射频与微波基础知识
射频与微波的基本概念

射频与微波的基本概念
射频(RF)和微波(Microwave)是电磁波的一部分,它们在频率上分别处于3 kHz 至300 GHz和300 MHz至300 GHz之间。
射频和微波是广泛应用于通信、雷达、卫星、无线电调制解调器、无线电发射和接收设备等领域的电磁波。
射频和微波是无线电波的特殊类型,具有以下特征:
1. 高频:射频和微波的频率非常高,通常比较可见光的频率高数百万倍甚至更高。
2. 高速:射频和微波在空气和真空中的传输速度几乎达到光速。
3. 无线传输:射频和微波可以在不依赖传输媒介的情况下在空气、真空和其他透明材料中传输。
4. 强穿透能力:射频和微波可以穿透某些材料和物体,这使得它们在通信和雷达等领域中得到广泛应用。
射频和微波的应用非常广泛,例如在移动通信领域中,射频和微波被用于发送和接收无线信号。
在卫星通信中,射频和微波作为数据传输和信号接收的媒介。
在
雷达中,利用射频和微波来探测目标物体的距离和速度。
射频与微波信号发生器工作原理

射频与微波信号发生器工作原理射频与微波信号发生器的工作原理是基于射频电子学和微波工程的理论原理。
这些原理涉及到电磁学、电子器件、射频电路和信号处理等领域,需要深入的专业知识。
以下将从基本概念、工作原理、应用领域及发展趋势等方面展开介绍。
一、基本概念1.1 射频信号与微波信号射频(Radio Frequency,RF)信号通常指在300 kHz至1 GHz范围内的电磁波信号,而微波(Microwave)信号则指频率在1 GHz至300 GHz范围内的电磁波。
射频与微波信号的特点是在传输和处理过程中,有较高的频率、短波长和较高的传输能力。
1.2 信号发生器信号发生器是一种电子仪器,用于产生各种频率、振幅和波形的信号。
在射频与微波工程领域中,信号发生器通常用于产生射频和微波信号,包括正弦波、方波、脉冲等信号,以供射频测试、通信、雷达、微波加热等应用的需求。
二、工作原理2.1 振荡器原理射频与微波信号发生器的核心部件是振荡器。
振荡器实质上是一种能够产生连续振荡的电路,它能够将直流电能转换为无线电频率的交流电能输出,是信号发生器产生射频与微波信号的基础。
振荡器的振荡原理主要包括对振荡电路中的负反馈、放大元件(如晶体管、场效应管、二极管)、振荡电路的谐振条件等的分析。
当振荡电路处于稳定的谐振状态时,将会产生稳定的射频或微波信号输出。
2.2 频率合成原理在实际应用中,需要产生不同频率的射频与微波信号,这就需要用频率合成技术来实现。
频率合成技术通常采用数字频率合成(DDS)或模拟频率合成的方法,它能够通过对不同频率的信号进行合成从而获得所需频率的信号输出。
三、应用领域射频与微波信号发生器在通信、雷达、无线电测试、科学研究、医学成像、微波加热等领域有广泛的应用。
在通信领域,射频与微波信号发生器用于产生各种载波信号、调制信号,用于移动通信、卫星通信和无线局域网等系统。
在雷达系统中,信号发生器用于产生雷达脉冲信号和各种波形信号。
射频与微波原理及应用介绍

射频与微波原理及应⽤介绍射频与微波技术原理及应⽤培训教材华东师范⼤学微波研究所⼀、Maxwell(麦克斯韦)⽅程Maxwell ⽅程是经典电磁理论的基本⽅程,是解决所有电磁问题的基础,它⽤数学形式概括了宏观电磁场的基本性质。
其微分形式为0B E t DH J tD B ρ=-=+??=?=(1.1)对于各向同性介质,有D E B H J E εµσ===(1.2)其中D 为电位移⽮量、B为磁感应强度、J 为电流密度⽮量。
电磁场的问题就是通过边界条件求解Maxwell ⽅程,得到空间任何位置的电场、磁场分布。
对于规则边界条件,Maxwell ⽅程有严格的解析解。
但对于任意形状的边界条件,Maxwell ⽅程只有近似解,此时应采⽤数值分析⽅法求解,如矩量法、有限元法、时域有限差分法等等。
⽬前对应这些数值⽅法,有很多商业的电磁场仿真软件,如Ansoft 公司的Ensemble 和HFSS 、Agilent 公司的Momentum 和ADS 、CST 公司的Microwave Studio 以及Remcom 公司的XFDTD 等。
由⽮量亥姆霍兹⽅程联⽴Maxwell ⽅程就得到⽮量波动⽅程。
当0,0J ρ==时,有 22220E k E H k H ?+=?+= (1.3) 其中k 为传播波数,22k ωµε=。
⼆、传输线理论传输线理论⼜称⼀维分布参数电路理论,是射频、微波电路设计和计算的理论基础。
传输线理论在电路理论与场的理论之间起着桥梁作⽤,在微波⽹络分析中也相当重要。
1、微波等效电路法低频时是利⽤路的概念和⽅法,各点有确切的电压、电流概念,以及明确的电阻、电感、电容等,这是集总参数电路。
在集总参数电路中,基本电路参数为L、C、R。
由于频率低,波长长,电路尺⼨与波长相⽐很⼩,电磁场随时间变化⽽不随长度变化,⽽且电感、电阻、线间电容和电导的作⽤都可忽略,因此整个电路的电能仅集中于电容中,磁能集中于电感线圈中,损耗集中于电阻中。
射频与微波技术期末总结

