函数的单调性证明
磨课讲义1函数单调性的证明
函数单调性(增减性)的证明单调性定义:如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数...如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数...函数的单调性需抓住单调性定义来证明,这是目前高一阶段唯一的方法,后续可以结合复合函数,原函数与反函数单调性一致等说明。
一、证明方法步骤为:① 在给定区间上任取两个自变量1x 、2x 且1x <2x② 将()1f x 与()2f x 作差或作商(分母不为零)③ 比较差值(商)与0(1)的大小④ 下结论,确定函数的单调性。
在做差比较时,我们常将差化为积讨论,常用因式分解(整式)、通分(分式)、有理化(无理式)、配方等手段。
二、常见的类型有两种:(一)已知函数的解析式:例1:证明函数()a =x+a 0xf x ∞(>)单调递增练习:y x o1.证明函数()bx a x x f ++=()0>>b a 在()+∞-,b 上单调递减 2.判断函数()13+-=x x f 在()+∞∞-,上的单调性3. 用函数单调性定义证明,函数f (x )=x 3+在[1,+∞)上是增函数.总结:具体函数的单调性的证明依赖于作差或作商,关键点是比较函数值大小.(二)抽象函数的单调性:抽象函数的单调性关键是抽象函数关系式的运用,同时,要注意选择作差还是作商,这一点可观察题意中()f x 与0比较,应作差;与1比较,应作商.例2:函数f(x)对任意x 、y ∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,判断并证明f(x)在区间(-∞,+∞)上的单调性例3:定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b),证明f(x)是R 上的增函数练习:1.已知函数f (x )对任意的a 、b ∈R 都有f (a+b )=f (a )+f (b )﹣1,且当x >0时,f (x )>1.求证f (x )是R 上的增函数;2.设f (x )在(﹣∞,+∞)上是减函数,且a+b ≤0,则下列各式成立的是( )A ()()0≤+b f a fB ()()0≥+b f a fC ()()()()b f a f b f a f -+≤+D ()()()()b f a f b f a f -+≥+总结:抽象函数的单调性首先需要对限制条件赋值,然后利用奇偶性,周期性等条件对单调性进行说明,本质还是给定自变量一个扰动,看函数值的大小来确定单调性.。
定义法证明单调性
定义法证明单调性
定义法证明单调性:
单调性是指一个函数的值在某一区间内从一端到另一端的变化,是单方向的而不中断的。
定义法证明单调性就是通过定义函数的性质来证明其单调性,常用的定义如下:
1. 如果函数y=f(x)满足:对于所有x和x'都满足
f(x)<f(x'),则称函数y=f(x)为单调递增函数;
2. 如果函数y=f(x)满足:对于所有x和x'都满足
f(x)>f(x'),则称函数y=f(x)为单调递减函数;
3. 如果函数y=f(x)满足:对于所有x和x'都满足
f(x)=f(x'),则称函数y=f(x)为常数函数。
4. 如果函数y=f(x)既不满足上述条件1,也不满足上述条件2,则称函数y=f(x)为非单调函数。
通过定义函数的上述定义,可以根据函数特性判断函数是否单调,从而得出单调性的证明。
函数单调性的判断或证明方法
函数单调性的判断或证明方法.(1)定义法。
用定义法证明函数的单调性的一般步骤是①取值,设,且;②作差,求;③变形(合并同类项、通分、分解因式、配方等)向有利于判断差值符号的方向变形;④定号,判断的正负符号,当符号不确定时,应分类讨论;⑤下结论,根据函数单调性的定义下结论。
例1.判断函数在(-1,+∞)上的单调性,并证明.解:设-1<x1<x2,则f(x1)-f(x2)=-==∵-1<x1<x2,∴x1-x2<0,x1+1>0,x2+1>0.∴当a>0时,f(x1)-f(x2)<0,即f(x1)<f(x2),∴函数y=f(x)在(-1,+∞)上单调递增.当a<0时,f(x1)-f(x2)>0,即f(x1)>f(x2),∴函数y=f(x)在(-1,+∞)上单调递减.例2.证明函数在区间和上是增函数;在上为减函数。
(增两端,减中间)证明:设,则因为,所以,所以,所以所以设则,因为,所以,所以所以同理,可得(2)运算性质法.①在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.(增+增=增;减+减=减;增-减=增,减-增=减)②若.③当函数.④函数二者有相反的单调性。
⑤运用已知结论,直接判断函数的单调性,如一次函数、反比例函数等。
(3)图像法.根据函数图像的上升或下降判断函数的单调性。
例3.求函数的单调区间。
解:在同一坐标系下作出函数的图像得所以函数的单调增区间为减区间为.(4)复合函数法.(步骤:①求函数的定义域;②分解复合函数;③判断内、外层函数的单调性;④根据复合函数的单调性确定函数的单调性.⑤若集合是内层函数的一个单调区间,则便是原复合函数的一个单调区间,如例4;若不是内层函数的一个单调区间,则需把划分成内层函数的若干个单调子区间,这些单调子区间便分别是原复合函数的单调区间,如例5.)设,,都是单调函数,则在上也是单调函数,其单调性由“同增异减”来确定,即“里外”函数增减性相同,复合函数为增函数,“里外”函数的增减性相反,复合函数为减函数。
函数单调性怎么证明
函数的单调性指的是函数在定义域内的取值随着其自变量的变化而单调变化。
函数单调性的证明方法有以下几种:
1.导函数法:如果函数f(x)在定义域内可导,那么当f'(x) > 0时,函数f(x)单调递增;当f'(x)
< 0时,函数f(x)单调递减。
2.分段单调性:如果函数f(x)在定义域的不同子区间上单调,则函数f(x)在整个定义域上
单调。
3.数学归纳法:通过归纳证明函数在一定范围内单调,再扩大该范围,最终证明函数在整
个定义域内单调。
4.数学归纳法:通过归纳证明函数在一定范围内单调,再扩大该范围,最终证明函数在整
个定义域内单调。
5.极值法:如果函数在定义域内没有极值,或者极值都是局部极值,那么函数是单调的。
证明单调性需要根据具体函数的性质来判断使用哪种方法。
高中数学函数单调性的判定和证明方法(详细)
⑤下结论,根据函数单调性的定义下结论。
作差法:
例1.判断函数 在(-1,+∞)上的单调性,并证明.
解:设-1<x1<x2,
则f(x1)-f(x2)= -
=
=
∵-1<x1<x2,
∴x1-x2<0,x1+1>0,x2+1>0.
∴当a>0时,f(x1)-f(x2)<0, 即f(x1)<f(x2),
根据(1)可知 f(x1-x2)>1,f(x2)>0.
∵f(x1)=f[(x1-x2)+x2]=f(x1-x2)•f(x2)>f(x2),
∴函数f(x)在R上单调递减.
(二)、运算性质法.
函数
函数表达式
单调区间
特殊函数图像
一次函数
当 时, 在R上是增函数;
当 时, 在R上是减函数。
二次函数
当 时, 时 单调减,
⑷若两个基本初等函数在对应区间上的单调性是同时单调递增或同单调递减,则 为增函数,若为一增一减,则 为减函数(同增异减);
⑸求出相应区间的交集,既是复合函数 的单调区间。
以上步骤可以用八个字简记“一分”,“二求”,“三定”,“四交”。利用“八字”求法可以解决一些复合函数的单调性问题。
例7.求 ( 且 )的单调区间。
减函数的区间
函数
表达式
单调性
解:列表如下
由表知 是减函数的区间 , 。
所以函数的单调增区间为
减区间为 .
(四)、同增异减法(复合函数法).
