运筹学第2章-线性规划的对偶理论

合集下载

《运筹学》胡运权 第4版 第二章 线性规划的对偶理论及灵敏度分析

《运筹学》胡运权 第4版 第二章  线性规划的对偶理论及灵敏度分析

b2 bm
x1, x2 , , xn 0
对 称 形 式 的
的 定 义
m W ib 1 n y 1 b 2 y 2 b m y m 对
s.t.
a11 a12 a1n
a21 a22 a2n
am1 y1 c1
am2 y2 amn ym
c2 cn
偶 问 题
y1, y2 , , ym 0
a23 x3 a33 x3
b2 b3
x1 0, x2 0, x3无 约 束
(2.4a) (2.4b) (2.4c) (2.4d)
先转换成对称形式,如下:
的 的一个变量,其每个变量对应于对偶问题 的一个约束。


m Z a c 1 x 1 x c 2 x 2 c n x n 一
对 偶
a11x1 a12x2 a1n xn (,)b1
a2
1x1
a22x2
a2n xn
(, )b2
般 线 性
问 题 的 定 义
am1x1 am2 x2 amnxn (,)bm xj 0( 0,或符号不限) j 1 ~ n
问题。

对偶问题是对原问题从另一角度进

行的描述,其最优解与原问题的最 优解有着密切的联系,在求得一个

线性规划最优解的同时也就得到对 偶线性规划的最优解,反之亦然。

对偶理论就是研究线性规划及其对 偶问题的理论,是线性规划理论的
重要内容之一。
问 题 的 导 出
例2-1
我们引用第一章中美佳公司的例子,如表1

x1, x2, , xn 0

m W ib 1 n y 1 b 2 y 2 b m y m

运筹学基础-对偶线性规划(2)

运筹学基础-对偶线性规划(2)

用单纯形法同时求解原问题和对偶问题
原问题是:
maxZ=2x1 +x2 5x2 ≤15 6x1 + 2x2 ≤ 24 x1 + x2 ≤ 5 x1 , x2 ≥0
5x2 +x3 =15 6x1 + 2x2 +x4 = 24 x1 + x2 +x5 = 5 xi ≥0
原问题的标准型是:maxZ=2x1 +x2+0x3+0x4 +0x5
b
15 24 5 0
x1 0 6 1 2
比 值
-
24/6=4
5/1=5
检验数j
对偶问题剩余变量 y4、y5
对偶问题变量 y1、y2 、y3
检验数行的- (cj-zj)值是其对偶问题的一个基本解yi ;
原问题变量
0 2
原问题松驰变量
1 0 0 0 0 1/6 -1/6 -1/3 0 0 1 0
3
x3 x1
x2 1 检验数j= cj-zj
-1/4 -1/2
对偶问题剩余变量 y4、y5
对偶问题变量 y1、y2 、y3
此时得原问题最优解:X*=(7/2,3/2,15/2,0,0)T,Z*=17/2 则对偶问题最优解:Y*=(0,1/4,1/2,0,0)T,S*=17/2
又例:用单纯形法同时求解原问题和对偶问题
定理6(互补松弛定理)
在线性规划问题的最优解中,如果对应某一约束条件的 对偶变量值为非零,则该约束条件取严格等式;反之如果约 束条件取严格不等式,则其对应的对偶变量一定为零。
注:证明过程参见教材59页性质5证明
讨论:
互补松弛定理也称松紧定理,它描述了线性规划达到最

运筹学课件 第2章:线性规划的对偶理论

运筹学课件 第2章:线性规划的对偶理论

min w 16y1 36y2 65y3
90 y1 3 y 2 y1 2 y 2 5 y 3 70 y , y , y 0 1 2 3
原问题 A b C 约束系数矩阵
对偶问题 约束系数矩阵的转臵
约束条件的右端项向量 目标函数中的价格系数向量 目标函数中的价格系数向量 约束条件的右端项向量 Max z=CX Min w=Y’b 目标函数 AX≤b A’Y≥C’ 约束条件 X≥0 Y≥0 决策变量
若原问题为求极小形式的对称形式线性规划问题, 对偶问题应该具有什么形式?
Min w Y 'b A'Y C Y 0
max w Y 'b A'Y C Y 0
min z CX
Max z CX
AX b X 0
AX b X 0
min w 5 y1 4 y2 6 y3 4 y1 3 y2 2 y3 2 y1 2 y2 3 y3 3 3 y1 4 y3 5 2 y 7 y y 1 2 3 1 y1 0, y2 0, y3无约束
对偶问题 约束系数矩阵的转臵
目标函数中的价格系数向量
目标函数 约束条件
变量
Max z=CX m个 ≤ ≥ = n个 ≥0 ≤0 无约束
约束条件的右端项向量 目标函数 Min w=Y’b m个 ≥0 变量 ≤0 无约束 n个 ≥ 约束条件 ≤ =
【例2-3】写出下列线性规划问题的对偶问题
min 2x1 3x2 5x3 x4
1.初始表中单位阵在迭代后单纯形表中对应的位臵就是B-1 2.对于原问题的最优解,各松弛变量检验数的相反数恰好 是其对偶问题的一个可行解,且两者具有相同的目标函数 值。根据下面介绍的对偶问题的基本性质还将看到,若原 问题取得最优解,则对偶问题的解也为最优解。

