2017高中物理第十八章原子结构1电子的发现课时训练新人教版选修3_5

合集下载

高中物理,选修3---5,第十八章《原子结构》,新课教学,课时同步强化训练汇总,(附参考答案)

高中物理,选修3---5,第十八章《原子结构》,新课教学,课时同步强化训练汇总,(附参考答案)

高中物理选修3---5第十八章《原子结构》新课教学课时同步强化训练汇总1.《电子的发现》课时同步强化训练(附参考答案)2.《原子的核式结构模型》课时同步强化训练(附参考答案)3.《氢原子光谱》课时同步强化训练(附参考答案)4.《波尔德原子模型》课时同步强化训练(附参考答案)★选修3---5第十八章《原子结构》单元检测§§18.1《电子的发现》课时同步强化训练1.关于阴极射线的性质,判断正确的是( ) A.阴极射线带负电B.阴极射线带正电C.阴极射线的比荷比氢原子比荷大D.阴极射线的比荷比氢原子比荷小2.如图1所示,一只阴极射线管,左侧不断有电子射出,若在管的正下方放一通电直导线AB时,发现射线径迹下偏,则( )图1A.导线中的电流由A流向BB.导线中的电流由B流向AC.如要使电子束的径迹向上偏,可以通过改变AB中电流方向来实现D.电子的径迹与AB中电流的方向无关3.下列说法正确的是( ) A.电子是原子核的组成部分B.电子电荷的精确测定最早是由密立根通过著名的“油滴实验”实现的C.电子电荷量的数值约为1.602×10-19 CD.电子质量与电荷量的比值称为电子的比荷4.如图2是阴极射线管示意图.接通电源后,阴极射线由阴极沿x轴正方向射出,在荧光屏上会看到一条亮线.要使荧光屏上的亮线向下(z轴负方向)偏转,在下列措施中可采用的是( )图2A.加一磁场,磁场方向沿z轴负方向B.加一磁场,磁场方向沿y轴正方向C.加一电场,电场方向沿z轴负方向D.加一电场,电场方向沿y轴正方向5.图3为示波管中电子枪的原理示意图,示波管内被抽成真空,A 为发射热电子的阴极,K 为接在高电势点的加速阳极,A 、K 间电压为U ,电子离开阴极时的速度可以忽略,电子经加速后从K 的小孔中射出的速度大小为v.下面的说法中正确的是( )图3A .如果A 、K 间距离减半而电压仍为U 不变,则电子离开K 时的速度变为2vB .如果A 、K 间距离减半而电压仍为U 不变,则电子离开K 时的速度变为v2C .如果A 、K 间距离保持不变而电压减半,则电子离开K 时的速度变为v2D .如果A 、K 间距离保持不变而电压减半,则电子离开K 时的速度变为22v 6.亥姆霍兹线圈是一对彼此平行串联的共轴圆形线圈,两线圈大小相同,线圈之间距离d 正好等于圆形线圈的半径R ,如图4所示.这种线圈的特点是能在其公共轴线中点O 附近产生近似匀强磁场,且该匀强磁场的磁感应强度与线圈中的电流成正比,即B =kI.电子枪将灯丝溢出的电子经电压为U 的电场加速后,垂直射入上述匀强磁场中,测得电子做匀速圆周运动的半径为r ,试求电子的比荷.图47.带电粒子的比荷qm是一个重要的物理量.某中学物理兴趣小组设计了一个实验,探究电场和磁场对电子运动轨迹的影响,以求得电子的比荷,实验装置如图5所示.图5(1)他们的主要实验步骤如下:A.首先在两极板M1、M2之间不加任何电场、磁场,开启阴极射线管电源,射出的电子从两极板中央通过,在荧光屏的正中心处观察到一个亮点;B.在M1、M2两极板间加合适的电场:加上极性如图所示的电压,并逐步调节增大,使荧光屏上的亮点逐渐向荧光屏下方偏移,直到荧光屏上恰好看不见亮点为止,记下此时外加电压为U.请问本步骤的目的是什么?C.保持步骤B中的电压U不变,对M1M2区域加一个大小、方向合适的磁场B,使荧光屏正中心重现亮点,试问外加磁场的方向如何?(2)根据上述实验步骤,同学们正确推算出电子的比荷与外加电场、磁场及其他相关量的关系为qm=UB2d2.一位同学说,这表明电子的比荷将由外加电压决定,外加电压越大则电子的比荷越大,你认为他的说法正确吗?为什么?8.汤姆孙1897年用阴极射线管测量了电子的比荷(电子电荷量与质量之比),其实验原理如图6所示.电子流平行于极板射入,极板P、P′间同时存在匀强电场E和垂直纸面向里的匀强磁场B时,电子流不发生偏转;极板间只存在垂直纸面向里的匀强磁场B时,电子流穿出平行板电容器时的偏向角θ=115rad.已知极板长L=3.0×10-2 m,电场强度大小为E=1.5×104 V/m,磁感应强度大小为B=5.0×10-4 T.求电子的比荷.图6§§18.1《电子的发现》参考答案1.AC 2.BC 3.BC 4.B 5.D 6.2UkIr27.见解析解析 依据运动的带电粒子在电场中受电场力和在磁场中受洛伦兹力,两者平衡列方程求比荷.(1)B 中荧光屏上恰好看不到亮点说明电子刚好落在正极板的近荧光屏的边缘,目的是利用极板间的距离d 表示比荷qm .C 中由于要求洛伦兹力方向向上,根据左手定则可知磁场方向垂直电场方向向外(垂直于纸面向外).(2)不正确,电子的比荷qm 是电子的固有参数,与测量所加U 、B 以及极板间距离d 无关.8.1.3×1011C/kg§§18.2《原子的核式结构模型》课时同步强化训练1.下列关于原子结构的说法正确的是( ) A.电子的发现说明了原子内部还有复杂结构B.α粒子散射实验揭示了原子的核式结构C.α粒子散射实验中绝大多数α粒子都发生了较大偏转D.α粒子散射实验中有的α粒子发生较大偏转是α粒子与原子发生碰撞所致2.α粒子散射实验结果表明( ) A.原子中绝大部分是空的B.原子中全部正电荷都集中在原子核上C.原子内有中子D.原子的质量几乎全部都集中在原子核上3.α粒子散射实验中,不考虑电子和α粒子的碰撞影响,是因为( ) A.α粒子与电子根本无相互作用B.α粒子受电子作用的合力为零,是因为电子是均匀分布的C.α粒子和电子碰撞损失能量极少,可忽略不计D.电子很小,α粒子碰撞不到电子4.卢瑟福提出原子核式结构的实验基础是α粒子散射实验,在α粒子散射实验中,大多数α粒子穿越金箔后仍然沿着原来的方向运动,其较为合理的解释是( )A.α粒子穿越金箔时距离原子核较近B.α粒子穿越金箔时距离原子核较远C.α粒子穿越金箔时没有受到原子核的作用力D.α粒子穿越金箔时受到原子核与电子的作用力构成平衡力5.在α粒子散射实验中,使少数α粒子发生大角度偏转的作用力是原子核对α粒子的( )A.万有引力B.库仑力C.磁场力D.核力6.如图所示,X表示金原子核,α粒子射向金核被散射,若它们入射时的动能相同,其偏转轨道可能是图中的( )图17.如图1所示为α粒子散射实验中α粒子穿过某一原子核附近时的示意图,A、B、C三点分别位于两个等势面上,则以下说法中正确的是( ) A.α粒子在A处的速度比在B处的速度小B.α粒子在B处的速度最大C.α粒子在A、C处的速度的大小相同D.α粒子在B处的速度比在C处的速度小8.关于α粒子散射实验,下列说法正确的是( )A.α粒子穿过原子时,由于α粒子的质量比电子大得多,电子不可能使α粒子的运动方向发生明显的改变B.由于绝大多数α粒子穿过金箔后仍按原来方向前进,所以使α粒子发生大角度偏转的原因是在原子中极小的区域内集中着对α粒子产生库仑力的正电荷C.α粒子穿过原子时,只有少数粒子发生大角度偏转的原因是原子核很小,α粒子接近原子核的机会很小D.