振动时效效果评定方法研究
振动时效原理 振动时效特点 振动时效工艺技术
振动时效原理振动时效特点振动时效工艺技术振动时效技术是对工件施加变化的循环载荷来消除和减少内部残余应力。
该技术具有耗能少、效果显著、无污染、处理快速等优点,广泛应用于消除焊接件、重型工件的残余应力。
振动时效原理 振动时效是用激振设备在构件残余应力集中处施加等幅交变循环激振力,构件在共振状态下获得较大的激振动应力,在某个方向上的合应力超过材料的屈服极限,该处会产生屈服变形,引起残余应力松弛并释放出来,使残余应力均匀分布。
这种方法不仅能有效地降低峰值残余应力,而且能使整体残余应力值下降。
下图为金属材料受等幅交变应变εB-εC作用时的应力应变曲线,图中OA为弹性载荷段,构件的初始残余应力为σA,ACB是第一次发生屈服变形后的应力应变曲线。
构件内的总应力超过屈服点而发生变形,在C处残余应力沿弹性卸载荷线CB'下降,经过D点后曲线偏离CB'至B点,完成一次交变应变循环。
经过多次交变循环后,曲线循环稳定为C'E'B”EC',此时残余应力由σA减小至σE,残余应力减小至稳定的过程就是振动时效宏观机理的直观表示。
要消除或减小工件中的残余应力,必须满足以下条件: (1)构件内部残余应力与激振器施加的激振动应力叠加后的总应力应超过材料屈服极限。
即σ残+σ动σs,其中:σ残为构件内部残余应力,σ动为激振动应力,σs为材料的屈服极限。
(2)随着振动时效时间的增长,构件内部的残余应力会由于发生塑性屈服而下降。
当残余应力降低到与振动应力叠加后等于新的屈服极限时,构件内的将达到平衡,使构件尺寸稳定性得到提高。
超声振动时效可行性分析及实验研究
p r e s e n t s t u d y a b o u t v  ̄r t a on i s t e r s s r e l i e f( V S R) m a / n t y s i t h e f r e q u e n c y fl o e s s t h a n 2 0 0 H z re f q u e n c y v i b r a t i o n b u t r a r e l y f o r
h i g h re f q u e cy n v i b r a t on i s t r e s s r e l e i f ( m o r e t h a n l O 0 0 Hz nd a l e s s t h n a 1 5 k H z ) a n d u l t r a s o n i c v i b r a t i o n s t r e s s el r  ̄ f( 1 5 k H z
b e s o l v e d . I t l l  ̄ e s t h e p r o c e s s ft o e h c o ce n n t r a t e d b a d : f r o m t h e p r e s s m a c h i n e a p p l y i n gt o a s m a l l r o d t o s i m u l a t e t h e f o r m a t i o n f o r e s i d u l a s t r e s s a n d c a l c u l t a e t e h u l t r so a n c i v i b r ti a o n s t r e s s nd a t e h r o d r e s i d u a l s t r e s s i n t h e e x p e r i m e n t ,t h e n C U l - I  ̄ y o n
岔管时效处理方案 - 振动时效
风机塔筒法兰时效处理方案综述:风机塔筒法兰为风电工程的常见部件,属于典型的圆环形焊接结构件,焊后必须进行时效处理,降低风机塔筒法兰的焊接应力,避免因为残余应力的缓慢释放造成的开焊、变形或者应力腐蚀而造成裂纹,以保证风电设备长期稳定可靠的工作。
1、时效方案分析:传统的时效方法有:热时效、振动时效、自然时效等。
自然时效(NSR)由于周期太长,较难满足工期要求所以不做推荐;热时效对于此类大型工件,很难保证炉温均匀,炉温很难控制所以也难以保证效果;振动时效(VSR)又称振动消除应力法,是将工件(包括铸件、锻件、焊接构件等)在其固有频率下进行数分钟至数十分钟的振动处理,以振动的形式给工件施加附加应力,当附加应力与残余应力叠加后,达到或超过材料的屈服极限时,工件发生微观或宏观塑性变形,从而降低和均化工件内的残余应力,使尺寸精度获得稳定的一种方法。
这种工艺具有耗能少、时间短、效果显著等特点。
近年来在国内外都得到迅速发展和广泛应用。