《运筹学教程》(第三版)第二章 线性规划的对偶理论3-影子价格对偶单纯形法

《运筹学教程》(第三版)第二章 线性规划的对偶理论3-影子价格对偶单纯形法

第一步:求对偶问题的可行基 B ,列出单纯形表。 n n aij x j bi (i 1,, m) max z c j x j j 1 j 1 x j 0 ( j 1,, n) cj CB c1 c2 … cm 基 x1 x2 … xm cj - zj b b*1 b*2 … b*m c1 x1 1 0 … 0 0 … … … … … … cm xm 0 0 … 1 0 … … … … … cj xj a1j a2j … amj … … … … … cn xn a1n a2n … amn
cj CB 0 0
0 y4 1 0 0
0 y5 0 1 0
[ -6 ]
-2 -24
cj-zj
max w 15 y1 24 y2 5 y3 0 y4 0 y5
6 y2 y3 y4 2 y5 1 5 y1 2 y2 y3 y 0 15
min w 15 y1 24 y2 5 y3
6 y 2 y3 2 5 y1 2 y 2 y3 1 y 0 13
max w 15 y1 24 y2 5 y3 0 y4 0 y5
化标 准形
6 y2 y3 y4 2 y5 1 5 y1 2 y2 y3 y 0 15
影子价格(shadow price)
是反映资源最优使用效果的价格。 用微积分描述资源的影子价格,即当资源增加一个数量而得到目标函 数新的最大值时,目标函数最大值的增量与资源的增量的比值,就是目标 函数对约束条件(即资源)的一阶偏导数。 用线性规划方法求解资源最优利用时,即在解决如何使有限资源的总 产出最大的过程中,得出相应的极小值,其解就是对偶解,极小值作为对 资源的经济评价,表现为影子价格。 这种影子价格反映劳动产品、自然资源、劳动力的最优使用效果。 另外一种影子价格用于效用与费用分析。广泛地被用于投资项目和进 出口活动的经济评价。例如,把投资的影子价格理解为资本的边际生产率 与社会贴现率的比值时,用来评价一笔钱用于投资还是用于消费的利亏; 把外汇的影子价格理解为使市场供求均衡价格与官方到岸价格的比率,用 来评价用外汇购买商品的利亏,使有限外汇进口值最大。 因此,这种影子价格含有机会成本即替代比较的意思,一般人们称之 为广义的影子价格。

运筹学第2章

运筹学第2章
China University of Mining and Technology
-43-
运 筹 学
线性规划的对偶理论
性质3 最优性定理:如果 X 0 是原问题的可行解, 0 是其对偶 Y 问题的可行解,并且:
CX 0 BY 0
即: z w
则 X 0是原问题的最优解,Y 0是其对偶问题的最优解。
T
分别是原问题和对偶问题的可行解。 且原问题的目标函数值为
min W 20 y1 20 y2 s.t. y1 2 y2 1 2 y1 y2 2 2y1 3 y2 3 3 y1 2 y2 4 y1 , y2 0
Z CX 10
min W 20 y1 20 y2 s.t. y1 2 y2 1 2 y1 y2 2 2y1 3 y2 3 3 y1 2 y2 4 y1 , y2 0
(DP)
-41China University of Mining and Technology
-44China University of Mining and Technology
运 筹 学
线性规划的对偶理论
性质4 强(主)对偶性:若原问题及其对偶问题均具有可行解, 则两者均具有最优解,且它们最优解的目标函数值相等。
还可推出另一结论:若一对对偶问题中的任意一个有最优解, 则另一个也有最优解,且目标函数最优值相等;若一个问题 无最优解,则另一问题也无最优解。 一对对偶问题的关系,有且仅有下列三种: 1. 都有最优解,且目标函数最优值相等; 2. 两个都无可行解; 3. 一个问题无界,则另一问题无可行解。
-1-
运 筹 学
学习要点: 1. 理解对偶理论,掌握描述一个线性规划问题 的对偶问题。 2. 能够运用对偶单纯形法来求解线性规划问题。 3. 会用互补松弛条件来考虑一对对偶问题的界。

运筹学胡运权第五版课件-第二章

运筹学胡运权第五版课件-第二章

min Z 3 x1 2 x2 3 x3 4 x4 x1 2 x2 3 x3 4 x4 3 x2 3x3 4 x4 5 s.t. 2 x1 3 x2 7 x3 4 x4 2 x1 0,x2 0, x3、x4无约束 解:对偶问题为: max W 3 y1 5 y2 2 y3
3、矩阵形式: P max z CX AX b s.t. X 0
其中
D min w bT Y AT Y C T s.t. Y 0
a1n a2 n amn
C (c1 , c2 , , cn )
b1 b2 b bm
T T
A Y C C Y A
T T T
CX Y AX Y b b Y
T T T
2、最优性: 若 X* 和 Y* 分别是 P 和 D 的可行解且 CX* = bT Y* , 则X*,Y*分别是问题 P和D 的最优解。
对偶问题(D):
max z 2 x1 3 x2 2 x1 2 x2 12 4 x 16 1 s.t. 5 x2 15 x1 , x2 0
min w 12 y1 16 y2 15 y3 2 2 y1 4 y2 s.t. 2 y1 5 y3 3 y , y , y 0 1 2 3
解:第一步 改写为 min 的基本形式
令x1 x1,x2 x2 x2 min z 7 x1 ( 4 x2 x2) 3x3 4 x ( 2 x2 x2) 6 x3 24 1 3x1 ( 6 x2 x2) 4 x3 15 s.t. ( 5 x2 x2) 3x3 30 ( 5 x2 x2) 3x3 30 x1 ,x2,x2,x3 0