射频与微波技术期末总结一、引言射频与微波技术是电子工程的一个重要分支,它涉及到无线通信、雷达、卫星通信等许多领域。
在过去的几十年里,射频与微波技术经历了巨大的发展和创新,为我们的现代化生活和通信提供了巨大的便利。
本次期末总结将对射频与微波技术的相关知识做一个系统的回顾和总结。
二、射频与微波技术的概述1. 射频与微波技术的起源和发展射频与微波技术起源于20世纪初期,最初应用于无线电通信领域。
后来随着雷达和卫星通信技术的发展,射频与微波技术逐渐成为独立的学科领域,并广泛应用于各个领域。
2. 射频与微波技术的基本概念射频与微波技术是指在射频和微波频段工作的电子设备和系统的设计、分析和应用。
射频频段通常定义为3-3000 MHz,微波频段通常定义为1-300 GHz。
射频和微波波段有很多特殊的性质,例如衰减、穿透能力以及大气吸收等。
三、射频与微波技术的电路设计1. LNA设计低噪声放大器(LNA)是射频电路中非常重要的组成部分。
它的作用是放大输入信号并尽量减小噪声。
在LNA设计中,需要考虑噪声系数、增益和稳定性等因素。
2. 射频开关设计射频开关的设计是为了实现信号的路由和选择。
它对射频系统的性能和功能有着重要的影响。
在射频开关的设计中,需要考虑传输损耗、隔离度和插入损耗等。
3. 射频功率放大器设计射频功率放大器(PA)是将低功率信号放大到高功率的关键部分。
它在无线通信系统中起到提高信号传输距离和质量的作用。
在射频功率放大器的设计中,需要考虑效率、线性度和带宽等因素。
四、射频与微波技术的无线通信应用1. 无线电通信射频与微波技术在无线电通信中有着广泛的应用。
它可以用于手机、无线局域网和卫星通信等。
2. 雷达技术雷达是利用射频与微波技术实现目标探测、跟踪和测距的一种技术。
它在军事和民用领域都有广泛的应用。
3. 卫星通信卫星通信是通过射频与微波技术实现地球上不同地区之间的通信。
它在电视广播、互联网和军事通信等方面有着重要的应用。
射频与微波技术知识点总结

电压驻波比有时也称为电压驻波系数, 简称驻波系数, 其倒数称为行波系数, 用 K 表示。
当|Γl|=0 即传输线上无反射时, 驻波比ρ=1; 而当|Γl|=1,即传输线上全反射时, 驻波比ρ→∞, 因此驻波比ρ的取
值范围为 1≤ρ<∞。可见,驻波比和反射系数一样可用来描述传输线的工作状态。
行波状态就是无反射的传输状态, 此时反射系数Γl=0, 而负载阻抗等于传输线的特性阻抗, 即 Zl=Z0, 也可称此时
上接匹配负载即可测得散射矩阵的各个参量。 对于互易网络: S12=S21 对于对称网络: S11=S22 对于无耗网络: [S]+[S]=[E]
b1 b2
S11 S21
S12 a1
S22
a2
[b] [S][a]
其中,[S]+是[S]的转置共轭矩阵,[E]为单位矩阵。
另外,工程上经常用的回波损耗和插入损耗与[S]参数的关系可表达为
[U]为电压矩阵, [I]为电流矩阵, 而[Z]是阻抗矩阵, 其中 Z11、 Z22 分别是端口“1”和“2”的自阻抗; Z12、
Z21 分别是端口“1”和“2”的互阻抗。
U1
U
2
Z11 Z 21
Z12 I1
Z
22
I
2
[Z]矩阵中的各个阻抗参数必须使用开路法测量, 故也称为开路阻抗参数, 而且由于参考面选择不同, 相应的阻抗
阻抗
对于均匀无耗传输线, R=G=0, 传输线的特性阻抗为
Z0
L C
此时, 特性阻抗 Z0 为实数, 且与频率无关。
常用的平行双导线传输线的特性阻抗有 250Ω, 400Ω和 600Ω三种。
常用的同轴线的特性阻抗有 50 Ω 和 75Ω两种。
射频与微波基础知识

¾ 回波损耗(Return Loss) :传输线上任一点入射功率和反射功率之比
RL( dB
)
= 10 lg⎜⎜⎝⎛
Pi Po
⎟⎟⎠⎞
=
10
lg
⎜⎛ቤተ መጻሕፍቲ ባይዱ⎜
⎝
1 Γ2
⎟⎞ ⎟ ⎠
=
−20 lg
Γ
第二章
Z. Q. LI
16
传输线阻抗变换
¾ 基本原理-传输线对阻抗的改变
第二章
Z. Q. LI
17
传输线阻抗变换
= − d V(x) dx
) = − d I( x ) dx
⎧ ⎪⎪ ⎨ ⎪ ⎪⎩
jωLI( x ) jωCV ( x
= +
− V ( x + Δx ) −V ( x ) Δx
Δx ) = − I( x + Δx ) − Δx
I(
x
)
⎧ ⎪⎪ ⎨ ⎪ ⎪⎩
d2 dx2 d2 dx2
V (x) + I(x) +
传输线无损耗 γ = α + jβ = jβ
(( )) (( )) Z(d) =
Zin (− d ) =
Z0
1 + ΓLe−2γd 1 − ΓLe−2γd
= Z0
1 + ΓLe−2 jβd 1 − ΓLe−2 jβd
=
Z0
(Z L (Z0
+ +
jZ 0 jZ L
tan tan
βd βd
) )
¾ (电压)驻波比
I ( x)
R1
L1
I (x + Δx)
V (x) R2
x
射频与微波技术