定理1:若函数 在 内单调, 在 内单调,且集合{ ︳ , }
(1)若 是增函数, 是增(减)函数,则 是增(减)函数。(2)若 是减函数, 是增(减)函数,则 是减(增)函数。
证明函数单调性的方法总结
证明函数单调性的方法总结导读:1、定义法:利用定义证明函数单调性的一般步骤是:①任取x1、x2∈D,且x1 ②作差f(x1)-f(x2),并适当变形(“分解因式”、配方成同号项的和等);③依据差式的符号确定其增减性.2、导数法:设函数y=f(x)在某区间D内可导.如果f′(x)>0,则f(x)在区间D内为增函数;如果f′(x) 注意:(补充)(1)若使得f′(x)=0的x的值只有有限个,则如果f ′(x)≥0,则f(x)在区间D内为增函数;如果f′(x) ≤0,则f(x)在区间D内为减函数.(2)单调性的判断方法:定义法及导数法、图象法、复合函数的单调性(同增异减)、用已知函数的单调性等(补充)单调性的有关结论1.若f(x),g(x)均为增(减)函数,则f(x)+g(x)仍为增(减)函数.2.若f(x)为增(减)函数,则-f(x)为减(增)函数,如果同时有f(x)>0,则为减(增)函数,为增(减)函数3.互为反函数的两个函数有相同的单调性.4.y=f[g(x)]是定义在M上的函数,若f(x)与g(x)的'单调性相同,则其复合函数f[g(x)]为增函数;若f(x)、g(x)的单调性相反,则其复合函数f[g(x)]为减函数.简称”同增异减”5. 奇函数在关于原点对称的两个区间上的单调性相同;偶函数在关于原点对称的两个区间上的单调性相反.函数单调性的应用(1)求某些函数的值域或最值.(2)比较函数值或自变量值的大小.(3)解、证不等式.(4)求参数的取值范围或值.(5)作函数图象.【证明函数单调性的方法总结】1.函数单调性的说课稿2.高中数学函数的单调性的教学设计3.导数与函数的单调性的教学反思4.高中函数单调性的教学设计5.《函数的单调性》的说课稿6.函数单调性教案练习题7.函数单调性说课课件8.《函数的单调性》教学设计上文是关于证明函数单调性的方法总结,感谢您的阅读,希望对您有帮助,谢谢。
判断函数单调性的常用方法
判断函数单调性的常用方法一、定义法设x1,x2是函数f(x)定义域上任意的两个数,且x1<x2,若f(x1)<f(x2),则此函数为增函数;反知,若f(x1)>f(x2),则此函数为减函数. 【例1】证明:当0>x 时,)1ln(x x +>。
证明:令01111)()1ln()(>+=+-='+-=xx x x f x x x f 所以,当0>x 时,0)(>'x f ,所以)(x f 为严格递增的0)01ln(0)0()(=+-=>⇒f x f ,所以)1ln(x x +>。
二、性质法除了用基本初等函数的单调性之外,利用单调性的有关性质也能简化解题. 若函数f(x)、g(x)在区间B 上具有单调性,则在区间B 上有: ⑴ f(x)与f(x)+C (C 为常数)具有相同的单调性;⑵ f(x)与c•f(x)当c >0具有相同的单调性,当c <0具有相反的单调性; ⑷当f(x)、g(x)都是增(减)函数,则f(x)+g(x)都是增(减)函数; ⑸当f(x)、g(x)都是增(减)函数,则f (x)•g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数;三、同增异减法是处理复合函数的单调性问题的常用方法. 对于复合函数y =f [g(x)]满足“同增异减”法(应注意内层函数的值域),可令 t =g(x),则三个函数 y =f(t)、t =g(x)、y =f [g(x)]中,若有两个函数单调性相同,则第三个函数为增函数;若有两个函数单调性相反,则第三个函数为减函数.注:(1)奇函数在对称的两个区间上有相同的单调性,偶函数在对称的两个区间上有相反的单调性;(2)互为反函数的两个函数有相同的单调性;(3)如果f(x)在区间D 上是增(减)函数,那么f(x)在D 的任一子区间上也是增(减)函数.设单调函数)(x f y =为外层函数,)(x g y =为内层函数 (1) 若)(x f y =增,)(x g y =增,则))((x g f y =增. (2) 若)(x f y =增,)(x g y =减,则))((x g f y =减. (3) 若)(x f y =减,)(x g y =减,则))((x g f y =增. (4) 若)(x f y =减,)(x g y =增,则))((x g f y =减.例1. 求函数222)(-+=x x x f 的单调区间.教学意图:先让学生学会找出外层函数和内层函数然后再进一步教会学生如何求此函数的单调区间.此题当中定义域是一切实数,在此处我还没有让学生认识到定义域的重要性,先让学生初步掌握复合函数单调区间的求法. 解题过程:外层函数:ty 2=内层函数:22-+=x x t内层函数的单调增区间:],21[+∞-∈x 内层函数的单调减区间:]21,[--∞∈x 由于外层函数为增函数所以,复合函数的增区间为:],21[+∞-∈x 复合函数的减区间为:]21,[--∞∈x 四、求导法导数小于0就是递减,大于0递增,等于0,是拐点极值点求函数值域的常用方法 1.观察法用于简单的解析式。
定义法证明函数的单调性课件
证明二次函数单调性
总结词
通过二次函数的对称轴和开口方向,可以判断其单调性。
详细描述
对于二次函数$f(x) = ax^2 + bx + c$,其对称轴为$x = -\frac{b}{2a}$。如果函数的 开口向上(即$a > 0$),那么函数在对称轴左侧是单调递减的,在对称轴右侧是单调 递增的;如果函数的开口向下(即$a < 0$),那么函数在对称轴左侧是单调递增的,
回顾本次课件的主要内容
介绍了定义法证明函 数单调性的基本步骤 ;
提供了练习题,帮助 学生巩固所学知识。
通过例题演示了如何 运用定义法证明函数 单调性;
提出下一次课件的预告和要求
下一次课件将介绍函数的奇偶性 和周期性;
要求学生提前预习相关基础知识 ;
准备相关问题及疑惑,便于课堂 讨论和解答。
THANK YOU
单调函数的图像特征
递增函数的图像呈上升趋势,递减函数的图像呈下降趋势。
单调函数的性质
如果$f(x)$在区间$I$上单调递增,那么对于任意的$x_{1}, x_{2}$满足$x_{1} < x_{2}$, 都有$f(x_{1}) < f(x_{2})$;同样地,如果$f(x)$在区间$I$上单调递减,那么对于任意的 $x_{1}, x_{2}$满足$x_{1} < x_{2}$,都有$f(x_{1}) > f(x_{2})$。
数
练习题:证明$y=2x+1$在 $\mathbf{R}$上是增函数
二次函数单调性证明练习
总结词:理解二次函数的单调性
输标02入题
二次函数的一般形式是$y=ax^{2}+bx+c$,当 $a>0$时,函数在区间$( - \infty,\frac{-b}{2a})$上是 减函数,在区间$(\frac{-b}{2a},+\infty)$上是增函数
函数单调的充要条件的证明
函数单调的充要条件的证明函数在数学中是一种特殊的概念,它通常指的是把一个变量(自变量)的取值的集合映射到另一个变量(因变量)的取值的集合,因此,函数就是在一定范围内把自变量映射到因变量的一种规律。
有时候我们需要研究一个函数的单调性,这就引出了函数单调的充要条件的概念。
充要条件是指当一个函数满足某一充要条件时,它就必然是某种性质。
因此,充要条件可以用来证明某类函数是否符合某种性质。
关于函数单调的充要条件,根据数学定义,它指的是在一定的范围内,若一个函数的导数的符号在此范围内是一致的,则函数在此范围内是单调的。
由此,可以推出函数单调的一般充要条件:对于给定的函数f(x),其在范围[a,b]在函数的导数的符号是一致的,那么此函数在此范围内是单调的。
接下来,我们将证明函数单调的充要条件。
首先,我们考虑函数f(x)在[a,b]这段区间内,若此函数的导数的符号是一致的,则f(x)在此区间内是单调的。
根据数学定义,一个函数f(x)在区间[a,b]内是单调的,当且仅当满足f(x)的值在区间[a,b]内是一致的,即f(x)>0,x∈[a,b]或f(x)<0,x∈[a,b]由此可以得知,一个函数在[a,b]内是单调的,当且仅当f(x)在此区间内是一致的。
由此,该函数的单调性可以由f’(x)的一致性来决定,而f’(x)的一致性可以作为证明函数单调性的充要条件。
同时,由于f(x)的一致性可以作为证明函数单调性的充要条件,因此,由f(x)的一致性,可以推出函数f(x)的单调性,也就是说从f(x)的一致性,可以完全确定函数f(x)的单调性。
此外,数学定义中指出,若f(x)在范围[a,b]内的符号是一致的,则f(x)在此范围内是单调的,它也可以作为对函数单调性的充分条件。
另外,由于函数单调性的充要条件确定了在一定范围内,函数的导数的符号是一致的,因此,我们也可以推出,函数的导数的一致性也可以作为证明函数单调性的充分条件。
证明函数单调性的方法总结归纳