运筹学课件第二章对偶问题

运筹学课件第二章对偶问题

第二章线性规划的对偶理论与灵敏度分析一、学习目的与要求 1、掌握对偶理论及其性质 2、掌握对偶单纯形法3、熟悉灵敏度分析的概念和内容4、掌握限制常数与价值系数、约束条件系数的变化对原最优解的影响5、掌握增加新变量和增加新的约束条件对原最优解的影响,并求出相应因素的灵敏度范围6、了解参数线性规划的解法 二、课时 6学时第一节 线性规划的对偶问题一、对偶问题的提出定义:一个线性规划问题常伴随着与之配对的、两者有密切联系的另一个线性规划问题,我们将其中一个称为原问题,另一个就称为对偶问题,在求出一个问题的解时,也同时给出了另一问题的解。

应用:在某些情况下,解对偶问题比解原问题更加容易;对偶变量有重要的经济解释(影子价格);作为灵敏度分析的工具;对偶单纯形法(从一个非可行基出发,得到线性规划问题的最优解);避免使用人工变量(人工变量带来很多麻烦,两阶段法则增加一倍的计算量)。

例:某家具厂木器车间生产木门与木窗;两种产品。

加工木门收入为56元/扇,加工木窗收入为30元/扇。

生产一扇木门需要木工4小时,油漆工2小时;生产一扇木窗需要木工3小时,油漆工1小时;该车间每日可用木工总共时为120小时,油漆工总工时为50小时。

问:(1)该车间应如何安排生产才能使每日收入最大?(2)假若有一个个体经营者,手中有一批木器家具生产订单。

他想利用该木器车间的木工与油漆工来加工完成他的订单。

他就要考虑付给该车间每个工时的价格。

他可以构造一个数学模型来研究如何定价才能既使木器车间觉得有利可图而愿意为他加工这批订单、又使自己所付的工时费用最少。

解(1):设该车间每日安排生产木门x1扇,木窗x2扇,则数学模型为⎪⎩⎪⎨⎧≥≤+≤++=-0502120343056max 21212121x x x x x x x zX*=(15,20)’ Z*=1440元解(2):设y 1为付给木工每个工时的价格,y 2为付给油工每个工时的价格⎪⎩⎪⎨⎧≥≥+≥++=-0303562450120min 21212121y y y y y y y wY*=(2,24)’ W*=1440元将上述问题1与问题2称为一对对偶问题,两者之间存在着紧密的联系与区别:它们都使用了木器生产车间相同的数据,只是数据在模型中所处的位置不同,反映所要表达的含义也不同。

运筹学--第二章 线性规划的对偶问题

运筹学--第二章 线性规划的对偶问题

习题二2.1 写出下列线性规划问题的对偶问题(1) max z =10x1+x2+2x3(2) max z =2x1+x2+3x3+x4st. x1+x2+2 x3≤10 st. x1+x2+x3 +x4≤54x1+x2+x3≤20 2x1-x2+3x3=-4x j≥0 (j=1,2,3)x1-x3+x4≥1x1,x3≥0,x2,x4无约束(3) min z =3x1+2 x2-3x3+4x4(4) min z =-5 x1-6x2-7x3st. x1-2x2+3x3+4x4≤3 st. -x1+5x2-3x3≥15x2+3x3+4x4≥-5 -5x1-6x2+10x3≤202x1-3x2-7x3 -4x4=2=x1-x2-x3=-5 x1≥0,x4≤0,x2,,x3无约束x1≤0,x2≥0,x3无约束2.2 已知线性规划问题max z=CX,AX=b,X≥0。

分别说明发生下列情况时,其对偶问题的解的变化:(1)问题的第k个约束条件乘上常数λ(λ≠0);(2)将第k个约束条件乘上常数λ(λ≠0)后加到第r个约束条件上;(3)目标函数改变为max z=λCX(λ≠0);'x代换。

(4)模型中全部x1用312.3 已知线性规划问题min z=8x1+6x2+3x3+6x4st. x1+2x2+x4≥33x1+x2+x3+x4≥6x3 +x4=2x1 +x3 ≥2x j≥0(j=1,2,3,4)(1) 写出其对偶问题;(2) 已知原问题最优解为x*=(1,1,2,0),试根据对偶理论,直接求出对偶问题的最优解。

2.4 已知线性规划问题min z=2x1+x2+5x3+6x4 对偶变量st. 2x1 +x3+x4≤8 y12x1+2x2+x3+2x4≤12 y2x j≥0(j=1,2,3,4)对偶问题的最优解y1*=4;y2*=1,试对偶问题的性质,求出原问题的最优解。

