初二数学第3讲:角平分线模型

初二数学第3讲:角平分线模型
初二数学第3讲:角平分线模型

一.选择题(共5小题)

1.如图,在△ABC中,∠C=90°,AD是∠CAB de角平分线,DE⊥AB于点E.若CD=3cm,则D到AB de距离是()cm.

A.2B.3C.4D.5

2.如图所示,点E到△ABC三边de距离相等,过点E作MN∥BC交AB于M,交AC于N.若BM+CN=2019,则线段NM de长为()

A.2017B.2018C.2019D.2020

3.如图,已知BG是∠ABC de平分线,DE⊥AB于点E,DF⊥BC于点F,DE=5,则DF de 长度是()

A.6B.5C.4D.3

4.如图,在Rt△ABC中,∠A=90°,BD是角平分线,DE垂直平分BC,AD=3,则AC de 长为()

A.9B.5C.4D.3

5.如图,在Rt△ACB中,∠ACB=90°,BC=12,BD=2CD,AD平分∠BAC,则点D到

AB de距离等于()

A.3B.4C.5D.9

二.填空题(共3小题)

6.已知△ABC中,∠ACB=90°.点I为△ABC各内角平分线de交点,过I点作AB de垂线,垂足为H.若BC=6,AC=8,AB=10,则IH=.

7.如图,△ABC中,AB=8,BC=10,BD是△ABC de角平分线,DE⊥AB于点E,若DE =4,则三角形ABC de面积为.

8.如图,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC de角平分线,则S△BCD:S△ABD=.

三.解答题(共2小题)

9.在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,求点D到AB de距离.

专题16 角平分线四大模型(解析版)

中考常考几何模型 专题16 角平分线四大模型 1、角平分线上的点向两边作垂线 如图,P 是∠MON 的平分线上一点,过点 P 作 PA⊥OM 于点 A,PB⊥ON 于点 B。 结论:PB=PA。 2、截取构造对称全等 如图,P 是∠MON 的平分线上一点,点 A 是射线 OM 上任意一点,在 ON上截取 OB=OA,连接 PB。结论:△OPB≌△OPA。 3、角平分线+垂线构造等腰三角形 如图,P 是∠MO 的平分线上一点,AP⊥OP 于 P 点,延长 AP 于点 B。 结论:△AOB 是等腰三角形。 4、角平分线+平行线 如图,P 是∠MO 的平分线上一点,过点 P 作 PQ∥ON,交 OM 于点 Q。结论:△POQ 是等腰三角形。

模型精练: 1.(2019?东平县二模)如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=() A.40°B.45°C.50°D.60° 【点睛】根据外角与内角性质得出∠BAC的度数,再利用角平分线的性质以及直角三角形全等的判定,得出∠CAP=∠F AP,即可得出答案 【解析】解:延长BA,作PN⊥BD,PF⊥BA,PM⊥AC, 设∠PCD=x°, ∵CP平分∠ACD, ∴∠ACP=∠PCD=x°,PM=PN, ∵BP平分∠ABC, ∴∠ABP=∠PBC,PF=PN,

∴PF=PM, ∵∠BPC=40°, ∴∠ABP=∠PBC=∠PCD﹣∠BPC=(x﹣40)°, ∴∠BAC=∠ACD﹣∠ABC=2x°﹣(x°﹣40°)﹣(x°﹣40°)=80°, ∴∠CAF=100°, 在Rt△PF A和Rt△PMA中, {PA=PA PM=PF, ∴Rt△PF A≌Rt△PMA(HL), ∴∠F AP=∠P AC=50°. 故选:C. 2.(2019?桂平市期末)如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=12cm,BD=8cm,那么点D到直线AB的距离是() A.2cm B.4cm C.6cm D.10cm 【点睛】先求出CD的长,过点D作DE⊥AB于点E,根据角平分线上的点到角的两边的距离相等的性质可得DE=CD,从而得解. 【解析】解:如图,过点D作DE⊥AB于点E,

几何证明角平分线模型(高级)

几何证明——角平分线模型(高级) 【经典例题】 例1、已知如图,ABC ?中,BC AC =,AD 平分CAB ∠,若ο 100=∠C ,求证:CD AD AB +=。 例2、如图,已知在ABC ?中,ο 60=∠B ,ABC ?的角平分线CE AD ,相交于点O ,求证:AC CD AE =+。 E O B 例3、如图,BD 平分ABC ∠,?=∠45ADB ,BC AE ⊥,求AED ∠. A B C D 例4、已知,如图ABC ?中,AD 为ABC ?的角平分线,求证:BD AC DC AB ?=?.

例5、如图,已知P 为锐角△ABC 内一点,过P 分别作AB AC BC ,,的垂线,垂足分别为F E D ,,,BM 为ABC ∠的平分线,MP 的延长线交AB 于点N ;如果PF PE PD +=,求证:CN 是ACB ∠的平分线。 A B C N M P D E F 例6、如图,在梯形ABCD 中,BC AD //,DC AB =,?=∠80ABC ,E 是腰CD 上一点,连接BE 、AC 、 AE ,若?=∠60ACB ,?=∠50EBC ,求EAC ∠的度数. B C E 例7、已知:ABC ?中,BC AB <,AC 的中点为M ,AC MN ⊥交ABC ∠的角平分线于N . (1)如图1,若?=∠60ABC ,求证:BN BC BA 3= +;