使α粒子发生大角度偏转的原因是α粒子穿过原子时,原子内部两侧的正电荷对α粒子的斥力不相等9.已知电子质量为9.1×10-31 kg,带电荷量为-1.6×10-19 C,当氢原子核外电子绕核旋转时的轨道半径为0.53×10-10 m时,求电子绕核运动的速度、频率、动能和等效的电流.§§18.2《原子的核式结构模型》参考答案1.AB2.ABD3.C4.B5.B6.D7.CD8.ABC9.2.19×106 m/s6.58×1015 Hz2.17×10-18 J1.07×10-3 A§§18.3《氢原子光谱》课时同步强化训练1.白炽灯发光产生的光谱是( ) A.连续谱B.明线光谱C.原子光谱D.吸收光谱2.下列关于光谱的说法正确的是( ) A.炽热固体、液体和高压气体发出的光生成连续谱B.各种原子的线状谱中的明线和它的吸收光谱中的暗线是一一对应的C.气体发出的光只能产生线状谱D.甲物质发出的光通过低温的乙物质蒸气可得到甲物质的吸收光谱3.关于光谱和光谱分析,下列说法正确的是( ) A.太阳光谱与白炽灯光谱都是线状谱B.霓虹灯与煤气灯火焰中燃烧的钠蒸气产生的光谱都是线状谱C.做光谱分析时,可以用线状谱,也可以用吸收光谱D.观察月亮光谱可以完全确定月球的化学成分4.太阳的光谱中有许多暗线,它们对应着某些元素的特征谱线,产生这些暗线是由于( ) A.太阳表面大气层中缺少相应的元素B.太阳内部缺少相应的元素C.太阳表面大气层中存在着相应的元素D.太阳内部存在着相应的元素5.关于巴耳末公式1λ=R(122-1n2)的理解,正确的是( )A.此公式是巴耳末在研究氢原子光谱特征时发现的B.公式中n可取任意值,故氢原子光谱是连续谱C.公式中n只能取大于或等于3的整数值,故氢原子光谱是线状谱D.公式不但适用于氢原子光谱的分析,也适用于其他原子的光谱6.对于光谱,下列说法中正确的是( ) A.大量原子发出的光谱是连续谱,少量原子发出的光谱是线状谱B.线状谱由不连续的若干波长的光所组成C.太阳光谱是连续谱D.太阳光谱是线状谱7.按经典的电磁理论,关于氢原子光谱的描述应该是( )A.线状谱B.连续谱C.吸收光谱D.发射光谱8.关于光谱和光谱分析,下列说法正确的是( ) A.做光谱分析时只能用发射光谱,不能用吸收光谱B.做光谱分析时只能用吸收光谱,不能用发射光谱C.做光谱分析时既可以用发射光谱,也可以用吸收光谱D.同一种物质的线状谱和吸收光谱上的暗线由于光谱的不同,它们没有关系9.如图1甲所示,是a、b、c、d四种元素的线状谱,图乙是某矿物的线状谱,通过光谱分析可以了解该矿物中缺乏的是( )图1A.a元素B.b元素C.c元素D.d元素10.在酒精灯的酒精中溶解些食盐,灯焰会发出明亮的黄光,用摄谱仪拍摄下来的光谱中就会有钠的________光谱(填“线状”或“吸收”).§§18.3《氢原子光谱》参考答案1.A2.AB3.BC4.C5.AC6.B7.B8.C9.BD10.线状§§18.4《波尔德原子模型》课时同步强化训练1.关于玻尔的原子模型,下列说法中正确的是( ) A.它彻底否定了卢瑟福的核式结构学说B.它发展了卢瑟福的核式结构学说C.它完全抛弃了经典的电磁理论D.它引入了普朗克的量子理论2.根据玻尔理论,以下说法正确的是( ) A.电子绕核运动有加速度,就要向外辐射电磁波B.处于定态的原子,其电子做变速运动,但它并不向外辐射能量C.原子内电子的可能轨道是不连续的D.原子能级跃迁时,辐射或吸收光子的能量取决于两个轨道的能量差3.关于玻尔理论,下列说法正确的是( ) A.玻尔理论的成功,说明经典电磁理论不适用于原子系统,也说明了电磁理论不适用电子运动B.玻尔理论成功地解释了氢原子光谱的规律,为量子力学的建立奠定了基础C.玻尔理论的成功之处是引入了量子观念D.玻尔理论的成功之处,是它保留了经典理论中的一些观点,如电子轨道的概念4.如图1所示为氢原子的四个能级,其中E1为基态,若氢原子A处于激发态E2,氢原子B 处于激发态E3,则下列说法正确的是( )图1A.原子A可能辐射出3种频率的光子B.原子B可能辐射出3种频率的光子C.原子A能够吸收原子B发出的光子并跃迁到能级E4D.原子B能够吸收原子A发出的光子并跃迁到能级E45.氢原子的能级图如图2所示,欲使一处于基态的氢原子释放出一个电子而变成氢离子,氢原子需要吸收的能量至少是( )图2A.13.6 eV B.10.20 eVC.0.54 eV D.27.20 eV6.氢原子的能级图如图3所示,已知可见光的光子能量范围约为1.62 eV~3.11 eV.下列说法错误的是( )图3A.处于n=3能级的氢原子可以吸收任意频率的紫外线,并发生电离B.大量氢原子从高能级向n=3能级跃迁时,发出的光具有显著的热效应C.大量处于n=4能级的氢原子向低能级跃迁时,可能发出6种不同频率的光D.大量处于n=4能级的氢原子向低能级跃迁时,可能发出3种不同频率的可见光7.μ子与氢原子核(质子)构成的原子称为μ氢原子,它在原子核物理的研究中有重要作用.图4为μ氢原子的能级示意图,假定光子能量为E的一束光照射容器中大量处于n =2能级的μ氢原子,μ氢原子吸收光子后,发出频率为ν1、ν2、ν3、ν4、ν5和ν6的光子,且频率依次增大,则E等于( )图4A.h(ν3-ν1) B.h(ν3+ν1)C.hν3D.hν48.按照玻尔理论,氢原子从能级A跃迁到能级B时,释放频率为ν1的光子;氢原子从能级B跃迁到能级C时,吸收频率为ν2的光子,且ν1>ν2.则氢原子从能级C跃迁到能级A时,将( )A.吸收频率为ν2-ν1的光子B.吸收频率为ν1-ν2的光子C.吸收频率为ν2+ν1的光子D.释放频率为ν1+ν2的光子9.如图5为氢原子能级的示意图,现有大量的氢原子处于n=4的激发态,当向低能级跃迁时辐射出若干种不同频率的光.关于这些光下列说法正确的是()图5A.最容易表现出衍射现象的光是由n=4能级跃迁到n=1能级产生的B.频率最小的光是由n=2能级跃迁到n=1能级产生的C.这些氢原子总共可辐射出3种不同频率的光D.用n=2能级跃迁到n=1能级辐射出的光照射逸出功为6.34 eV的金属铂能发生光电效应10.若要使处于基态的氢原子电离,可以采用两种方法,一是用能量为13.6 eV的电子撞击氢原子,二是用能量为13.6 eV的光子照射氢原子,则( )A.两种方法都可能使氢原子电离B.两种方法都不可能使氢原子电离C.前者可使氢原子电离D.后者可使氢原子电离11.氢原子部分能级的示意图如图6所示.不同色光的光子能量如下表所示.图6处于某激发态的氢原子,发射的光的谱线在可见光范围内仅有2条,其颜色分别为( )A.红、蓝—靛B.黄、绿C.红、紫D.蓝—靛、紫12.已知氢原子处于基态时,原子的能量E1=-13.6 eV,电子的轨道半径为r1=0.53×10-10 m;而量子数为n的能级的能量值为E n=1n2E1,半径为r n=n2r1.试问:(结果保留两位有效数字)(1)若要使处于n=3的激发态的氢原子电离,至少要用频率多大的光照射氢原子?(2)氢原子处于n=3能级时,电子在轨道上运动的动能和电子的电势能各为多少?