2.5 考虑线性规划问题max z=2x1+4x2+3x3st. 3x1+4 x2+2x3≤602x1+x2+2x3≤40x1+3x2+2x3≤80x j≥0 (j=1,2,3)4748(1)写出其对偶问题(2)用单纯形法求解原问题,列出每步迭代计算得到的原问题的解与互补的对偶问题的解;(3)用对偶单纯形法求解其对偶问题,并列出每步迭代计算得到的对偶问题解及与其互补的对偶问题的解;(4)比较(2)和(3)计算结果。

运筹学教材习题答案详解

运筹学教材习题答案详解
3
B1:2.0
3
需要量(套)
200
150
问怎样下料使得(1)用料最少;(2)余料最少.
【解】第一步:求下料方案,见下表。
方案










十一
十二
十三
十四
需要量
B1:2.7m
2
1
1
1
0
0
0
0
0
0
0
0
0
0
300
B2:2m
0
1
0
0
3
2
2
1
1
1
0
0
0
0
450
A1:1.7m
0
0
1
0
0
1
0
2
1
0
3
2
1
0
(2)
【解】最优解X=(3/4,7/2);最优值Z=-45/4
(3)
【解】最优解X=(4,1);最优值Z=-10
(4)
【解】最优解X=(3/2,1/4);最优值Z=7/4
(5) 【解】最优解X=(3,0);最优值Z=3
(6)
【解】无界解。
(7)
【解】无可行解。
(8)
【解】最优解X=(2,4);最优值Z=13
【解】设x1、x2、x3分别为产品A、B、C的产量,则数学模型为
1.3建筑公司需要用6m长的塑钢材料制作A、B两种型号的窗架.两种窗架所需材料规格及数量如表1-23所示:
表1-23窗架所需材料规格及数量
型号A
型号B
每套窗架需要材料
长度(m)

运筹学课件第二章线性规划的对偶理论及其应用

运筹学课件第二章线性规划的对偶理论及其应用
对偶问题同时解
– 原问题为基础可行解,对偶问题为非可行解,但满足
互补松弛条件;则当对偶问题为可行解时,取得最优 解
13
2.2.5 原问题检验数与对偶问题的解
• 在主对偶定理的证明中我们有:对偶(min型)变量的最 优解等于原问题松弛变量的机会成本,或者说原问题松 弛变量检验数的绝对值
• 容易证明,对偶问题最优解的剩余变量解值等于原问题 对应变量的检验数的绝对值
1
1/2 5/2
1
1
0
1/2 3/2
0
0
0
1/2 3/2
OBJ=
39
9/2
3
6
6
0
3/2
3/2
cj - zj
1/2
0
0
0
0
3/2 -M-3/2
0
x4
4
0
0
1
1
1
1
3
5
x1
6
1
0
2
2
0
1
1
3
x2
4
0
1
1
(1)
0
1
2
OBJ=
42
5
3
7
7
0
2
1
cj - zj
0
0
1
1
0
2 -M+1
0
x4
ቤተ መጻሕፍቲ ባይዱ
8
0
1
0
0
1
0
1
5
x1
数值,
g(Y0)=Y0b= CBB1 b
而原问题最优解的目标函数值为
f(X0)=CX0= CBB1 b 故由最优解判别定理可知Y0 为对偶问题的最优解。证毕。

运筹学_第2章_对偶理论习题

运筹学_第2章_对偶理论习题

第二章线性规划的对偶理论2.1 写出下列线性规划问题的对偶问题max z=2x1+2x2-4x3x1 + 3x2 + 3x3 ≤304x1 + 2x2 + 4x3≤80x1、x2,x3≥0解:其对偶问题为min w=30y1+ 80y2y1+ 4y2≥23y1 + 2y2 ≥23y1 + 4y2≥-4y1、y2≥02.2 写出下列线性规划问题的对偶问题min z=2x1+8x2-4x3x1 + 3x2-3x3 ≥30-x1 + 5x2 + 4x3 = 804x1 + 2x2-4x3≤50x1≤0、x2≥0,x3无限制解:其对偶问题为max w=30y1+80 y2+50 y3y1-y2 + 4 y3≥23y1+5y2 + 2y3≤8-3y1 + 4y2-4y3 =-4y1≥0,y2无限制,y3≤02.3已知线性规划问题max z=x1+2x2+3x3+4x4x1 + 2x2 + 2x3 +3x4≤202x1 + x2 + 3x3 +2x4≤20x1、x2,x3,x4≥0其对偶问题的最优解为y1*=6/5,y2*=1/5。

试用互补松弛定理求该线性规划问题的最优解。

解:其对偶问题为min w=20y1+ 20y2y1 + 2y2≥1 (1)2y1 + y2 ≥2 (2)2y1 +3y2≥3 (3)3y1 +2y2≥4 (4)y1、y2≥0将y1*=6/5,y2*=1/5代入上述约束条件,得(1)、(2)为严格不等式;由互补松弛定理可以推得x1*=0,x2*=0。