射频与微波技术:让我们的世界更连通近年来,的发展和应用越来越受到关注。
从无线通讯到医疗设备,从航空航天到军事领域,这项技术已经渗透到了我们生活的各个方面。
那么,什么是射频和微波技术呢?它有哪些优点和应用呢?本文将探讨这些问题,为大家揭秘的奥秘。
一、的基本概念简单来说,射频就是指频率在几个千赫兹至几个千兆赫兹之间的无线电波。
而微波则是频率在1千兆赫兹至300千兆赫兹之间的电磁波。
与低频和中频相比,射频和微波的频率高,波长短,传输速度快,能量密度大,能够穿透障碍物并传输较远的距离。
这些特点使得射频和微波技术成为了一种重要的通信手段。
二、的优点1.高速传输:射频和微波技术的传输速度非常快,比起传统的有线传输方式,能够提高数据传输的效率。
2.节省空间:相对于有线传输方式而言,射频和微波技术的设备和器件体积小巧,节省了空间,适用于各种紧凑的应用场景。
3.维护成本低:无需担心线缆老化和损坏问题,也无需担心设备移动或更改位置带来的麻烦。
这样,射频和微波技术能够降低系统部署和维护的成本。
4.无干扰:射频和微波技术的传输方式可以减少噪音和干扰的影响,避免信息的损失和干扰。
三、的应用1.通讯领域:射频和微波技术在通讯领域的应用非常广泛,如手机、对讲机、卫星通讯等。
除此之外,无线电台、微波通道、通讯系统的天线等也都使用了这项技术。
2.医疗设备:射频和微波技术在医疗设备领域也有着广泛的应用,如磁共振成像、医疗诊断、治疗设备等。
3.航空航天:射频和微波技术在航空航天领域也有着广泛的应用,如雷达、导航设备等。
4.军事领域:射频和微波技术在军事领域的应用非常广泛,如合成孔径雷达、电子对抗等。
四、未来展望随着科技的不断发展,也将得到进一步的发展和应用。
例如,5G通讯技术的使用已经慢慢普及,机器人、智能家居等智能设备的开发也需要大量依赖射频和微波技术,这将为的发展提供更广阔的应用空间。
总之,的不断发展和应用,不仅让我们的生活更加便捷、舒适,而且也为人类社会的进步和发展作出了巨大的贡献。
射频和微波技术的理论研究及其应用

射频和微波技术的理论研究及其应用第一章:引言射频(Radio Frequency,简称RF)和微波(Microwave)技术是现代通信领域中极为重要的技术之一。
射频与微波技术的发展,不仅推动了通信领域的快速发展,也应用于诸多其他领域,如雷达、卫星通信、医疗等。
本章将介绍本文主要内容,并阐述射频和微波技术的重要性。
第二章:射频和微波技术的基础知识2.1 射频和微波的概念2.2 射频和微波的特性与频率范围2.3 电磁波的传播特性和传输方程2.4 射频和微波的常用器件与元件第三章:射频和微波技术的理论研究3.1 射频和微波的电磁波传播理论3.2 射频和微波信号的调制与解调技术3.3 射频和微波的天线理论3.4 射频和微波的射频功率放大理论3.5 射频和微波的滤波器理论第四章:射频和微波技术在通信领域的应用4.1 无线通信系统中的射频和微波技术应用4.2 射频和微波在卫星通信中的应用4.3 射频和微波在雷达系统中的应用4.4 射频和微波在医疗诊断中的应用4.5 射频和微波在物联网中的应用第五章:射频和微波技术的发展与前景5.1 射频和微波技术的发展历程5.2 射频和微波技术的发展趋势5.3 射频和微波技术在5G通信中的应用前景5.4 射频和微波技术在新兴领域中的应用前景第六章:结论射频和微波技术是当今社会中不可或缺的重要技术,其在通信、卫星、雷达、医疗和物联网等领域的应用不断拓展。
通过对射频和微波技术的理论研究,能够深入了解射频和微波信号的传播、调制解调、功率放大等原理,并能将其应用于实际工程中。
射频和微波技术的发展前景广阔,尤其在5G通信和新兴领域中具有巨大的应用潜力。
因此,深入研究和应用射频和微波技术,将有助于推动相关领域的发展,实现更高水平的通信和应用效果。
射频微波基础知识

射频微波基础知识射频简称RF射频就是射频电流,它是一种高频交流变化电磁波的简称。
每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。
有线电视系统就是采用射频传输方式的。
在电子学理论中,电流流过导体,导体周围会形成磁场;交变电流通过导体,导体周围会形成交变的电磁场,称为电磁波。
在电磁波频率低于100khz时,电磁波会被地表吸收,不能形成有效的传输,但电磁波频率高于100khz时,电磁波可以在空气中传播,并经大气层外缘的电离层反射,形成远距离传输能力,我们把具有远距离传输能力的高频电磁波成为射频,英文缩写:RF一、射频和微波技术基础知识1、什么是射频?射频(RF)是指无线通信系统中使用的电磁频率范围。
它涵盖了广泛的频率范围,通常从3kHz(千赫)到300GHz(千兆赫)。
射频信号的特点是能够长距离传播并穿过障碍物,这使其成为各种通信应用的理想选择。
2、微波频率微波是射频频率的一个子集,频率范围为300MHz(兆赫)到300GHz。
虽然微波仍然是像射频一样的电磁波,但它们具有更短的波长,这在特定应用中提供了某些优势,例如高数据传输速率和精确成像能力。
二、射频和微波技术的应用1、无线通信射频和微波技术最突出的应用之一是在无线通信系统中。
从简单的无线电传输到复杂的蜂窝网络,射频技术使移动设备上的语音通话、短信、互联网浏览和视频流成为可能。
此外,Wi-Fi网络、蓝牙连接和其他无线协议依赖RF信号进行无缝数据交换。
2、卫星通信卫星通信严重依赖微波频率。
地球静止轨道或近地轨道卫星利用微波远距离传输电视信号、互联网数据和电话,确保在传统通信基础设施有限,或无法使用的偏远地区实现全球连接。
3、雷达系统微波雷达系统对各种应用至关重要,包括空中交通管制、天气监测和军事防御。
雷达使用微波脉冲来探测物体的存在、距离和速度,从而进行精确的跟踪和分析。
4、医疗应用射频和微波技术在医学领域有着重要的应用,例如磁共振成像(MRI)和微波消融。
射频与微波知识点总结