(2)如图2,若?=∠120ABC ,则BA 、BC 、BN 之间满足什么关系式,并对你得出的结论给予证明. A C 【提升训练】 1、在ABC ?中,AB AC >,AD 是BAC ∠的平分线.P 是AD 上任意一点.求证:AB AC PB PC ->-. B 2、如图,在ABC ?中,A ∠等于ο 60,BE 平分CD ABC ,∠平分ACB ∠,求证:EH DH =。 3、如图所示,在ABC ?中,AD 平分BAC ∠,AD AB =,CM AD ⊥于M ,求证:2AB AC AM +=。

2018数学中考专题--5-角平分线问题专题

2018年数学中考 角平分线专题 下面就以五种情况进行专题研究 1. 如图1,角平分线遇平行必有等腰三角形; 2. 如图2,垂直角平分线的直线与该角两边交成等腰三角形,并且垂足F 是GH 的中点(三线合一) ; 3. 如图3,角平分线定理; 4. 补半角成倍角,或分倍角为半角; 5. 角平分线与圆. D C E B A O H F G O C B A K N M Q P O A C B 图1 图2 图3 一、 角平分线遇平行找等腰三角形 1 . 探究1 如图①,AD 为等边△ABC 的内角平分线,显然有 AC CD AB DB = . 探究2 如图 ②,若△ABC 为任意三角形,线段AD 为其内角平分线, AC CD AB DB = 一定成立吗?证明你的判断. 应用:如图③,在Rt △ABC 中,∠ACB=90°,AC=24,AB=40,E 为AB 上一点且AE=15,CE 交其内角平分线 AD 于F. 试求DF FA 的值. C A B D A B D C A E B C D F ① ② ③ 2. 如图 1 ,点O 是△ABC 的内心,过点O 作EF ∥AB ,与AC 、BC 分别交于点E 、F ,则( ) A. EF AE BF >+ B. EF AE BF <+ C. EF AE BF =+ D. EF AE BF ≤+ F E O A B C E D A B C 图1 图2 3. 如图2,梯形ABCD 中,AD ∥BC ,AB=3,BC=5,连接BD ,∠BAD 的平分线交BD 于点E ,且AE ∥CD ,则AD 的长为 .

4. 如图3,在△ABC中,BC=6,E、F分别是AB、AC的中点,P在射线EF上,BP交CE于D,Q在CE上且BQ平分∠CBP. 设BP=y,PE=x. (1)当 1 3 CQ CE =时,求y与x之间的函数关系式; (2)当 1 CQ CE n =(n为不小于2的常数)时,直接写出y与x之间的函数关系式. Q P F E A B C D 图3 5.(1)如图①,在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与CD相交于F点. 试探究线段AB与AF、CF之间的等量关系,并证明你的结论; A B E F C D D C F E B A 图①图② (2)如图②,当F在DC的延长线上时(其他条件不变),请你直接写出线段AB与AF、CF之间的数量关系.

角平分线常用模型

每日一题:三角形中角平分线的基本模型 武穴市百汇学校徐国纲 在初中阶段,角平分线问题涉及角度的计算和证明。经过总结归纳,有相当部分可以转化为基本模型,掌握这些模型,可以为我们迅速找到解题思路,形成良好的数学思维习惯奠定基础。下面举例说明。 【模型一】角平分线+垂直一边 若PA⊥OM于点A,如图a,可以过P点作PB⊥ON于点B,则PB=PA。可记为“图中有角平分线,可向两边作垂线”,显然这个基本图形中可以利用角平分线的性质定理,也可以得到一组全等三角形; 【模型二】角平分线+斜线 若点A是射线OM上任意一点,如图b,可以在ON上截取OB=OA,连接PB,构造△OPB≌△OPA。可记为“图中有角平分线,可以将图形对折看,对称以后关系现”。 【模型三】角平分线+垂线 若AP⊥OP于点P,如图c,可延长AP交ON于点B,构造△AOB是等腰三角形,P是底边AB 的中点,可记为“角平分线加垂线,三线合一试试看”,实际上这是“两线合一”的一种情形,这个图形中隐含着全等和等腰三角形; 【模型四】角平分线+平行线 若过P点作PQ∥ON交OM于点Q,如图d,可以构造△POQ是等腰三角形,可记为“角平分线+平行线,等腰三角形必呈现”,这个基本图形使用频率那是相当的高,切记。 【模型五】角平分线+对角互补 若∠A+∠C=180°,BD是∠ABC的平分线,则AD=CD. 【模型六】夹角模型 ①BP、CP分别是∠ABC、∠ACE的角平分线,则:∠P=90°+1 2 ∠A. ②BP、CP分别是∠ABC、∠ACE的角平分线,则:∠P=1 2 ∠A.

BP、CP分别是∠CBD、∠BCD的角平分线,则:∠D=90°-1 2 ∠B.