(静电力常量k=9×109N·m2/C2,电子电荷量e=1.6×10-19C,普朗克常量h=6.63×10-34J·s)§§18.4《波尔德原子模型》参考答案1.BD2.BCD3.BC4.B5.A6.D7.C8.B9.D10.D11.A12.(1)3.6×1014 Hz (2)2.4×10-19 J(或1.5 eV)-4.8×10-19 J(或-3.0 eV)选修3---5第十八章《原子结构》单元检测(时间:90分钟满分:100分)一、选择题(本题共10小题,每小题4分,共40分)1.下列关于光的波粒二象性的说法中正确的是( ) A.一束传播的光,有的光是波,有的光是粒子B.由光电效应现象可知光子与电子是同一种粒子;从双缝干涉实验结果看出,光波与械波是同一种波C.在一束光中,光子间的相互作用使光表现出波的性质D.光是一种波,同时也是一种粒子,光子说并未否定电磁说,在光子能量ε=hν中,频率ν仍表示的是波的特性2.当具有5.0 eV能量的光子照射到某金属表面后,从金属表面逸出的电子具有的最大初动能是1.5 eV.为了使这种金属发生光电效应,入射光的最低能量为( )A.1.5 eV B.3.5 eVC.5.0 eV D.6.5 eV3.关于原子结构,下列说法中正确的是( ) A.利用α粒子散射实验可以估算原子核的半径B.利用α粒子散射实验可以估算核外电子的运动半径C.原子的核式结构模型很好地解释了氢原子光谱的实验D.处于激发态的氢原子放出光子后,核外电子运动的动能将增大4.在α粒子散射实验中,如果两个具有相同能量的α粒子,从不同大小的角度散射出来,则散射角度大的这个α粒子( ) A.更接近原子核B.更远离原子核C.受到一个以上的原子核作用D.受到原子核较大的冲量作用5.2003年全世界物理学家评选出“十大最美物理实验”,排名第一的为1961年物理学家利用“托马斯·杨”双缝干涉实验装置进行的电子干涉实验.如图1所示,从辐射源射出的电子束经两个靠近的狭缝后在显微镜的荧光屏上出现干涉条纹,该实验说明 ( )图1A.光具有波动性B.光具有波粒二象性C.微观粒子也具有波动性D.微观粒子的波是一种电磁波6.根据玻尔理论,在氢原子中,量子数n越大,则( ) A.电子轨道半径越小B.核外电子运动速度越大C.原子能量越大D.电势能越小7.氢原子的能级图如图2所示,一群原来处于n=4能级的氢原子跃迁到n=1能级的过程中( )图2A.放出三种频率不同的光子B.放出六种频率不同的光子C.放出的光子的最大能量为12.75 eV,最小能量是0.66 eVD.放出的光能够使逸出功为13 eV的金属发生光电效应8.氦原子被电离出一个核外电子,形成类氢结构的氦离子.已知基态的氦离子能量为E1=-54.4 eV,氦离子的能级示意图如图3所示,在具有下列能量的光子或者电子中,不能被基态氦离子吸收而发生跃迁的是( )图3A.42.8 eV(光子) B.43.2 eV(电子)C.41.0 eV(电子) D.54.4 eV(光子)9.研究光电效应规律的实验装置如图4所示,用频率为ν的光照射光电管阴极K时,有光电子产生.由于光电管K、A间加的是反向电压,光电子从阴极K射出后将向阳极A做减速运动.光电流i由图中电流计G测出,反向电压U由电压表V测出.当电流计示数恰好为零时,电压表的示数称为遏止电压U c.下列表示光电效应实验规律的图象中,正确的是( )图410.用如图5所示的光电管研究光电效应的实验中,用某种频率的单色光a照射光电管阴极K,电流计G的指针发生偏转.而用另一频率的单色光b照射光电管阴极K时,电流计G的指针不发生偏转,那么( )图5A.a光的频率一定大于b光的频率B.增大b光的强度可能使电流计G的指针发生偏转C.用a光照射光电管阴极K时通过电流计G的电流是由d到cD.只增大a光的强度可使通过电流计G的电流增大二、填空题(本题共4小题,共20分)11.(5分)已知氢原子的基态能量为-13.6 eV,第二能级E2=-3.4 eV,如果氢原子吸收________eV能量,可由基态跃迁到第二能级.如果再吸收1.89 eV能量,还可由第二能级跃迁到第三能级,则氢原子的第三能级E3=________ eV.12.(5分)黑体辐射的规律不能用经典电磁学理论来解释,1900年德国物理学家普朗克认为能量是由一份一份不可分割的最小能量值组成,每一份称为______.1905年爱因斯坦由此得到启发,提出了光子的观点,认为光子是组成光的最小能量单位,光子的能量表达式为________,并成功解释了________现象中有关极限频率、最大初动能等规律,写出了著名的________方程,并因此获得诺贝尔物理学奖.13.(5分)图6中画出了氢原子的5个能级,并注明了相应的能量E.处在n=4能级的一群氢原子向低能级跃迁时,能够发出若干种不同频率的光波.已知金属钾的逸出功为2.22 eV.在这些光波中,能够从金属钾的表面打出光电子的总共有________种.图614.(5分)如图7所示是用光照射某种金属时逸出的光电子的最大初动能随入射光频率的变化图线,由图可知该金属的极限频率为________,该图线的斜率表示__________.该金属的逸出功为________.图7三、计算题(本题共4小题,共40分)15.(8分)如图8所示,阴极K用极限波长λ0=0.66 μm的金属铯制成,用波长λ=0.50 μm的绿光照射阴极K,调整两个极板电压,当A极板电压比阴极高出2.5 V时,光电流达到饱和,电流表示数为I=0.64 μA,求:图8(1)每秒钟阴极发射的光电子数和光电子飞出阴极时的最大初动能;(2)如果把照射阴极的绿光的光强增大为原来的2倍,每秒钟阴极发射的光电子数和光电子飞出阴极的最大初动能.16.(8分)氢原子处于基态时,原子的能级为E1=-13.6 eV,普朗克常量h=6.63×10-34J·s,氢原子在n=4的激发态时,问:(1)要使氢原子电离,入射光子的最小能量是多少?(2)能放出的光子的最大能量是多少?17.(12分)氢原子的能级图如图9所示,某金属的极限波长恰好等于氢原子由n=4能级跃迁到n=2能级所发出的光的波长.现在用氢原子由n=2能级跃迁到n=1能级时发出的光去照射,则从该金属表面逸出的光电子的最大初动能是多少?图918.(12分)氢原子处于基态时,原子的能量为E1=-13.6 eV,当处于n=3的激发态时,能量为E3=-1.51 eV,则:(1)当氢原子从n=3的激发态跃迁到n=1的基态时,向外辐射的光子的波长是多少?(2)若要使处于基态的氢原子电离,至少要用多大频率的电磁波照射原子?(3)若有大量的氢原子处于n=3的激发态,则在跃迁过程中可能释放出几种频率的光子?其中最长波长是多少?选修3---5第十八章《原子结构》单元检测参考答案1.D2.B3.AD4.AD5.C6.C7.BC8.A9.ACD10.AD11.10.2 -1.5112.能量子ε=hν光电效应爱因斯坦光电效应13.414.4.3×1014 Hz 普朗克常量h 1.78 eV15.(1)4.0×1012个9.64×10-20 J(2)8.0×1012个9.64×10-20 J16.(1)0.85 eV (2)12.75 eV17.7.65 eV18.(1)1.03×10-7 m (2)3.28×1015 Hz (3)3种6.58×10-7 m。