证明函数单调性的方法总结归纳1、定义法:利用定义证明函数单调性的一般步骤是:①任取x1、x2∈D,且x1②作差f(x1)-f(x2),并适当变形(“分解因式”、配方成同号项的和等);③依据差式的符号确定其增减性.2、导数法:设函数y=f(x)在某区间D内可导.如果f′(x)>0,则f(x)在区间D 内为增函数;如果f′(x)注意:(补充)(1)若使得f′(x)=0的x的值只有有限个,则如果f ′(x)≥0,则f(x)在区间D内为增函数;如果f′(x) ≤0,则f(x)在区间D内为减函数.(2)单调性的判断方法:定义法及导数法、图象法、复合函数的单调性(同增异减)、用已知函数的单调性等(补充)单调性的有关结论1.若f(x),g(x)均为增(减)函数,则f(x)+g(x)仍为增(减)函数.2.若f(x)为增(减)函数,则-f(x)为减(增)函数,如果同时有f(x)>0,则为减(增)函数,为增(减)函数3.互为反函数的两个函数有相同的单调性.4.y=f[g(x)]是定义在M上的函数,若f(x)与g(x)的单调性相同,则其复合函数f[g(x)]为增函数;若f(x)、g(x)的单调性相反,则其复合函数f[g(x)]为减函数.简称”同增异减”5. 奇函数在关于原点对称的两个区间上的单调性相同;偶函数在关于原点对称的两个区间上的单调性相反.函数单调性的应用(1)求某些函数的值域或最值.(2)比较函数值或自变量值的大小.(3)解、证不等式.(4)求参数的取值范围或值.(5)作函数图象.搜集整理,仅供参考学习,请按需要编辑修改。
函数单调性地判断或证明方法
函数单调性地判断或证明方法
一、函数单调性的概念
函数单调性指的是函数在增量部分的增量,即在其定义域内沿曲线一边的变化必须保持另一边的变化。
函数单调性的特点是,曲线的增量不会发生改变,甚至不会出现拐点,也不会发生有限个极值的情况。
即曲线在增量部分的变化是单调的,因此在曲线的增量部分,可以把函数的增量分为上升斜率和下降斜率,而且这些斜率的变化也是单调递增或递减的。
二、函数单调性的判断方法
要判断函数是否具有单调性,首先要把函数以增量的形式表示出来,然后根据函数的增量情况来判断函数是否具有单调性,可以把函数的增量情况分为以下几种:
1.恒定增量:即函数的增量是一个恒定的常数,我们把函数的增量称之为恒定增量,这个函数具有单调的性质。
2.单调增量:即函数增量是一个不断递增的函数,这样的函数也具有单调的性质。
3.单调减量:即函数的增量是一个不断递减的函数,这样的函数也具有单调的性质。
4.变量增量:即函数的增量随变量的变化而变化,这样的函数也具有单调的性质。
5.上凸函数:函数的增量在变化时具有上凸函数的性质,这样的函数也具有单调的性质。
6.下凸函数:函数的增量在变化时具有下凸函数的性质。
高中数学函数单调性的判定和证明方法(详细)
函数单调性的判定和证明方法(一)、定义法步骤:①取值,设x1<x2, 并是某个区间上任意二值;②作差:;或作商:,≠0;③变形向有利于判断差值符号的方向变形;,≠0向有利于判断商的值是否大于1方向变形;(常用的变形技巧有:1、分解因式,当原函数是多项式时,作差后进行因式分解;2、通分,当原函数是分式函数时,作差后往往进行通分再进行因式分解;3、配方,当原函数是二次函数时,作差后考虑配方便于判定符号;4、分子有理化,当原函数是根式函数时,作差后往往考虑分子有理化等);④定号,判断的正负符号,当符号不确定时,需进行分类讨论;⑤下结论,根据函数单调性的定义下结论。
作差法:例1.判断函数在(-1,+∞)上的单调性,并证明.解:设-1<x1<x2,则f(x1)-f(x2)=-==∵-1<x1<x2,∴x1-x2<0,x1+1>0,x2+1>0.∴当a>0时,f(x1)-f(x2)<0,即f(x1)<f(x2),∴函数y=f(x)在(-1,+∞)上单调递增.当a<0时,f(x1)-f(x2)>0,即f(x1)>f(x2),∴函数y=f(x)在(-1,+∞)上单调递减.例2.证明函数在区间和上是增函数;在上为减函数。
(增两端,减中间)证明:设,则因为,所以,所以,所以所以设则,因为,所以,所以所以同理,可得作商法:例3.设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n)且当x>0时,0<f(x)<1(1)求证:f(0)=1 且当x<0时,f(x)>1(2)求证:f(x)在R上是减函数.证明:(1)∵对于任意实数m,n,恒有f(m+n)=f(m)•f(n),令m=1,n=0,可得f(1)=f(1)•f(0),∵当x>0时,0<f(x)<1,∴f(1)≠0.∴f(0)=1.令m=x<0,n=-x>0,则f(m+n)=f(0)=f(-x)•f(x)=1,∴f(-x)f(x)=1,又∵-x>0时,0<f(-x)<1,∴f(x)=1f(-x)>1.(1)设x1<x2,则x1-x2<0,根据(1)可知 f(x1-x2)>1,f(x2)>0.∵f(x1)=f[(x1-x2)+x2]=f(x1-x2)•f(x2)>f(x2),∴函数f(x)在R上单调递减.(二)、运算性质法.v1.0 可编辑可修改函数函数表达式单调区间特殊函数图像一次函数)0(≠+=kbkxy当0>k时,y在R上是增函数;当0<k时,y在R上是减函数。
函数单调性的判断与证明
函数单调性的判断与证明【方法综述】 1.函数的单调性(1).增函数:若对于定义域I 内的某个区间()D D I ⊆上的任意两个自变量1x 、2x ,当12x x <时,都有()()12f x f x <,那么就说函数()f x 在区间D 上是增函数;(2)减函数:若对于定义域I 内的某个区间()D D I ⊆上的任意两个自变量1x 、2x ,当12x x <时,都有()()12f x f x >,那么就说函数()f x 在区间D 上是减函数.2.要确定t =g (x )(常称内层函数)的值域,否则无法确定f (t )(常称外层函数)的单调性.3.用定义证明函数单调性中的变形策略由定义证明函数f (x )在区间D 上的单调性,其步骤为:取值→作差→变形→定号.其中变形是最关键的一步,合理变形是准确判断f (x 1)-f (x 2)的符号的关键所在.常见变形方法有因式分解、配方、同分、有理化等,下面举例说明.例1.求证:函数f (x )=x 2-4x 在(-∞,2]上是减函数.证明:设x 1,x 2是(-∞,2]上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=(x 21-4x 1)-(x 22-4x 2)=(x 1-x 2)(x 1+x 2-4).因为x 1<x 2≤2,所以x 1-x 2<0,x 1+x 2-4<0. 所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2). 故函数f (x )在(-∞,2]上是减函数.评注 因式分解是变形的常用策略,但必须注意,分解时一定要彻底,这样才利于判断f (x 1)-f (x 2)的符号.例2.求证:函数f (x )=x 3+1在R 上是增函数.证明:设x 1,x 2是R 上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=x 31+1-x 32-1=x 31-x 32=(x 1-x 2)(x 21+x 1x 2+x 22)=(x 1-x 2)⎣⎡⎦⎤⎝⎛⎭⎫x 1+x 222+34x 22. 因为x 1<x 2,所以x 1-x 2<0,⎝⎛⎭⎫x 1+x 222+34x 22>0. 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).故函数f (x )在R 上是增函数.评注 本题极易在(x 1-x 2)(x 21+x 1x 2+x 22)处“止步”而致误.而实际上当我们不能直接判断x 21+x 1x 2+x 22的符号,又不能因式分解时,采用配方则会“柳暗花明”.例3.已知函数f (x )=x +1x,求证:函数f (x )在区间(0,1]上是减函数.证明:设x 1,x 2是区间(0,1]上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=x 1+1x 1-x 2-1x 2=(x 1-x 2)+⎝⎛⎭⎫1x 1-1x 2=(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)⎝⎛⎭⎫1-1x 1x 2=(x 1-x 2)⎝⎛⎭⎫x 1x 2-1x 1x 2. 因为x 1<x 2,且x 1,x 2∈(0, 1],所以x 1-x 2<0,0<x 1x 2<1.所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).故函数f (x )在(0,1]上是减函数.评注 同样,我们可以证明f (x )=x +1x在区间[1,+∞)上是增函数.例4.已知函数f (x )=x -1,求证:函数f (x )在区间[1,+∞)上是增函数.证明:设x 1,x 2是区间[1,+∞)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=x 1-1-x 2-1=x 1-x 2x 1-1+x 2-1 .因为x 1<x 2,且x 1,x 2∈[1,+∞),所以x 1-x 2<0,x 1-1+x 2-1>0. 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). 故函数f (x )在[1,+∞)上是增函数.评注 对于根式函数常采用分子或分母有理化变形手段以达到判断f (x 1)-f (x 2)符号的目的. 例5.求函数y =1(x +1)2的单调区间.解:函数y =1(x +1)2的定义域为(-∞,-1)∪(-1,+∞),设t =(x +1)2,则y =1t(t >0).当x ∈(-∞,-1)时,t 是x 的减函数,y 是t 的减函数,所以(-∞,-1)是y =1(x +1)2的递增区间;当x ∈(-1,+∞)时,t 是x 的增函数,y 是t 的减函数,所以(-1,+∞)是y =1(x +1)2的递减区间.综上知,函数y =1(x +1)2的递增区间为(-∞,-1),递减区间为(-1,+∞).例6. 求y =1x 2-2x -3的单调区间.