研究生数理统计课外作业

合集下载

应用数理统计课外作业设计

应用数理统计课外作业设计

学号 20110813121 姓名卢丽丽学院资环学院专业安全技术及工程成绩实验数据处理中一元线性回归的应用摘要:我们处理实验数据时数理统计方法往往能帮助我们很好的处理,并且能得到很好的结果,回归分析主要是从大量反映某些变量间关系的观测值出发,分析变量问相关程度及相关关系,并建立回归模型去拟合变量间的关系,从而达到对变量之间关系的认识的方法。

其中一元线性回归模型在很多实验中能很好的帮我们预测未来数据和预测数据范围。

本文运用一元线性回归模型对试验中电流与时间的关系进行了分析,发现,试验中电流随时间逐渐减小,并呈线性递减关系。

通过求得的模型,我们进行了预测。

一、问题提出,问题分析在现代社会,随着科技的发展,人们生活水平提高,可是污染也越来愈严重,特别是重金属的污染,同时治理污染的方法也在改善。

重金属污染修复技术也得到发展,我们在做重金属的电动修复实验过程中,对其修复区的电流进行了观测,有观测值我们作出散点图,发现电流与时间有明显线性关系,我们用一元线性回归的方法分析这组数据,并预测未来电流的变化,以更好的掌握实验条件,为实验数据提供合理的解释。

二、数据描述下面是随着时间电流的变化数据,表中时间是指通电时间。

表1 电流随时间变化表根据数据,我们利用Excel作出散点图,如图1图1 电流随时间变化的散点图由图中点的趋势我们可以看出,电流随时间基本呈线性关系,我们求出其相关系数如下表:表2 电流与时间相关系数表三、模型建立(1)提出假设条件,明确概念,引进参数根据上面分析,我们知道,电流随时间基本呈线性关系,我们假设电流与时间是线性的,我们用一元线性回归模型进行拟合,并用F 检验法和t 检验法进行模型检验,各函数符号代表含义如下:x :电流; y :实验时间i x :各点电流值 i y :各点实验时间α:显著性水平,设α=0.05 (2)模型构建我们假定这组数据满足一元线性回归模型: 一元线性模型:⎩⎨⎧++=),0(~210σεεββN x y (3)模型求解先用最小二乘估计方法求出模型如下: 计算基本数据,如下表:表3 基本数据表6010600==x 49.49109.494==y 4.1002549.4960106.1966810101-=⨯⨯-=⋅-=∑=y x y x l i i i xy1188060104788010221012=⨯-=-=∑=x x l i i xx189.888149.491079.3337310221012=⨯-=-=∑=y y l i i yy8439.0118804.10025ˆ1-=-==xxxy l l β124.100ˆˆ10=-=x y ββ 6425.420ˆ21222=-=-=xx yy R T E l l S S S β 2512.786425.4202ˆ2==-=n S E σ回归直线为:x x y 8439.0124.100ˆˆˆ10-=+=ββ 该方程说明,在刚开始实验时,加的电流为100.124mA 。

“应用数理统计”课外作业设计

“应用数理统计”课外作业设计

学号姓名学院专业成绩典型燃煤中汞的赋存规律摘要:近年来,燃煤引起的汞污染越来越受到人们关注。

中国能源结构以燃煤为主,但由于中国煤质地区差异较大,造成现有烟气脱汞技术对煤质适应性较差,因此针对中国典型煤种中汞的赋存规律进行研究,对促进烟气脱汞技术的发展和环境保护具有重要意义。

论文针对烟煤和无烟煤,通过总汞测定、X射线荧光光谱分析等手段,对15个典型煤样中汞的赋存状态和规律进行了实验研究。

随着煤炭变质程度的增高,煤中总汞含量有增高趋势,各地区煤总汞含量差别较大,在本实验范围内,汞含量大致呈现北低南高的特征。

α= 0. 05时,煤样中的总汞含量与硅含量、硫含量、氯含量的相关性系数分别为0.509、0.600和0.682,具有较好的相关性。

关键词:CO2;赋存规律;相关性1提出问题并分析问题大气中的汞有两种不同类型的排放源:天然源和人类源。

主要还是以人类活动排放为主。

在自然界中汞以各种形式存在,例如以硫化汞的形式存在于岩石中。

这些汞经过一系列的自然过程进入大气。

天然源释放到大气中的主要是Hg0,还有一些二甲基汞、挥发性无机汞化合物等。

煤中汞的赋存形式是影响汞排放的一个重要因素。

有学者提出煤中存在与有机煤岩组分结合的有机汞化合物,但主要还是以与无机物结合形式存在[1]。

对于煤中汞的存在形式,许多学者都进行了研究。

Finkelman在煤中发现了含汞的硫化物和硒化物,Cahill和Shiley发现煤中的方铅矿含汞,Dvornikov还提出煤中的汞主要以辰砂、金属汞和有机汞化合物的形式存在[1]。

煤在地质化学中被归为亲硫元素,因而,煤中的汞主要存在于黄铁矿(FeS2)和朱砂(HgS)中[2]。

文献[1]的研究证实了煤中大多数汞以固溶物形式分布于黄铁矿中,特别是后期成因的黄铁矿。

与煤中汞的含量分布研究相比,我国对煤中汞的赋存状态研究相对薄弱。

目前对煤中汞赋存状态的研究,采集的样品大多为我国西南地区的高硫煤或某些高汞煤,主要讨论煤中的汞与黄铁矿或硫分之间关系。

硕士生《数理统计》例题及答案

硕士生《数理统计》例题及答案

硕⼠⽣《数理统计》例题及答案《数理统计》例题1.设总体X 的概率密度函数为: 221)(ββx ex f -=)0(>β试⽤矩法和极⼤似然法估计其中的未知参数β。