振动时效工艺具有耗能少、时间短、效果显著等特点。
与热时效相比,它无需宠大的时效炉,可节省占地面积与昂贵的设备投资。
因此,目前对长达几米至几十米和桥梁、船舶、风电、化工器械的大型焊接件和重达几吨至几十吨的超重型铸件或加工精度要求较高的工件,较多地采用了振动时效。
生产周期短;自然时效需经几个月的长期放置,热时效亦需经数十小时的周期方能完成,而振动时效一般只需振动数十分钟即可完成。
使用方便;振动设备体积小、重量轻、便于携带。
由于振动处理不受场地限制,振动装置又可携带至现场,所以这种工艺与热时效相比,使用简便,适应性较强。
振动时效操作简便,可避免金属零件在热时效过程中产生的翘曲变形、氧化、脱碳及硬度降低等缺陷;并且在风机生产过程中是目前唯一能进行二次时效的方法。
基于以上原因,我们推荐使用振动时效工艺,并曾成功应用于类似风机的时效处理。
下附:质检中心钢岔管振动时效项目取得成功作者:水利部水工金属结构质量检验测试中心水利部水工金属结构质量检验测试中心受新疆伊犁科流域开发建设管理局委托,对新疆恰甫其海水利枢纽工程1#、2#钢岔管进行了振动时效和无损检测工作。
振动时效工艺性验证
振动时效工艺性验证【摘要】本文简述了振动时效工艺的原理以及工艺特点,并对振动时效的应用及评定进行了详细的分析与探讨。
【关键词】振动时效;工艺;应用前言机械零件在加工过程中由于残余应力的存在,经常发生很大的变形,严重影响了机械产品的精度。
因此,在半精加工后,精加工前必须增加一道除应力工序,千方百计地消除、降低或均化金属构件的残余应力,保证精加工后精度稳定,确保装配精度的要求。
1、振动时效工艺的原理振动时效是通过改变作用于工件上激振器的转速和偏心距产生激振力,使工件发生共振,从而在工件上需要时效的部位产生一定幅度、一定频率的交变运动,使工件吸收振动的能量,在工件内部产生一定的微观粘弹塑性变形,使残余应力得到释放或重新分布。
其实质就是以振动的形式给工件施加附加应力,当附加应力与残余应力叠加后,达到或超过材料的屈服极限时,工件就会发生微观或宏观塑性变形,从而在一定程度上降低和均化工件内部的残余应力,提高工件在使用期的尺寸稳定性及疲劳寿命等性能。
2、振动时效工艺及特点为消除、降低或均化金属构件的残余应力,在生产实践中常采用的方法有三大类:(1)热时效----前期投资大,能源消耗大,时间周期长,且处理后零件氧化严重、变形量较大,精加工前不宜适用。
(2)自然时效----是以前精加工前最为广泛采用的处理方法。
虽然尺寸稳定性好,应力消除较为完全,但周期太长。
需半年以上甚至一年以上,根本不能适应现代快捷的加工要求。
(3)振动时效----工艺十分简单。
它是将一个具有偏心重块的电机系统(称作激振器)安放在待处理的构件上,并将构件用橡皮件等弹性物体支承,通过控制器启动电机并调节其转速,寻找到并精确稳定在亚共振区,使构件处于共振状态。
经过10-20分钟的处理,即可达到消除残余应力的目的。
该技术有一些明显的特点:a.被处理工件的机械性能显著提高。
可以提高构件的抗变形能力,稳定构件的精度,提高机械质量。
b.适用性强,工作方便。
铝合金厚板振动时效工艺以及效果的研究的开题报告
铝合金厚板振动时效工艺以及效果的研究的开题报告一、研究背景随着我国经济的快速发展,高速铁路、航空航天、汽车、船舶等制造业的需求不断增加,对高强度、高韧性、高耐久性的铝合金产品的需求也越来越高。
而铝合金厚板作为一种广泛应用于各种行业的材料,在很大程度上满足了市场的需求。
但是,由于铝合金厚板制造工艺复杂、成本较高,在实际应用中常常会遇到振动疲劳、裂纹扩展等问题,影响产品的使用寿命。
研究铝合金厚板的振动时效工艺可以有效地改善铝合金产品的性能,提高其使用寿命,进而满足市场需求。
因此,针对铝合金厚板振动时效工艺以及效果进行研究,具有重要的现实意义和科学价值。
二、研究目的本研究旨在探索铝合金厚板振动时效工艺的优化方法,提高铝合金产品的性能,减少振动疲劳、裂纹扩展等问题,提高产品使用寿命。
具体目标如下:1. 研究不同的振动时效工艺对铝合金厚板性能的影响。
2. 探究不同工艺参数对铝合金厚板振动时效效果的影响,并对其进行优化。
3. 分析振动时效工艺的优化对铝合金厚板材料、组织和微观结构的影响。
三、研究内容1. 文献综述对铝合金厚板的振动时效工艺相关文献进行综述,了解其发展历程、现状及存在问题、研究现状及进展等。
2. 材料试制选取铝合金厚板样品进行试制,进行振动时效处理,并根据不同处理工艺制备不同的试样。
3. 试验分析采用拉伸试验、硬度试验、金相分析、扫描电镜等测试手段,对样品进行性能测试和结构分析,探究振动时效工艺对铝合金厚板性能的影响。