角平分线四大模型(完整版)

角平分线四大模型 模型一: 这个模型的基本思想是过角平分线上一点P 作角两边的垂线。如图中PA ⊥OA ,PB ⊥OB 。容易通过全等得到PA=PB (角平分线性质)。 注意:题目一般只有一条垂线,需要自行补出另一条垂线。甚至只给你一条角平分线,自行添加两条垂线。 例题1:AF 是△ABC 的角平分线。P 是AF 上任意一点。过点P 作AB 平行线交BC 于点D ,作AC 的平行线交BC 与点E 。证明:点F 到DP 的距离与点F 到EP 的距离相等。 拓展,如果点P 在AF 延长线上,结论是否依然成立? 例题2:如图正方形ABCD 的边长为4,∠DAC 的平分线交DC 于点E ,若点P 、Q 分别是AD 和AE 上的动点,则DQ+PQ 的最小值是__2√2__ E

模型二: 这个模型的基础是,在角平分线上任意找一点P ,过点P 作角平分线的垂线交角的两条边与A 、B 。这样就构造出了一个等腰三角形AOB ,即OA=OB 。这个模型还可以得到P 是AB 中点。 注意:这个模型与一之间的区别在于垂直 的位置。并且辅助线的添加方法一般是延长一段与角平分线垂直的线段。如图中的PB 。 例题1:如图,∠BAD=∠CAD ,AB>AC ,CD 垂直AD 于点D ,H 是BC 的中点。 求证:DH=1/2(AB-AC ) 提示:要使用到三角形中位线的性质,即三角形中位线是对应边的一半。 模型三: 这个模型的基础是在角的两边分别截取OA=OB ,然后在对角线上取任意一点P ,连接AP ,BP 。容易证得△APO ≌△BPO 。 注意:一般这样的模型最容易被孩子忽略,因为这个模型里没有的角度,因而对于孩子而言添出PB 这条辅助线是有难度的。添加这条辅助线的基本思想是在ON 上截 取OB ,使得AP=BP 。从而构造出一个轴对称。这样的模型一般会出现在截长补短里。 B B N

角平分线模型的构造

支付宝首页搜索“ 933314”领红包,每 天都能领。付款前记得用红包 第二讲角平分线模型的构造 3月 角平分线 (l)定义:如图2-1,如果∠AOB =∠BOC ,那么∠AOC=2∠AOB=2∠BOC ,像OB 这样,从一个角的顶点出发,把这个角分成相等的两个角的射线,叫作这个角的角平分线. (2)角平分线的性质定理 ①如果一条射线是一个角的平分线,那么它把这个角分成两个相等的角, ②在角的平分线上的点到这个角的两边的距离相等. (3)角平分线的判定定理 ①在角的内部,如果一条射线的端点与角的顶点重合,且把一个角分成两个等角,那么这条射线是这个角的平分线, ②在角的内部,到一个角两边距离相等的点在这个角的平分线上, 与角平分线有关的常用辅助线作法,即角平分线的四大基本模型, 已知P 是∠MON 平分线上一点, (l)若PA ⊥OM 于点A ,如图2-2(a),可以过P 点作PB ⊥ON 于点B ,则PB=PA.可记为“图中有角平分线,可向两边作垂线”. (a) O (b) (2)若点A 是射线OM 上任意一点,如图2-2(b),可以在ON 上截取OB=OA ,连接PB ,构造△OPB ∽△OPA.可记为“图中有角平分线,可以将图对 折看,对称以后关系现”. (3)若AP ⊥OP 于点P ,如图2-2(c),可以延长AP 交ON 于点B ,构造△AOB 是等腰三角形,P 是底边AB 的中点,可记为“角平分线加垂线,三线合一试试看”. (c) O (d) O (4)若过P 点作PQ ∥ON 交OM 于点Q ,如图2-2(d),可以构造△POQ 是等腰三角形,可记为“角平分线十平行线,等腰三角形必呈现”. 例1 (1)如图2-3(a),在△ABC 中,∠C=90。,AD 平分∠CAB ,BC=6cm ,BD=4cm ,那么点D 到直线AB 的距离是( )cm. 图2-3 (a ) (2)如图2-3(b),已知:∠1=∠2,∠3=∠4, 求证:AP 平分∠BAC . 图2-3(b )

初中数学三角形内外角平分线有关命题的证明及应用

三角形内外角平分线 一.命题的证明及应用 在中考常有及三角形内外角平分线有关的题目,若平时不注意总结是很难一下子解决的.下面来一起学习一下. 命题1 如图1,点D是△ABC两个内角平分线的交点,则∠D=90° +∠A. 证明:如图1: ∵∠1=∠,∠2=∠, ∴2∠1+2∠2+∠A=180°① ∠1+∠2+∠D=180°② ①-②得: ∠1+∠2+∠A=∠D③ 由②得: ∠1+∠2=180°-∠D④ 把③代入④得: ∴180°-∠D+∠A=∠D

∠D=90°+∠A. 点评利用角平分线的定义和三角形的内角和等于180°,不难证明. 命题2 如图2,点D是△ABC两个内角平分线的交点,则∠D=90°-∠A. 证明:如图2: ∵DB和DC是△ABC的两条外角平分线, ∴∠D=180°-∠1-∠2 =180°-(∠DBE+∠DCF) =180°-(∠A+∠4+∠A+∠3) =180°-(∠A+180°) =180°-∠A-90°

=90°-∠A; 点评利用角平分线的定义和三角形的一个外角等于及它不相邻两外角的和以及三角形的内角和等于180°,可以证明. 命题3 如图3,点E是△ABC一个内角平分线及一个外角平分线的交点,则∠E=∠A. 证明:如图3: ∵∠1=∠2,∠3=∠4, ∠A+2∠1=2∠4① ∠1+∠E=∠4② ①×代入②得: ∠E=∠A. 点评利用角平分线的定义和三角形的一个外角等于及它不相邻两外角的和,很容易证明.