解:(1)矩法由于EX 为0,πββββββββββββ2002222221][)()2(2)()2(212)(222222222=+-=-=-+-∞+-∞+--∞+-∞++∞∞-dx exeed xx d xedxex dxx f x EX x x x x xπβ22221=-=X E EX DX 令2S DX =得:S πβ2=(2)极⼤似然法∑===-=-∏ni i i x nni x e21111ββββ∑=--=ni ixn L 1221ln ln ββ231ln 2n i i d L n x d βββ==-+∑ 令0ln =βd L d 得∑==n i i x n 122?β2. 设总体X 的概率密度函数为:<≥--=ααβαββαφx x x x ,0),/)(exp(1),;(其中β>0,现从总体X 中抽取⼀组样本,其观测值为(2.21,2.23,2.25,2.16,2.14,2.25,2.22,2.12,2.05,2.13)。

试分别⽤矩法和极⼤似然法估计其未知参数βα和。

解:(1)矩法经统计得:063.0,176.2==S Xβαβαβφαβαααβαα+=-=+-=-===∞+--∞+--∞+----∞+--∞+∞+∞-??x x x x x edx exeexd dx ex dx x x EX ][)(1 )()(222][)(1222222βαβαβαβαβααβαα++=+=+-=-==--∞+∞+----∞+--∞+??EX dx ex ex ed x dx ex EX x x x x222)(β=-=EX EX DX令==2S DX X EX 即==+22SXββα故063.0?,116.2?===-=S S X βα(2)极⼤似然法 )(111),;(αββ===∏X nnX ni eex L i)(ln ln αββ---=X nn L)(ln ,0ln 2αββββα-+-=??>=??X nn L n L 因为lnL 是L 的增函数,⼜12,,,n X X X α≥L所以05.2?)1(==X α令0ln =??βL 得126.0?)1(=-=X X β 3.已知总体ξ的分布密度函数为:+≤≤-=其它,011,21);(θθθx x f(1)⽤矩法估计其未知参数θ;(2)⽤极⼤似然法估计其未知参数θ。

研究生-数理统计课后答案参考

研究生-数理统计课后答案参考

, i 1, 2, , n

由已知条件得: Yi ~ B(1, p) ,其中 p 1 FX ( ) .
因为 X i 互相独立,所以 Yi 也互相独立,再根据二项分布的可加性,有
Y ~ B(n, p) , p 1 F
i 1 i
n
X
( ) .
9 设 X1 ,, X n 是来自总体 X 的样本,试求 EX , DX , ES 2 。假设总体的分布为: 1) X ~ B( N , p); 2) X ~ P( ); 3) X ~ U [a, b]; 4) X ~ N ( ,1);

n 2 2 2 E Xi X E (n 1) S (n 1) ES i 1 (n 1) DX (n 1) 2
2 (n 1) S 2 n 2 4 D X i X D ( n 1) S D 2 i 1
试画出身高直方图,它是否近似服从某个正态分布密度函数的图形. 解
图 1.2 数据直方图
它近似服从均值为 172,方差为 5.64 的正态分布,即 N (172,5.64) . 4 设总体 X 的方差为 4,均值为 ,现抽取容量为 100 的样本,试确定常数 k,使得 满足 P( X k ) 0.9 .
2)对总体 X ~ P( )
P( X 1 x1 , X 2 x2 , X 3 x3 , X 4 x4 , X 5 x5 ) P( X i xi )
i 1 i 1 n 5
x
i
xi !
e
5xBiblioteka x !i 1 i5
e 5
其中: x

重庆大学硕士研究生《数理统计》课程大作业(论文)

重庆大学硕士研究生《数理统计》课程大作业(论文)

一、问题提出和问题分析今天的重庆,肩负着中央赋予的历史重任——着力打造西部地区的重要增长极、长江上游地区的经济中心、成为统筹城乡发展的试验者、在西部地区率先实现全面建设小康社会的目标。