高中物理第十八章原子结构1电子的发现课后作业含解析新人教版选修3_5

高中物理第十八章原子结构1电子的发现课后作业含解析新人教版选修3_5

电子的发现时间:45分钟一、选择题(1~4题为单选,5~6题为多选)1.关于阴极射线的本质,下列说法正确的是( C )A.阴极射线本质是氢原子B.阴极射线本质是电磁波C.阴极射线本质是电子D.阴极射线本质是X射线解析:阴极射线是原子受激发射出的电子,关于阴极射线是电磁波、X射线都是在研究阴极射线过程中的一些假设,是错误的.2.已知X射线的“光子”不带电,假设阴极射线像X射线一样,则下列说法正确的是( B )A.阴极射线管内的高电压能够对其加速而增加能量B.阴极射线通过偏转电场不会发生偏转C.阴极射线通过偏转电场能够改变方向D.阴极射线通过磁场方向可能发生改变解析:因为X射线的“光子”不带电,故电场、磁场对X射线不产生作用力,故选项B 正确.3.如图所示,在阴极射线管正上方平行放一通有强电流的长直导线,则阴极射线粒子将( D )A.向纸内偏转B.向纸外偏转C.向下偏转D.向上偏转解析:由题目条件不难判断阴极射线所在处磁场垂直纸面向外,阴极射线从负极射出,由左手定则可判定阴极射线粒子(电子)向上偏转.4.密立根油滴实验原理如图所示,两块水平放置的金属板分别与电源的正负极相接,板间电压为U,形成竖直向下、场强为E的匀强电场.用喷雾器从上板中间的小孔喷入大小、质量和电荷量各不相同的油滴.通过显微镜可找到悬浮不动的油滴,若此悬浮油滴的质量为m,重力加速度为g,则下列说法正确的是( C )A .悬浮油滴带正电B .悬浮油滴的电荷量为mg UC .增大场强,悬浮油滴将向上运动D .油滴的电荷量不一定是电子电荷量的整数倍解析:带电油滴在两板间静止时,电场力向上,应带负电,A 错;qE =mg ,即q U d=mg ,所以q =mgdU,B 项错误;当E 变大时,qE 变大,合力向上,油滴向上运动,任何带电物体的电荷量都是电子电荷量的整数倍,D 项错.5.英国物理学家汤姆孙通过对阴极射线的实验研究发现( AD ) A .阴极射线在电场中偏向正极板一侧B .阴极射线在磁场中受力情况跟正电荷受力情况相同C .不同材料所产生的阴极射线的比荷不同D .汤姆孙并未得出阴极射线粒子的电荷量解析:阴极射线实质上就是高速电子流,所以在电场中偏向正极板一侧,A 正确.由于电子带负电,所以其在磁场中受力情况与正电荷不同,B 错误.不同材料所产生的阴极射线都是电子流,所以它们的比荷是相同的,C 错误.在汤姆孙实验证实阴极射线就是带负电的电子流时并未得出电子的电荷量,最早测出电子电荷量的是美国物理学家密立根,D 正确.6.如图所示的阴极射线管,无偏转电场时,电子束加速后打到荧光屏中央形成亮斑.如果只逐渐增大M 1M 2之间的电势差,则下列说法正确的是( AC )A .在荧光屏上的亮斑向上移动B .在荧光屏上的亮斑向下移动C .偏转电场对电子做的功增大D .偏转电场的电场强度减小解析:设电子由加速电场加速后的速度为v .电子在加速电场中运动,由动能定理得eU 1=12mv 2 解得v =2eU 1m.水平方向有L =vt竖直方向有a =F m =eE m =eU 2mdv y =at电子刚离开偏转电场时的偏转角正切值为tan α=v yv由以上各式解得tan α=U 2L2U 1d,即电子离开偏转电场时的偏转角α随偏转电压的增大而增大.如果只逐渐增大M 1M 2之间的电势差U 2,在荧光屏上的亮斑向上移动,故选项A 正确,B 错误;电子离开偏转电场时的偏转量y =12at 2=eU 2L22mv 2d ,如果只逐渐增大M 1M 2之间的电势差U 2,电子离开偏转电场时的偏转量将增大.偏转电场对电子做的功W =e ·E ·y ,偏转量越大,静电力做的功越多,故选项C 正确;偏转电场的电场强度E =U 2d,所以如果只逐渐增大M 1M 2之间的电势差U 2,偏转电场的电场强度增大,故选项D 错误.二、非选择题7.密立根实验的原理如图所示,A 、B 是两块平行放置的水平金属板,A 板带正电,B 板带负电.从喷雾器嘴喷出的小油滴,落到A 、B 两板之间的电场中.小油滴由于摩擦而带负电,调节A 、B 两板间的电压,可使小油滴受到的静电力和重力平衡.已知小油滴静止处的电场强度是1.92×105N/C ,油滴半径是1.64×10-4cm ,油的密度是0.851 g/cm 3,求油滴所带的电荷量,这个电荷量是电子电荷量的多少倍?(π取3.14,e 取1.6×10-19C)答案:8.02×10-19C 5解析:小油滴质量为m =ρV =ρ·43πr 3由题意得mg =Eq联立解得q =ρ·4πr 3g3E=0.851×103×4×3.14× 1.64×10-63×9.83×1.92×105C≈8.02×10-19 C.小油滴所带电荷量q 是电子电荷量e 的倍数为n =q e =8.02×10-191.6×10-19≈5(倍). 8.如图所示,在纸面内半径为R 的圆形区域中充满了垂直于纸面向里、磁感应强度为B 的匀强磁场,一束阴极射线从图中A 点以速度v 0垂直磁场射入,当射线离开磁场时,速度方向刚好改变了180°,不计电荷的重力,求射线的比荷.答案:2v 0BR解析:符合题目条件的运动轨迹如图所示,由几何关系得,射线在磁场中的旋转半径为圆形磁场区域半径的一半,即R 2=mv 0qB由此得射线的比荷为q m=2v 0BR.9.如图,为美国物理学家密立根测量油滴所带电荷量装置的截面图,两块水平放置的金属板间距为d ,油滴从喷雾器的喷嘴喷出时,由于与喷嘴摩擦而带负电,油滴散布在油滴室中,在重力作用下,少数油滴通过上面金属板的小孔进入平行金属板间,当平行金属板间不加电压时,由于受到气体阻力的作用,油滴最终以速度v 1竖直向下匀速运动;当上板带正电,下板带负电,两板间的电压为U 时,带电油滴恰好能以速度v 2竖直向上匀速运动.已知油滴在极板间运动时所受气体阻力的大小与其速率成正比,油滴密度为ρ,已测量出油滴的直径为D (油滴可看作球体,球体体积公式V =16πD 3),重力加速度为g .(1)设油滴受到的气体的阻力F =kv ,其中k 为阻力系数,求k 的大小. (2)求油滴所带电荷量.答案:(1)πρD 3g 6v 1 (2)ρπD 3gd v 1+v 26Uv 1解析:(1)油滴向下匀速运动时,重力与阻力平衡,有kv 1=mgm =ρV =16πρD 3,则k =πρD 3g6v 1.(2)设油滴所带电荷量为q ,油滴受到的电场力为F 电=qE =q Ud油滴向上匀速运动时,阻力向下,油滴受力平衡,则kv 2+mg =q Ud油滴所带电荷量为q =ρπD 3gd v 1+v 26Uv 1.。

新人教版学案:高中第十八章原子结构1电子的发现学案选修3-5(物理)

新人教版学案:高中第十八章原子结构1电子的发现学案选修3-5(物理)