命题4 如图4,点E是△ABC一个内角平分线BE及一个外角平分线CE的交点,证明:AE是△ABC的外角平分线. 证明:如图3: ∵BE是∠ABC的平分线,可得:EH=EF CE是∠ACD的平分线, 可得:EG=EF ∴过点E分别向AB、AC、BC所在的直线引垂线,所得的垂线段相等. 即EF=EG=EH ∵EG=EH ∴AE是△ABC的外角平分线. 点评利用角平分线的性质和判定能够证明. 应用上面的结论能轻松地解答一些相关的比较复杂的问题,下面来一起看. 例1如图5,PB和PC是△ABC的两条外角平分线. ①已知∠A=60°,请直接写出∠P的度数. ②三角形的三条外角平分线所在的直线形成的三角形按角分类属于什么三角形? 解析:①由命题2的结论直接得:∠P=90°-∠A=90°-×60°=60°

初中数学常见模型之角平分线四大模型

角平分线四大模型 模型1 角平分线上的点向两边作垂线 如图,P 是∠MON 的平分线上一点,过点P 作PA ⊥OM 于点A ,PB ⊥ON 于点B 。 结论:PB=PA 。 模型分析 利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口。 模型实例 (1)如图①,在△ABC 中,∠C=90°,AD 平分∠CAB ,BC=6,BD=4,那么点D 到直线AB 的距离是 ; (2)如图②,∠1=∠2,+∠3=∠4。 求证:AP 平分∠BAC 。 热搜精练 1.如图,在四边形ABCD 中,BC>AB ,AD=DC ,BD 平分∠ABC 。 求证:∠BAD+∠BCD=180°。 2.如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 的平分线BP 交于点 P ,若∠BPC=40°,则∠CAP= 。 N M O A B P 2图4321A C P B D A B C 图1A B D C

模型2 截取构造对称全等 如图,P 是∠MON 的平分线上一点,点A 是射线OM 上任意一点,在ON 上截取OB=OA ,连接PB 。 结论:△OPB ≌△OPA 。 模型分析 利用角平分线图形的对称性,在角的两边构造对称全等三角形,可以得到对应边、对应角相等。利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧。 模型实例 (1)如图①所示,在△ABC 中,AD 是△ABC 的外角平分线,P 是AD 上异于点 A 的任意一点,试比较PB+PC 与AB+AC 的大小,并说明理由; (2)如图②所示, AD 是△ABC 的内角平分线,其他条件不变,试比较 PC-PB 与AC-AB 的大小,并说明理由。 热搜精练 1.已知,在△ABC 中,∠A=2∠B ,CD 是∠ACB 的平分线,AC=16,AD=8。 求线段BC 的长。 A B D C P P O N M B A 图2D P A B C D C 1图P B A A B C D

角平分线四大模型

角平分线四大模型 模型1 角平分线的点向两边作垂线 如图,P是∠MON的平分线上一点,过点P作PA⊥OM于点A,PB⊥ON于点B,则PB=PA 模型分析 利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口 模型实例 (1)如图①,在△ABC中,∠C=90°,AD平分∠CAB,BC=6,BD=4,那么点D到直线AB的距离是 解答:如图,过点D作DE⊥AB于点E,∵AD平分∠CAB,∴CD=DE. ∵CB=6,BD=4,∴DE=CD=2,即点D到直线AB的距离是2. (2)如图②,∠1=∠2,∠3=∠4,求证:AP平分∠BAC 证明:如图,过点P作PD⊥AB于点D,PE⊥BC于点E,PF⊥AC于点F, ∵∠1=∠2,∴PD=PE,∵∠3=∠4, ∴PE=PF,∴PD=PF 又∵PD⊥AB,PF⊥AC,∴AP平分∠BAC(角平分线的判定) 练习 1、如图,在四边形ABCD中,BC>AB,AD=DC,BD平分∠ABC , 求证:∠BAD+∠BCD=180°

证明:作DE⊥BC于E,作DF⊥BA的延长线于F,∴∠F=∠DEC=90°, ∵BD平分∠ABC,∴DF=DE,又∵AD=DC,∴△DFA≌DEC,∴∠FAD=∠C ∵∠FAD+∠BAD=180°,∴∠BAD+∠BCD=180° 2.如图,△ABC的外角∠ACD∠的平分线CP与内角∠ABC的平分线BP相交于点P,若∠BPC=40°,则∠CAP = . 解答:如图所示,作PN⊥BD于N,作PF⊥BA,交BA延长线于F,作PM⊥AC于M ∵BP、CP分别是∠CBA和∠DCA的角平分线,∴∠ABP=∠CBP,∠DCP=∠ACP, PF=PN=PM,∵∠BAC=∠ACD-∠ABC,∠BPC=∠PCD-∠PBC(外角性质) ∴∠BAC=2∠PCD-2∠PBC=2(∠PCD-∠PBC)=2∠BPC=80° ∴∠CAF=180°-∠BAC=100°,∵PF=PM ∴AP是∠FAC的角平分线,∴∠CAP=∠PAF=50° 模型2 截取构造对称全等 如图,P是∠MON的平分线上的一点,点A是射线OM上任意一点,在ON上截取OB=OA,连接PB,则△OPB ≌△OPA

中考数学专题复习——三角形和角平分线(详细答案)

中考数学专题复习——三角形和角平分线 一.选择题(共16小题) 1.(2018?柳州)如图,图中直角三角形共有() A.1个 B.2个 C.3个 D.4个 2.(2018?贵阳)如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线,则该线段是() A.线段DE B.线段BE C.线段EF D.线段FG 3.(2018?河北)下列图形具有稳定性的是() A.B.C.D. 4.(2018?长沙)下列长度的三条线段,能组成三角形的是() A.4cm,5cm,9cm B.8cm,8cm,15cm C.5cm,5cm,10cm D.6cm,7cm,14cm 5.(2018?福建)下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,5 6.(2018?常德)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是() A.1 B.2 C.8 D.11