2010年初,又一重要规划将重庆发展提升到国家战略——重庆被确定为国家五大中心城市之一,是中西部地区唯一入选的城市。

这说明,重庆未来的发展不可限量。

自1997年直辖以来,重庆市的经济社会发展极为迅猛。

全市的GDP由1997年的1360.24亿元增长至2010年的7894.2亿元,而整个社会的发展进步也有目共睹。

在重庆过去、现在和未来的发展进程中,在重庆的各种发展规划的要求下,建设必将成为山城的另一个符号。

过去十多年中的大规模、大范围的建设成就了现在的重庆,而重庆未来的发展将需要更多的建设。

作为重庆建设中最重要的一环,建筑业在重庆显然有着重要的地位。

建筑业这种专门从事土木工程、房屋建设和设备安装以及工程勘察设计工作的生产部门,为重庆的发展建设提供着众多的基础设施,满足着居住、工业、商业、办公等各种城市需求。

数据显示,在过去的数年中,重庆市建筑业的总产值占全市GDP的7%-8%,是名副其实的支柱产业。

因此建筑业的发展情况,可以从侧面反映出整个重庆社会经济的发展情况,对重庆建筑业的研究就有了很大的现实意义。

建筑企业是建筑业的主体。

众多的建筑企业的良好发展构成了建筑业的良好发展。

对于建筑企业来说,要实现企业的良好经营和发展,必须要有良好的收入来支撑。

在建筑企业收入的众多影响因素中,企业的劳动生产率无疑是值得关注的一个。

企业都在致力于提高自身的劳动生产效率,而不断提高的劳动生产率,可使得企业的生产经营行为更具效率,因而获得更多的收入,实现更好的发展。

所以,研究重庆市建筑企业劳动生产率与企业收入的关系,可从一个角度来了解重庆市建筑企业的发展情况,从而了解到了重庆建筑业的发展以至于重庆市的经济发展情况。

为了找出二者之间的关系或者规律性,本文采用2001-2010这十年中重庆建筑企业劳动生产率和企业平均收入的数据,通过数学分析,找出二者关系。

概率论与数理统计课外大作业2参考答案

概率论与数理统计课外大作业2参考答案

《概率论与数理统计》作业(参考答案)班级 学号 姓名 得分 注意:书写清楚、整洁;并有主要的解题过程.1. 设1021,,,X X X 是来自总体)3.0,0(2N 的样本,求统计量∑=10129100i i X 的分布(需说明理由).解:因)1,0(~3.0/N X i ,)1(~)3.0(22χi X ,由可加性)10(~910010122=∑χi i X 2. 设总体),3(~2σN X ,有n=9的样本,样本方差42=s ,求统计量2/)93(-X 的分布(需说明理由).)8(~293t X - 3. 设总体)9,(~,)4,(~μμN Y N X ,有16,1121==n n 的两个独立样本,求统计量222149S S 的分布(需说明理由). )1510~492221,F (S S 4. 4. 设总体X 的概率密度函数为⎩⎨⎧<<+=其他,010,)1(),;(x x x f θθθ,),,,(21n X X X 是来自该总体的一个样本,),,,(21n x x x 是相应的样本值,求(1)未知参数θ的矩估计量;(2)最大似然估计量.((1)XX --=∧112θ;(2) 1ln 1--=∑=∧ni iXnθ班级 学号 姓名 得分 注意:书写清楚、整洁;并有主要的解题过程.5. 设),,(321X X X 是来自总体X 的样本,(1)证明:3211213161X X X ++=μ;3212525251X X X ++=μ;3213313131X X X ++=μ 是总体均值μ的无偏估计量;(2)说明哪一个估计较有效?(需说明理由)提示:(1)求)(1μE =++=)213161(321X X X E μ=++)(21)(31)(61321X E X E X E同理求另外两个……………………….. (2)求)(1μD =++=)213161(321X X X D )(187)(41)(91)(361321X D X D X D X D =++ 同理求另外两个的方差,比较大小,小的较有效6. 设有一批胡椒粉,每袋净重X (单位:g )服从正态分布,从中任取9袋,计算得样本均值21.12=x ,样本方差09.02=s ,求总体均值μ的置信度为0.95的置信区间.(306.2)8(025.0=t ,2622.2)9(025.0=t ) 参考答案()44.12,98.11())1(2/=-±n t ns x α7. 设高速公路上汽车的速度服从正态分布,现对汽车的速度独立地做了6次测试,求得这6次测试的方差22)/(08.0s m s=,求汽车速度的方差2σ的置信度为0.9的置信区间.(488.9)5(205.0=χ,145.1)5(295.0=χ)参考答案()3493.0,0422.0())1()1(,)1()1(22/1222/2≈-----n s n n s n ααχχ班级 学号 姓名 得分 注意:书写清楚、整洁;并有主要的解题过程.8. 甲、乙两位化验员各自独立地用相同的方法对某种聚合物的含氯量各作了10次测量,分别求得测定值的样本方差为6065.0,5419.02221==s s ,设测定值总体服从正态分布),(,),(222211σμσμN N ,试求方差比2221σσ的置信度为0.95的置信区间.(03.4)9,9(025.0=F )参考答案()6007.3,2217.0())1,1(,)1(1122/222112/2221≈---n n F s s n F s s αα9. 某糖厂用自动打包机打包,每包标准重量为50公斤,每天开工后需检验一次打包机是否正常工作,某日开工后,测得9包重量,计算得样本均值82.49=x,样本方差44.12=s ,假设每包的重量服从正态分布.在显著性水平为05.0=α下,打包机工作是否正常? (即检验假设:50:,50:10≠=μμH H ,306.2)8(025.0=t ,2622.2)9(025.0=t )解:由题意,需检验假设:50:,50:10≠=μμH H ;9=n拒绝域为:)1(/2/0->-n t ns x αμ;计算:)8(306.245.03/2.15082.49/025.00t ns x t =<=-=-=μ,不在拒绝域内,即可以认为打包机工作是正常的。