一、阴极射线1.阴极射线科学家用真空度很高的真空管做放电实验时,发现真空管阴极发射出的一种射线,叫做阴极射线.2.阴极射线的产生阴极射线是一种带负电的粒子流.英国物理学家汤姆孙使阴极射线在磁场和电场中产生偏转,来确定射线微粒的带电性质.3.阴极射线的特点(1)在真空中沿直线传播;(2)碰到物体可使物体发出荧光.电子的发现是与阴极射线的实验研究联系在一起的,而阴极射线的发现和研究是从真空放电现象开始的.1858年,德国物理学家普吕克在利用德国玻璃工盖斯勒发明的盖斯勒放电管研究气体放电时,发现对着阴极的管壁上出现了美丽的绿色荧光.1876年德国物理学家戈德斯坦证实这种绿色荧光是由阴极上所产生的某种射线射到玻璃上产生的,他把这种射线命名为“阴极射线”.“阴极射线”到底是什么?提示:带负电的粒子流(高速电子流).这个问题曾引起了物理学界一场大争论.法国物理学家大多认为阴极射线是一种电磁波(以太波),英国的物理学家则认为是一种带电粒子流,这一争论持续了二十年,促使许多物理学家进行了很多有意义的实验,推动了物理学的发展,这场争论最后由J.J.汤姆孙解决了,他用实验表明阴极射线就是带负电的粒子流.二、电子的发现1.汤姆孙的探究方法及结论 汤姆孙根据阴极射线在电场和磁场中的偏转判定,它的本质是带负电的粒子流,并求出了这种粒子的比荷. 汤姆孙用不同材料的阴极和不同的气体做实验,所得的比荷都是相同的,是氢离子比荷的近千倍. 汤姆孙直接测量了阴极射线粒子的电荷量,得到这种粒子的电荷量大小与氢离子电荷基本相同.后来把组成阴极射线的粒子称为电子. 2.汤姆孙的进一步研究汤姆孙的新发现:不论是阴极射线、β射线、光电效应中的光电流还是热离子发射效应中的离子流,它们都包含电子.结论:它是从原子中发射出来的,它的质量只比最轻原子的质量的两千分之一稍多一点,由此可见,电子是原子的组成部分,是比原子更基本的物质单元.3.对电子的认识电子电荷量e =1.6×10-19C ,是由密立根通过著名的“油滴实验”测出来的.密立根发现,电荷是量子化的,任何电荷只能是e 的整数倍.电子质量m =9.1×10-31kg ,质子的质量与电子的质量的比值:m pm e =1_836.这个丰富多彩的世界是由原子构成的.原子内部呈现的复杂的结构,不断地吸引着人们去探索.现在利用先进的手段已经能够“看到”或“拿起”一个原子,但在19世纪,实验手段和设备相当简陋,人类只能运用观测的现象推测原子内部的情景.汤姆孙在研究原子结构方面取得开拓性的成果.汤姆孙在当时是通过什么样的实验发现电子的呢?提示:汤姆孙是在研究气体放电产生阴极射线的实验中发现电子的.考点一对阴极射线的认识1.对阴极射线本质的认识——两种观点(1)电磁波说,代表人物——赫兹,他认为这种射线的本质是一种电磁辐射.(2)粒子说,代表人物——汤姆孙,他认为这种射线的本质是一种带电粒子流.2.阴极射线带电性质的判断方法阴极射线的本质是电子,在电场(或磁场)中所受电场力(或洛伦兹力)远大于所受重力,故研究电磁力对电子运动的影响时,一般不考虑重力的影响,其带电性质的判断方法如下:(1)方法一:在阴极射线所经区域加上电场,通过打在荧光屏上的亮点的变化和电场的情况确定带电的性质.(2)方法二:在阴极射线所经区域加一磁场,根据亮点位置的变化和左手定则确定带电的性质.【例1】如图所示,在阴极射线管正上方平行放一通有强电流的长直导线,则阴极射线将( )A.向纸内偏转B.向纸外偏转C.向下偏转D.向上偏转先判断出直导线下方电流产生的磁场的方向,再由左手定则即可判断出阴极射线的偏转方向.【答案】D【解析】长直导线的电流方向向左,由安培定则可判定直导线下方所处磁场垂直纸面向外,由于电子从负极射出,根据左手定则可判定电子向上偏转,即阴极射线将向上偏转.总结提能本题综合考查了电流的磁场、左手定则以及阴极射线的产生和实质.(多选)关于阴极射线,下列说法正确的是( BD )A.阴极射线就是稀薄气体导电的辉光放电现象B.阴极射线是在真空管内由阴极发生的电子流C.阴极射线是组成物体的原子D.阴极射线沿直线传播,但在电场、磁场中偏转解析:阴极射线是原子受激发射出的电子;碰到荧光物质时,能使荧光物质发光;电子流在电场和磁场中会发生偏转.考点二带电粒子比荷的确定1.电荷量的量子化带电体所带电荷量具有量子化,即任何带电体所带电荷量只能是电子电荷量的整数倍,即q=ne(n为自然数).2.比荷(或电荷量)的测定根据电场、磁场对电子(带电粒子)的偏转测量比荷(或电荷量),分以下两步:(1)让粒子通过正交的电磁场(如图),让其做直线运动,根据二力平衡,即F洛=F电(Bqv=qE)得到粒子的运动速度v=EB.(2)在其他条件不变的情况下,撤去电场(如图),保留磁场让粒子单纯地在磁场中运动,由洛伦兹力提供向心力即Bqv =mv 2r ,根据轨迹偏转情况,由几何知识求出其半径r ,则由qvB =m v 2r 得q m =v Br =E B 2r .【例2】 在测阴极射线比荷的实验中,汤姆孙采用了如图所示的阴极射线管,从C 出来的阴极射线经过A 、B 间的电场加速后,水平射入长度为L 的D 、E 平行板间,接着在荧光屏F 中心出现荧光斑.若在D 、E 间加上方向向下,场强为E 的匀强电场,阴极射线将向上偏转;如果再利用通电线圈在D 、E 电场区加上一垂直纸面的磁感应强度为B 的匀强磁场(图中未画)荧光斑恰好回到荧光屏中心,接着再去掉电场.阴极射线向下偏转,偏转角为θ,试解决下列问题:(1)说明阴极射线的带电性;(2)说明图中磁场沿什么方向;(3)根据L 、E 、B 和θ,求出阴极射线的比荷.由阴极射线在电场和磁场中受到的电场力和洛伦兹力的方向判断电性和磁场方向,利用两力的平衡关系,及阴极射线在磁场中做匀速圆周运动列方程求解比荷.【答案】 (1)负电 (2)垂直纸面向里 (3)E sin θB 2L【解析】 (1)由于阴极射线向上偏转,因此受电场力方向向上,又由于匀强电场方向向下,即电场力的方向与电场方向相反,所以阴极射线带负电.(2)根据题意知,在D 、E 区加上磁场时,阴极射线受到的洛伦兹力应向下,由左手定则可判断,磁场方向垂直纸面向里.(3)当射线在D 、E 间做匀速直线运动时有:qE =Bqv .当射线在D 、E 间的磁场中发生偏转时,有Bqv =mv 2r ,同时又有:L =r ·sin θ,如图.可得:q m =E sin θB 2L .总结提能 (1)带电粒子在匀强电场中做类平抛运动,可利用运动的分解、运动学公式、牛顿运动定律列出相应的关系.(2)带电粒子在匀强磁场中做匀速圆周运动,要注意通过画轨迹示意图确定圆心位置,利用几何知识求其半径.(3)带电粒子通过互相垂直的匀强电磁场时,可使其做匀速直线运动,根据qE =qvB 可求其速度. 解决此类问题,要在熟练掌握各部分知识的基础上灵活解答.为了测定带电粒子的比荷q m,让这个带电粒子垂直电场方向飞进平行金属板间,已知匀强电场的场强为E ,在通过长为L 的两金属板间后,测得偏离入射方向的距离为d ,如果在两板间加垂直于电场方向的匀强磁场,磁场方向垂直于粒子的入射方向,磁感应强度为B ,则粒子恰好不偏离原来的方向,求q /m 为多少?答案:2Ed B 2L 2解析:设带电粒子以v 0跟电场垂直进入匀强电场,则d =12at 2=12qE m (L v 0)2 ①此带电粒子垂直入射到正交的电磁场区域时不发生偏转,由平衡条件qE =qv 0B ,得v 0=E B ② 由①②两式得qEL 22md =E 2B 2.解得q m =2EdB 2L2. 重难疑点辨析密立根油滴实验测量电子带的电荷量1.密立根实验的原理(1)如图所示,两块平行放置的水平金属板A 、B 与电源相连接,使A 板带正电,B 板带负电.从喷雾器嘴喷出的小油滴经上面的金属板中间的小孔,落到两板之间的匀强电场E 中.(2)小油滴由于摩擦而带负电,调节A 、B 两板间的电压,可以使小油滴在两板之间静止或做匀速直线运动,忽略空气阻力,此时油滴所受的电场力和重力平衡,即mg =Eq ,则电荷的电荷量q =mgE .实验发现,q 一定是某个最小电荷量的整数倍,这个最小的电荷量就是电子的电荷量,即e =1.602 177 33×10-19 C.2.密立根实验更重要的发现电荷量是量子化的,即任何电荷的电荷量只能是元电荷e 的整数倍,并求得了元电荷即电子所带的电荷量e .【典例】 图中,在A 板上方用喷雾器将油滴喷出,若干油滴从板上的一个小孔中落下,喷出的油滴因摩擦而带负电.已知A 、B 板间电压为U 、间距为d 时,油滴恰好静止.撤去电场后油滴徐徐下落,最后测出油滴以速度v 匀速运动,已知空气阻力正比于速度f =kv ,则油滴所带的电荷量q =________.某次实验得q 的测量值见下表(单位:10-19 C): 6.41 8.01 9.65 11.23 12.83分析这些数据可知:【解析】 mg -Eq =0,mg -kv =0,解得q =kv E .油滴带的电荷量是1.6×10-19 C 的整数倍,故电荷的最小电荷量为1.6×10-19 C.【答案】 kvE 电荷的最小电荷量为1.6×10-19 C实际调节电压使油滴静止是很困难的,故实际测量需使油滴匀速运动,测出油滴匀速下降、上升的速度v 1、v 2,再求油滴带的电荷量.1.下面对阴极射线的认识正确的是( D )A .阴极射线是由阴极发出的粒子撞击玻璃管壁上的荧光而产生的B .只要阴阳两极间加有电压,就会有阴极射线产生C .阴极射线可以穿透薄铝片,这说明它是电磁波D .阴阳两极间加有高压时,电场很强,阴极中的电子受到很强的库仑力作用而脱离阴极解析:阴极射线是由阴极直接发出的,A 错误;只有当两极间加有高压且阴极接电源负极时,阴极中的电子才会受到足够大的库仑力作用而脱离阴极成为阴极射线,B 错误,D 正确;可以穿透薄铝片的,可能是电磁波,也可能是更小的粒子,C 错误.2.(多选)关于电荷量,下列说法中正确的是( BCD )A.物体所带电荷量可以是任意值B.物体所带电荷量只能是某些值C.物体所带电荷量的最小值为1.6×10-19 CD.一个物体带1.6×10-9 C的正电荷,这是它失去了1.0×1010个电子的缘故解析:电荷量是量子化的,即物体的带电荷量只能是某一最小电荷量的整数倍,这一最小电荷量是1.6×10-19 C,A错误,B、C正确;物体带正电,是由于它失去了带负电的电子,D正确.3.带电微粒所带的电荷量不可能是下列值中的( A )A.2.4×10-19 C B.-6.4×10-19 CC.-1.6×10-18 C D.4.0×10-17 C解析:任何带电体的电荷量都只能是元电荷的整数倍,元电荷电荷量为e=1.6×10-19C,选项A中电荷量为元电荷的3/2倍,B中电荷量为元电荷的4倍,C中电荷量为元电荷的10倍,D中电荷量为元电荷的250倍.也就是说B、C、D选项中的电荷量数值均是元电荷的整数倍,所以只有选项A是不可能的.4.如图所示为电视机显像管的偏转线圈示意图,圆心黑点表示从电子枪垂直于纸面射出的电子,它的方向由纸内指向纸外,当偏转线圈通以图示方向的电流时,电子束应( D )A.向左偏转B.向下偏转C.向右偏转D.向上偏转解析:由安培定则可判定上、下螺旋管的N极都在右方,S极都在左方,考虑到电子带负电,用左手定则,不难判断出,电子受洛伦兹力的方向向上,即电子束向上偏转,故正确选项为D.5.阴极射线是从阴极射线管的阴极发出的高速运动的粒子流.若在如图所示的阴极射线管中部加上竖直向上的匀强电场,阴极射线将向下(选填“外”“里”“上”或“下”)偏转;若使阴极射线不偏转,可在匀强电场区域再加一大小合适、方向垂直纸面向外(选填“外”或“里”)的匀强磁场.解析:阴极射线带负电,在竖直向上的匀强电场中受向下的库仑力作用,将向下偏转;要使阴极射线不偏转,应使其再受一竖直向上的洛伦兹力与库仑力平衡,由左手定则可判断磁场方向垂直纸面向外.。