7.(2018?昆明)在△AOC中,OB交AC于点D,量角器的摆放如图所示,则∠CDO的度数为() A.90°B.95°C.100° D.120° 8.(2018?长春)如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为() A.44°B.40°C.39°D.38° 9.(2018?黄石)如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=() A.75°B.80°C.85°D.90° 10.(2018?聊城)如图,将一张三角形纸片ABC的一角折叠, 使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β, ∠BDA'=γ,那么下列式子中正确的是() A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β 11.(2018?广西)如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()

【5A版】初中数学角平分线说课稿

§1.4.1角平分线 尊敬的各位领导、各位老师: 大家好! 我今天说课的课题是角平分线,它是北师大版八年级下册第一章第四节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法: 一、教材分析:角平分线的概念在之前已经介绍过,它的性质很重要,在几何里证明线段或角相等时常常用到它们,为证明过程开辟了新的途径。而前几节对用直角三角形全等的判定方法的学习,为证明角平分线的性质定理和逆定理创造了条件。 二、教学目标分析:我把教学目标设定为以下三个方面: 知识目标:能够掌握并证明角平分线的性质定理、判定定理;并能能够运用角平分线的性质定理、判定定理解决几何问题 技能目标:通过定理的初步应用,培养学生的逻辑推理能力及创新的能力. 情感目标:通过自主学习和发展体验获取数学知识的成就感; 三、教学重点和难点分析: 本节内容的重点是角平分线的性质定理、判定定理及它们的应用。 难点是如何直接利用角平分线的性质定理、判定定理解决几何问题。 四、教法学法分析:本节课我将以学生为主体,结合多媒体教学,引导学生自主学习、合作学习和探究学习,鼓励学生多思、多说、多练,让学生在观察中发现,在发现中探索,在探索中创新。 五、教学过程分析:本节课分成七个环节: 第一环节是复习引入,温故而知新: 在这一部分,我主要通过提问的形式来复习两个相关的知识内容:点到直线的距离和角平分线的定义;为学生探索学习角平分线打下基础。 第二个环节创设情境,引入课题。 我先提出一个问题:同学们知道角平分线上的点有什么性质吗?可以怎样得到它们呢? 在这里,我设计折纸和量一量的活动,通过让学生动手操作、体验,从而更直观地了解角平分线及其性质,并且能更准确地用文字语言把角平分线的性质定理表示出来:即角平分线上的点到角两边的距离相等。 第三个环节探究证明,这一环节我将分为两个部分来完成: 第一部分,先提出思考,除了用动手操作的方法证明这个定理之外,能否用几何语言把它的证明表达出来? 然后引导并要求学生把定理写成“如果……那么……”形式,再根据其条件和结论,写出已知、求证和证明过程。 这一部分我将由学生独自完成,对有困难的学生加以指导,这样即可以检查学生对利用三角形全

角平分线的四大模型(Word版)

角平分线四大模型 模型一:角平分线上的点向两边作垂线 如图,P是∠MON的平分线上一点,过点P作PA⊥OM于点A,PB⊥ON于点 B,则PB=PA. 模型分析:利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口。 例1:(1)如图①,在△ABC,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那么点D到AB的距离是___cm (2)如图②,已知∠1=∠2,∠3=∠4,求证:AP平分∠BAC. 练习1 如图,在四边形ABCD中,BC>BA,AD=DC,BD平分∠ABC. 求证:∠BAD+∠C=180° 练习2 如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=()

模型二:截取构造对称全等 如图,P是∠MON的平分线上一点,点A是射线OM上任意一点,在ON上 截取OB=OA,连接PB,则△OPB△OPA. 模型分析:利用角平分线图形的对称性,在角的两边构造对称全等三角形,可以得到对应边、对应角相等、利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧。 例2:(1)如图①所示,在△ABC中,AD是△BAC的外角平分线,P是AD上异于点A的任意一点,试比较PB+PC与AB+AC的大小,并说明理由. (2)如图②所示.AD是△ABC的内角平分线,其他条件不变,试比较PC -PB与AC-AB的大小,并说明理由. 练习 3 已知:△ABC中,∠A=2∠B,CD是∠ACB的平分线,AC=16,AD=8,求线段BC的长。 练习4 已知,如图AB=AC,∠A=108°,BD平分∠ABC交AC于D,求证:BC=AB+CD. 练习5 如图,在△ABC中,∠A=100°,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,使DE=AD.求证:BC=AB+CE.

(完整版)初中数学之三角形中线、高线、角平分线知识点

初中数学之三角形中线、高线、角平分线知识点 我们在学习三角形的时候,学到好多“线”,比如:中线、角平分线、垂线、高线等等。它们都是三角形里面比较重要的东西,也是比较重要的知识点。 如图所示,在△ABC中,AB=8,AC=6,AD是△ABC的中线,则△ABD与△ADC的周长之差为多少? 这道题题目比较简单,很容易得出答案是2。 三角形的中线

在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。由于三角形有三条边,所以一个三角形有三条中线。且三条中线交于一点。这点称为三角形的重心。每条三角形中线分得的两个三角形面积相等。 三角形中线性质定理:1、三角形的三条中线都在三角形内。 2、三角形的三条中线交于一点,该点叫做三角形的重心。 3、直角三角形斜边上的中线等于斜边的一半。 4.三角形中线组成的三角形面积等于这个三角形面积的3/4. 三角形的角平分线