研究生课程-数理统计课后题答案

研究生课程-数理统计课后题答案

=!A乙£ P=旷S奚報洱封去、09乙x9乙+ 0Lx9+ O^xC+ 8x U ——= L刊U]xu Z-= X 诲切去尅去:搦2A S 0 = x s乙乙乙(A-尸!U心Z~ =U K(A-尸!UAo+e =尸!u!A Z- +e = f十u(Ao- 尸!U(Ao 一8一=F!U广尸!U'Ao eu -= 、/丿L□ u(!Ao+e) m =U KI U!x 7 - = x;・-尸!U忆=001=9901+ 901+ CO 1+ >6+26T ! U=z Z/= x u i —i^ 童#说圧最新精品文档,知识共享 1!1-1 /6 1 -303 1 0 30 4 24 20 £ 09 1 85 20 3 1 0yy i 9n y=240.4441 2 2 _61 -240.444「吃—303-240.4441030-240.44492 2 2424 —240.444]亠[20 — 240.444]亠〔909 — 240.444 222 n(—185—240.444)+(20—240.444)+(310—240.444) = 197032.247利用3题的结果可知x 二 2000 y = 2240.444 s" =s y =197032.247i123 4 5678910 11 1213X79. 80. 80. 80. 80. 80. 80. 79. 80. 80. 80. 80. 80.09804 02 04 03 03 04 97 05 03 02 00 2 y-2424334-35322i1 2 3 4 5 6 7 8 9 X i193 169303242202 290 181 202 2397 0 49510 y i-30103 42-1831-6134209095204.解:变换y 二 N -2000i^ 盍#说曲'韓爼習黯堆窖g 乙 0"=920^ =[g9J + t^)+ 乙(9J + 乙 Jxt7+』9J+6—)>;£+ ^9L + 9S-)x2^ —=(H989乙二比+下=19'V- =「 OL (K + ^X 3L + C X 6-乙 x9£—)— = k尸!U!A !LU kP£ 乙 tuZV 6- 9£- !A17'0£乙8乙I/9乙9£2k*(z 乙-Moi 竭靠:搦-g0000 LAs =乙00 L乙 008= 08+ —圧巨畜彩轴雷£宙吐OOZ —乙)x£+ ( 00 3-3-)1 —= 乙 _ lx亍!U(A- !A)右=$ 乙— U L00乙= SL尸!U:<z(A-z —口U!A y !LU M _ = :S(HX ZZ0£'9 =00x乙ZZ0£'9 =最新精品文档,知识共享 1!2Ix 丄Fjxn i 41 156 10 160 14 164 26 172 12 168 28 176 8 180 2 100-166i二1' m i X j -xn i 11帀0 汉(156 —166 $ 2 2 214 160-16626 164-16628 168-1661002 2 2 112 172 -166 8 176 -166 2180 -166= 33.448解:将子样值重新排列(由小到大) -4, -2.1,-2.1,-0.1,-0.1,0,0,1.2,1.2,2.01,2.22,3.2, 3.21 M^Xm =X 7 =0R = X n - X 1 - 3.21 - _4 - 7.21 M e =XX (8 厂1*2n i 9 解:1 11n x i n 2X j一n2 j mn 2最新精品文档,知识共享 1!n £2x 2 _x 2n i亠口 2 i 丄环数 109 87 6 54 频数2 30 942试写出子样的频数分布,再写出经验分布函数并作出其图形 解: 环数 10 9 8 7 6 5 4 频数 2 3 0 9 4 0 2 频率0.10.150.450.20.10.14^xc60.3 6兰xv7F20(X )=* 0.75 7 兰 x£9 0.99 兰 xv10Jx^10区间划分频数频率密度估计值154口158100.10.025ni n2X i --二’Xj i Aj 1n i X i亠 n 2 X 2n n 2m 亠n^i亠2222 比 s }亠x_, [亠n 2 s2)$ n i X i + n2 X 2|'u U 匸!U 口U-=^-= !xa m—!x Zr a=xaY "fU u L u L —u F ! U 芳! U7= =^<3 7 = 7 3= X30 / ? L - 飞=々]7 = !X3 ( ?)d q !x最新精品文档,知识共享 1!3.313•解:Xi L U a,b EXiDX i12i =12 ,n在此题中x 丄 U -1,11 Dx i3— 1 EX 二 E —'n i 4 _ 1n 丄Exn i £. 1 DX 二 D x i 八 Dx i~n i 二14.解:因为XiL N *2所以由2分布定义可知丫二'i -1X ii£I a所以 Y L 2 n15.解: 因为XiL N 0,1E X 1 X 2 X 3=°.3所以X1X2X 3L N0」.3iX +X 2 +X 3£V3.丿同理X 4 X 5 X 6b 2(1)由于2分布的可加性,故1YX 1 X 2 X 3 =I ----------- = -------可知16•解:(1)因为XiL N OF 2辿 N 0,1CT=3nE Xi —=0i =12 ,n服从2分布,12 ,n D X 1 X 2 X 3D X^.1X 1 X 2 X 3L N 0,3=1+ ['X4+X 5 + X 6j 2口i =1,2, ,n所以F”)”讣P弄韶y—JZx d xfY iy二 f y =因为所以(2)因为所以y2n /"2 "fY (y )=<2Z r '-L_ ye^2(3)因为x 0x _0x丄N 0,;「2i =1,辿N 0,1CT飞工L 2.i ■■-F Y2 y P nY2% y卡 2 y…学芈n2 2 _nx____ 戸nXjL N 0,二2y 0y乞02,…,nnyF.f 2 x dxy 0y乞01,2,…,n故17•解:因为所以故(4)因为所以21X亠一;F Y 3 y = p 沁匸罕二fY 3y=F Y 3y二x 0 x _ 0y 0 y _oX i L N Of 2i =1,2, ,n£ 非L N (o,1)i =1 •、n ;・yF Y 4 y =P 「Y 4 冷乞吕「f 21 xdx'f y ) 1 f 2 y二 F Y 4 y =f 217 77存在相互独立的u , VU L N 0,1VL 2 nUy 乞0xLt n19•解:用公式计算富01 (90)=90 +J2P0U 0.01查表得U 0.01 =2.33代入上式计算可得 鼻爲(90 ) = 90 + 31.26 = 121.2620.解:因为 XL 2 nE 2 = nD 2 由2分布的性质3可知则由定义可知 18解:因为所以(2)因为所以u 2L 21 u 221V n2L F 1,n、n X i i \ n ”_' XiL N 0—i =12 ,nL N 0,1V]2u i :n 1;-n\ m l : X ii 4Y = r . _____ 1n : D m丘「人2F i =n 1J Xi牙Lt mX^L N 0,1zf X .lL ;「m卷 2Li”二i =1,2, , n mnm l X i 2 Y 2 -n imn' x :i -1• j Xi_i.工n{ CT 丿n m z i士 1mL F n,m=2n最新精品文档,知识共享1!X -n |X - n c - nPXx ;=P —-lx/2n V2n Jc _nt2l n m[ V2n ^2^ J VV2n JP^X <c)1.x) x)0, x+□0f:::0 0 _OCixe -■x +□0+x)1xdx-,x d-xe从而有2. 1).E(x)i+oOoO、k(1、k -1p)p' k(1 -、k丄x =1P _1 一1 一p 令P= XL(P)汕(1-P)"p=p n(1-p)u nX i -n最新精品文档,知识共享 1!X解之得解:因为总体X 服从U( a , b )所以_a b D( X )( a-b )2 n!2 12 r ! (n _r ] X ) =X D ( X ) =S 2,n 2解之得:nnIn x i i 4nnIn x ii -1(2)母体X 的期望而样本均值为:-1 nX =—区 X in y令E(x)二X 得1 - X5•。

重庆大学硕士研究生数理统计课外大作业

重庆大学硕士研究生数理统计课外大作业

重庆大学硕士研究生“数理统计”课外作业学生:学号:201510****专业:动力工程专业重庆大学动力工程学院二O一五年十二月学号201510******* 姓名**** 学院****学院专业****专业成绩一元线性回归分析在风力发电中的应用摘要:能源短缺和环境恶化日益严重,风能作为一种可再生的清洁能源,越来越受到世界各国的重视,风力发电的装机容量也越来越大。