2016-2017学年高中物理 第18章 原子结构 1 电子的发现课时作业 新人教版选修3-5

2016-2017学年高中物理 第18章 原子结构 1 电子的发现课时作业 新人教版选修3-5

第十八章原子结构1 电子的发现一、A组(20分钟)1.关于阴极射线的性质,判断正确的是()A.阴极射线带负电B.阴极射线带正电C.阴极射线的比荷比氢原子比荷大D.阴极射线的比荷比氢原子比荷小解析:通过阴极射线在电场、磁场中的偏转的研究发现阴极射线带负电,而且比荷比氢原子的比荷大得多,故选项A、C正确。

答案:AC2.下列说法中正确的是()A.汤姆孙精确地测出了电子电荷量e=1.602 177 33(49)×10-19 CB.电子电荷量的精确值是密立根通过“油滴实验”测出的C.汤姆孙油滴实验更重要的发现是电荷量是量子化的,即任何电荷量只能是e的整数倍D.通过实验测得电子的比荷及其电荷量e的值,就可以确定电子的质量解析:电子的电荷量是密立根通过“油滴实验”测出的,选项A、C错误,选项B正确。

测出比荷的值和电子电荷量e的值,可以确定电子的质量,故选项D正确。

答案:BD3()A.阴极射线是高速的质子流B.阴极射线可以用人眼直接观察到C.阴极射线是高速运动的电子流D.阴极射线是电磁波解析:阴极射线是高速运动的电子流,人们只有借助于它与物质相互撞击时,使一些物质发出荧光等现象才能观察到。

故正确选项为C。

答案:C4.下列关于电子的说法正确的是()A.发现电子是从研究阴极射线开始的B.汤姆孙发现物质中发出的电子比荷是不同的C.电子发现的意义是让人们认识到原子不是组成物质的最小微粒,原子本身也具有复杂的结构D.电子是带正电的,可以在电场和磁场中偏转解析:发现电子是从研究阴极射线开始的,A项正确;汤姆孙发现物质中发出的电子比荷是相同的,B项错误;电子的发现让人们认识到原子不是组成物质的最小微粒,原子本身也具有复杂的结构,C项正确;电子是带负电的,选项D错误。

答案:AC5.如图,汤姆孙的气体放电管的示意图,下列说法中正确的是()A.若在D1、D2之间不加电场和磁场,则阴极射线应打到最右端的P1点B.若在D1、D2之间加上竖直向下的电场,则阴极射线应向下偏转C.若在D1、D2之间加上竖直向下的电场,则阴极射线应向上偏转D.若在D1、D2之间加上垂直纸面向里的磁场,则阴极射线不偏转解析:实验证明,阴极射线是电子,它在电场中偏转时应偏向带正电的极板一侧,可知选项C正确,选项B错误;加上磁场时,电子在磁场中受洛伦兹力作用,要发生偏转,因而选项D错误;当不加电场和磁场时,电子所受的重力可以忽略不计,因而不发生偏转,选项A正确。

新人教版高中物理第十八章原子结构一电子的发现练习无答案选修3_5

新人教版高中物理第十八章原子结构一电子的发现练习无答案选修3_5

一、电子的发现1.关于阴极射线的下列说法,正确的是()A.是由很小的不带电的粒子构成的B.是由原子构成的C.是由电子构成的D.以上说法都不对2.一只阴极射线管,左侧不断有电子射出,若在管的正下方,放一通电直导线AB时,发现射线径迹向下偏,则()A.导线中的电流由A流向BB.导线中的电流由B流向AC.若要使电子束的径迹往上偏,可以通过改变AB中的电流方向来实现D.电子束的径迹与AB中的电流方向无关3.关于空气导电性能,下列说法正确的是()A.空气导电,因为空气分子中有的带正电,有的带负电,在强电场作用下向相反方向运动的结果B.空气能够导电,是因为空气分子在射线或强电场作用下电离的结果C.空气密度越大,导电性能越好D.空气越稀薄,越容易发出辉光4.关于物体带电问题,下列说法正确的是()A.带电体所带电荷量可以是任意值B.带电体所带电荷量都是电子所带的电荷量的整数倍C.电子的电荷量是1.6×10-19CD.电子的电荷量是1 C5.如图所示是汤姆孙的气体放电管的示意图,下列说法中正确的是()A.若在D1、D2之间不加电场和磁场,则阴极射线应打到最右端的P1点B.若在D1、D2之间加上竖直向下的电场,则阴极射线应向下偏转C.若在D1、D2之间加上竖直向下的电场,则阴极射线应向上偏转D.若在D1、D2之间加上垂直纸面向里的磁场,则阴极射线不偏转6.关于阴极射线的性质,下列说法正确的是()A.阴极射线带负电B.阴极射线带正电C.阴极射线的比荷比质子的比荷大D.阴极射线的比荷比质子的比荷小7.如图所示,电子在电势差为U1的电场加速后,垂直射入电势差为U2的偏转电场.在满足电子能射出偏转电场的条件下,下列四种情况中,一定能使电子的偏转角变大的是() A.U1变大、U2变大 B.U1变小、U2变大C.U1变大、U2变小 D.U1变小、U2变小8.关于密立根“油滴实验”的科学意义,下列说法正确的是()A.测得了电子的电荷量B.提出了电荷分布的量子化观点C.为电子质量的最终获得做出了突出贡献D.为人类进一步研究原子的结构提供了一定的理论依据9.氢原子的核外电子质量为m,电量为e,在离核最近的轨道上运动,轨道半径为r1,求:(1)电子运动的动能.(2)电子绕核转动的频率.(3)电子绕核转动相当于环形电流的电流大小.10.一个半径为1.64ⅹ10-4cm的带负电的油滴,在电场强度等于1.92ⅹ105V/m的竖直向下的匀强电场中,如果油滴受到的库仑力恰好与重力平衡,则这个油滴带有几个电子的电荷量?已知油滴的密度为0.851ⅹ103kg/m3。

高中物理 第十八章 原子结构 第1节 电子的发现课堂达标 新人教版选修3-5

高中物理 第十八章 原子结构 第1节 电子的发现课堂达标 新人教版选修3-5

第十八章 第一节 电子的发现1.(山东海岳中学2017~2018学年高二下学期期中)关于阴极射线,下列说法正确的是( D )A .阴极射线是一种电磁辐射B .阴极射线是在真空管内由阴极发出的光子流C .阴极射线是组成物体的原子D .阴极射线可以直线传播,也可被电场、磁场偏转解析:阴极射线是由阴极直接发出的电子流,可被电场、磁场偏转,A 、B 、C 错误,D 正确。

2.(多选)(浙江省台州2016~2017学年高三模拟)如图是密立根油滴实验的示意图。

油滴从喷雾器嘴喷出,落到图中的匀强电场中,调节两板间的电压,通过显微镜观察到某一油滴静止在电场中,下列说法正确的是( AD )A .油滴带负电B .油滴质量可通过天平来测量C .只要测出两板间的距离和电压就能求出油滴所带的电荷量D .该实验测得油滴所带电荷量等于元电荷的整数倍解析:由图知,电容器板间电场方向向下,油滴所受的电场力向上,则知油滴带负电,故选项A 正确;油滴的质量很小,不能通过天平测量,故选项B 错误;根据油滴受力平衡得mg =qE =q U d ,得q =mgd U,所以要测出两板间的距离、电压和油滴的质量才能求出油滴所带的电荷量,故选项C 错误;根据密立根油滴实验研究可知:该实验测得油滴所带电荷量等于元电荷的整数倍,故选项D 正确。