解:由x 2-2x -3≠0,得x ≠-1或x ≠3,令t =x 2-2x -3(t ≠0),则y =1t ,因为y =1t在(-∞,0),(0,+∞)上为减函数,而t =x 2-2x -3在(-∞,-1),(-1,1)上为减函数,在(1,3),(3,+∞)上是增函数,所以函数y =1x 2-2x -3的递增区间为(-∞,-1),(-1,1),递减区间为(1,3),(3,+∞). 【针对训练】1.下列四个函数中,在上为减函数的是( )A .B .C .D .【答案】A【解析】对于选项A,函数的图像的对称轴为开口向上,所以函数在上为减函数.所以选项A 是正确的.对于选项B,在在上为增函数,所以选项B 是错误的. 对于选项C,在在上为增函数,所以选项C 是错误的.对于选项D,,当x=0时,没有意义,所以选项D 是错误的. 2.下列四个函数中,在(0,+∞)上为增函数的是( ) A .f(x)=3-x B .f(x)=x 2-3xC .f(x)=-1x +1 D .f(x)=-|x|【答案】C【解析】当x>0时,f(x)=3-x 为减函数;当x ∈⎝⎛⎭⎫0,32时,f(x)=x 2-3x 为减函数;当x ∈⎝⎛⎭⎫32,+∞时,f(x)=x 2-3x 为增函数;当x ∈(0,+∞)时,f(x)=-1x +1为增函数;当x ∈(0,+∞)时,f(x)=-|x|为减函数.3.若函数y ax =与b y x=-在()0,+∞上都是减函数,则()2f x ax bx =+在()0,+∞上是( ) A .增函数 B .减函数 C .先增后减 D .先减后增 【答案】B【解析】由函数y ax =与by x=-在()0,+∞上都是减函数,可得0,b 0a <<.则一元二次函数()2f x ax bx=+在()0,+∞上为减函数.故选B.4.定义在R 上的函数()f x 对任意两个不相等实数a ,b ,总有()()0f a f b a b->-成立, 则必有( )A.()f x 在R 上是增函数B.()f x 在R 上是减函数C.函数()f x 是先增加后减少D.函数()f x 是先减少后增加【答案】A【解析】若a b <则由题意()()0f a f b a b->-知,一定有()()f a f b <成立,由增函数的定义知,该函数()f x 在R 上是增函数;同理若a b >,则一定有()()f a f b >成立,即该函数()f x 在R 上是增函数.所以函数()f x 在R 上是增函数.故应选A.5.已知,那么( ) A. 在区间上单调递增 B. 在上单调递增 C. 在上单调递增 D. 在上单调递增【答案】D 【解析】,记,则当时,单调递增,且而在不具有单调性,故A 错误;当时,不具有单调性,故B 错误;当时,单调递增,且而在不具有单调性,故C 错误;当时,单调递减,且而在单调递减,根据“同增异减”知,D 正确.故选:D 6.试讨论函数f(x)=axx -1(a≠0)在(-1,1)上的单调性. 【解析】设-1<x 1<x 2<1,f(x)=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎫1+1x -1,f(x 1)-f(x 2)=a ⎝⎛⎭⎫1+1x 1-1-a ⎝⎛⎭⎫1+1x 2-1=a x 2-x 1x 1-1x 2-1.由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0,故当a>0时,f(x 1)-f(x 2)>0,即f(x 1)>f(x 2),函数f(x)在(-1,1)上递减; 当a<0时,f(x 1)-f(x 2)<0,即f(x 1)<f(x 2),函数f(x)在(-1,1)上递增.综上,当a>0时,f(x)在(-1,1)上单调递减;当a<0时,f(x)在(-1,1)上单调递增.7.已知a>0,函数f(x)=x +ax (x>0),证明:函数f(x)在(0,a]上是减函数,在[a ,+∞)上是增函数.【解析】任意取x 1>x 2>0,则f(x 1)-f(x 2)=⎝⎛⎭⎫x 1+a x 1-⎝⎛⎭⎫x 2+a x 2=(x 1-x 2)+⎝⎛⎭⎫a x 1-ax 2=(x 1-x 2)+ax 2-x 1x 1x 2=(x 1-x 2)⎝⎛⎭⎫1-a x 1x 2. 当a ≥x 1>x 2>0时,x 1-x 2>0,1-ax 1x 2<0,有f(x 1)-f(x 2)<0,即f(x 1)<f(x 2), 此时,函数f(x)=x +ax(a>0)在(0,a]上为减函数;当x 1>x 2≥a 时,x 1-x 2>0,1-ax 1x 2>0,有f(x 1)-f(x 2)>0,即f(x 1)>f(x 2),此时,函数f(x)=x+ax(a>0)在[a,+∞)上为增函数;综上可知,函数f(x)=x+ax(a>0)在(0,a]上为减函数,在[a,+∞)上为增函数.8.已知函数的图象经过点(1,1),.(1)求函数的解析式;(2)判断函数在(0,+)上的单调性并用定义证明;【答案】(1).(2)见解析.【解析】(1)由f(x)的图象过A、B,则,解得.∴(x≠0).(2)证明:设任意x1,x2∈0+∞(,),且x1<x2.∴.由x1,x2∈0+∞(,),得x1x2>0,x1x2+2>0.由x1<x2,得.∴,即.∴函数在0+∞(,)上为减函数.9.已知函数在上满足,且,.(1)求,的值;(2)判断的单调性并证明;【答案】(1);(2)单调递增,证明见解析;(3).【解析】(1)令,即可得到,再令,可得,令即可求得;(2)单调递增,证明:任取且,则,,因为,所以,所以在上单调递增.10.已知定义在区间上的函数满足,且当时,. (1)求的值;(2)证明:为单调增函数;(3)若,求在上的最值.【答案】(1)f(1)=0.(2)见解析(3)最小值为﹣2,最大值为3.【解析】试题分析:(1)利用赋值法进行求的值;(2)根据函数的单调性的定义判断在上的单调性,并证明.(3)根据函数单调性的性质,并利用赋值法可得函数的最值.试题解析:(1)∵函数f(x)满足f(x1•x2)=f(x1)+f(x2),令x1=x2=1,则f(1)=f(1)+f(1),解得f(1)=0.(2)证明:(2)设x1,x2∈(0,+∞),且x1>x2,则>1,∴f()>0,∴f(x1)﹣f(x2)=f(x2⋅)﹣f(x2)=f(x2)+f()﹣f(x2)=f()>0,即f(x1)>f(x2),∴f(x)在(0,+∞)上的是增函数.(3)∵f(x)在(0,+∞)上的是增函数.若,则f()+f()=f()=﹣2,即f(•5)=f(1)=f()+f(5)=0,即f(5)=1,则f(5)+f(5)=f(25)=2,f(5)+f(25)=f(125)=3,即f(x)在上的最小值为﹣2,最大值为3.。
函数单调性_最全版
六、 函数的单调性:㈠函数单调性的判定与证明:1、讨论函数f (x )=12-x ax(a >0)在x ∈(-1,1)上的单调性.解:设-1<x 1<x 2<1,则f (x 1)-f (x 2)=1211-x ax -1222-x ax=)1)(1(222122121221--+--x x ax x ax ax x ax =)1)(1()1)((22212112--+-x x x x x x a .∵-1<x 1<x 2<1,∴x 2-x 1>0,x 1x 2+1>0,(x 12-1)(x 22-1)>0.又a >0,∴f (x 1)-f (x 2)>0,函数f (x )在(-1,1)上为减函数. 练习1:利用单调性的定义证明函数y=12++x x 在(-1,+∞)上是减函数. 证明:设x 1>x 2>-1, 则y 1-y 2=)1)(1(121221122211++-=++-++x x x x x x x x . ∵x 1>x 2>-1,x 2-x 1<0,x 1+1>0,x 2+1>0, ∴)1)(1(2112++-x x x x <0,即y 1-y 2<0,y 1<y 2.∴y=12++x x 在(-1,+∞)上是减函数. ㈡求函数的单调区间 Ⅰ定义法: 1、求函数y =x +x1的单调区间. Ⅱ导数法:求下列函数的单调区间 1、 432()3861f x x x x =-++解:3222()12241212(21)12(1)f x x x x x x x x x '=-+=-+=- 当0x ≥时单调递增,0x <时单调递减. 2、1()1f x x x =+- 解:21()1(1)f x x -'=+-故2222(1)12()(1)(1)x x xf x x x ---'==-- 则[0,1)(1,2]x ∈⋃时单调递减;(,0][2,)x ∈-∞⋃+∞时单调递增3、()f x =解:21()2f x '=2== 当9[,3)(0,)2x ∈--⋃+∞时单调递增,[3,0]x ∈-时单调递减。
函数单调性的判断和证明
1 x1 x2 1 x2 - x1 0, x1 x2 1 0, ( x1 - 1)(x2 - 1) 0 当a 0时,f(x1 ) - f ( x2 ) 0 函数f ( x)在(- 1,1)上为减函数 当a 0时f ( x1 ) - f ( x2 ) 0 函数f ( x)在(- 1,1)上是增函数。
练习 .求函数y x 4 x 3的单调递减区间。
2
例5:函数f ( x) x - | x | 单调递减区间是- - - 2
点评:单调区间的求法 1、定义法 2、图像法
点评
• 1、定义法 • 2、图像法
含参数函数的单调性的判断
ax 例6:试讨论函数 f ( x) 2 (a 0) x -1 在x (-1,1)上的单调性。
题型二、解不等式:
例 2: 练习:已知 f ( x)是定义在 [9,9]上的增函数 ,
且满足f (2 x 1) f ( x 3), 求x的范围 .