射频与微波知识点总结一、引言射频(Radio Frequency, RF)与微波(Microwave)技术在现代通信、雷达、无线电频谱、天线设计等领域发挥着重要作用。
射频与微波技术涉及到电磁波的传播、调制解调、射频功率放大、频率变换、天线设计等方面的知识。
本文将从射频与微波的基本原理、传输线理论、射频放大器、射频调制解调、天线设计等方面进行知识点总结。
二、射频与微波的基本原理1. 电磁波的基本概念电磁波是一种由电场和磁场相互作用而产生的波动现象。
根据波长的不同,电磁波可以分为射频、微波、红外线、可见光、紫外线、X射线和γ射线等不同频段的电磁波。
射频与微波技术主要涉及射频和微波频段的电磁波。
2. 电磁波的特性电磁波具有波长、频率、速度、传播特性等基本特性。
其中,波长和频率之间的关系由光速公式c=λf(c为光速,λ为波长,f为频率)决定。
在射频与微波领域,常用的频率单位有千兆赫兹(GHz)、兆赫兹(MHz)和千赫兹(kHz)等,波长单位常用的是米(m)。
根据电磁波在介质中传播的特性,常见的介质波速和传播常数也会影响射频微波在介质中的传播特性。
3. 电磁波在空间中的传播电磁波在自由空间中传播的特性是由麦克斯韦方程组决定的,其中包括麦克斯韦方程组的电场和磁场分布规律、电磁波的波动性等。
了解电磁波在不同介质中的传播特性有利于射频与微波技术在不同环境中的应用。
4. 电磁波的天线辐射和接收天线是电磁波的辐射和接收装置,根据天线的结构和工作原理,天线可以分为定向天线和非定向天线。
定向天线主要用于定向传输和接收电磁波;非定向天线主要用于对全向的电磁波进行辐射和接收。
天线的辐射和接收特性与天线的形状和尺寸、频率、方向性等因素有关。
三、传输线理论1. 传输线的基本概念传输线是用于传输电磁波的导线或介质,主要包括同轴电缆、微带线、矩形波导和圆柱波导等。
传输线具有阻抗匹配、功率传输和信号传输等功能。
根据传输线的不同特性和应用场景,可以选择不同类型的传输线。
射频微波(知识点)

一、射频/微波技术及其基础1、射频/微波技术的基础 ✓ 什么是微波技术研究微波的产生、放大、传输、辐射、接收和测量的科学。
射频/微波技术是研究射频/微波信号的产生、调制、混频、驱动放大、功率放大、发射、空间传输、接收、低噪声放大、中频放大、解调、检测、滤波、衰减、移相、开关等各个电路及器件模块的设计和生产的技术,利用不同的电路和器件可以组合成相应的射频/微波设备。
微波技术主要是指通信设备和系统的研究、设计、生产和应用。
✓ 微波技术的基本理论是以麦克斯韦方程为核心的场与波的理论2、射频/微波的基本特性✓ 频率高、穿透性、量子性、分析方法的独特性射频频段为30 ~ 300MHz ,微波频段为300MHz ~ 3000GHz ,相对应波长为1m ~0.1mm ,照射于介质物体时能深入到该物质的内部。
根据量子理论,电磁辐射能量不是连续的,而是由一个个的“光量子”组成,单个量子的能量与其频率的关系为e = h ·f式中,h = 4×10-15电子伏·秒 (eV ·S) 成为普朗克常数3、射频/微波技术在工程里的应用✓ 无线通信的工作方式1、单向通信方式通信双方中的一方只能接收信号,另一方只能发送信号,不能互逆,收信方不能对发信方直接进行信息反馈2、双向单工通信方式3、双向半双工通信方式通信双方中的一方使用双频双工方式,可同时收发;另一方则使用双频单工方式,发信时要按下“送话”开关。
4、双向全双工通信方式通信双方可以通信进行发信和收信,这时收信与发信一般采用不同的工作频率,通-讲 开关按-讲 按-讲 受话器受话器二、电磁波频谱12、射频/✓GSM900系统的频道配置GSM-900系统采用等间隔方式,频道间隔为200KHz,同一信道的收发频率间隔为45MHz, 频道序号和频道标称中心频率的关系为F上行(n)= 890.2 +(n-1)×0.2 MHzF下行(n)= F上行(n)+ 45 MHz式中:频道序号 n = 1 ~ 124在我国的GSM900网络中,1~94号载频分配给中国移动使用,96~124号载频分配给中国联通使用,95号载频作为保护隔离,不用于业务。
电子信息工程中的射频与微波技术

电子信息工程中的射频与微波技术射频(Radio Frequency)和微波(Microwave)技术是电子信息工程中不可或缺的两个分支。
这两种技术都涉及到无线传输和通信,尤其是在无线电设备的制造和应用领域,但它们又各具特色,有着各自的应用范围和优劣势。
本文将就射频和微波技术,它们的定义、发展历程、应用领域以及未来的前景进行探讨。
一、射频技术射频技术是指在高频和超高频范围内(约从3kHz到300GHz)传输和处理无线电信号的技术。
射频技术在电视、手机、广播、无线网络、卫星通信、雷达和导航等领域得到广泛应用。
它的来源可追溯到19世纪末,当时马克士威提出了电磁场的统一理论,开启了电磁波研究的新时代。
随着技术的不断发展,射频技术也得到了进一步的提高和完善,目前已经成为现代通信领域的关键技术。
射频技术的应用非常广泛,在无线电器材、导航系统、广告媒体等方面都有广泛的应用。
其中最为重要的莫过于无线电通信了。
我国在无线电通信方面的应用非常广泛,除了现在很多人都能接触到的无线局域网和蜂窝移动通信,还有新兴的物联网、车联网、以及无人机领域都是射频技术的重要应用。
无论是哪个行业,都必须依靠射频技术才能实现远距离通信,这也是射频技术的最大优势。
二、微波技术微波技术是指在高频(3GHz~30GHz)甚至极高频(30GHz~300GHz)范围内传输和处理无线电信号的技术。
微波技术在雷达、卫星通信、无线电和电视广播等领域得到广泛应用。
它的产生时间比较晚,大部分应用都集中在二战以后的60年代左右。
随着技术的不断发展,微波技术也得到了很大的提高和发展,被广泛应用于航空航天、国防军工、通信和广播等领域。
和射频技术相比,微波技术的传输距离更远、频率更高、传输速度更快、噪声更小,因此其实用性更为广泛。
在卫星通信和雷达领域,微波技术的应用尤其重要。
卫星通信可以实现全球通信,让人们无论在哪里都可以通过卫芯地的链接完成信息交流。
而雷达技术,则可以检测和跟踪任何物体的运动,是空军、海军等军事行业的必要设备。
射频微波常用知识