4. 结果分析根据试验结果进行数据分析,得出结论并进行讨论,提出适合铝合金厚板振动时效的优化工艺方案。
四、研究意义1. 探究铝合金厚板振动时效工艺,为提高铝合金产品的性能,延长生命周期提供技术支持。
2. 优化铝合金厚板振动时效工艺,可以提高产品质量和效率,同时降低生产成本。
3. 研究振动时效工艺对铝合金厚板材料、组织和微观结构的影响,可以为相关领域的开发和研究提供新思路和方向。
五、研究计划和进度安排1. 文献综述:1个月2. 材料试制:2个月3. 试验分析:3个月4. 结果分析:1个月5. 论文撰写:1个月总计:8个月预计完成时间:20xx年xx月。
振动时效试验探究
K e wor : b ao te sReifTe tPr c s y dsVir t r Sr s l ; s; o e s y e
在 传统 的 机械 加工 过程 中,一 些 细长 件在 加 工后 往往 会 存在 很 大 的应力 ,导致 工件 产 生应 力变 形 ,影 响 工件 的加 工 精度 ,甚 至 报废 。因此 ,必 须对 加 工 中的工 件进 行 去应 力 处理 。 传 统 的去 应力 方法 是采 用 自然 时效处 理 或热 处 理, 但是 这两 种 方法 都存 在 着 明显 的不足 之 处 : 自然 时效 处理 的 周期 很长 ,且 需 要 占用大 量 的场 地来 存放 工 件 , 因此 不能 满足 一些 工业 上 的 生 产 要求 ;热 处 理工 艺 由于存 在 着对 大 型件 和 大批 量 生产 难 以处理 及 费用 高 、 能耗大 、环 境 污染 严重 等 缺 点 ,也越 来越 引起 人 们 的 不 满 。基 于此 ,一种 新 的 去应 力方 法 :振 动时 效法 就 应运 而生 了。 振动 时效 简 介 振 动 时效 是将 激振 器 固 定在被 处 理 工件 的适 当位 置 上 ,根据 工 件 的大 小和 形状 调 节激 振力 ,使得 工件 在 交变 运 动时 吸收 部 分 能量 ,引起 工 件 内部 组织 发 生微 观弹 塑 性力 学变 化 ,从 而 降低 工 件 的局 部 峰值 应力 和均 化 工件 的残 余 应 力场 ,最 终 达到 防止 工件 的变 形与 开裂 ,并保 证后 续加 工 精度 的 目的 。但 目前对 工件 进 行 振 动 时效 时 的工 艺参数 还 不完 善 ,很 多 工厂 都是 凭借 工 人 的经验 来 判 断振 动 时效 的工 艺参 数 ( 幅 ,频 率 ,振动 时 间 ,振动 效 果 振 等 )而 研究 者在 进 行试 验 时往 往 不能够 获 得 工厂 所需 要 的确 切 的 。 振 动 工艺 过程 ,因此 ,有 必 要对 振动 时 效 的进行 一 个完 整 的试 验 探 究 , 以研 究 其合 理 的工 艺试 验 过程 。 二 、振 动时 效试 验设 备
振动时效效果的判定方法
第六章振动时效效果的判定方法检验振动时效的效果实际上就是检验工件中残余应力是否得以消除和均化,目前对残余应力的测试方法很多,但总的分为两大类。
一类是定量测试:如盲孔法、X射线法、磁测法、喷砂打孔法、切割法、套环法等。
一类是定性测试:如振动参数曲线法、尺寸精度稳定性法等。
本章着重一讲振动曲线法,其它方法都有专门介绍,在此就不再详谈。
第一节常用的几种残余应力测试法1.切割法、套环法:这两种方法的基本原理是一样的,就是在被测点附近,先贴上应变片,然后再用手锯或铣床,在这一点附近切割出方格线,使之与邻近部分分开以释放残余应力,并用应变片测出应变量,再计算出该点处的残余应力值大小。
2.盲孔法:切割法和套环法具有较大的破坏性,因此目前应用较为广泛的残余应力测试方法是钻盲孔法。
钻孔法测量残余应力就是在被测点上钻一小孔,使被测点的应力得到部分或全部释放,并由事先贴在小孔周围的应变计测得释放的应变量,再根据弹性力学原理计算出残余应力。
钻孔的直径和深度都不大,不会影响被测构件的正常使用。
并且这种方法具有较好的精度,因此它已成为应用比较广泛的残余应力测试方法之一。
3.X射线法:X射线法测应力的基本原理是,利用X射线穿透晶粒时产生的衍射现象。
在弹性应变作用下,引起晶格间距变化,使衍射条纹产生位移,根据位移的变化即可计算出应力来。
X射线法测应力的特点如下:①它是一种无损测试方法。
②它测量的仅仅是弹性应变而不包括塑应变(因为工件塑性变形时其晶面间距并不改变,不会引起衍射线的位移)。
③被测面直径可以小到1~2mm。
因此可以用于研究一点应力和梯度变化较大的应力分布。
④由于穿透能力的限制,一般只能测深度在10um左右的应力,所以只是表面应力。
⑤对于能给出清晰衍射峰的材料,例如退火后细晶粒材料,本方法可达10Mpa的精度,但对于淬火硬化或冷加工材料,其测量误差将增大许多倍。