解:因为函数f(x)在定义域上是增函数
2x 1 x 3 9 2 x 1 9 4 x 5 9 x 3 9
例1:函数f(x)在(0,+ )上是减函数, 求f(a2-a+1) 解:因为f(x)在(0,+ )是减函数
3 1 3 因为a2-a+1=(a- )2+ ≥ 4>0 2 4
3 与f( )的大小。 4
所以f(a2-a+1)
3 ≤ f( ) 4
解(1)1(2)2/3,1/2 (3) 1 (4)当a>0时,b≤0或当a<0时,b≥0 (5)当a<0时,最大值为3-4a最小值为-1 当0<a<1时,最大值为3-4a,最小值为-a² -1 当1≤a≤2时,最大值为-1,最小值为-a² -1 当a>2时,最大值为-1,最小值为3-4a
判断函数单调性的常用方法
判断函数单调性的常用方法一、定义法设x1,x2是函数f(x)定义域上任意的两个数,且x1<x2,假设f(x1)<f(x2),那么此函数为增函数;反知,假设f(x1)>f(x2),那么此函数为减函数. 【例1】证明:当0>x 时,)1ln(x x +>。
证明:令01111)()1ln()(>+=+-='+-=xx x x f x x x f 所以,当0>x 时,0)(>'x f ,所以)(x f 为严格递增的0)01ln(0)0()(=+-=>⇒f x f ,所以)1ln(x x +>。
二、性质法除了用根本初等函数的单调性之外,利用单调性的有关性质也能简化解题. 假设函数f(x)、g(x)在区间B 上具有单调性,那么在区间B 上有: ⑴ f(x)与f(x)+C 〔C 为常数〕具有相同的单调性;⑵ f(x)与c•f(x)当c >0具有相同的单调性,当c <0具有相反的单调性;⑷当f(x)、g(x)都是增(减)函数,那么f(x)+g(x)都是增(减)函数; ⑸当f(x)、g(x)都是增(减)函数,那么f(x)•g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数;三、同增异减法是处理复合函数的单调性问题的常用方法. 对于复合函数y =f [g(x)]满足“同增异减〞法(应注意内层函数的值域),可令 t =g(x),那么三个函数 y =f(t)、t =g(x)、y =f [g(x)]中,假设有两个函数单调性相同,那么第三个函数为增函数;假设有两个函数单调性相反,那么第三个函数为减函数.注:〔1〕奇函数在对称的两个区间上有相同的单调性,偶函数在对称的两个区间上有相反的单调性;〔2〕互为反函数的两个函数有相同的单调性;〔3〕如果f(x)在区间D 上是增〔减〕函数,那么f(x)在D 的任一子区间上也是增〔减〕函数.设单调函数)(x f y =为外层函数,)(x g y =为内层函数 (1) 假设)(x f y =增,)(x g y =增,那么))((x g f y =增. (2) 假设)(x f y =增,)(x g y =减,那么))((x g f y =减. (3) 假设)(x f y =减,)(x g y =减,那么))((x g f y =增.(4) 假设)(x f y =减,)(x g y =增,那么))((x g f y =减.例1. 求函数222)(-+=x xx f 的单调区间.教学意图:先让学生学会找出外层函数和内层函数然后再进一步教会学生如何求此函数的单调区间.此题当中定义域是一切实数,在此处我还没有让学生认识到定义域的重要性,先让学生初步掌握复合函数单调区间的求法. 解题过程:外层函数:ty 2=内层函数:22-+=x x t 内层函数的单调增区间:],21[+∞-∈x 内层函数的单调减区间:]21,[--∞∈x 由于外层函数为增函数所以,复合函数的增区间为:],21[+∞-∈x 复合函数的减区间为:]21,[--∞∈x 四、求导法导数小于0就是递减,大于0递增,等于0,是拐点极值点求函数值域的常用方法 1.观察法用于简单的解析式。
函数单调性的判断与证明
图像判断法
绘制函数图像
通过描点或利用计算机绘制出函数的图像。
观察图像走势
通过观察图像上各点的高低走势来判断函数的单调性。若图像在某区间内持续 上升,则函数在该区间内单调递增;若图像持续下降,则函数在该区间内单调 递减。
03
函数单调性证明方法
Chapter
定义法证明
01
选定区间内任取两点$x_1, x_2$($x_1 < x_2$),计算函 数值$f(x_1)$和$f(x_2)$。
举例验证
通过具体例子验证复合函数单调性判断的正确性。
隐函数单调性判断与证明
隐函数求导
利用隐函数的求导法则,求出隐函数的导数表 达式。
单调性判定
根据导数的符号,判断隐函数在其定义域内的 单调性。
举例验证
通过具体例子验证隐函数单调性判断的正确性。
06
函数单调性应用举例
Chapter
在不等式证明中的应用
三角函数和反三角函数
正弦函数$y=sin x$在$[-frac{pi}{2}+2kpi, frac{pi}{2}+2kpi]$($k in mathbb{Z}$)上单调 递增,在$[frac{pi}{2}+2kpi, frac{3pi}{2}+2kpi]$ ($k in mathbb{Z}$)上单调递减。
利用函数单调性证明不等式
通过构造函数,利用函数的单调性,将不等式问题转化为函数值的大小比较问题,从而 简化证明过程。
利用函数单调性解不等式
通过函数的单调性,确定不等式的解集范围,从而求解不等式。
在方程根的存在性及根的个数判断中的应用
利用函数单调性判断方程 根的存在性
通过函数的单调性,结合中值定理等工具, 判断方程在某个区间内是否存在根。
第06讲 函数的单调性的判断、证明和单调区间的求法
精品二轮第06讲:函数的单调性的判断、证明和单调区间的求法【知识要点】一、判断函数单调性的方法判断函数单调性一般有四种方法:单调四法 导数定义复合图像 1、定义法用定义法判断函数的单调性的一般步骤:①取值,设D x x ∈21,,且12x x <;②作差,求)()(21x f x f -;③变形(合并同类项、通分、分解因式、配方等);④判断)()(21x f x f -的正负符号;⑤根据函数单调性的定义下结论.2、复合函数分析法设()y f u =,()u g x =[,]x a b ∈,[,]u m n ∈都是单调函数,则[()]y f g x =在[,]a b 上也是单调函数,其单调性由“同增异减”来确定,即“里外”函数增减性相同,复合函数为增函数,“里外”函数的增减性相反,复合函数为减函数.如下表:3、导数判断法设()f x 在某个区间(,)a b 内有导数()f x ',若()f x 在区间(,)a b 内,总有()0(()0)f x f x ''><,则()f x 在区间(,)a b 上为增函数(减函数).4、图像法一般通过已知条件作出函数图像的草图,如果函数的图像,在某个区间D ,从左到右,逐渐上升,则函数在这个区间D 是增函数;如果从左到右,是逐渐下降,则函数是减函数. 二、证明函数的单调性的方法证明函数的单调性一般有三种方法:定义法、复合函数分析法和导数法.由于数学的证明是比较严谨的,所以图像法只能用来判断函数的单调性,但是不能用来证明.三、求函数的单调区间求函数的单调区间:单调四法,导数定义复合图像 1、定义法 :由于这种方法比较复杂,所以一般用的较少.2、复合函数法:先求函数的定义域,再分解复合函数,再判断每一个内层函数的单调性,最后根据复合函数的单调性确定函数的单调性.3、导数法:先求函数的定义域D ,然后求导()f x ',再解不等式()()0f x '>< ,分别和D 求交集,得函数的递增(减)区间 .4、图像法:先利用描点法或图像的变换法作出函数的图像,再观察函数的图像,写出函数的单调区间.四、一些重要的有用的结论1、奇函数在其对称区间上的单调性相同,如函数xy 1=、x y =和3x y =;偶函数在其对称区间上的单调性相减,如函数2x y =.2、在公共的定义域内,增函数+增函数是增函数,减函数+减函数是减函数.其他的如增函数⨯增函数不一定是增函数,函数x y =和函数3x y =都是增函数,但是它们的乘积函数4x y =不是增函数. 3、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”. 