由于射频/微波本身的特点, 也会带来一些局限性。 主要体现在如下几个方面: (1) 元器件成本高。 (2) 辐射损耗大。 (3) 大量使用砷化镓器件,而不是通常的硅器件。 (4) 电路中元件损耗大,输出功率小。 (5) 设计工具精度低,成熟技术少。 这些问题都是我们必须面对的,在工程中应合理设计电路,取得一个比较好 的折中方案。
射频/微波的应用
微波的应用包括作为信息载体的应用和作为微波能的应用两个方面。
7
微波的经典用途是通信和雷达系统。这是微波作为信息载体的应用。 近年来发展最为迅猛的当数个人通信系统,当然,导航、遥感、科学研究、 生物医学和微波能的应用也占有很大的市场份额。 在通信应用方面,由于微波具有频率高、频带、信息量大的特点,所以被广 泛应用于各种通信业务,包括微波多路通信、微波中继通信、散射通信、移动通 信和卫星通信。利用微波波长短的特点可作特殊用途的通信,例如从 S 到 Ku 波 段的微波适用作以地面为基地的通信;毫米波适用于空间与空间的通信;毫米波 段的 60GHz 频段的电波大气衰减较大,适于作近距离保密通信;而 90GHz 频段 的电波在大气中的衰减却很小,是个窗口频段,适于作地空和远距离通信;对于 很长距离的通信,则 L 波段更适合,因为在此波段容易获得较大的功率。 微波作为能源的应用始于 20 世纪 50 年代后期,至 60 年代末,微波能应用 随着微波炉的商品化进入家庭而得到大力发展。 微波能应用包括微波的强功率应用和弱功率应用两个方面。强功率应用是微 波加热; 弱功率应用是用于各种电量和非电量 (包括长度、 速度、 湿度、 温度等) 的测量。 微波加热可以深入物体内部,热量产生于物体内部,不依靠热传导,里外同 时加热,具有热效率高、节省能源、加热速度快、加热均匀等特点,便于自动化 连续生产。用于食品加工时,还有消毒作用,清洁卫生,既不污染食品,也不污 染环境, 而且不破坏食品的营养成份。 微波加热现在已被广泛应用于食品、 橡胶、 塑料、化学、木材加工、造纸、印刷、卷烟等工业中;在农业上,微波加热可用 于灭虫、育种、干燥谷物等。 弱功率应用的电量和非电量的测量,其显著特点是不需要和被测量物体接触, 因而使非接触式的无损测量,特别适宜于生产线测量或进行生产的自动控制。现 在应用最多的是测量湿度,即测量物质(如煤、原油等)中的含水量。 微波的生物医学应用,也属于微波能的加热应用。利用微波对生物体的热效 应,选择性局部加热,是一种有效的热疗方法,临床上可用来治疗人体的各种疾 病。微波的医学应用包括微波诊断、微波治疗、微波解冻、微波解毒和微波杀菌 等。用微波对生物体作局部照射,可提高局部组织的新陈代谢,并诱导产生一系 列的物理化学变化,从而达到解痉镇痛、抗炎脱敏、促进生长等作用,广泛用于
射频微波基础知识:基本概念和术语

射频微波基础知识:基本概念和术语•波器技术第一群(新5G群)全面开放十天射频微波基础知识射频基础知识1、功率/电平(dBm):放大器的输出能力,一般单位为w、mw、dBm注:dBm是取1mw作基准值,以分贝表示的绝对功率电平。
换算公式:电平(dBm)=10lgw5W → 10lg5000=37dBm10W → 10lg10000=40dBm20W → 10lg20000=43dBm从上不难看出,功率每增加一倍,电平值增加3dBm2、增益(dB):即放大倍数,单位可表示为分贝(dB)。
即:dB=10lgA(A为功率放大倍数)3、插损:当某一器件或部件接入传输电路后所增加的衰减,单位用dB表示。
4、选择性:衡量工作频带内的增益及带外辐射的抑制能力。
-3dB带宽即增益下降3dB时的带宽,-40dB、-60dB同理。
5、驻波比(回波损耗):行驻波状态时,波腹电压与波节电压之比(VSWR)附:驻波比——回波损耗对照表:SWR 1.2 1.25 1.30 1.35 1.40 1.50回波损耗(dB) 21 19 17.6 16.6 15.6 14.06、三阶交调:若存在两个正弦信号ω1和ω2 由于非线性作用将产生许多互调分量,其中的2ω1-ω2和2ω2-ω1两个频率分量称为三阶交调分量,其功率P3和信号ω1或ω2的功率之比称三阶交调系数M3。
即M3 =10lg P3/P1 (dBc)7、噪声系数:一般定义为输出信噪比与输入信噪比的比值,实际使用中化为分贝来计算。
单位用dB。
8、耦合度:耦合端口与输入端口的功率比, 单位用dB。
9、隔离度:本振或信号泄露到其他端口的功率与原有功率之比,单位dB。
10、天线增益(dB):指天线将发射功率往某一指定方向集中辐射的能力。
一般把天线的最大辐射方向上的场强E与理想各向同性天线均匀辐射场场强E0相比,以功率密度增加的倍数定义为增益。
Ga=E2/ E0211、天线方向图:是天线辐射出的电磁波在自由空间存在的范围。
射频微波工程基础介绍课件