又因y1*>0,y2*>0,故原问题的两个约束条件应取等式,所以2x3*+3x4* = 203x3* +2x4* = 20解得x3* = x4* = 4。

故原问题的最优解为X*=(0,0,4,4)T2.4用对偶单纯形法求解下列线性规划min z=4x1+2x2+6x32x1 +4x2 +8x3 ≥244x1 + x2 + 4x3≥8x1、x2,x3≥0解将问题改写成如下形式max(-z)=-4x1-2x2-6x3-2x1-4x2 -8x3 + x4=-24-4x1-x2-4x3+x5 =-8x1、x2,x3,x4,x5≥0显然,p4、p5可以构成现成的单位基,此时,非基变量在目标函数中的系数全为负数,因此p4、p5构成的就是初始正侧基。

运筹学概论 第2章 线性规划的对偶理论

运筹学概论 第2章 线性规划的对偶理论
第二章 线性规划的对偶理论
线性规划的对偶问题 对偶问题的基本性质 影子价格
2020/4/29
第一节 线性规划的对偶问题
窗含西岭千秋雪,门泊东吴万里船 对偶是一种普遍现象
2020/4/
一、对偶问题的提出
例1 美佳公司计划制造甲、乙两种家电产品,已知制造一件甲需占用B 设备5小时,调试工序1小时;制造一件乙需占用A设备6小时,B设备2 小时,调试工序1小时; A设备每天可用15小时, B设备可用24小时, 调试工序每天可用5小时。已知售出一件甲获利2元,售出一件乙获利1 元,问该公司每天应制造两种家电各多少件,使获取的利润最大?
x1,x2,x3,x4 0
假设有商人要向厂方购买资源A和B,问他们 谈判原料价格的模型是怎样的?
2020/4/29
●设A、B资源的出售价格分别为 y1 和 y2 ●显然商人希望总的收购价越小越好(目标) ●工厂希望出售资源后所得不应比生产产品所得少(约束)
2020/4/29
maxZ x1 2x2 3x3 4x4
(2)
3y1 5y1
y2 y3 y3 4 6y2 y3 y3 3
(3) (4)
5y1 6y2 y3 y3 3
(5)
y1, y2 , y3, y3 0
(6)
y2=-y2’;y3=y3’-y3’’;(3)式 两端乘“-1”,(4)、(5)合并。
A’YC’
决策变量
X 0
Y 0
2020/4/29
min w Y 'b A 'Y C ' Y 0
max w ' Y 'b - A 'Y C ' Y 0
min z ' CX - AX b X 0

运筹学第2章 对偶理论

运筹学第2章 对偶理论
写出对偶问题
2 y1 3 y2 y3 2 3 y1 y2 4 y3 3 5 y1 7 y2 6 y3 4 y , y , y 0 1 2 3
原—对偶问题的相互变换形式
原问题(或对偶问题) 目标函数 max 约 束 条 件 变 量 m个 ≤ ≥ = n个 ≥0 ≤0 无约束 约束条件右端项 目标函数变量的系数 对偶问题(或原问题) 目标函数 min m个 ≥0 ≤0 无约束 n个 ≥ ≤ = 目标函数变量的系数 约束条件右端项 变 量 约 束 条 件
设y1 , y2 , y3分别为三种资源的收费单价,所以 有下式: 5 y1 2 y2 y3 10 2 y1 3 y2 5 y3 18 y1 , y2 , y3 0 就目标而言,用下式可以表达: 170 y1 100 y2 150 y3 W
一般而言,W 越小越好,但因需双方满意,故
变为对称形式
m axZ 2 x1 3 x 2 4 x 3 2 x 3 x 2 5 x 3 2 3 x1 x 2 7 x 3 3 x1 4 x 2 6 x 3 5 x1 , x 2 , x 3 0
min W 2 y1 3 y2 5 y3
B
1 0
M-1
-2
最 终 表
cj cB 3 -1 -1 xB x1 x2 x3 检验数 b 4 1 9
3 x1 1 0 0 0
-1 x2
-1 x3 0 0 1 0
0 x4 1/3 0 2/3 -1/3
I
0 1 0 0
-1/3 1/3-M 2/3- M
所以, X*=(4 , 1 , 9),Z = 2
初 始 表

《运筹学》第二章 对偶问题

《运筹学》第二章 对偶问题


3 x1 2 x2
7x4 4
2 x1 3 x2 4 x3 x4 6
x1 0, x2 , x3 0, x4无 约 束
解:原问题的对偶问题为
mi nW 5 y1 4 y2 6 y3
4 y1 3 y2 2 y3 2

20
一组互为对偶的线性规划问题的解之间只有 下列三种情况:
(1)两个规划问题都有可行解(此时,两个规划问题都有最优 解,且最优值相等);
(2)两个规划问题都不可行; (3) 一个规划问题不可行,另一个规划问题有可行解,且具有
无界解。
21
(4)互补松弛性: 在线性规划问题的最优解中,
则 aij xj * = bi ;
bi , 则 y i* = 0 (4)’ 互补松弛性:
在线性规划问题的最优解中, 则 aij yi * = cj ;
>cj , 则 xj* = 0
n
若 y i * >0,
j=1 n
若 a ij xj * <
j=1
m
若 x j * >0,
i=1 m
若 a ij yi*
i=1 22
m
= 证b:i y∵i*
y1 3 y1