风力机是风力发电机组重要的组成部分,实现风能向机械能的转化,机械能再通过直流发电机转发为电能,其中直流发电机输出的直流电压和风速紧密相关。

本文以课题研究中测得的实验数据为基础,对风力发电直流电输出和风速的线性相关关系进行计算分析,运用数理统计中一元线性回归分析及假设检验的相关知识,采用EXCEL软件进行辅助计算,最终得到了风力发电的直流电输出和风速的线性关系显著,对以后的课题研究具有一定的借鉴作用。

1 问题提出与分析在能源短缺和环境趋向恶化的今天,风能作为一种可再生的清洁能源,越来越受到世界各国的重视,也越来越多地被应用到风力发电中。

风力机和发电机是风力发电机组中将风能转化为电能的重要装置,它们不仅直接关系到输出电能的质量和效率,也影响着整电量输出和风速的相关性。

风力机是风力发电机组重要的组成部分,其实现了风动能到风轮机轴机械能的转化,机械能通过直流电动机转发为电能,其中直流电动机产生的直流电压和风力紧密相关。

风力发电的设计和评价和电量输出与风速的关系密不可分,其中对于数学知识要求很高。

本文以课题研究中实验测得的数据为基础,对风力发电直流电输出和风速是否存在线性关系进行分析,运用数理统计中一元线性回归及非参数检验的相关知识,结合EXCEL软件进行辅助计算分析,最终得到了风力发电的直流电输出和风速关系,为以后科研工作和风力发电的应用具有指导意义。

综上所述,对风力发电的直流电输出和风速的研究,具有理论与实践的重要意义。

2 数据描述本文以风力发电的直流输出和风速的关系为研究对象,采用实验中观察得出的直流电输出和风速的部分数值进行计算分析,风力发电的直流电输出y(单位:MW)和风速x(单位:nmile/h)的数据如表1所示。

研究生教材《应用数理统计》作业题及参考答案 李永乐

研究生教材《应用数理统计》作业题及参考答案  李永乐

1第一章 数理统计的基本概念P261.2 设总体X 的分布函数为()F x ,密度函数为()f x ,1X ,2X ,…,n X 为X 的子样,求最大顺序统计量()n X 与最小顺序统计量()1X 的分布函数与密度函数。

解:(){}{}()12nn i n F x P X x P X x X x X x F x =≤=≤≤≤=⎡⎤⎣⎦L ,,,.()()()()1n n n f x F x n F x f x -'=⎡⎤=⎡⎤⎣⎦⎣⎦.(){}{}1121i n F x P X x P X x X x X x =≤=->>>L ,,,. {}{}{}121n P X x P X x P X x =->>>L{}{}{}121111n P X x P X x P X x =-⎡-≤⎤⎡-≤⎤⎡-≤⎤⎣⎦⎣⎦⎣⎦L ()11nF x =-⎡-⎤⎣⎦()()()()1111n f x F x n F x f x -'=⎡⎤=⎡-⎤⎣⎦⎣⎦.1.3 设总体X 服从正态分布()124N ,,今抽取容量为5的子样1X ,2X ,…,5X ,试问: (i )子样的平均值X 大于13的概率为多少?(ii )子样的极小值(最小顺序统计量)小于10的概率为多少? (iii )子样的极大值(最大顺序统计量)大于15的概率为多少?解:()~124X N Q ,,5n =,4~125X N ⎛⎫∴ ⎪⎝⎭,. (i ){}{}()13113111 1.1210.86860.1314P X P X P φφ⎧⎫⎛⎫⎪⎪⎪>=-≤=-=-=-=-=. (ii )令{}min 12345min X X X X X X =,,,,,{}max 12345max X X X X X X =,,,,.{}{}{}min min 125101*********P X P X P X X X <=->=->>>L ,,, {}{}{}5551111011101110i i i i P X P X P X ===->=-⎡-<⎤=-⎡-<⎤⎣⎦⎣⎦∏∏.()12~012X Y N -=Q ,, {}{}121012*********X X P X P P P Y ---⎧⎫⎧⎫∴<=<=<-=<-⎨⎬⎨⎬⎩⎭⎩⎭{}()111110.84130.1587P Y φ=-<=-=-=. {}[]5min 10110.158710.42150.5785P X ∴<=--≈-=.(iii ){}{}{}{}{}55max max 1251151151151515115115i i P X P X P X X X P X P X =>=-<=-<<<=-<=-⎡<⎤⎣⎦∏L ,,,.{}5max 1510.9331910.70770.2923P X ∴>=-≈-=.1.4 试证:(i )()()()22211nni i i i x a x x n x a ==-=-+-∑∑对任意实数a 成立。

研究生“应用数理统计”课外作业---初试成绩分布的假设检验

研究生“应用数理统计”课外作业---初试成绩分布的假设检验

研究生“应用数理统计”课程课外作业学号 XXXXXXX 姓名 XXX 学院 XXXXXX年级专业 XXXXX成绩初试成绩分布的假设检验摘要:数理统计学是一门应用性很强的学科,其方法被广泛应用于现实社会的信息、经济、工程等各个领域,学习和应用数理统计方法已成为当今技术领域里的一种时尚,面对信息时代,为了处理大量的数据以及从中得出有助于决策的量化理论,必须掌握不断更新的数理统计知识,为今后的研究和应用提供新的思路和有效解决方法。

本报告主要应用数理统计的其中一种方法-假设检验,对报考重庆大学2012年机械工程学院工业工程专业的70名学生的初试成绩进行假设检验,首先假设70名学生的初试成绩服从正态分布,然后建立模型,进行模型分析并代入初始数据求解,然后进行检验,通过检验发现报考重庆大学2012年机械工程学院工业工程专业的70名学生的初试成绩服从正态分布。