4.磁测法:磁测法测量残余应力是近年来发展起来的一种新方法,它具有较大的发展前途,设备简单、使用方便,它不仅可以测残余应力也可以测载荷作用下的应力。
振动时效工艺参数选择及技术要求JBT5926-91行业标准
振动时效工艺参数选择及技术要求JB/T5926-91行业标准1. 主题内容与适用范围本标准规定了振动时效工艺参数的选择及技术要求和振动时效效果评定办法。
本标准适用于材质为碳素结构钢,低合金钢,不锈钢,铸铁,有色金属(铜,铝,锌及其合金)等铸件,锻件,焊接件的振动时效处理。
2. 术语2.1 扫频曲线-将激振器的频率缓慢的由小调大的过程称扫频,随着频率的变化,工件振动响应发生变化,反映振动响应与频率之间关系的曲线,称扫频曲线,如a-f 称振幅频率曲线;a-f 称加速度频率曲线。
注:a表示振幅,a表示加速度,f表示频率2.2 激振点-振动时效时,激振器在工件上的卡持点称激振点。
3. 工艺参数选择及技术要求3.1 首先应分析判断出工件在激振频率范围内的振型。
3.2 振动时效装置(设备)的选择。
3.2.1 设备的最大激振频率应大于工件的最低固有频率。
3.2.2 设备的最大激振频率小于工件的最低固有频率时,应采取倍频(或称分频),降频等措施。
3.2.3 设备的激振力应能使工件内产生的最大动应力为工作应力的1/3~2/3。
3.2.4 设备应具备自动扫频,自动记录扫频曲线,指示振动加速度值和电机电流值的功能,稳速精度应达到±1r/min。
3.3 工件支撑,激振器的装卡和加速度计安装3.3.1 为了使工件处于自由状态,应采取三点或四点弹性支撑工件,支撑位置应在主振频率的节线处或附近。
为使工件成为两端简支或悬臂,则应采取刚性装卡。
3.3.2 激振器应刚性地固定在工件的刚度较强或振幅较大处,但不准固定在工件的强度和刚度很低部位(如大的薄板平面等)。
3.3.3 悬臂装卡的工件,一般应掉头进行第二次振动时效处理,特大工件,在其振动响应薄弱的部位应进行补振。
3.3.4 加速度计应安装在远离激振器并且振幅较大处。
3.4 工件的试振3.4.1 选择试振的工件不允许存在缩孔,夹渣,裂纹,虚焊等严重缺陷。
3.4.2 选择激振器偏心档位,应满足使工件产生较大振幅和设备不过载的要求,必要时先用手动旋钮寻找合适的偏心档位。
振动时效消除应力
振动时效消除应力引言振动时效是一种通过振动作用来消除金属材料内部应力的方法。
在金属材料加工、焊接、热处理等过程中,常常会产生各种应力,如残余应力、应力集中等。
这些应力不仅会影响材料性能和使用寿命,还可能导致材料发生变形、开裂等问题。
振动时效是通过施加一定的振动载荷来调控金属材料的内部结构,以达到消除应力的目的。
本文将介绍振动时效的原理、应用范围和效果评估方法。
一、振动时效原理振动时效是基于振动疲劳原理而发展起来的一种技术。
振动载荷可以有效地改变金属材料的内部结构,进而改善其力学性能。
具体来说,振动时效的原理可以归纳为以下几个方面:1. 相互作用原理:振动载荷作用下,材料内部的晶界、位错、空位等缺陷会发生移动和聚合,从而消除应力集中。
2. 晶粒细化效应:振动时效可以通过晶界间的滑动和重排,使晶粒得到细化和均匀分布,从而提高材料的强度和韧性。
3. 相变效应:振动时效可以引发材料内部的相变,如固相析出、溶质冷凝等,从而改变材料的组织结构和性能。
二、振动时效的应用范围振动时效可以在多个领域中得到应用,以下是一些常见的应用范围:1. 金属材料加工:在金属材料的加工过程中,常常会产生残余应力,例如锻造、轧制、拉伸等过程。
通过施加一定的振动载荷,可以有效地消除这些残余应力,减小材料的变形和开裂风险。
2. 焊接工艺:焊接过程中会产生大量的热应力和残余应力,严重影响焊接接头的性能。
振动时效可以通过调节焊接区域的应力分布,减小残余应力,提高焊接接头的强度和韧性。
3. 金属热处理:金属热处理过程中常常会产生应力,如淬火应力、回火应力等。
振动时效可以在热处理过程中施加振动载荷,使得应力得到释放和调整,从而得到更好的组织和性能。
三、振动时效效果评估方法评估振动时效效果的方法有很多种,下面介绍几种常用的方法:1. X射线衍射:通过对振动时效后的材料进行X射线衍射分析,可以得到材料的晶体结构、残余应力等信息,从而评估振动时效的效果。
机械制造中振动时效的理论与实践
机械制造中振动时效的理论与实践1振动时效的理论振动时效工艺,国外称为“VSR”方法。
是利用亚共振原理消除和均化金属结构内部残余应力,获得结构尺寸精度稳定的一种新技术,可取代传统的热时效和自然时效工艺,具有节能高效、节资省时、适应性强、使用方便、清洁生产的优点。