不同雷达系统中天线的设计和应用,如阵列天线 、相控阵天线等。
电子对抗系统中的射频微波技术
通信对抗
射频微波技术在通信对抗中的应用,包括通信干扰、通信侦察等 。
雷达对抗
射频微波技术在雷达对抗中的应用,包括雷达干扰、雷达侦察与 反侦察等。
电子支援措施
射频微波技术在电子支援措施中的应用,如电磁频谱监测、信号 分析等。
射频微波工程基础介绍课件
目录
CONTENTS
• 射频微波工程概述 • 射频微波基础知识 • 射频微波工程关键技术 • 射频微波工程应用实例 • 射频微波工程测试与仿真 • 射频微波工程发展趋势与挑战
01 射频微波工程概述
CHAPTER
射频微波工程定义
01
射频微波工程是一门研究射频和 微波频段内电磁波的产生、传输 、控制和应用的学科。
避免频谱冲突是射频微波工程需要解决的重要问题。
射频微波工程未来发展展望
5G/6G移动通信技术
随着5G/6G移动通信技术的不断发展,射频微波工程将在其 中发挥重要作用,如毫米波通信、大规模天线阵列等技术的 研究和应用。
物联网与智能家居
物联网和智能家居的快速发展为射频微波工程提供了新的应 用场景和需求,如无线传感器网络、智能家居控制系统等的 研究和开发。
射频微波在其他领域的应用
医学影像
射频微波技术在医学影像中的应用,如核磁共振成像(MRI)中的 射频脉冲发生器和接收器。
微波炉
射频微波技术在微波炉中的应用,利用微波加热食物。
工业加热与干燥
射频微波技术在工业加热与干燥中的应用,如高频感应加热、微波干 燥等。
05 射频微波工程测试与仿真
CHAPTER
射频微波信号特点与传播
射频与微波技术知识点总结

射频/微波的特点: 1.频率高 2.波长短 3.大气窗口 4.分子谐振 微波频率:300MHz-3000GHz 波长:0.1mm-1m独特的特点:RF/MW 的波长与自然界物体尺寸相比拟在RF/MW 波段,由于导体的趋肤效应、介质损耗效应、电磁感应等影响,期间区域不再是单纯能量的集中区,而呈现分布特性。
长线概念:通常把RF/MW 导线(传输线)称为长线,传统的电路理论已不适合长线! RF/MW 系统的组成:传输线:传输RF/MW 信号微波元器件:完成微波信号的产生、放大、变换等和功率的分配、控制及滤波 天线:辐射或接收电磁波微波、天线与电波传播的关系:(简答) 微波: 对象:如何导引电磁波在微波传输系统中的有效传输目的:希望电磁波按一定要求沿微波传输系统无辐射的传输; 天线任务:将导行波变换为向空间定向辐射的电磁波,或将在空间传播的电磁波变为微波设备中的导行波 作用:1.有效辐射或接收电磁波;2.把无线电波能量转换为导行波能量 电波传播分析和研究电波在空间的传播方式和特点常用传输线机构:矩形波导 共面波导 同轴线 带状线微带线 槽线分析方法称为传输线的特性阻抗特性阻抗Z0通常是个复数, 且与工作频率有关。
它由传输线自身分布参数决定而与负载及信源无关, 故称为特性阻抗 对于均匀无耗传输线, R=G=0, 传输线的特性阻抗为 此时, 特性阻抗Z0为实数, 且与频率无关。
常用的平行双导线传输线的特性阻抗有250Ω, 400Ω和600Ω三种。
常用的同轴线的特性阻抗有50 Ω 和75Ω两种。
均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗及工作频率有关, 且一般为复数, 故不宜直接测量。
无耗传输线上任意相距λ /2处的阻抗相同, 一般称之为λ /2重复性。
传输线上电压和电流以波的形式传播, 在任一点的电压或电流均由沿-z 方向传播的行波(称为入射波)和沿+z 方向传播的行波(称为反射波)叠加而成。
第1章-射频微波工程基础介绍

第1章 射频/微波工程介绍 表1-1
第1章 射频/微波工程介绍
以上这些波段的划分并不是惟一的,还有其他许多 不同的划分方法,它们分别由不同的学术组织和政府机 构提出,甚至还在相同的名称代号下有不同的范围,因 此波段代号只是大致的频谱范围。其次,以上这些波段 的分界也并不严格,工作于分界线两边临近频率的系统 并没有质和量上的跃变,这些划分完全是人为的,仅是 一种助记符号。
电路,取得一个比较好的折中方案。
第1章 射频/微波工程介绍
1.3 射频/
1.3.1 由于频率、 阻抗和功率是贯穿射频/微波工程的
三大核心指标,故将其称为射频铁三角。它能够形象地 反映射频/微波工程的基本内容。这三方面既有独立特 性,又相互影响。三者的关系可以用图1-2表示。
第1章 射频/微波工程介绍
第1章 射频/微波工程介绍
1.2.2 射频/ 由上述基本特性可归纳出射频/微波与普通无线电相
比有以下优点: (1) 频带宽。可传输的信息量大。 (2) 分辨率高。连续波多普勒雷达的频偏大,成像更
清晰,反应更灵敏。 (3) 尺寸小。电路元件和天线体积小。 (4) 干扰小。不同设备相互干扰小。 (5) 速度快。数字系统的数据传输和信号处理速度
第1章 射频/微波工程介绍
(3) 导航系统: 微波着陆系统(MLS),GPS,无线信标,防撞系统, 航空、 航海自动驾驶等。 (4) 遥感: 地球监测,污染监测,森林、 农田、 鱼汛监测,矿 藏、 沙漠、 海洋、 水资源监测,风、 雪、 冰、 凌监 测,城市发展和规划等。
第1章 射频/微波工程介绍
4. 射频/微波频带比普通的中波、 短波和超短波的 频带要宽几千倍以上,这就意味着射频/微波可以携带 的信息量要比普通无线电波可能携带的信息量大的多。 因此,现代生活中的移动通信、 多路通信、 图像传输、 卫星通信等设备全都使用射频/微波作为传送手段。 射频/微波信号还可提供相位信息、 极化信息、 多普勒频移信息等。这些特性可以被广泛应用于目标 探测、 目标特征分析、 遥测遥控、 遥感等领域。
第2章_射频与微波基础知识V2013