关键字:假设检验初试成绩正态分布一、问题提出,问题分析。

我是2012年考入重庆大学机械工程学院工业工程专业的一名学生,进入学校几个月来,在选课时,我选了数理统计这门课,刚刚学习了假设检验,其中,书上有一道例题:检验某高校60名学生的英语成绩是否服从正态分布,检验结果是服从正态分布。

这使我想起了我当初参加的研究生考试,我发现我们的考试成绩分布在355-395之间的比较多,小于355或大于395的比较少,那么,我们参加复试的70名考生的初试成绩是否也服从正态分布呢?于是,我根据自己学到的数理统计知识进行了假设检验。

二、数据描述(用表格表达数据信息,指出数据来源或提供原始数据)幸运的是:当初公布复试结果时,我用手机把复试结果照了下来,照片上可以看出我们70名考生的初试成绩,现将其整理如下(原件请见附录):表(2.1.1)重庆大学2012年机械工程学院工业工程专业初试成绩表404 407 415 402 389 387 390 391 388 393 405 378 381 381 369 392 359 362 403 385 381 388 365 358 366 354 368 368 373 349 379 360 360 391 351 367 348 362 372 348 347 340 360 354 349 345 352 353 342 360 351 342 341 340 384 371 324 340 374 340 341 335 335 339 334 317 374 380 359 356三、模型建立:(1)提出假设条件,明确概念,引进参数;设总体X的分布函数为F(x),但未知。

2012-2013年第二学期工科研究生数理统计课课外作业(推荐文档)

2012-2013年第二学期工科研究生数理统计课课外作业(推荐文档)

研究生“数理统计”课程课外作业姓名:学号:学院:专业:类别:上课时间:成绩:紫红薯糖蛋白提取工艺的优化——正交设计与方差分析法的应用摘要:采用超声波辅助法提取紫红薯中的糖蛋白。

选取超声功率、料液比、提取数量、超声时间四个因素进行L9(34)正交试验,对正交试验结果进行极差分析、方差分析及配对比较。

试验结果表明:影响紫红薯糖蛋白提取得率的主要因素按显著性排序,依次是提取数量、料液比、超声功率、超声时间。

方差分析显示,提取次数、料液比、超声功率3个因素的影响都极显著,而超声时间不显著。

由极差分析和配对比较得出结论:超声功率150 W、料液比1:10、提取数量3次、超声时间20 min为紫红薯糖蛋白的最佳提取工艺参数。

关键词:正交方差分析糖蛋白超声波辅助法提取得率1 问题提出及分析紫红薯中的糖蛋白是一类糖类同多肽或蛋白质以共价键连接而形成的结合蛋白[1],在生物体内以不同形式存在而发挥作用,是细胞膜、细胞间基质、血浆、粘液、激素等重要组成成分[2, 3],糖蛋白及其复合物具有如抗氧化、免疫调节作用、体外抗肿瘤活性、抗糖尿病活性等多方面的生物活性,因此开发紫红薯糖蛋白具有重要的意义。

而紫红薯糖蛋白的提取受到多方面因素的影响,因此必须对影响因素进行分析并找到紫红薯糖蛋白提取工艺优化条件。

2 数据描述本文援引罗秋水等[4]的研究数据,阐述正交设计及方差分析法在提取紫红薯糖蛋白工艺研究方面的应用。

表1为紫红薯糖蛋白提取影响因素。

表2为紫红薯糖蛋白提取试验的正交设计试验结果。

表1正交试验因素水平表水平A(超声功率/W)B(料液比)C(提取数量/次)D(超声时间/min)1 120 1:8 1 202 135 1:10 2 303 150 1:12 3 40表2 正交设计及试验结果编号因素提取得率/%A (超声功率/W )B (料液比)C (提取数量/次)D (超声时间/min ) 正交 1 1(120)1(1:8) 1(1) 1(20) 0.1504 0.1411 2 1 2(1:10) 2(2) 2(30) 0.2258 0.2310 3 1 3(1:12)3(3) 3(40) 0.3603 0.3923 4 2(135)1 2 3 0.1815 0.1791 5 2 2 3 1 0.4428 0.4406 6 2 3 1 2 0.2863 0.2794 7 3(150)1 32 0.3428 0.3469 83 2 1 3 0.3308 0.3495 933210.30410.29803 模型建立3.1 建立正交设计方案根据表1中的正交试验因素及其水平,采用软件SPSS 生成正交设计。

数理统计答案(研究生)

数理统计答案(研究生)
2
1
2
2 ( X ) i 的概率分布。 i 1
n
xi

2
N (0,1), 且Y1 ,..., Yn 之间相互独立
Y
1

2
(x
i
i
) (
i
xi

) yi
2 i
2
2 2 由 分布定义Y (n),Y服从自由度为n的 2 分布。
i 1 n
k
(k 1)!
xi k 1e xi
n xi 1 ( )n nk ( xi )k 1 e i (k 1)! i 1
ln L n ln(k 1)! nk ln ln( xi ) k 1 xi
i 1 i
n
d ln L nk k k ^ xi 0,^ 或 d x x i
Dx

2
n
13.设X1,X2,…,Xn是具有泊松分布 P ( ) 母体 的一个子样。试验证:子样方差 S *2 是 的无偏估计;并且对任一值 [0,1], X (1 )S*2 也是 的无偏估计,此处 X 为子样的平均 数
*2 解: X P(), EX , DX , E X , ES
16.设母体X具有正态分布N(0,1),从此母体 中取一容量为6的子样(x1,x2,x3,x4,x5,x6)。 又设 Y ( X X X ) ( X X X ) 。试决定常数C,使 2 得随机变量CY服从 分布。 解: X N (0,1), Z1 X1 X 2 X 3 N (0, 3),
ln L n ln ( 1) ln xi
i
i 1 i 1