4、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题.5、在多个单调区间之间不能用“或”和“”连接,只能用逗号隔开.如函数()y f x =的增区间为(1,2),(3,5).不要写成(1,2)(3,5).【方法讲评】【例1】证明函数()(0)f x x a x=+>在区间)+∞是增函数.【反馈检测1】讨论函数21)(++=x ax x f )21(≠a 在),2(+∞-上的单调性.【例2】已知函数()f x 的定义域是0x ≠的一切实数,对定义域内的任意12,x x ,都有1212()()()f x x f x f x =+,且当1x >时()0f x >,(2)1f =.(1)求证()f x 是偶函数;(2)()f x 在(0,)+∞上时增函数;(3)解不等式2(21)2f x -<.【反馈检测2】已知()f x 是定义在区间[1,1]-上的奇函数,且(1)1f =,若,[1,1],0m n m n ∈-+≠时,有()()0f m f n m n +>+.(1)解不等式1()(1)2f x f x +<-(2)若2()21f x t at ≤-+对所有[1,1],[1,1]x a ∈-∈-恒成立,求实数t 的取值范围.【例3】已知函数1ln )1()(2+++=ax x a x f (1)讨论函数)(x f 的单调性;(2)设1-<a .如果对任意),0(,21+∞∈x x ,||4)()(|2121x x x f x f -≥-,求a 的取值范围.【反馈检测3】已知函数1()ln 1af x x ax x-=-+-()a R ∈. (1)当12a ≤时,讨论()f x 的单调性; (2)设2()2 4.g x x bx =-+当14a =时,若对任意1(0,2)x ∈,存在[]21,2x ∈,使12()()f x g x ≥,求实数b 取值范围.【例4】 设函数()sin cos 1f x x x x =-++,02x π<<,求函数()f x 的单调区间与极值.【反馈检测4】 某地有三家工厂,分别位于矩形ABCD 的顶点,A B 及CD 的中点P 处,已知20AB km =,10CB km = ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且,A B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道,,AO BO OP ,设排污管道的总长为y km . (1)按下列要求写出函数关系式:①设()BAO rad θ∠=,将y 表示成θ的函数关系式; ②设OP x =(km ) ,将y 表示成x 的函数关系式.(2)请你选用(1)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短.【反馈检测5】函数()f x 的导函数'()f x ,对x R ∀∈,都有'()()f x f x >成立,若(ln 2)2f =,则满足不等式()xf x e >的x 的范围是( )A .1x >B .01x <<C .ln 2x >D .0ln 2x <<CBPOAD【反馈检测6】【2017天津,理6】已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为( ) (A )a b c << (B )c b a << (C )b a c <<(D )b c a <<方法三 复合函数分析法 使用情景 较简单的复合函数.解题步骤先求函数的定义域,再分解复合函数,再判断每一个内层函数的单调性,最后根据复合函数的单调性确定函数的单调性.【例5】【2017课标II ,文8】函数2()ln(28)f x x x =-- 的单调递增区间是( ) A.(,2)-∞- B. (,1)-∞- C. (1,)+∞ D. (4,)+∞ 【反馈检测7】 已知函数22()sin 3sin sin()2cos 2f x wx wx wx wx π=+++ (0)x R w ∈>,在y 轴右侧的第一个最高点的横坐标为6π. (1) 求w ;(2)(2)若将函数()f x 的图象向右平移6π个单位后,再将得到的图象上各点横坐标伸长到原来的4倍,纵坐标不变,得到函数()y g x =的图象,求函数()y g x =的最大值及单调递减区间.方法四 图像法使用情景 函数的图像比较容易画出.解题步骤一般通过已知条件作出函数图像的草图,如果函数的图像,在某个区间,从左到右,逐渐上升,则函数在这个区间是增函数;如果从左到右,是逐渐下降,则函数是减函数.【例6】求函数2()||f x x x =-+的单调区间.【反馈检测8】 已知函数),1()(0)(-=≥x x x f x R x f 时上的偶函数,当是定义在 (1)求函数)(x f 的解析式;(2)若)(x f =2,求x 的值; (3)画出该函数的图像并根据图像写出单调区间.精品二轮第06讲:函数的单调性的判断、证明和单调区间的求法参考答案【反馈检测1答案】当12a >时,原函数是增函数;当12a <时,原函数是减函数.【反馈检测2答案】(1)104x ≤≤;(2)022t t t =≥≤-或或 【反馈检测2详细解析】212121212121()()(1)1,()()()()()()f x f x x x f x f x f x f x x x x x +->>-∴-=+-=--设1>212121212121()()()()()00()()f x f x f x f x x x x x x x x x +-+-=->->+-+-由已知得21111211()()0()(1)111024112x f x f x f x f x x x x x⎧-≤+≤⎪⎪∴->∴+<-∴-≤-≤∴≤<⎨⎪⎪+<-⎩函数在定义域内单调递增。
函数的单调性
一、函数单调性判断常用方法:1、定义法(重点):121212121212()()0()()()()0()()f x f x f x f x x x x x f x f x f x f x ->>⇒⎧<⎨-<<⇒⎩即单调增函数在其定义域内有任意,且即单调增函数2、常用结论:⑴ )(x f 与)(x f +C 单调性相同。
(C 为常数)⑵ 当0>k 时,)(x f 与)(x kf 具有相同的单调性;当0<k 时, )(x f 与)(x kf 具有相反的单调性。
⑶ 当)(x f 恒不等于零时,)(x f 与)(1x f 具有相反的单调性。
⑷ 当)(x f 、)(x g 在D 上都是增(减)函数时,则)(x f +)(x g 在D 上是增(减)函数。
⑸ 当)(x f 、)(x g 在D 上都是增(减)函数且两者都恒大于0时,)(x f )(x g 在D 上是增(减)函数;当)(x f 、)(x g 在D 上都是增(减)函数且两者都恒小于0时,)(x f )(x g 在D 上是减(增)函数。
3、复合函数快速判断:“同增异减”4、互为反函数的两个函数具有相同的单调性。
二、利用定义来证明函数)(x f y =在给定区间D 上的单调性的一般步骤:(1)设元,任取1x ,D x ∈2且21x x <; (2)作差)()(21x f x f -;(3)变形(普遍是因式分解和配方); (4)断号(即判断)()(21x f x f -差与0的大小;(5)定论(即指出函数 )(x f 在给定的区间D 上的单调性)。
三、复合函数))((x g f y =的单调性判断步骤:(1) 确定函数的定义域;(2)将复合函数分解成两个简单函数:)(u f y =与)(x g u =。