2 y2
3 y3 4 y3
3 5

2 y1 7 y2 y3 1
y1

0,
y2

0,
y

3


对偶问题的对 偶还是原问题
14
• 练习 写出下列线性规划问题的对偶问题.
max Z 4x1 3x2 2x3
4x1

运筹学第二章线性规划的对偶理论复习题

运筹学第二章线性规划的对偶理论复习题
min w = 5 y1 + 12 y2 st. y1 + 2 y2 ≥ 2 y1 + 3 y2 ≥ 1 2y1 + 4 y2 ≥ 3 y1 ≥ 0,y2无符号限制
2, 0)T ; (2)由题知原问题的最优解为 x* = (3,
5
由互补松弛定理得:在对偶问题中对应第一,二个约束为紧,第三个约束条件 为松,即,
max z = x1 + x2
s.t.
− x1 + x2 + x3 ≤ 2 − 2 x1 + x2 − x3 ≤ 1 x1 , x2 , x3 ≥ 0
有可行解,但无最优解.
⎛0⎞ ⎟ 证明: x = ⎜ ⎜0⎟ ⎜0⎟ ⎝ ⎠
是线性问题的可行解,即该问题存在可行解;
又∵其对偶问题为:
min w = 2 y1 + y2 st. -y1 − 2 y2 ≥ 1
x1 + x 2 − x3 ≤ 2 x1 − x 2 + x3 = 1 2 x1 + x2 + x3 ≥ 2
x1 ≥ 0, x 2 ≤ 0, x3无约束
的最大值不超过 1. 证明:该线性问题的对偶问题为:
min w = 2 y1 + y2 + 2 y3 st. y1 + y2 + 2 y3 ≥ 1 y1 − y2 + y3 ≤ 2 -y1 + y2 + y3 = 1 y1 ≥ 0,y2 自由,y3 ≤ 0
7、考虑下列原始线性规划
max z = 2 x1 + x2 + 3x3
s.t.
x1 + x2 + 2 x3 ≤ 5 2 x1 + 3x 2 + 4 x3 = 12

运筹学第二章——第八节—线性规划的对偶理论

运筹学第二章——第八节—线性规划的对偶理论

四、对偶问题经济学含义——影子价格
因为Z*=Y*=Yb 所以:Δ Z/ Δ b=Y b——资源的量 Z——目标函数 经济学含义:资源每变动一个单位,目标函 数(利润、总产值等)变动的大小。 资源对生产做出的贡献。(影子价格) 是对现有资源实现最大效益的一个评价,叫 机会成本。
V*X=0, Y*U=0,其中V是对偶问题的剩余变量,U是 原问题的松弛变量。
(七)原问题在单纯性法迭代过程中的检验 数对应于对偶问题的一个基本解。(对应性 定理) 原问题 XB XN 对应基B检验数 0 CN-CBB-1BN 对偶问题的变量 -YS1 -YS2 XS –CBB-1 -Y
对偶问题性质的启示
原问题 有最优解 无可行解 有可行解无上界 无有限最优解 对偶问题 有最优解 无可行解 无有限最优解 有可行解但无下界
由互补松弛性定理可知: 当U>0,即AX <b时,资源未充分利用时,影 子价格为0。
二、原问题与对偶问题之间的转化
1、目标函数 MAX——Min 2、约束条件——变量 约束条件n个——变量n个 约束条件≥0 ——变量≤ 0 约束条件≤ 0 ——变量 ≥ 0 约束条件=0——变量无约束 要点:max为反向关系(约束条件——变量)
二、原问题与对偶问题之间的转化
3、变量——约束条件 变量m个——约束条件m个 变量≥0——约束条件≥ 0 变量≤ 0 ——约束条件≤ 0 变量无约束——约束条件=0 4、目标函数中变量的系数C为对偶问题中约 束条件的右端常数项b,个数对等变动。
(五)若原问题和对偶问题具有可行解,若 原问题或对偶问题之一有最优解,则另一个 对偶问题也必有最优解,且最优值相同。 (主对偶性定理) 证明 含义: 若原问题有一个对应于基B的最优解,则 CBB-1为对偶问题的最优解。