三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。三角形的角平分线不是角的平分线,是线段。角的平分线是射线。(这是三角形的角平分线与角平分线的区别) 角平分线线定理:定理1:在角平分线上的任意一点到这个角的两边距离相等。逆定理:在一个角的内部(包括顶点),且到这个角的两边距离相等的点在这个角的角平分线上。定理2:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例,如:在△ABC中,BD平分∠ABC,则AD:DC=AB:BC注:定理2的逆命题也成立。三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等!(即内心)。 三角形的高线

从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。线段的垂直平分线:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线。注意:要证明一条线为一个线段的垂直平分线,应证明两个点到这条线段的距离相等且这两个点都在要求证的直线上才可以证明 垂直平分线的性质:1.垂直平分线垂直且平分其所在线段。 2.垂直平分线上任意一点,到线段两端点的距离相等。 3.三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等。垂直平分线的逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

角平分线模型的构造

第二讲角平分线模型的构造3月 角平分线 (I)定义:如图2-1,如果/ AOB = / BOC,那么/ A0C=2 / AOB=2 / BOC,像OB 这样,从一个角的 顶点出发,把这个角分成相等的两个角的射线,叫 作这个角的角平分线. ⑷若过P点作PQ// ON交OM于点Q,如图2-2(d), 可以构造厶POQ是等腰三角形,可记为“角平分线 十平行线,等腰三角形必呈现” ? 例1 (1)如图2-3(a),在厶ABC 中,/ C=90。,AD 平分 / CAB,BC=6cm,BD=4cm,那么点D 到直线AB的距离是( )cm. (2)角平分线的性质定理 ①如果一条射线是一个角的平分线,那么它把这个 角分成两个相等的角, ②在角的平分线上的点到这个角的两边的距离相 等. (3)角平分线的判定定理 ①在角的内部,如果一条射线的端点与角的顶点重 合,且把一个角分成两个等角,那么这条射线是这 个角的平分线, ②在角的内部,到一个角两边距离相等的点在这个 角的平分线上, 与角平分线有关的常用辅助线作法,即角平分线的 四大基本模型, 已知P是/ MON平分线上一点, (I)若PA丄OM于点A,如图2-2(a),可以过P点作 PB丄ON于点B,贝U PB=PA.可记为“图中有角平 分线,可向两边作垂线” 图2-3 (a) ⑵如图2-3(b),已知:/仁/2,Z 3=Z4, 求 证:AP平分/ BAC . ⑵若点A是射线OM上任意一点,如图2-2(b),可以在ON上截取OB=OA,连接PB,构造△ OPB OPA.可记为“图中有角平分线,可以将图对折看,对称以后关系现”. ⑶若AP丄OP于点P,如图2-2(c),可以延长AP 交ON于点B,构造△ AOB是等腰三角形,P是底边AB的中点,可记为“角平分线加垂线,三线合 、亠、亠K ” (b)

角平分线的几种辅助线作法与三种模型精编版

1 一、角平分线的三种“模型” 模型一:角平分线+平行线→等腰三角形 如图1,过∠AOB 平分线OC 上的一点P ,作PE ∥OB ,交OA 于点E ,则EO=EP. A A A E P C E C D F E P O B B C O F B 图1 图2 图3 例1 如图2,∠ABC ,∠ACB 的平分线相交于点F ,过F 作DE ∥BC ,交AB 于点D ,交AC 于点E.求证:BD+EC=DE. 模型二:角平分线+垂线→等腰三角形 如图3,过∠AOB 平分线OC 上的一点P ,作EF ⊥OC ,交OA 于点E ,交OB 于点F ,则OE=OF ,PE=PF. 例2 如图4,BD 是∠ABC 的平分线,AD ⊥BD ,垂足为D ,求证:∠BAD=∠DAC+∠C. 模型三:角平分线+翻折→全等三角形 在△ABC 中,AD 是∠BAC 的平分线,沿角平分线AD 将△ABD 往右边折叠就得到如图5的图形.此时有:△ABD ≌△AB /D.此翻折 相当于在三角形的一边截取线段等于另一边,或延长一边等于另一边构造出相等的线段.用此方法可解决一些不相等的线段和差类问题. D A E A P / B C D B / B C 图5 图6 例3 如图6,点P 是△ABC 的外角∠CAD 的平分线上的一点.求证: PB+PC>AB+AC. 二、角平分线定理使用中的几种辅助线作法 一、已知角平分线,构造三角形 1、如图所示,在△ABC 中,∠ABC=3∠C ,AD 是∠BAC 的平分线,BE ⊥AD 于F 。 求证:1 ()2 BE AC AB =- 2、在△ABC 中,AD 平分∠BAC ,CE ⊥AD 于E .求证:∠ACE=∠B+∠ECD . 2 1F E D C B A A B D C E F 图

初三中考数学角平分线

全国100份试卷分类汇编 角平分线 1、(?雅安)如图,AB∥CD,AD平分∠BAC,且∠C=80°,则∠D的度数为() A.50°B.60°C.70°D.100° 考点:平行线的性质;角平分线的定义. 分析:根据角平分线的定义可得∠BAD=∠CAD,再根据两直线平行,内错角相等可得∠BAD=∠D,从而得到∠CAD=∠D,再利用三角形的内角和定理列式计算即可得解.解答:解:∵AD平分∠BAC, ∴∠BAD=∠CAD, ∵AB∥CD, ∴∠BAD=∠D, ∴∠CAD=∠D, 在△ACD中,∠C+∠D+∠CAD=180°, ∴80°+∠D+∠D=180°, 解得∠D=50°. 故选A. 点评:本题考查了平行线的性质,角平分线的定义,三角形的内角和定理,熟记性质并准确识图是解题的关键. 2、(?遂宁)如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是() ①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3. A.1B.2C.3D.4 考点:角平分线的性质;线段垂直平分线的性质;作图—基本作图. 分析:①根据作图的过程可以判定AD是∠BAC的角平分线; ②利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的 度数;