(3) 分别确定分解成的两个函数的单调性;(4)下结论:若两个函数在对应的区间上的单调性相同,则复合后的函数))((x g f y =为增函数; 若两个函数在对应的区间上的单调性相异,则复合后的函数))((x g f y =为减函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的单调性证明一.解答题(共40小题)1.证明:函数f(x)=在(﹣∞,0)上是减函数.2.求证:函数f(x)=4x+在(0,)上递减,在[,+∞)上递增.3.证明f(x)=在定义域为[0,+∞)内是增函数.4.应用函数单调性定义证明:函数f(x)=x+在区间(0,2)上是减函数.5.证明函数f(x)=2x﹣在(﹣∞,0)上是增函数.6.证明:函数f(x)=x2+3在[0,+∞)上的单调性.7.证明:函数y=在(﹣1,+∞)上是单调增函数.8.求证:f(x)=在(﹣∞,0)上递增,在(0,+∞)上递增.9.用函数单调性的定义证明函数y=在区间(0,+∞)上为减函数.10.已知函数f(x)=x+.(Ⅰ)用定义证明:f(x)在[2,+∞)上为增函数;(Ⅱ)若>0对任意x∈[4,5]恒成立,求实数a的取值范围.11.证明:函数f(x)=在x∈(1,+∞)单调递减.12.求证f(x)=x+的(0,1)上是减函数,在[1,+∞]上是增函数.13.判断并证明f(x)=在(﹣1,+∞)上的单调性.14.判断并证明函数f(x)=x+在区间(0,2)上的单调性.15.求函数f(x)=的单调增区间.16.求证:函数f(x)=﹣﹣1在区间(﹣∞,0)上是单调增函数.17.求函数的定义域.18.求函数的定义域.19.根据下列条件分别求出函数f(x)的解析式(1)f(x+)=x2+(2)f(x)+2f()=3x.20.若3f(x)+2f(﹣x)=2x+2,求f(x).21.求下列函数的解析式(1)已知f(x+1)=x2求f(x)(2)已知f()=x,求f(x)(3)已知函数f(x)为一次函数,使f[f(x)]=9x+1,求f(x)(4)已知3f(x)﹣f()=x2,求f(x)22.已知函数y=f(x),满足2f(x)+f()=2x,x∈R且x≠0,求f(x).23.已知3f(x)+2f()=x(x≠0),求f(x).24.已知函数f(x+)=x2+()2(x>0),求函数f(x).25.已知2f(﹣x)+f(x)=3x﹣1,求f(x).26.若2f(x)+f(﹣x)=3x+1,则求f(x)的解析式.27.已知4f(x)﹣5f()=2x,求f(x).28.已知函数f(+2)=x2+1,求f(x)的解析式.29.若f(x)满足3f(x)+2f(﹣x)=4x,求f(x)的解析式.30.已知f(x)=ax+b且af(x)+b=9x+8,求f(x)31.求下列函数的解析式:(1)已知f(2x+1)=x2+1,求f(x);(2)已知f()=,求f(x).32.已知二次函数满足f(2x+1)=4x2﹣6x+5,求f(x)的解析式.33.已知f(2x)=x2﹣x﹣1,求f(x).34.已知一次函数f(x)满足f(f(f(x)))=2x﹣3,求函数f(x)的解析式.35.已知f(x+2)=x2﹣3x+5,求f(x)的解析式.36.已知函数f(x﹣2)=2x2﹣3x+4,求函数f(x)的解析式.37.若3f(x)+2f(﹣x)=2x,求f(x)38.f(+1)=x2+2,求f(x)的解析式.39.若函数f()=+1,求函数f(x)的解析式.40.已知f(x﹣1)=x2﹣4x.(1)求f(x)的解析式;(2)解方程f(x+1)=0.函数的单调性证明参考答案与试题解析一.解答题(共40小题)1.证明:函数f(x)=在(﹣∞,0)上是减函数.【解答】证明:设x1<x2<0,则:;∵x1<x2<0;∴x2﹣x1>0,x1x2>0;∴f(x1)>f(x2);∴f(x)在(﹣∞,0)上是减函数.2.求证:函数f(x)=4x+在(0,)上递减,在[,+∞)上递增.【解答】证明:设0<x1<x2<,则f(x1)﹣f(x2)=(4x1+)﹣(4x2+)=4(x1﹣x2)+=(x1﹣x2)(),又由0<x1<x2<,则(x1﹣x2)<0,(4x1x2﹣9)<0,(x1x2)>0,则f(x1)﹣f(x2)>0,则函数f(x)在(0,)上递减,设≤x3<x4,同理可得:f(x3)﹣f(x4)=(x3﹣x4)(),又由≤x3<x4,则(x3﹣x4)<0,(4x3x4﹣9)>0,(x1x2)>0,则f(x3)﹣f(x4)<0,则函数f(x)在[,+∞)上递增.3.证明f(x)=在定义域为[0,+∞)内是增函数.【解答】证明:设x1,x2∈[0,+∞),且x1<x2,则:=;∵x1,x2∈[0,+∞),且x1<x2;∴;∴f(x1)<f(x2);∴f(x)在定义域[0,+∞)上是增函数.4.应用函数单调性定义证明:函数f(x)=x+在区间(0,2)上是减函数.【解答】证明:任取x1,x2∈(0,2),且x1<x2,则f(x1)﹣f(x2)=﹣(=因为0<x1<x2<2,所以x1﹣x2<0,x1x2<4,所以f(x1)﹣f(x2)>0,即f(x1)>f(x2),所以f(x)=x+在(0,2)上为减函数.5.证明函数f(x)=2x﹣在(﹣∞,0)上是增函数.【解答】解:设x1<x2<0,∴f(x1)﹣f(x2)=2x1﹣﹣2x2+=(x1﹣x2)(2+),∵x1<x2<0,∴x1﹣x2<0,2+>0,∴f(x1)﹣f(x2)<0,即:f(x1)<f(x2),∴函数f(x)=2x﹣在(﹣∞,0)上是增函数.6.证明:函数f(x)=x2+3在[0,+∞)上的单调性.【解答】解:任取0≤x1<x2,则f(x1)﹣f(x2)==(x1+x2)(x1﹣x2)因为0≤x1<x2,所以x1+x2>0,x1﹣x2<0,故原式f(x1)﹣f(x2)<0,即f(x1)<f(x2),所以原函数在[0,+∞)是单调递增函数.7.证明:函数y=在(﹣1,+∞)上是单调增函数.【解答】解:∵函数f(x)==1﹣在在区间(﹣1,+∞),可以设﹣1<x1<x2,可得f(x1)﹣f(x2)=1﹣﹣1+=∵﹣1<x1<x2<0,∴x1+1>0,1+x2>0,x1﹣x2<0,∴<0∴f(x1)<f(x2),∴f(x)在区间(﹣∞,0)上为增函数;8.求证:f(x)=在(﹣∞,0)上递增,在(0,+∞)上递增.【解答】证明:设x1<x2,则f(x1)﹣f(x2)=﹣﹣(﹣)=﹣=,∵x1<x2,∴x1﹣x2<0,∴若x1<x2<0,则x1x2>0,此时f(x1)﹣f(x2)<0,即f(x1)<f(x2),此时函数单调递增.若0<x1<x2,则x1x2>0,此时f(x1)﹣f(x2)<0,即f(x1)<f(x2),此时函数单调递增.即f(x)=在(﹣∞,0)上递增,在(0,+∞)上递增.9.用函数单调性的定义证明函数y=在区间(0,+∞)上为减函数.【解答】解:∵函数y=在区间(0,+∞),可以设0<x1<x2,可得f(x1)﹣f(x2)=﹣=>0,∴f(x1)>f(x2),∴f(x)在区间(﹣∞,0)上为减函数;10.已知函数f(x)=x+.(Ⅰ)用定义证明:f(x)在[2,+∞)上为增函数;(Ⅱ)若>0对任意x∈[4,5]恒成立,求实数a的取值范围.【解答】(Ⅰ)证明:任取x1,x2∈[2,+∞),且x1<x2,则f(x1)﹣f(x2)=(x1+)﹣(x2+)=,∵2≤x1<x2,所以x1﹣x2<0,x1x2>4,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),∴f(x)=x+在[2,+∞)上为增函数;(Ⅱ)解:∵>0对任意x∈[4,5]恒成立,∴x﹣a>0对任意x∈[4,5]恒成立,∴a<x对任意x∈[4,5]恒成立,∴a<4.11.证明:函数f(x)=在x∈(1,+∞)单调递减.【解答】证明:设x1>x2>1,则:;∵x1>x2>1;∴x2﹣x1<0,x1﹣1>0,x2﹣1>0;∴;即f(x1)<f(x2);∴f(x)在x∈(1,+∞)单调递减.12.求证f(x)=x+的(0,1)上是减函数,在[1,+∞]上是增函数.【解答】证明:①在(0,1)内任取x1,x2,令x1<x2,则f(x1)﹣f(x2)=()﹣()=(x1﹣x2)+=(x1﹣x2)(1﹣),∵x1,x2∈(0,1),x1<x2,∴x1﹣x2<0,1﹣<0,∴f(x1)﹣f(x2)>0,∴f(x)=x+在(0,1)上是减函数.②在[1,+∞)内任取x1,x2,令x1<x2,则f(x1)﹣f(x2)=()﹣()=(x1﹣x2)+=(x1﹣x2)(1﹣),∵x1,x2∈[1,+∞),x1<x2,∴x1﹣x2<0,1﹣>0,∴f(x1)﹣f(x2)<0,∴f(x)=x+在[1,+∞]上是增函数.13.