振动时效消除应力速度快,成本比通常的热处理方法降低90%,此外,还可使焊件、铸件或机加工件的尺寸偏差缩小1倍~2倍。
它可以广泛用于机械制造行业对铸锻件、焊接件进行时效处理,具有显著的经济效益和社会效益。
振动时效是在激振器所产生的周期性外力——激振力作用下迫使工件在其共振范围内产生共振,在此过程中,当周期性载荷δd+δr>δs时,在工件内残余应力的高峰值处产生局部屈服,引起微小塑性变形,使得工件内部残余应力高峰值降低并使残余应力重新均化分布,从而达到强化金属基体、增强抗变形能力、提高工件尺寸精度稳定性的目的。
振动时效从作用上讲是以机械能形式给工件提供振动能量,增大金属内部原子的振动幅度,加快畸变晶格排列趋于平衡,振动时效从形式上讲是通过对工件施加略低于材料屈服极限的动应力,人为造成工件“变形”提前发生,从而获得工件在其精加工之后不再发生变形的效果。
这是振动时效保证工件精加工后尺寸精度稳定的根本原因。
总的来说,振动时效就是利用共振来迫使金属晶格滑移,促使工件内部残余应力释放。
因为共振所产生的机械能在单位时间内远比热时效和自然时效大得多,所以释放应力的速度比二者也快得多。
2振动时效的效果评定振动时效的效果评定方法有3种:(1)振动参数曲线观察法,(2)残余应力检测法,(3)尺寸稳定性检测法。
通过理论分析和试验证明,由于残余应力下降,最终使结构的阻尼减小,弹性模量降低,从而使固有频率下降、频带宽减小和振幅上升。
因此用这些参数评价残余应力是否下降是较可信的,但如果工件结构复杂,某些子结构在一些相位和方向上进行的不同于主结构的振动必然会影响到拾振器,从而影响幅频曲线的形貌,这些影响要加以考虑。
振动时效
1 绪论1.1振动时效技术特点金属构件在焊接、铸造、锻造和机械加工等工艺过程中,其内部将产生残余应力,极大地影响了构件的尺寸稳定性、刚度、强度和机械加工性能等。
“时效”是降低残余应力使构件尺寸精度稳定的方法。
目前用于消除残余应力的通用方法有:热时效、自然时效和振动时效。
热时效存在着能耗大、成本高、材料机械性能下降、大工件无法处理等弊端;自然时效时间长,效率低,仅能使应力消除2 %~10 %等弱点。
国外60年代开始研究采用振动时效来消除金属工件内残余应力。
随着研究的深入,振动时效工艺技术便产生并不断改进。
振动时效工艺,国外称为“VSR”方法,是利用共振原理降低和均化金属结构内部残余应力,获得结构尺寸精度稳定的一种新技术,其特点可完全取代传统的热时效和自然时效工艺,具体特点如下:①投资少。
与热时效相比它无需庞大的时效炉,可节省占地面积与昂贵的设备投资。
现代工业中的大型铸件与焊接件如采用热时效消除应力则需建造大型时效炉不仅造价昂贵利用率低,而且炉内温度很难均匀消除应力效果很差,采用振动时效可以完全避免这些问题。
因此目前对长达几米至几十米的桥梁船舶,化工器械的大型焊接件和重达几吨至几十吨的超重型铸件较多地采用了振动时效。
②生产周期短。
自然时效需经几个月的长期放置,热时效亦需经数十小时的周期方能完成。
而振动时效一般只需振动数十分钟即可完成,而且振动时效不受场地限制,可减少工件在时效前后的往返运输,如将振动设备安置在机械加工生产线上,不仅使生产安排更紧凑而且可以消除加工过程中产生的应力。
③使用方便。
振动设备体积小、重量轻,因此便于携带。
由于振动处理不受场地限制,振动装置又可携至现场,所以这种工艺与热时效相比使用简便适应性较强。
④节约能源降低成本。
在工件的共振频率下进行时效处理耗能极小,实践证明功率0.18~0.74kW的机械式激振器可振动150t以下的工件,故粗略计算其能源消耗仅为热时效3%~5%,成本仅为热时效的8%~10%。
中华人民共和国机械行业标准
中华人民共和国机械行业标准振动时效效果评定方法JB/T5926-2005 1 范围本标准规定了振动时效工艺参数的选择及技术要求和振动时效效果评定方法。
本标准适用于碳素结构钢、低合金钢、不锈钢、铸铁。
有色金届(铜、铝、钛及具合金)等材质的铸件、锻件、焊接件、模具、机械加工件的振动时效装置。
2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。
凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本标准。
JB/T5925.2 机械式振动时效装置技术条件3 术语和定义JB/T5925.2中确立的以及下列术语和定义适用于本标准。
3.1 激振点excitative position振动时效时,激振器在工件上的夹持点。
3.2 振型excited mode工件共振时,当某一点位移达到最大值的瞬间:工件各点的位移形成的线或面。