《运筹学》第二章 对偶问题和灵敏度分析jssk1

《运筹学》第二章 对偶问题和灵敏度分析jssk1

2.1 线性规划的对偶理论
解:写出该问题的对偶问题
min W 20 y1 20 y2 y1 2 y2 1 2y y 2 2 1 2 y1 3 y2 3 3 y 2 y 4 2 1 y1 , y2 0
根据互补松弛性,可得: X3*=4>0 则 2y1+3y2=3
s.t. AX ≤b X≥0 s.t. YA ≥ C Y≥0
2.1 线性规划的对偶理论
二、原问题和对偶问题的关系
1、原问题目标函数求最大值,对偶问题求最小值; 2、原问题目标函数的系数是对偶问题约束条件的右端项,原问 题中的右端项是对偶问题目标函数的系数; 3、原问题约束条件为“≤”,则在其对偶问题中决策变量为 “≥”;原问题中决策变量为“≥”,则在其对偶问题中的约束条 件为“≥”; 4、原问题中的约束条件个数等于它的对偶问题中的变量个数, 原问题中的变量个数等于它的对偶问题中的约束条件个数;
YA ≥ C
Y≥0
在单纯形法的每一步迭代中,目标函数取值 Z=CBB-1b+(CN-CBB-1N)XN ,当非基变量XN=0时有 Z=CBB-1b和检验数CN-CBB-1N中都有乘子Y=CBB-1, 那么Y的经济意义是什么?
2.1 线性规划的对偶理论
Y=CBB-1=(y1,y2,…,ym),则得
Z CB B b Yb bi yi
2.1 线性规划的对偶理论
三、对偶问题的基本定理
1、对称性:对偶问题的对偶是原问题。
2、弱对偶定理:若X(0)是原问题的可行解,Y(0)是对偶 问题的可行解,则一定有CX(0) ≤ Y(0)b
max Z=CX 证明:设原问题是 AX ≤b X≥0
则对偶问题是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ 影子价格不是市场价格,而是在现有技术和管理条件下, 新增单位资源所能够创造的价值,是特定企业的一种边 际价格;不同企业或同一企业不同时期,同种资源的影 子价格可能不同;当市场价格高于影子价格,可以卖出; 相反,则应买进,以获取更大收益
Ma例x:Z ( 2第x一1 章3例x22)
2 x1 2 x2 12
当原问题和对偶问题都取得最优解时,这 一对线性规划对应的目标函数值是相等的:
Zmax=Wmin
二、原问题和对偶问题的关系
1、对称形式的对偶关系
(1)定义:若原问题是
MaxZ c1 x1 c2 x2 cn xn
a11x1 a12 x2 a1n xn b1
s.t.a21
x1
a22
二、 手工进行灵敏度分析的基本原则 1、在最优表格的基础上进行; 2、尽量减少附加计算工作量;
5y3 3
,y
2
3
0
(用于生产第i种产 品的资源转让收益不 小于生产该种产品时 获得的利润)
对偶变量的经济意义可以解释为对工时及原材 料的单位定价 ;
若工厂自己不生产产品A、B和C,将现 有的工时及原材料转而接受外来加工时, 那么上述的价格系统能保证不亏本又最富 有竞争力(包工及原材料的总价格最低)
内,使得产品的总利润最大 。
MaxZ 2x1 3x 2
2x1 2x2 12
s.t.54xx12
16 15
x1, x 2 0
它的对偶问题就是一个价格系统,使在平衡了 劳动力和原材料的直接成本后,所确定的价格系统 最具有竞争力:
MinW 12y1 16y2 15y3
2y1 4y2
2
s.t.2y1y,1y
y1, y2, , ym 0
(2)对称形式的对偶关系的矩阵描述
MaxZ CX
MinW bY
(L)s.t.
AX b X 0
(D)
YA
s.t.
Y
C 0
(3)怎样从原始问题写出其对偶问题?
按照定义; 记忆法则:
“上、下”交换,“左、右”换位,
不等式变号,“极大”变“极小”
例 写出下面线性规划的对偶问题:
按照原始-对偶表直接写出 ; (3)原始-对偶表
原问题(或对偶问题) 对偶问题(或原问题)
目标函数 MaxZ
变量数:n个 变量 ≥0 变量 ≤0 变量 无约束
约束条件:m个 约束条件 ≤ 约束条件 ≥ 约束条件 =
目标函数 MinW
约束条件数:n个 约束条件 ≥ 约束条件 ≤ 约束条件 =
变量数:m个 变量 ≥0 变量 ≤0 无约束

×
(原问题是极小化问题,因此应从原始对偶 表的右边往左边查!)
三、对偶定理
对偶定理是揭示 原始问题的解与对偶问题的解之间重 要关系的
一系列性质。
对称性—— 对偶问题的对偶是原问题。
性质1 弱对偶性——如果 X j( j 1, ,n) 是原问题
的可行解,Yi(i 1, ,n)其对偶问题的可行解,则恒有:
变化对最优解的影响及其程度的分析过程称 为灵敏度分析或优化后分析。
2、灵敏度分析的内容:
目标函数的系数变化对最优解的影响 约束方程右端系数变化对最优解的影响 约束方程增加一个变量变化对最优解的影响 约束方程增加一个约束条件对最优解的影响
回答两个问题:
①这些参数在什麽范围内发生变化时,最优 基不变(即最优解或最优解结构不变)? ②参数变化超出上述范围时,如何用最简便 的方法求出新的最优解?
继续以上步骤,直至求出最优解。
例5——用对偶单纯形法求解LP:
MinW 12y1 16y2 15y3 2 y1 4 y2 2
s.t. 2 y1 5y3 3 y1 0, y2 0, y3 0
§6、灵敏度分析
一、灵敏度分析的含义和内容
1、什么是灵敏度分析? 研究线性规划模型某些参数或限制量的
4 y1 8y2 12y3 4
4 y1 8y2 12y3 4
s.t.
5y1 9 y2 13y3 2 6 y1 10y2 3
s.t.
5y1 9 y2 13y3 2 6 y1 10y2 3
y1符号不限, y2 0, y3 0 y1符号不限, y2 0, y3 0
bi y i
j 1
i 1
C X Yb
• 关于“界”的结果;
•极小化问题有下界——
推论1 极大化问题的任意一个可行解所对应的 目标函数值是其对偶问题最优目标函数值的一 个下界。
•极大化问题有上界——
推论2 极小化问题的任意一个可行解所对 应的目标函数值是其对偶问题最优目标函 数值的一个上界。
性质2 最优性 若xˆ j、yˆi 分别为对称形式对 偶线性规划的可行解,且两者目标函数的
第二章 线性规划的对偶理论
一、对偶问题的提出 1、 对偶思想举例:某工厂拥有一定生产 原材料时,该工厂考虑是自己进行产品生 产所赚的利润大还是将其原材料直接出售 给其它工厂时所以赚取的利润大的问题。
2、 换个角度审视生产计划问题
例:(第一章例2)要求制定一个生产计划
方案,在劳动力和原材料可能供应的范围
i 1,2, , m
x j 0 j 1,2, , n
(ቤተ መጻሕፍቲ ባይዱ点:等式约束)
对偶问题
m
MinW bixi i 1
m
s.t. i1 aij yi cj
j 1,2, ,n
yi符号不限, i 1,2, ,m
(特点:对偶变量符号 不限,系数阵转置)
(2)怎样写出非对称形式的对偶问题? 把一个等式约束写成两个不等式约束, 再根据对称形式的对偶关系定义写出;
b列≥0——已得最优解; 检验数全部≤0 (非基变量检验数<0)
b列至少一个元素<0,转下步;
b列≥0——原始单纯形法; 至少一个检验数>0
基变换: 先确定换出变量——解答列中的负元素
(选最小的负元素)对应的基变量出基;