③利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三合一”的性质 可以证明点D在AB的中垂线上; ④利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形 的面积之比. 解答:解:①根据作图的过程可知,AD是∠BAC的平分线. 故①正确; ②如图,∵在△ABC中,∠C=90°,∠B=30°, ∴∠CAB=60°. 又∵AD是∠BAC的平分线, ∴∠1=∠2=∠CAB=30°, ∴∠3=90°﹣∠2=60°,即∠ADC=60°. 故②正确; ③∵∠1=∠B=30°, ∴AD=BD, ∴点D在AB的中垂线上. 故③正确; ④∵如图,在直角△ACD中,∠2=30°, ∴CD=AD, ∴BC=CD+BD=AD+AD=AD,S△DAC=AC?CD=AC?AD. ∴S△ABC=AC?BC=AC?AD=AC?AD, ∴S△DAC:S△ABC=AC?AD:AC?AD=1:3. 故④正确. 综上所述,正确的结论是:①②③④,共有4个. 故选D. 点评:本题考查了角平分线的性质、线段垂直平分线的性质以及作图﹣基本作图.解题时,需要熟悉等腰三角形的判定与性质. 3、(?咸宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()

角平分线的几种辅助线作法与三种模型

角平分线的几种辅助线 作法与三种模型 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

一、角平分线的三种“模型” 模型一:角平分线+平行线→等腰三角形 如图1,过∠AOB平分线OC上的一点P,作PE∥OB,交OA于点E,则EO=EP. AAA EPCEC DFEP OBBCOFB 图1图2图3 例1如图2,∠ABC,∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E.求证:BD+EC=DE. 模型二:角平分线+垂线→等腰三角形 如图3,过∠AOB平分线OC上的一点P,作 EF⊥OC,交OA于点E,交OB于点F,则OE=OF, PE=PF. 例2如图4,BD是∠ABC的平分线,AD⊥BD, 垂足为D,求证:∠BAD=∠DAC+∠C. 模型三:角平分线+翻折→全等三角形 在△ABC中,AD是∠BAC的平分线,沿角平分线AD将△ABD往右边折叠就得到如图5的图形.此时有:△ABD≌△AB/D.此翻折相当于在三角形的一边截取线段等于另一边,或延长一边等于另一边构造出相等的线段.用此方法可解决一些不相等的线段和差类问题. D AE AP /BC DB/BC

图5图6 例3 如图6,点P 是△ABC 的外角∠CAD 的平分线上的一点.求证:PB+PC>AB+AC. 二、角平分线定理使用中的几种辅助线作法 一、已知角平分线,构造三角形 1、如图所示,在△ABC 中,∠ABC=3∠C ,AD 是∠BAC 的平分线,BE ⊥AD 于F 。 求证:1 ()2 BE AC AB =- 2、在△ABC 中,AD 平分∠BAC ,CE ⊥AD 于E .求证:∠ACE=∠B+∠ ECD . 二、已知一个点到角的一边的距离,过这个点作另一边的垂线段 1、如图所示,∠1=∠2,P 为BN 上的一点,并且PD ⊥BC 于D ,AB +BC=2BD 。 求证:∠BAP +∠BCP=180°。 三、已知角平分线和其上面的一点,过这一点作角的两边的垂线段 1、如图所示,在△ABC 中,PB 、PC 分别是∠ABC 的外角的平分线,求证:∠1=∠2 2、2、如图2,AB ∥CD ,E 为AD 上一点,且BE 、CE 分别平分∠ABC 、∠BCD . 2 1F E D C B A N P E D C B A 2 1 P F E C B A A G C H D E F 图2 A B D C E F 图

2第二章 角平分线四大模型(1)(1)

N M O A B P 2图4 321A C P B D A B C 图1A B D C A B D C P 第二章 角平分线四大模型 模型1 角平分线上的点向两边作垂线 如图,P 是∠MON 的平分线上一点,过点P 作 PA ⊥OM 于点A ,PB ⊥ON 于点B 。 结论:PB=PA 。 模型分析 利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口。 模型实例 (1)如图①,在△ABC 中,∠C=90°,AD 平分∠CAB ,BC=6,BD=4,那么点D 到直线AB 的距离是 ; (2)如图②,∠1=∠2,+∠3=∠4。 求证:AP 平分∠BAC 。 热搜精练 1.如图,在四边形ABCD 中,BC>AB ,AD=DC ,BD 平分∠ABC 。 求证:∠BAD+∠BCD=180°。 2.如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 的平分线BP 交于点 P ,若∠BPC=40°,则∠CAP= 。