3.3 节点mode node时效时工件受周期性交变载荷的作用产生谐振,振幅最小处,称为节点。
节点连成的线即节线。
3.4 主振频率main excitative frequency在激振装置的频率范围内,引起工件谐振响应的频率中,能有效降低残余应力的频率叫主振频率;其余叫附振频率。
4 工艺参数选择及技术要求4.1 振前分析4.1.1 根据工件结构、尺寸材质、时效要求、残余应力场分布,分析判断所需有效振型,必要时分析以后工作状态、工况下工作应力大小及分布及其失效形式。
14.1.2 工件不应有超过标准规定的缩孔、火渣、裂纹及虚焊等缺陷,4.2振前准备4.2.1 在预测的有效振型的节线附近弹性支撑工件,支点应尽量少,工件的支撑应平稳4.2-2特殊工件的支撑以振动阻力小日平稳为准。
4.2.3激振器应固定装在工件刚性较大且振幅较大处4-2-4拾振器应固定装在远离激振器且在振幅较大处4,3试振工件4.3.l 选择激振器偏心距,由小到大使工件在最大工作转速区间内产生共振,4.3.2 全程扫频、寻找共振峰,确定主、附振频率及扫频范围,按主振频率的振型调整支撑点激振点、拾振点及力方向。
中华人民共和国机械行业标准-振动时效设备
中华人民共和国机械行业标准振动时效效果评定方法JB/T5926-20051 范围本标准规定了振动时效工艺参数选择及技术要求和振动时效效果的评定方法。
本标准适用于碳素结构钢、低合金钢、不锈钢、铸铁。
有色金属(铜、铝、钛及其合金)等材质的铸件、锻件、焊接件、模具、机械加工件的振动时效处理。
2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。
凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本标准。
JB/T5925. 2 机械式振动时效装置技术条件3 术语、符号3.1 激振点exciting point振动时效时给构件的施力点称为激振点。
3.2 支撑点support point为了对构件进行振动时效而选择的支撑构件的位置。
3.3 动应力dynamic stress激振力引起构件谐振响应时,在其内部产生的应力称为动应力。
矢量,符号为σd(幅值),单位为(MPa)。
3.4 共振resonance当激振力提供的周期性激振力的频率与系统固有频率接近或相等时,构件的振幅急剧增大的现象为共振。
3.5 振型vibration mode共振时,构件表面上所有质点振动的包络线(面),即为振型,包括弯曲、扭转、扭曲、钟振型和鼓振型。
3.6 节点(节线)node, node line振动时效时,构件振幅最小处称为节点(节线)。
3.7 主振频率principal vibration frequency在激振装置的频率范围内,引起构件谐振响应的频率中,频率低、位移幅大的频率称为主振频率。
3.8 附振频率additional vibration frequency除主振频率以外的其他频率。
3.9 扫频frequency sweep固定偏心,将激振力的频率由小调大的过程,称为扫频。
振动时效
1. 振动时效工艺简介振动时效(英文为Vibratory Stress Relief缩写为VSR)又称振动消除应力,主要是通过控制激振器的转速和偏心,使工件发生共振,让工件需时效的部位产生一定幅度,一定周期的交变运动并吸收能量,使工件内部发生微观粘弹塑性力学变化,从而降低工件的局部峰值应力和均化工件的残余应力场,(尤其是表面的集中应力区域),最终防止工件的变形与开裂,保证以后的尺寸稳定精度,它最后通过比较时效前后及过程中工件的有效固有频率及其加速度等参数的变化来间接,定性的判断时效效果。
振动时效适用于碳素结构钢、低合金钢、不锈钢、铸铁、有色金属(铜、铝、锌及其合金)等材质的铸件、煅件、焊接件及其机加工件.振动时效比热时效节能95%,处理时间只需几十分钟,不占场地,便携,工件不需运输可就地处理,可插在精加工前任何工序之间多次处理,应力均化效果好,尺寸稳定性好,工件表面无氧化,几十米长,数百吨重,上千条焊缝的工件都可适用。
构件经过焊接,铸造,锻造,机械加工等工艺过程,其内部产生了残余应力,它极大地影响了构件的尺寸稳定性,刚度,强度,疲劳寿命和机械加工性能,甚至会导致裂纹和应力腐蚀。
时效是降低残余应力,使构件尺寸精度稳定的方法。
时效的方法主要有三种:自然时效,热时效和振动时效。
自然时效是最古老的方法,它是把构件置于室外,让其经过气候,温度的反复变化,在反复的温度应力作用下,使残余应力松弛,尺寸精度获得稳定。
一般认为,经过一年自然时效的工件,残余应力下降2-10﹪,但是却极大地提高了工件的松弛刚度,因而工件的尺寸稳定性很好,但因自然时效时间太长,现在很少采用。