51
阻抗匹配技术
阻抗匹配的类型 集中参数阻抗匹配器; 分布参数阻抗匹配器;
宽带阻抗匹配器;
窄带阻抗匹配器----阻抗匹配和滤波性能。
微波单片集成电路
52
复数阻抗间的功率传输
微波单片集成电路
53
复数阻抗间的功率传输
输入功率的表达式为:
当Pin最大的时候,表示最大的功率传输。 并令其偏导数都为0。
微波单片集成电路
第二章:射频与微波基础知识
注明:该课件内容来自于李智群等编著的《射频集成 电路与系统》书籍,东南大学射频与光电集成电路研 究所,复旦大学,香港城市大学以及网络上等相关的 课程讲义。 微波单片集成电路 1
本章内容
传输线理论; 二端口网络基础; S参数分析; Smith圆图; 阻抗匹配技术。
微波单片集成电路
62
L型匹配网络
由两个电抗元件组成; 窄带网络,带有滤波特性; 两种情况分析:
微波单片集成电路
63
L型匹配Hale Waihona Puke 络微波单片集成电路64
L型匹配网络
微波单片集成电路
65
L型匹配网络举例
微波单片集成电路
66
L型匹配网络举例
微波单片集成电路
67
L型匹配问题
问题2:采用L型结构匹配负载阻抗 ZL=RL+jXL到Zs=Rs+jXs。求解参数解 析方法以及适用范围。
Pi型匹配网络举例
微波单片集成电路
72
Pi型匹配网络举例
微波单片集成电路
73
Pi型匹配网络举例
微波单片集成电路
74
T型匹配网络
微波单片集成电路
75
射频与微波手册