min i
(B1b)i
(B1b)i
0
(B1b)l ,则选xl或yl出基,
x2
a2n xn
b2
am1 x1 am2 x2 amn xn bm
x1 , x2 , , xn 0
则定义其对偶问题为
MinW b1 y1 b2 y2 bm ym
a11 y1 a21 y2 am1 ym c1
s.t.a12
y1
a22
y2
am2 yn
§5、对偶单纯形法
一、什么是对偶单纯形法?
对偶单纯形法是应用对偶原理求解原始 线性规划的一种方法——在原始问题的单 纯形表格上进行对偶处理。
注意:不是解对偶问题的单纯形法!
二、单纯形法的求解过程就是: 在保持原始可行的前提下(b列保持≥0),
通过逐步迭代实现对偶可行(检验数行≤0) 。
对偶单纯形法思想: 换个角度考虑LP求解过程:保持对偶可行的 前提下(检验数行保持≤0) ,通过逐步迭代实 现原始可行(b列≥0,从非可行解变成可行解)。
c2
a1n y1 a2n y2 amn yn cn
y1, y2 , , ym 0
这两个式子之间的变换关系称为 “对称形式的对偶关系”。
原问题与对偶问题的对比:
若原问题
对偶问题
MaxZ c1x1 c2 x2 cn xn
a11x1 a12x2 a1n xn b1
s.t.a21
相应的行为主元行。
然后确定换入变量——原则是:在保持对偶 可行的前提下,减少原始问题的不可行性。
如果
min j
c
j
al'j
z
j
al'j
0
ck zk
a
' lk
(最小比值原则),则选 xk或yk 为换入变量,
相应的列为主元列,主元行和主元列交叉处
的元素
a
' lk
为主元素。
按主元素进行换基迭代(旋转运算、枢 运算),将主元素变成1,主元列变成单位向 量,得到新的单纯形表。
三、对偶单纯形法的实施
1、使用条件: ①检验数全部≤0;
②资源列至少一个元素 < 0;
2、实施对偶单纯形法的基本原则:
在保持对偶可行的前提下进行基变换——每一 次迭代过程中取出基变量中的一个负分量作为 换出变量去替换某个非基变量(作为换入变 量),使原始问题的非可行解向可行解靠近。
3、对偶单纯形法算法步骤: ①建立初始单纯形表,计算检验数行。
MaxZ 2x1 x2
s.t.53xx11
4x 2x
2 2
15 10
x1, x2 0
MinW 15y1 10y2
3y1 5y2 2 s.t.4y1 2y2 1
y1, y2 0
2、非对称形式的对偶关系:
(1) 原问题
n
MaxZ c j x j j 1
n
s.t. j1 aij x j bi
影子价格
❖ 第i个约束条件的影子价格的经济含义是:其 它条件不变的情况下,该资源单位的变化所 引起的目标函数最优值的变化量
❖ 在现有的技术和管理条件下,某种资源的影 子价格越大,说明该资源对目标增益的影响 越大,同时该资源越紧缺和贵重,应该给与 高度关注,通过降低消耗或设法补充,提高 收益
❖ 某种资源的影子价格为零,说明该资源相对富裕;一方 面可以转让该资源;另一方面,通过挖潜和增加对影子 价格大于零资源的投入,使原有的剩余资源充分利用, 甚至于成为新的紧缺资源
x1
a22
x2
a2nxn
b2
am1x1 am2 x2 amn xn bm
x1, x2 , , xn 0
MinW b1y1 b2 y2 bm ym
相关文档
最新文档