热时效是传统的时效方法它是把工件加热到高温,保温后控制降温。
通常认为可以消除残余应力70-80%,实际生产中,热时效可消除残余应力20-60%。
振动时效是介于自然时效和热时效两者之间的方法,可消除残余应力20-50%,它和自然时效一样,能提高工件的松弛刚度,而热时效却使工件的松弛刚度下降,因而振动时效工件的尺寸稳定性可以与热时效相比拟。
海洋装备振动性能测试方法与评价指标的比较研究
海洋装备振动性能测试方法与评价指标的比较研究随着科技的进步和工业的发展,海洋装备在海洋工程、海上运输和海洋资源开发等领域发挥着越来越重要的作用。
然而,在严酷的海洋环境下,海洋装备往往面临着复杂的振动环境,如船舶在海浪中的摇摆、海洋平台在风浪中的震动等。
因此,对海洋装备的振动性能进行测试和评价具有重要的意义。
目前,海洋装备振动性能测试和评价具有多种方法和指标。
本文将比较研究其中的一些常见方法和指标,以期能够为海洋装备振动性能测试和评价提供一定的参考和指导。
第一种方法是频域分析方法。
它基于傅里叶变换原理,将时域信号转换为频域信号,通过分析频谱的特征来评价振动性能。
常见的频域分析方法包括功率谱密度法、频率响应函数法和模态分析法等。
功率谱密度法将信号的功率与频率相关联,通过计算信号的功率谱密度分布来评价振动性能。
频率响应函数法通过测量振动激励和响应信号的频率响应来分析系统的动态特性。
模态分析法则研究结构的固有振动模态及其响应特性。
第二种方法是时域分析方法。
它直接观察和分析振动信号的时域特性,如振动幅值、振动周期、振动变化等。
常见的时域分析方法包括振动加速度测量法、振动速度测量法和振动位移测量法等。
振动加速度测量法通过测量振动加速度来评价振动性能,其优点是测量简单且准确度高。
振动速度测量法则通过测量振动速度来评价振动性能,适用于低频振动分析。
振动位移测量法则通过测量振动位移来评价振动性能,在某些情况下具有较高的实用性。
第三种方法是物理模型试验方法。
它通过构建物理模型对振动性能进行测试和评价。
这种方法能够更真实地模拟振动环境,对振动性能的评价结果具有较高的可靠性。
然而,物理模型试验方法相对于其他方法来说,成本较高且实施难度较大,需要充分考虑实验条件和模型的合理性。
除了振动性能测试方法的比较,评价指标的选择也是一项重要任务。
评价指标需要能够全面、准确地反映振动性能的好坏。
常见的评价指标包括峰值加速度、方均根加速度、振动速度、振动位移、频谱特性等。
振动时效试验研究及有限元法在确定时效性态上的应用
cu tS e rcs o x ei e t a es p e ,uh∞ rd c h t fe u nysa ,n l o n. o h oes fep r n cnb i l d sc t p m m e uete e o rq e c n a dia— sp f c t
图 7抛 光 实物 图
表 1磁 流 变抛 光 工艺 参数 表
验 , 光后 的工 件 达 到 了理 想 的效 果 , 今 后对 磁 流 变抛 光 中智 抛 为
能系统的研究 、 各种工艺参数 的实时优化控制研究打下了基础。
参考文献
1 .oii G l , Mantrel i l ii ig ( F i o mec l rc— D n KW. geohoo c ns n MR )nC m ri ei g aF h aP s nO t s n fcuig S I ,9 9 3 8 ( )8 , 1 i pi uat r . P E 1 9 ,7 2 7 :0 9 o c Ma n - -
(Me h nc l n lcr a s l t n e gn eigc mp n fMaSe lMa n h n2 3 0 , hn ) c a ia dee tc ln t l i n ie r o a yo te, a s a 4 0 0 C ia a i i a ao n
机 械 设 计 与 制 造
6 2
文 章编 号 :0 1 39 (0 00 — 0 2 0 10 —9 7 2 1 )9 0 6 — 3
第 9期
2 0年 9月 01
Ma hi ey De in c n r sg
&
M a u a t r n fc u e
振 动时效试验 研 究及 有限元 法在确定 时效性态上 的应 用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
罗丽丽 , 秦 代成
( 中 国 工程 物 理 研 究 院 机 械 制 造 工 艺研 究 所 。 四川 绵 阳 6 2 1 9 0 0)
摘