射频与微波手册
射频与微波是无线通信领域中的重要概念。
它们在许多领域都有广泛的应用,如无线通信、雷达、导航、电子对抗等。
射频是指频率在100KHz到300GHz之间的电磁波。
而微波则是指频率在
300MHz到300GHz之间的电磁波。
它们在电磁波谱中处于较高的位置,因此具有很高的频率和波长。
在无线通信中,射频与微波技术被广泛应用于信号的传输和处理。
例如,在移动通信中,射频信号被用来传输语音和数据信息。
在雷达和导航系统中,微波信号被用来检测目标并确定其位置。
为了实现这些应用,需要设计和制造各种射频与微波器件,如滤波器、放大器、混频器、振荡器等。
这些器件的性能对整个系统的性能有着重要的影响。
此外,射频与微波技术还涉及到许多复杂的问题,如信号的传输、衰减、干扰、噪声等。
为了解决这些问题,需要深入了解电磁波的传播特性、材料的电磁性质以及信号处理技术等。
总的来说,射频与微波手册是一本介绍射频与微波技术的重要参考书。
它包含了射频与微波的基本概念、原理、应用和发展趋势等方面的内容。
通过阅读这本手册,读者可以深入了解射频与微波技术的各个方面,并掌握相关的知识和技能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
γ =
(R +
jωL )(G + jωC ) = α + jβ
称为传输常数(propagation constant)
β即为相位常数;α称为衰减常数,表示传输线的衰减特性,单位为(Np/m),
Np与dB的关系为1dB=8.686Np
ΓL = V0− V0+
第二章
表示传输线在负载端(x=0)的反射系数
[ [
]
]
[
]
8
第二章
Z. Q. LI
传输线(Transmission Lines)
¾ 相速和特征阻抗
─ 相速:定义为行波上某一相位点的传播速度(Phase velocity),对于一个正 弦波 cos(ωt-βx),一定相位可表示为ωt-βx=constant,于是相位速度
vp =
ω dx ω = = = dt β ω LC
第二章
Z. Q. LI
4
传输线(Transmission Lines)
¾传输线电路模型:L、C、R、G分布系统
x
x + Δx
R——两根导线每单位长度具有的电阻, 其单位为Ω/m。 L——两根导线每单位长度具有的电感, 其单位为H/m。 G——每单位长度导线之间具有的电导, 其单位为S/m。 C——每单位长度导线之间具有的电容, 其单位为F/m。
¾ 一个熟悉的例子
RS=50Ω 5V
5.0 2.5 5.0 2.5 50 I(mA) vp z=l
第二章
Z0=50Ω l
Open
V vp z V vp z
Output V 5.0 2.5 t 5.0 2.5 Input V
z
Z. Q. LI
T=l/vp
2T
t
13
传输线(Transmission Lines)
第二章 射频与微波基础知识
¾ 传输线 ¾ 传输线阻抗变换 ¾ 二端口网络与S参数 ¾ Smith圆图 ¾ 阻抗匹配
第二章
Z. Q. LI
1
传输线(Transmission Lines)
¾ 分布(distributed)系统与集总(lumped)系统
─ 环路电压和节点电流定律在任何时候都成立吗? 当然,如果模型正确的话。 ─ 任何电路、元器件、连接线本质上都是分布系统,在某些条件下它们 的分布特性可以被忽略,正如在某些条件下微积分可以简化为四则运算 ─ 对于一条长度为l的低损耗连接线和波长为λ的信号
I ( x + Δx )
I ( x)
R1
L1
G
V ( x)
x
R2
L2
V ( x + Δx)
x + Δx
第二章
Z. Q. LI
5
传输线(Transmission Lines)
¾ 无损耗传输线上的电压和电流
∂ ⎧ v ( x, t ) = LΔx i ( x, t ) + v ( x + Δx, t ) ⎪ ⎪ ∂t ⎨ ⎪i ( x , t ) = C Δ x ∂ v ( x + Δ x , t ) + i ( x + Δ x , t ) ⎪ ∂t ⎩
d ⎧ j ω LI ( x ) = − V( x) ⎪ ⎪ dx ⎨ ⎪ j ω CV ( x ) = − d I ( x ) ⎪ dx ⎩
⎧ d2 V ( x) + β 2V ( x) = 0 ⎪ 2 ⎪ dx ⎨ 2 ⎪ d I ( x) + β 2 I ( x) = 0 ⎪ ⎩ dx 2
其中
1 LC
但是我们知道, v p = λf 因而
λ ─ 传输线特征阻抗(Z0):定义为入射电压和入射电流的比值
V + (x ) ωL L Z0 = + = = β C I (x )
β=
2π
在没有反射波的情况下,传输线上任意一点的输入阻抗为特征阻抗。 由于无限长传输线没有反射波,因此其输入阻抗等于特征阻抗。
L L
(1 + Γ e γ ) = Z (1 + Γ e (1 − Γ e γ ) (1 − Γ e
−2 d −2 d 0 L L
−2 jβd
−2 j d
)=Z β )
(Z L + jZ 0 tan βd ) 0 (Z 0 + jZ L tan βd )
¾ (电压)驻波比
+ − + ⎧ ⎪Vmax = V ( x ) max = V0 + V0 = V0 (1 + Γ L ) ⎨ + − + ⎪ 0 − V0 = V0 (1 − Γ L ) , ⎩Vmin = V ( x ) min = V
β = ω LC
称为波的相位常数,单位为rad/m,它表示了在一 定频率下行波相位沿传输线的变化情况。
Z. Q. LI 7
第二章
传输线(Transmission Lines)
方程的通解:
⎧V ( x ) = V0+ e − j β x + V0− e j β x = V + ( x ) + V − ( x ) ⎪ ⎨ β ⎡ = I + ( x) − I − ( x) V0+ e − j β x − V0− e j β x ⎤ ⎪I ( x ) = ⎣ ⎦ ωL ⎩
∂ ⎧ v( x + Δ x , t ) − v( x , t ) =L − i( x , t ) ⎪ ⎪ Δx ∂t ⎨ ⎪ − i( x + Δ x , t ) − i( x , t ) = C ∂ v ( x + Δ x , t ) ⎪ Δx ∂t ⎩
∂ v( x , t ) ⎧ ∂ i( x , t ) L = − ⎪ ⎪ ∂t ∂x ⎨ ⎪ c ∂ v ( x , t ) = − ∂ i( x , t ) ⎪ ∂t ∂x ⎩
入射电压: V + ( x ) = V0+ e − jβx
I +( x ) = 入射电流:
V − ( x ) = V0−e jβx 反射电压:
βV0− jβx 反射电流: I (x)= e ωL
−
βV0+ − jβx e ωL
对它们进行相量域到时间域的反变换可得电压和电流的时域表达式:
⎧ v ( x , t ) = Re V ( x ) e j ω t = V 0+ cos( ω t − β x ) + V 0− cos( ω t + β x ) ⎪ ⎨ β jω t V 0+ cos( ω t − β x ) − V 0− cos( ω t + β x ) = ⎪ i ( x , t ) = Re I ( x ) e ωL ⎩
第二章
⎧ ∂2 ∂2 v ( x , t ) = L C 2 v ( x , t ) 具有波动方程形式,对其求 ⎪ ⎪ ∂x 2 ∂t ⎨ 2 解可得电压和电流关于时间t 2 ⎪ ∂ i ( x , t ) = LC ∂ i ( x , t ) 和坐标x的函数。 ⎪ ∂t 2 ⎩ ∂x 2
Z. Q. LI 6
Z. Q. LI 11
传输线(Transmission Lines)
─ 特征阻抗不再是一个实数
─ 当R<<ωL, G<<ωC时,β 和Z0近似于无损耗的情况 ─ 对应的时间函数表示为
v( x, t ) = Re[V ( x)e jωt ] = Re[V0+ e −α x e − j ( β x −ωt ) + V0− eα x e j ( β x +ωt ) ] i ( x, t ) = Re[ I ( x)e
• 当l << 0.1λ,连线可以看成理想的电路连接线(阻抗为0的集总系统) • 当l > 0.1λ,我们认为它是一个分布系统——传输线
¾ IC Design需要传输线知识吗?
─ 空气中1GHz信号的波长为30cm,芯片的尺寸以mm计,因此在这个频 段附近(lower GHz)的RFIC内部通常还不需要考虑传输线效应 ─ 空气中10GHz信号的波长为3cm,芯片的尺寸以mm计,不能满足l << 0.1λ条件,需要考虑传输线效应
Z in (− d
第二章
)=
Z0
(e γ (e γ
d d
+ Γ L e − γd − Γ L e − γd
)= )
Z0
(1 + Γ (1 − Γ
e − 2γd − 2γd Le
L
) )
15
Z. Q. LI
传输线(Transmission Lines)
传输线无损耗 γ = α + jβ = jβ
Z (d ) = Z in (− d ) = Z 0
V (x ) e − γx + Γ L e γx Z in (x ) = = Z 0 − γx I (x ) e − Γ L e γx
( (
) )
1 + ΓL ) ( Z in ( 0 ) = Z 0 =Z (1 − Γ L ) L
ΓL =
Z L − Z0 Z L + Z0
¾ 在距负载 d 处无损耗传输线的阻抗为
第二章
Z. Q. LI
14
传输线(Transmission Lines)
¾ 反射系数 传输线在x处的反射系数用Γ(x)表示,坐标原点定义在负载处
V Γ (x ) = V
(x ) = + (x )
−
V 0− e γ x = Γ L e 2γx + − γx V0 e
其中 Γ L ¾ 输入阻抗
V 0− = + = Γ (0 ) V0