判断并证明f(x)=在(﹣1,+∞)上的单调性.【解答】解:f(x)=在(﹣1,+∞)上的单调递减.证明如下:在(﹣1,+∞)上任取x1,x2,令x1<x2,f(x1)﹣f(x2)=﹣=,∵x1,x2∈(﹣1+∞),x1<x2,∴x2﹣x1>0,x1+1>0,x2+1>0,∴f(x1)﹣f(x2)>0,∴f(x)=在(﹣1,+∞)上的单调递减.14.判断并证明函数f(x)=x+在区间(0,2)上的单调性.【解答】解:任意取x1,x2∈(0,2)且0<x1<x2<2f(x1)﹣f(x2)=x1+﹣x2﹣=(x1﹣x2)+﹣=(x1﹣x2),∵0<x1<x2<2∴x1﹣x2<0,0<x1x2<4,即x1x2﹣4<0,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2).所以f(x)在(0,2)上是单调减函数.15.求函数f(x)=的单调增区间.【解答】解:根据反比例函数的性质可知,f(x)==1﹣的单调递增区间为(﹣∞,0),(0,+∞)故答案为:(﹣∞,0),(0,+∞)16.求证:函数f(x)=﹣﹣1在区间(﹣∞,0)上是单调增函数.【解答】证明:设x1<x2<0,则:;∵x1<x2<0;∴x1﹣x2<0,x1x2>0;∴;∴f(x1)<f(x2);∴f(x)在区间(﹣∞,0)上是单调增函数.17.求函数的定义域.【解答】解:根据题意,得,解可得,故函数的定义域为2≤x<3和3<x<5.18.求函数的定义域.【解答】解:由.故函数定义域为{x|x<}19.根据下列条件分别求出函数f(x)的解析式(1)f(x+)=x2+(2)f(x)+2f()=3x.【解答】解:(1)f(x+)=x2+=(x+)2﹣2,即f(x)=x2﹣2,(x>2或x<﹣2)(2)∵f(x)+2f()=3x,∴f()+2f(x)=,消去f()得f(x)=﹣x.20.若3f(x)+2f(﹣x)=2x+2,求f(x).【解答】解:∵3f(x)+2f(﹣x)=2x+2…①,用﹣x代替x,得:3f(﹣x)+2f(x)=﹣2x+2…②;①×3﹣②×2得:5f(x)=(6x+6)﹣(﹣4x+4)=10x+2,∴f(x)=2x+.21.求下列函数的解析式(1)已知f(x+1)=x2求f(x)(2)已知f()=x,求f(x)(3)已知函数f(x)为一次函数,使f[f(x)]=9x+1,求f(x)(4)已知3f(x)﹣f()=x2,求f(x)【解答】解:(1)∵已知f(x+1)=x2 ,令x+1=t,可得x=t﹣1,∴f(t)=(t﹣1)2,∴f(x)=(x﹣1)2.(2)∵已知f()=x,令=t,求得x=,∴f(t)=,∴f(x)=.(3)已知函数f(x)为一次函数,设f(x)=kx+b,k≠0,∵f[f(x)]=kf(x)+b=k(kx+b)+b=9x+1,∴k=3,b=,或k=﹣3,b=﹣,求∴f(x)=3x+,或f(x)=﹣3x﹣.(4)∵已知3f(x)﹣f()=x2①,∴用代替x,可得3f()﹣f(x)=②,由①②求得f(x)=x2+.22.已知函数y=f(x),满足2f(x)+f()=2x,x∈R且x≠0,求f(x).【解答】解:∵2f(x)+f()=2x①令x=,则2f()+f(x)=②,①×2﹣②得:3f(x)=4x﹣,∴f(x)=x﹣.23.已知3f(x)+2f()=x(x≠0),求f(x).【解答】解:∵3f(x)+2f()=x,①等号两边同时以代x,得:3f()+2f(x)=,②由①×3﹣2×②,解得5f(x)=3x﹣,∴函数f(x)的解析式:f(x)=x﹣(x≠0).24.已知函数f(x+)=x2+()2(x>0),求函数f(x).【解答】解:∵x>0时,x+≥2=2,且函数f(x+)=x2+()2=﹣2;设t=x+,(t≥2);∴f(t)=t2﹣2;即函数f(x)=x2﹣2(其中x≥2).25.已知2f(﹣x)+f(x)=3x﹣1,求f(x).【解答】解:∵2f(﹣x)+f(x)=3x﹣1,∴2f(x)+f(﹣x)=﹣3x﹣1,联立消去f(﹣x),可得f(x)=﹣3x﹣.26.若2f(x)+f(﹣x)=3x+1,则求f(x)的解析式.【解答】解:∵2f(x)+f(﹣x)=3x+1…①,用﹣x代替x,得:2f(﹣x)+f(x)=﹣3x+1…②;①×2﹣②得:3f(x)=(6x+2)﹣(﹣3x+1)=9x+1,∴f(x)=3x+.27.已知4f(x)﹣5f()=2x,求f(x).【解答】解:∵4f(x)﹣5f()=2x…①,∴4f()﹣5f(x)=…②,①×4+②×5,得:﹣9f(x)=8x+,∴f(x)=﹣x﹣.28.已知函数f(+2)=x2+1,求f(x)的解析式.【解答】解:令t=+2,(t≥2),则,x=(t﹣2)2.由f(+2)=x2+1,得f(t)=(t﹣2)4+1.∴f(x)=(x﹣2)4+1(x≥2).29.若f(x)满足3f(x)+2f(﹣x)=4x,求f(x)的解析式.【解答】解:f(x)满足3f(x)+2f(﹣x)=4x,…①,可得3f(﹣x)+2f(x)=﹣4x…②,①×3﹣②×2可得:5f(x)=20x.∴f(x)=4x.f(x)的解析式:f(x)=4x.30.已知f(x)=ax+b且af(x)+b=9x+8,求f(x)【解答】解:∵f(x)=ax+b且af(x)+b=9x+8,∴a(ax+b)+b=9x+8,即a2x+ab+b=9x+8,即,解得a=3或a=﹣3,若a=3,则4b=8,解得b=2,此时f(x)=3x+2,若a=﹣3,则﹣2b=8,解得b=﹣4,此时f(x)=3x﹣4.31.求下列函数的解析式:(1)已知f(2x+1)=x2+1,求f(x);(2)已知f()=,求f(x).【解答】解:(1)令2x+1=t,则x=(t﹣1),∴f(t)=(t﹣1)2+1,∴f(x)=(x﹣1)2+1;(2)令m=(m≠0),则x=,∴f(m)==,∴f(x)=(x≠0).32.已知二次函数满足f(2x+1)=4x2﹣6x+5,求f(x)的解析式.【解答】解:(1)令2x+1=t,则x=;则f(t)=4()2﹣6•+5=t2﹣5t+9,故f(x)=x2﹣5x+9.33.已知f(2x)=x2﹣x﹣1,求f(x).【解答】解:令t=2x,则x=t,∴f(t)=t2﹣t﹣1,∴f(x)=x2﹣x﹣1.34.已知一次函数f(x)满足f(f(f(x)))=2x﹣3,求函数f(x)的解析式.【解答】解:设f(x)=ax+b,∴f(f(x)=a(ax+b)+b,∴f(f(f(x))))=a[a(ax+b)+b]+b=2x﹣3,∴,解得:,∴f(x)=x﹣.35.已知f(x+2)=x2﹣3x+5,求f(x)的解析式.【解答】解:f(x+2)=x2﹣3x+5,设x+2=t,则x=t﹣2,∴f(t)=(t﹣2)2﹣3(t﹣2)+5=t2﹣7t+15,∴f(x)=x2﹣7x+15.36.已知函数f(x﹣2)=2x2﹣3x+4,求函数f(x)的解析式.【解答】解:令x﹣2=t,则x=t+2,代入原函数得f(t)=2(t+2)2﹣3(t+2)+4=2t2+5t+6则函数f(x)的解析式为f(x)=2x2+5x+637.若3f(x)+2f(﹣x)=2x,求f(x)【解答】解:∵3f(x)+2f(﹣x)=2x…①,用﹣x代替x,得:3f(﹣x)+2f(x)=﹣2x…②;①×3﹣②×2得:5f(x)=6x﹣(﹣4x)=10x,∴f(x)=2x.38.f(+1)=x2+2,求f(x)的解析式.【解答】解:设+1=t,则t≥1,∴x=(t﹣1)2;∵f(+1)=x2+2,∴f(t)=(t﹣1)4+2(t﹣1),∴f(x)=(x﹣1)4+2(x﹣1),x∈[1,+∞).39.若函数f()=+1,求函数f(x)的解析式.【解答】解:令=t(t≠1),则=t﹣1,∴f(t)=2+(t﹣1)2=t2﹣2t+3,∴f(x)=x2﹣2x+3(x≠1).40.已知f(x﹣1)=x2﹣4x.(1)求f(x)的解析式;(2)解方程f(x+1)=0.【解答】解:(1)变形可得f(x﹣1)=(x﹣1)2﹣2(x﹣1)﹣3,∴f(x)的解析式为f(x)=x2﹣2x﹣3;(2)方程f(x+1)=0可化为(x+1)2﹣2(x+1)﹣3=0,化简可得x2﹣4=0,解得x=2或x=﹣2。