应用数理统计课外大作业范例

应用数理统计课外大作业范例

《数理统计》案例分析大作业(范例)学号 姓名 专业 成绩国家财政收入的多元线性回归模型摘要:用Excel 求解Y 与X 之间的初步回归模型,得到初步回归直线方程1234567284870.009090.462080.031870.2860660.221980.002920.239963Y x x x x x x x =---+--+然后对此方程进行线性显著性检验和回归系数显著性检验。

由20.999R =知Y 与X 之间存在显著的线性,然而只有自变量27,x x 满足通过t 值检验,从而回归系数13456,,,,x x x x x 与Y 之间没有显著的线性关系,说明自变量之间存在多重共线性关系。

采用MATLAB 逐步回归方法对数据进行处理,根据程序自动提示得到最优回归方程57733410.6606580.241802y x x ∧=-+,此时20.997R =,3008F =。

最后采用2010年的数据对此方程进行验证,得到结果在误差范围内,表明这个模型可以正确反映影响财政收入的各因素的情况。

一、问题提出近年来,随着国家经济水平的飞速发展,人民生活水平日益提高,综合国力日渐强大。

经济上的飞速发展并带动了国家财政收入的飞速增加,国家财政的状况对整个社会的发展影响巨大。

政府有了强有力的财政保证才能够对全局进行把握和调控,对于整个国家和社会的健康快速发展有着重要的意义。

所以对国家财政的收入状况进行研究是十分必要的。

国家财政收入的增长,宏观上必然与整个国家的经济有着必然的关系,但是具体到各个方面的影响因素又有着十分复杂的相关原因。

为了研究影响国家财政收入的因素,我们就很有必要对其财政收入和影响财政收入的因素作必要的认识,如果能对他们之间的关系作一下回归,并利用我们所知道的数据建立起回归模型这对我们很有作用。

而影响财政收入的因素有很多,如人口状况、引进的外资总额,第一产业的发展情况,第二产业的发展情况,第三产业的发展情况等等。

研究生数理统计习题

研究生数理统计习题

1.设随机变量12,X X 独立,且具有相同的指数分布,0(x)0,0x e x f x -⎧>=⎨≤⎩,试求112212,/Y X X Y X X =+=的密度12(y ,y )g ? 2.设12(,,...,)n X X X 来自于正态总体2(0,)N σ,求下列统计量的密度函数:(1) 211ni i Y X ==∑ (2) 2211n i i Y X n ==∑ (3) 231()n i i Y X ==∑ (4) 2411()n i i Y X n ==∑ 3. 12(,,...,)n X X X 来自(1,)b p ,证明:1ni i T X ==∑是充分统计量。

4.证明:泊松分布族为指数型分布族。

5.随机抽取某食品厂生产的听装饮料5个,其净重如下:351 347 355 344 351求该组样本的经验分布函数。

6.设总体X 的方差2DX σ=,样本方差211(X X)1n i i S n ==--∑,证明:22()E S σ=。

7.设总体服从正态密度函数221/22211(;,)(2)exp((ln )),02f x x x x μσπσμσ-=--> 其中2,0μσ-∞<<+∞>是未知参数,12(,,...,)n X X X 是一样本,求μ和2σ的矩估计。

8. 2(0,)X N σ ,密度函数为2(;,)f x μσ,对于大小为n 的样本,求使得2(;,)0.05A f x dx μσ∞=⎰成立的点A 的极大似然估计。

9.设总体X 满足2(),()E X E X μ=<∞<∞,12(,,...,)n X X X 是来自该总体的一个样本,验证:1212(,,...,)(1)n n i i T X X X iX n n ==+∑是μ的相合估计。

10.简述:(1)特征函数,充分统计量,指数分布族,经验分布函数,统计学中三大抽样分布的定义。

研究生数理统计课外作业

研究生数理统计课外作业

工科研究生数理统计课外作业
一、说明
1.要求:
请大家结合现实生活或者专业背景,说明参数估计、假设检验、方差分析、回归分析、正交设计(至少选择一个)的应用
要求大家自行提出问题、搜集数据(提供原始数据)和假设条件,建立模型,并且应用统计方法和相关统计软件进行模型求解,对计算结果进行解释和说明。

注意:不能复制已有结果,同学之间也不能相互复制相关内容2.评价标准:
以问题表述的清晰性、条件假设的合理性、建模的科学性和创造性、模型表达的正确性、计算方法选择的合理性、结果的正确性和文字表述的清晰程度、格式的规范性(科研论文格式规范)为主要标准
3.课外作业提交形式:
纸质报告(用A4纸打印)包括报告题目、摘要、正文、参考文献和附录五个部分。

正文内容应包括问题描述、数据描述、模型建立、求解和检验、模型结果分析等内容。

报告用Word 文本格式,中文字使用宋体、小四号字,英文用Roman 字体5 号字,数学符号用MathType 输入。

4.课外作业提交时间:由授课老师确定,但最迟提交时间为考试前.
二、报告基本格式
合肥工业大学研究生“数理统计”课程课外作业
姓名:学号:
学院:专业:
类型:
成绩:
题目:
摘要:
关键词:
正文:
一、问题提出,问题分析;
二、数据描述(用表格表达数据信息,指出数据来源或提供原始数据)
三、模型建立:
(1)提出假设条件,明确概念,引进参数;
(2)模型构建;
(3)模型求解。

四、计算方法设计和计算机实现。

五、主要的结论或发现。

六、结果分析与检验参考资料
附录。

重庆大学研究生数理统计大作业

重庆大学研究生数理统计大作业

NBA球员科比单场总得分与上场时间的线性回归分析摘要篮球运动中,球员的上场时间与球员的场上得分的数学关系将影响到教练对每位球员上场时间的把握,若能得到某位球员的上场时间与场上得分的数据关系,将能更好的把握该名球员的场上时间分配。

本次作业将针对现役NBA球员中影响力最大的球员科比布莱恩特进行研究,对其2012-2013年赛季常规赛的每场得分与出场时间进行线性回归,得到得分与出场时间的一元线性回归直线,并对显著性进行评估和进行区间预测。