3.(江西省南昌2016~2017学年高二检则)如图所示,电子由静止从O 点经电场U 加速后垂直射入匀强磁场B ,经偏转后打在MN 板的P 点,射入点到P 点的距离为d ,求电子的比荷qm的表达式。

(不考虑电子的重力)答案:8UB 2d 2解析:设电子的电荷量为q 、质量为m ,在加速电场U 中加速的过程,根据动能定理,有qU =mv 22 解得v =2qU m 垂直进入磁场后,电子受到的洛伦兹力提供向心力,电子做匀速圆周运动,故有Bqv =m v 2R由题意又知:R =d 2由以上各式整理可得电子的比荷为:q m =8U B 2d 2。

高中物理选修3-5课时作业2:18.1-18.2电子的发现 原子的核式结构模型

高中物理选修3-5课时作业2:18.1-18.2电子的发现 原子的核式结构模型

第十八章原子结构1 电子的发现2 原子的核式结构模型题组一电子的发现及对电子的认识1.关于阴极射线的本质,下列说法正确的是() A.阴极射线本质是氢原子B.阴极射线本质是电磁波C.阴极射线本质是电子D.阴极射线本质是X射线[答案] C[解析]阴极射线是原子受激发射出的电子,关于阴极射线是电磁波、X射线都是在研究阴极射线过程中的一些假设,是错误的.2.关于阴极射线,下列说法正确的是() A.阴极射线就是稀薄气体导电的辉光放电现象B.阴极射线是在真空管内由阴极发出的电子流C.阴极射线是组成物体的原子D.阴极射线沿直线传播,但可被电场、磁场偏转[答案]BD[解析]阴极射线是在真空管中由阴极发出的电子流,B正确,A错误;电子是原子的组成部分,C错误;电子可被电场、磁场偏转,D正确.3.关于电荷的电荷量下列说法错误的是A.电子的电量是由密立根油滴实验测得的B.物体所带电荷量可以是任意值C.物体所带电荷量最小值为1.6×10-19 CD.物体所带的电荷量都是元电荷的整数倍[答案] B[解析]密立根的油滴实验测出了电子的电量为1.6×10-19 C,并提出了电荷量子化的观点,因而A对,B错,C对;任何物体的电荷量都是e的整数倍,故D对.因此选B.4.如图18-1、2-6是阴极射线管示意图.接通电源后,阴极射线由阴极沿x 轴正方向射出,在荧光屏上会看到一条亮线.要使荧光屏上的亮线向下(z轴负方向)偏转,在下列措施中可采用的是()图18-1、2-6A.加一磁场,磁场方向沿z轴负方向B.加一磁场,磁场方向沿y轴正方向C.加一电场,电场方向沿z轴负方向D.加一电场,电场方向沿y轴正方向[答案] B[解析]若加磁场,由左手定则可知,所加磁场方向沿y轴正方向,B正确;若加电场,因电子向下偏转,则电场方向沿z轴正方向.题组二对α粒子散射实验的理解5.卢瑟福提出原子的核式结构模型的依据是用α粒子轰击金箔,实验中发现α粒子A.全部穿过或发生很小偏转B.绝大多数穿过,只有少数发生较大偏转,有的甚至被弹回C.绝大多数发生很大偏转,甚至被弹回,只有少数穿过D.全部发生很大偏转[答案] B[解析]卢瑟福的α粒子散射实验结果是绝大多数α粒子穿过金箔后仍沿原来的方向前进,故选项A错误.α粒子被散射时只有少数发生了较大角度偏转,并且有极少数α粒子偏转角超过了90°,有的甚至被弹回,偏转角几乎达到180°,故选项B正确,选项C、D错误.6.如图所示,X表示金原子核,α粒子射向金核被散射,若它们入射时的动能相同,其偏转轨道可能是图中的()[答案] D[解析]α粒子离金核越远,其所受斥力越小,轨道弯曲的就越小,故D对.7.当α粒子穿过金箔发生大角度偏转的过程中,下列说法正确的是() A.α粒子先受到原子核的斥力作用,后受原子核的引力的作用B.α粒子一直受到原子核的斥力作用C.α粒子先受到原子核的引力作用,后受到原子核的斥力作用D.α粒子一直受到库仑斥力,速度一直减小[答案] B[解析]α粒子与金原子核带同种电荷,两者相互排斥,故A、C错误,B正确;α粒子在靠近金原子核时斥力做负功,速度减小,远离时斥力做正功,速度增大,故D错误.题组三卢瑟福的核式结构模型8.卢瑟福的α粒子散射实验的结果显示了下列哪些情况() A.原子内存在电子B.原子的大小为10-10 mC.原子的正电荷均匀分布在它的全部体积上D.原子的全部正电荷和几乎全部质量都集中在原子核内[答案] D[解析]根据α粒子散射实验现象,绝大多数α粒子穿过金箔后沿原来方向前进,少数发生较大的偏转,极少数偏转角超过90°,可知C错,A与题意不符;而实验结果不能判定原子的大小为10-10 m,B错,故选D.9.关于卢瑟福的原子核式结构学说的内容,下列叙述正确的是() A.原子是一个质量分布均匀的球体B.原子的质量几乎全部集中在原子核内C.原子的正电荷和负电荷全部集中在一个很小的核内D.原子半径的数量级是10-10 m,原子核半径的数量级是10-15 m[答案]BD[解析]根据卢瑟福的原子核式结构学说,可知选项B、D正确.10.α粒子散射实验中,当α粒子最接近原子核时,α粒子符合下列哪种情况() A.动能最小B.势能最小C.α粒子与金原子组成的系统的能量小D.所受原子核的斥力最大[答案]AD[解析]该题考查了原子的核式结构、动能、电势能、库仑定律及能量守恒等知识点.α粒子在接近金原子核的过程中,要克服库仑斥力做功,动能减少,电势能增加,两者相距最近时,动能最小,电势能最大,总能量守恒.根据库仑定律,距离最近时,斥力最大.11.已知金的原子序数为79,α粒子离金原子核的最近距离为10-13m ,则α粒子离金核最近时受到的库仑力多大?对α粒子产生的加速度多大?已知α粒子的电荷量q α=2e ,质量m α=6.64× 10-27kg.[答案] 3.64 N 5.48×1026 m/s 2[解析] 分别根据库仑定律和牛顿第二定律可算出:α粒子离核最近时受到的库仑力F =k q 1q 2r 2=k 79e ×2e r 2=9×109×(79×1.6×10-19)×(2×1.6×10-19)(10-13)2 N =3.64 N.库仑斥力对α粒子产生的加速度大小a =F m α= 3.646.64×10-27 m/s 2=5.48×1026 m/s 2. 12.已知电子质量为9.1×10-31kg ,带电荷量为-1.6×10-19 C ,若氢原子核外电子绕核旋转时的轨道半径为0.53×10-10m ,求电子绕核运动的线速度大小、动能、周期和形成的等效电流.[答案] 2.19×106 m/s 2.18×10-18 J 1.53×10-16 s 1.05×10-3 A[解析] 由卢瑟福的原子模型可知:电子绕核做圆周运动所需的向心力由核对电子的库仑引力来提供.根据m v 2r =k e 2r 2,得v =e k rm=1.6×10-19×9×1090.53×10-10×9.1×10-31m/s=2.19×106 m/s;其动能E k=12m v2=12×9.1×10-31×(2.19×106)2J =2.18×10-18 J;运动周期T=2πr v=2×3.14×0.53×10-102.17×106s=1.53×10-16 s;电子绕核运动形成的等效电流I=qt=eT=1.6×10-191.53×10-16A=1.05×10-3 A.。