P O N M B A 图2D P A B C D C 1图P B A A B C D A B C D E D C B A 模型2 截取构造对称全等 如图,P 是∠MON 的平分线上一点,点A 是射线OM 上任意一点,在ON 上截取OB=OA ,连接PB 。 结论:△OPB ≌△OPA 。 模型分析 利用角平分线图形的对称性,在角的两边构造对称全等三角形,可以得到对应边、对应角相等。利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧。 模型实例 (1)如图①所示,在△ABC 中,AD 是△ABC 的外角平分线,P 是AD 上异于点 A 的任意一点,试比较PB+PC 与AB+AC 的大小,并说明理由; (2)如图②所示, AD 是△ABC 的内角平分线,其他条件不变,试比较 PC-PB 与AC-AB 的大小,并说明理由。 热搜精练 1.已知,在△ABC 中,∠A=2∠B ,CD 是∠ACB 的平分线,AC=16,AD=8。 求线段BC 的长。 2.已知,在△ABC 中,AB=AC ,∠A=108°,BD 平分∠ABC 。 求证:BC=AB+CD 。 3.如图所示,在△ABC 中,∠A=100°,∠A=40°,BD 是∠ABC 的平分线,延 长BD 至E ,DE=AD 。求证:BC=AB+CE 。

初中数学讲义初二上册角的平分线的性质(基础)知识讲解

角的平分线的性质(基础) 【学习目标】 1.掌握角平分线的性质,理解三角形的三条角平分线的性质. 2.掌握角平分线的判定及角平分线的画法. 3. 熟练运用角的平分线的性质解决问题. 【要点梳理】 【高清课堂:388612 角平分线的性质,知识要点】 要点一、角的平分线的性质 角的平分线的性质:角的平分线上的点到角两边的距离相等. 要点诠释: 用符号语言表示角的平分线的性质定理: 若CD平分∠ADB,点P是CD上一点,且PE⊥AD于点E,PF⊥BD于点F,则PE=PF. 要点二、角的平分线的判定 角平分线的判定:角的内部到角两边距离相等的点在角的平分线上. 要点诠释: 用符号语言表示角的平分线的判定: 若PE⊥AD于点E,PF⊥BD于点F,PE=PF,则PD平分∠ADB 要点三、角的平分线的尺规作图 角平分线的尺规作图 (1)以O为圆心,适当长为半径画弧,交OA于D,交OB于E. (2)分别以D、E为圆心,大于1 2 DE的长为半径画弧,两弧在∠AOB内部交于点C. (3)画射线OC. 射线OC即为所求. 要点四、三角形角平分线的性质

三角形三条角平分线交于三角形内部一点,此点叫做三角形的内心且这一点到三角形三边的距离相等. 三角形的一内角平分线和另外两顶点处的外角平分线交于一点.这点叫做三角形的旁心.三角形有三个旁心.所以到三角形三边所在直线距离相等的点共有4个.如图所示:△ABC 的内心为1P ,旁心为234,,P P P ,这四个点到△ABC 三边所在直线距离相等. 【典型例题】 类型一、角的平分线的性质 1.(2015春?启东市校级月考)如图,已知BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM⊥AD 于M ,PN⊥CD 于N ,求证:PM=PN . 【思路点拨】根据角平分线的定义可得∠ABD=∠CBD,然后利用“边角边”证明△ABD 和△CBD 全等,根据全等三角形对应角相等可得∠ADB=∠CDB,然后根据角平分线上的点到角的两边的距离相等证明即可. 【答案与解析】 证明:∵BD 为∠ABC 的平分线, ∴∠ABD=∠CBD, 在△ABD 和△CBD 中, , ∴△ABD≌△CBD(SAS ), ∴∠ADB=∠CDB, ∵点P 在BD 上,PM⊥AD,PN⊥CD, ∴PM=PN. 【总结升华】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB 是解题的关键.

沪科版九年级下册第05讲—角平分线四大模型

角平分线的定义:从一个角的顶点引出的一条射线,把这个叫分成两个相等的角,这条射线叫做这个角的平分线 角平分线的性质定理:角平分线上的点到角两边距离相等 角平分线的判定定理:角的内部,到角两边距离相等的点,在这个角的平分线上模型一:双垂直模型基础 角的平分线上的点到这个角的两边的距离相等 【例】已知: 4 3 ,2 1∠ = ∠ ∠ = ∠,求证:AP平分BAC ∠ 解答:可证

双垂直模型进阶 【例1】已知:如图,在四边形中,CD AD AB BC =>,,BD 平分ABC ∠,求证:BAD ∠ 180=∠+C 解答: ①方法一:双垂模型 ②方法二:双等模型 可证 【例2】如图,正方形ABCD 的边长为4,DAC ∠的平分线交DC 于点E ,若点Q P ,分别是AD 和AE 上的动点,则PQ DQ +的最小值是

解答: ①方法一:双垂模型 ②方法二:双等模型【将军饮马+垂线段最短】 得证22 模型二:单垂模型基础 有垂直于角平分线的线,果断延长,就会得到一个等腰三角形 【例】如图,在ABC ?中,BE 是角平分线,BE AD ⊥,垂足为D ,求证:C ∠+∠=∠12

解答:可证 单垂模型进阶

【例1】已知:如图,在ABC ?中, AC AB BAC ==∠,90 ,BE 平分ABC ∠,BE CE ⊥,求证: BD CE 21 = 解答:可证 【例2】如图,AD CD AC AB CAD BAD ⊥>∠=∠,,于点D ,H 是BC 的中点,求证: ) (21 AC AB DH -= 解答:可证

模型三:双等模型基础 如图所示,OP 平分MON ∠,A 为OM 上一点,C 为OP 上一点,连接AC ,在射线ON 上截取OA OB =,连接BC ,易证:BOC AOC ??? 【例】如图所示,在ABC ?中,AB AC >,AD 是内角平分线,P 是AD 上异于点A 的任意一点,求证:AB AC PB PC -<-

相关文档
最新文档