a、两列波相遇后,保持各自原来的状态,互不干扰。

b、在两列波重叠的区域里,任何一个质点同时参与两个振动,其振动位移等于这两列波分别引起的位移的矢量和。

c、两列振动方向相同的波叠加,振动加强;两列振动方向相反的波叠加,振动减弱。

⑵波的干涉的特点两列波在同一介质中传播,形成稳定的叠加区域。

在振动加强区里,振幅A max=A1+A2。

在振动减弱区里,振幅A min=|A1-A2|。

其余各质点振动的振幅介于A max 与A min之间。

振动加强区域和振动减弱区域相互间隔开来,且加强、减弱区域是稳定的,即加强的区域始终是加强的,减弱的区域始终是减弱的,不随时间而变。

⑶产生干涉的条件①相干波源的获取a、相干波源:频率相同,相差恒定(特例为振动情况相同)的波源。

b、相干波源的获取同出一源,一分为二。

②产生干涉的必要条件:必须两列波的频率相同,相差恒定,振幅尽量接近,在同一平面振动。

⑷波的干涉①波的干涉:频率相同的两列波叠加,使某些区域的振动加强,某些区域的振动减弱,而且振动加强的区域和振动减弱的区域相互隔开,这种现象叫做波的干涉。

②干涉图样:在波的干涉中所形成的稳定的叠加图样,叫做干涉图样。

③干涉也是波特有的现象一切波都能发生干涉,干涉也是波特有的现象。

8、多普勒效应:由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象,叫做多普勒效应。

多普勒效应的规律:观察者朝着波源运动时,接收到的频率增大了。

观察者远离波源运动时,接收到的频率减小。

机械波、光波、电磁波都会发生多普勒效应,多普勒效应是波动过程共有的特征1.关于机械波下列说法不正确的是( d )A .各质点都在各自的平衡位置附近振动B .相邻质点间必有相互作用力C .前一质点的振动带动相邻的后一质点振动,后一质点的振动必定落后于前一质点D .各质点也随波的传播而迁移2.区分横波和纵波是根据( c ) A .沿水平方向传播的叫做横波 B .质点振动的方向和波传播的远近 C .质点振动的方向和波传播的方向D .质点振动的快慢3.下列说法不不正确的有( ad )A .声波在空气中传播时是纵波,在水中传播时是横波B .波不但传送能量,还能传递信息C .发生地震时,由振源传出的既有横波又有纵波D .一切波的传播均需要介质4.(多选)关于机械波的概念,下列说法中正确的是:( bd )A .质点振动的方向总是垂直于波传播的方向B .简谐波沿长绳传播,绳上相距半个波长的两质点振动位移的大小相等C .任一振动质点每经过一个周期沿波的传播方向移动一个波长D .相隔一个周期的两时刻,波形相同5.沿绳传播的一列机械波,当波源突然停止振动时,有( c )A .绳上各质点同时停止振动,横波立即消失B .绳上各质点同时停止振动,纵波立即消失C .离波源较近的各质点先停止振动,较远的各质点稍后停止振动D .离波源较远的各质点先停止振动,较近的各质点稍后停止振动6.(多选)一列波沿水平方向传播,某时刻的波形如图所示,则图中a 、b 、c 、d 四点在此时刻具有相同运动方向的是( bc )A .a 和cB .b 和cC .a 和dD .b 和d7.一列波由一种介质进入另一种介质中继续传播,则( b )A .传播方向一定改变B .其频率不变C .如波速增大,频率也会增大D .如波长变小,频率也会变小解析:正确答案是B 。

因为频率是由波源决定的,与介质及波速无关,因v =λf ,f 不变,λ会随v成正比例变化,波由一种介质垂直于界面进入另一种介质,波速的大小会变,但方向却不变。

8.(多选)如图所示,一列机械波沿直线ab 向右传播ab =2 m ,a 、b 两点的振动情况如图, 下列说确的是( ab )A .波速可能是243m/sB .波长可能是83mC .波速可能大于23m/sD .波长可能大于83m解析:考虑t =0时刻、质点a 在波谷,质点b 在平衡位置且向y 轴正方向运动,又波由a 传向b ,则可描绘出a 、b 之间最简的波形图为:又由图可知λ满足:34λ+n λ=2 (n =0,1,2……)由此可得λ=84n +3m 由此可知波长不可能大于83m ,(由振动图象知T =4s ,对应的波速也不可能大于23m/s),当n =0时,λ=83m ;当n =10时,λ=843m 。

相关文档
最新文档