正文一、问题描述随着2002年姚明加入NBA,越来越多的中国人开始关注篮球这一项体育运动,并使得篮球运动大范围的普及开来,尤其是青年学生。

本着学以致用的原则,希望将所学理论知识与现实生活与个人兴趣相结合,若能通过建立相应的数理统计模型来做相应的分析,并且从另外一个角度解析篮球,并用以指导篮球这一项运动的更好发展,这也将是一项不同寻常的探索。

篮球运动中,得分是取胜的决定因素,若要赢得比赛,必须将得分超出对手,而影响一位球员的得分的因素是多样的,例如:情绪,状态,体力,伤病,上场时间,防守队员等诸多因素,而上场时间作为最直接最关键的因素,其对球员总得分的影响方式有着重要的研究意义。

倘若知道了其分布规律,则可从数量上掌握得分与上场时间复杂关系的大趋势,就可以利用这种趋势研究球员效率最优化与上场时间的控制问题。

因此,本文针对湖人当家球星科比布莱恩特在2012-2013年赛季常规赛的每场得分与上场时间进行线性回归分析,并对显著性进行评估,以巩固所学知识,并发现自己的不足。

二、数据描述抽出科比布莱恩特2012-2013年常规赛所有82场的数据记录(原始数据见附录),剔除掉其中没有上场的部分数据,得到有参考实用价值的数据如表2.1所示:以上数据由腾讯篮球中心提供,特此说明。

三、模型建立(1)假设条件假定球员每场的发挥均为独立同分布事件, (2)模型构建以上场时间为自变量Xi ,单场得分为应变量Yi ,建立正态线性模型式:()012,1,2,,;0,,,,,i i i ii i i Y x i n N ββεεσεεε=++=⎧⎪⎨⎪⎩且相互独立 其中β0、β1为模型参数。

重庆大学硕士研究生数理统计课外大作业

重庆大学硕士研究生数理统计课外大作业

重庆大学硕士研究生“数理统计”课外作业学生:学号:201510****专业:动力工程专业重庆大学动力工程学院二O一五年十二月学号201510******* 姓名**** 学院****学院专业****专业成绩一元线性回归分析在风力发电中的应用摘要:能源短缺和环境恶化日益严重,风能作为一种可再生的清洁能源,越来越受到世界各国的重视,风力发电的装机容量也越来越大。

风力机是风力发电机组重要的组成部分,实现风能向机械能的转化,机械能再通过直流发电机转发为电能,其中直流发电机输出的直流电压和风速紧密相关。

本文以课题研究中测得的实验数据为基础,对风力发电直流电输出和风速的线性相关关系进行计算分析,运用数理统计中一元线性回归分析及假设检验的相关知识,采用EXCEL软件进行辅助计算,最终得到了风力发电的直流电输出和风速的线性关系显著,对以后的课题研究具有一定的借鉴作用。

1 问题提出与分析在能源短缺和环境趋向恶化的今天,风能作为一种可再生的清洁能源,越来越受到世界各国的重视,也越来越多地被应用到风力发电中。

风力机和发电机是风力发电机组中将风能转化为电能的重要装置,它们不仅直接关系到输出电能的质量和效率,也影响着整电量输出和风速的相关性。

风力机是风力发电机组重要的组成部分,其实现了风动能到风轮机轴机械能的转化,机械能通过直流电动机转发为电能,其中直流电动机产生的直流电压和风力紧密相关。

风力发电的设计和评价和电量输出与风速的关系密不可分,其中对于数学知识要求很高。

本文以课题研究中实验测得的数据为基础,对风力发电直流电输出和风速是否存在线性关系进行分析,运用数理统计中一元线性回归及非参数检验的相关知识,结合EXCEL软件进行辅助计算分析,最终得到了风力发电的直流电输出和风速关系,为以后科研工作和风力发电的应用具有指导意义。

综上所述,对风力发电的直流电输出和风速的研究,具有理论与实践的重要意义。

2 数据描述本文以风力发电的直流输出和风速的关系为研究对象,采用实验中观察得出的直流电输出和风速的部分数值进行计算分析,风力发电的直流电输出y(单位:MW)和风速x(单位:nmile/h)的数据如表1所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工科研究生数理统计课外作业
一、说明
1.要求:
请大家结合现实生活或者专业背景,说明参数估计、假设检验、方差分析、回归分析、正交设计(至少选择一个)的应用
要求大家自行提出问题、搜集数据(提供原始数据)和假设条件,建立模型,并且应用统计方法和相关统计软件进行模型求解,对计算结果进行解释和说明。

注意:不能复制已有结果,同学之间也不能相互复制相关内容2.评价标准:
以问题表述的清晰性、条件假设的合理性、建模的科学性和创造性、模型表达的正确性、计算方法选择的合理性、结果的正确性和文字表述的清晰程度、格式的规范性(科研论文格式规范)为主要标准
3.课外作业提交形式:
纸质报告(用A4纸打印)包括报告题目、摘要、正文、参考文献和附录五个部分。

正文内容应包括问题描述、数据描述、模型建立、求解和检验、模型结果分析等内容。

报告用Word 文本格式,中文字使用宋体、小四号字,英文用Roman 字体5 号字,数学符号用MathType 输入。

4.课外作业提交时间:由授课老师确定,但最迟提交时间为考试前.
二、报告基本格式
合肥工业大学研究生“数理统计”课程课外作业
姓名:学号:
学院:专业:
类型:
成绩:
题目:
摘要:
关键词:
正文:
一、问题提出,问题分析;
二、数据描述(用表格表达数据信息,指出数据来源或提供原始数据)
三、模型建立:
(1)提出假设条件,明确概念,引进参数;
(2)模型构建;
(3)模型求解。

四、计算方法设计和计算机实现。

五、主要的结论或发现。

六、结果分析与检验参考资料
附录。

相关文档
最新文档