要: 工艺效果评 定是振 动时效的关键技 术之一 。从检测原理入 手 , 对常见的几种 效果评定 方法进行分析 与探 讨 ,
总结其应用特点及范 围。并以 中厚筒体对接 焊缝试件 为例 进行振 动 时效 。 验证 了参 数 曲线观测 法与残余 应力检测 法 的有效性 , 表 明了残余应 力检测 法是 时效效果评定 的主要手段 。该技术对振动 时效设备的设计提供 了理论依据 。
Ab s t r a c t : O n e o f t h e k e y t e c h n o l o g i e s o f v i b r a t o r y s t r e s s r e l i e f( V S R)i s t h e e v a l u a t i o n o f t h e e f f e c t .I n t h i s p a p e r , s t a r t i n g
a n d r a n g e o f a p p l i c a t i o n le a s u mma i r z e d .B y t h e VS R e x a mp l e f o b u t t w e l d wo r k p i e c e f o t h i c k c y l i n d e r , v li a d i t y f o t h e p la a me — t e r C H I V e o b s e r v a t i o n me t h o d a n d t h e r e s i d u l a s t r e s s e x a mi n a t i o n me t h o d i s v li a d  ̄e d .I t i s s h o w n t h a t t h e r e s i d u l a s t r e s s e x a mi — n a t i o n me t h o d i s t h e ma i n me a s u r e t o e v a l u a t e t h e v i b r a t o y r s t r e s s r e l i e f .I t p r o v i d e s t h e t h e o r e t i c l a f o u n d a t i o n f o r t h e d e s i g n o f he t v i b r a t o y r s t r e s s r e l i e f e q u i p me n t . Ke y wo r d s :v i b r a t o y r s t r e s s r e l i e f ;e v lu a a t i o n;r e s i d u l a s t r e s s ;d e t e c t i o n
关键词 : 振动 时效 ; 评定 ; 残余应 力; 检 测
中图分类号 : T G 1 5 6 . 9 2 ; T G 4 0 4
文献标志码 : A
文章编号 : 1 0 0 7 — 41 4 ( 2 0 1 7 ) 0 6 — 0 1 6 3 — 0 3
S t u d y o n Ev a l u a t i n g Me t h o d s f o r t h e Vi b r a t o r y S t r e s s Re l i e f Ef f e c t
・
机 械 研 究 与应 用 ・ 2 0 1 7 年 第6 期( 第3 0 卷 , 总 第1 5 2 期 ) 1 6 5 7 6 / j . c n k i . 1 0 0 7 — 4 4 1 4 . 2 0 1 7 . 0 6 . 0 5 0
振 动 时效 效 果 评 定 方 法 研 究
L U 0 L i - 1 i .Q I N D a i - c h e n g
( I n s t i t u t e o fMe c h a n i c a l Ma n u f a c t u r i n g T e c h n o l o g y ,C h i n a A c a d e m y fE o n g i n e e r i n g P h y s i c s , Mi a n y a n g S i c h u a n 6 2 1 9 0 0 , C h i n a )
O 引 言
振动 时效 技术 ( V i b r a t o r y S t r e s s R e l i e f ) 是 对 工 件 施加 变化 的循 环 载 荷 来 消 除 和减 少 内部 残 余 应 力 。 该技 术具 有耗 能少 、 效果 显 著 、 无污 染 、 处理快 速等 优