人教版高二物理选修3-5第十八章第一二节《电子的发现》《原子的核式结构模型》学案含答案

人教版高二物理选修3-5第十八章第一二节《电子的发现》《原子的核式结构模型》学案含答案

第一节电子的发现第二节原子的核式结构模型[目标定位] 1.知道阴极射线是由电子组成的以及电荷量是量子化的.2.了解α粒子散射实验的原理和现象以及卢瑟福原子核式结构模型的主要内容.3.知道原子和原子核的大小数量级,原子核的电荷数.一、阴极射线1.实验如图1所示,真空玻璃管中K是金属板制成的阴极,接感应圈的负极,A是金属环制成的阳极,接感应圈的正极,会在K、A间产生近万伏的高电压,可观察到玻璃壁上淡淡的荧光及管中物体在玻璃壁上的影.图12.阴极射线荧光的实质是由于玻璃受到阴极发出的某种射线的撞击而引起的,这种射线被命名为阴极射线.深度思考阴极射线中的粒子全部来源于阴极吗?答案在通常情况下,气体是不导电的,在强电场条件下,气体能够被电离而导电.在高真空的放电管中,阴极射线中的粒子主要来自阴极.对于真空度不高的放电管,粒子还可能来自管中的气体.例1阴极射线管中的高电压的作用()A.使管内气体电离B.使管内产生阴极射线C.使管内障碍物的电势升高D.使电子加速解析在阴极射线管中,阴极射线是由阴极处于炽热状态而发射出的电子流,通过高电压对电子加速使电子获得能量,与玻璃发生撞击而产生荧光.故D正确.答案 D金属的温度升高后,电子的热运动加剧,电子热运动足够大时可以在金属表面逸出,如果在阴阳两极加上高压后,逸出的电子可以被加速形成电子束,即阴极射线.二、电子的发现1.汤姆孙根据阴极射线分别通过电场或磁场,根据偏转情况,证明了它的本质是带负电的粒子流,并求出其比荷.2.换用不同材料的阴极做实验,所得比荷的数值都相同,证明这种粒子是构成各种物质的共有成分.3.密立根通过著名的“油滴实验”精确地测出了电子电荷.电子电荷量一般取e=1.6×10-19 C,电子质量m e=9.1×10-31 kg.例2 (多选)汤姆孙对阴极射线的探究,最终发现了电子,由此被称为“电子之父”,关于电子的说法正确的是( ) A.电子是原子核的组成部分B.电子电荷的精确测定最早是由密立根通过著名的“油滴实验”实现的C.电子电荷量的数值约为1.602×10-19 C D.电子质量与电荷量的比值称为电子的比荷解析 电子是原子的组成部分,电子的发现说明原子是可以再分的.电子的电荷量与质量的比值称为电子的比荷,也叫荷质比. 答案 BC例3 如图2所示,电子由静止从O 点经电场U 加速后垂直射入匀强磁场B ,经偏转后打在MN 板的P 点,射入点到P 点的距离为d ,求电子的比荷em的表达式.(不考虑电子的重力)图2解析 设电子的电荷量为e 、质量为m ,在加速电场U 中加速的过程,根据动能定理,有eU=12m v 2,解得v =2eUm. 垂直进入磁场后,电子受到的洛伦兹力提供向心力,电子做匀速圆周运动,故有qB v =m v 2R,由题意又知:R =d2由以上各式整理可得电子的比荷为e m =8UB 2d2.答案 8UB 2d 2测量带电粒子的比荷,常见的测量方法有两种:(1)利用磁偏转测比荷,由q v B =m v 2R 得q m =vBR,只需知道磁感应强度B 、带电粒子的初速度v和偏转半径R 即可.(2)利用电偏转测比荷,偏转量y =12at 2=12·qU md ⎝⎛⎭⎫L v 2,故q m =2yd v2UL 2,所以在偏转电场U 、d 、L已知时,只需测量v 和y 即可.三、α粒子散射实验1.α粒子从放射性物质(如铀和镭)中发射出来的快速运动的粒子,带有两个单位的正电荷,质量为氢原子质量的4倍、电子质量的7 300倍. 2.实验装置和实验现象(1)装置:放射源、金箔、荧光屏等,如图3所示.图3(2)现象:①绝大多数的α粒子穿过金箔后仍沿原来的方向前进.②少数α粒子发生较大的偏转.③极少数α粒子偏转角度超过90°,有的几乎达到180°.深度思考α粒子散射实验现象能否定汤姆孙原子模型的依据是什么?答案(1)α粒子在穿过原子之间时,所受周围的正、负电荷作用的库仑力是平衡的,α粒子不会发生偏转.(2)α粒子正对着电子射来,质量远小于α粒子的电子不可能使α粒子发生明显偏转,更不可能使它反弹.例4(多选)如图4为卢瑟福所做的α粒子散射实验装置的示意图,荧光屏和显微镜一起分别放在图中的A、B、C、D四个位置时,下述说法中正确的是()图4A.相同时间内在A时观察到屏上的闪光次数最多B.相同时间内在B时观察到屏上的闪光次数比放在A时稍少些C.放在D位置时屏上仍能观察到一些闪光,但次数极少D.放在C、D位置时屏上观察不到闪光解析在卢瑟福α粒子散射实验中,α粒子穿过金箔后,绝大多数α粒子仍沿原来的方向前进,故A正确;少数α粒子发生大角度偏转,极少数α粒子偏转角度大于90°,极个别α粒子反弹回来,所以在B位置只能观察到少数的闪光,在C、D两位置能观察到的闪光次数极少,故D错,B、C对.答案ABCα粒子散射实验问题(1)明确实验装置中各部分的组成及作用.(2)弄清实验现象,知道“绝大多数”、“少数”和“极少数”粒子的运动情况.针对训练(多选)英国物理学家卢瑟福用α粒子轰击金箔,发现了α粒子的散射现象.下图中O表示金原子核的位置,则能正确表示该实验中经过金原子核附近的α粒子的运动轨迹的图是()答案BD解析在α粒子的散射现象中粒子所受原子核的作用力是斥力,斥力指向轨迹的内侧,故A 错误;越靠近原子核的粒子受到的斥力越大,轨迹的偏转角越大,故B、D正确,C错误.四、卢瑟福原子核式结构模型1.内容:在原子中心有一个很小的核,叫原子核.原子的全部正电荷和几乎全部质量都集中在核内,带负电的电子在核外空间绕核旋转.2.对α粒子散射实验现象的解释(1)当α粒子穿过原子时,如果离核较远,受到原子核的斥力很小,运动方向改变很小,因为原子核很小,所以绝大多数α粒子不发生偏转.(2)只有当α粒子十分接近原子核穿过时,才受到很大的库仑力作用,偏转角才很大,而这种机会很少.(3)如果α粒子正对着原子核射来,偏转角几乎达到180°,这种机会极少,如图5所示.图53.原子核的电荷与尺度(1)原子内的电荷关系各种元素的原子核的电荷数,即原子内含有的电子数,非常接近它们的原子序数.(2)原子核的组成原子核是由质子和中子组成的,原子核的电荷数就是核中的质子数.(3)原子核的大小对于一般的原子核,实验确定的核半径R的数量级为10-15m,而整个原子半径的数量级是10-10 m.因而原子内部十分“空旷”.例5(多选)关于α粒子的散射实验,下列说法中正确的是()A.该实验说明原子中正电荷是均匀分布的B.α粒子发生大角度散射的主要原因是原子中原子核的作用C.只有少数α粒子发生大角度散射的原因是原子的全部正电荷和几乎全部质量集中在一个很小的核上D.卢瑟福根据α粒子散射实验提出了原子核式结构理论解析α粒子散射实验中,有少数α粒子发生大角度偏转说明三点:一是原子内有一质量很大的粒子存在;二是这一粒子带有较大的正电荷;三是这一粒子的体积很小,但不能说明原子中正电荷是均匀分布的,故A错误,B、C正确;卢瑟福依据α粒子散射实验的现象提出了原子的核式结构理论,D正确.答案BCD对α粒子散射实验要清楚两点:一是α粒子散射实验的实验现象;二是对实验现象的微观解释——原子的核式结构.1.(电子的发现及对电子的认识)(多选)关于阴极射线的性质,判断正确的是()A.阴极射线带负电B.阴极射线带正电C.阴极射线的比荷比氢原子比荷大D.阴极射线的比荷比氢原子比荷小答案AC解析通过让阴极射线在电场、磁场中的偏转的研究发现阴极射线带负电,其比荷比氢原子的比荷大得多,故A、C正确.2.(电子的发现及对电子的认识)(多选)如图6所示,一只阴极射线管,左侧不断有电子射出,若在管的正下方放一通电直导线AB时,发现射线径迹下偏,则()图6A.导线中的电流由A流向BB.导线中的电流由B流向AC.如要使电子束的径迹向上偏,可以通过改变AB中电流的方向来实现D.电子的径迹与AB中电流的方向无关答案BC解析阴极射线带负电,由左手定则判断管内磁场垂直纸面向里;由安培定则判断AB中电流的方向由B流向A.电流方向改变,管内磁场方向改变,电子受力方向也改变.3.(α粒子散射实验的理解)(多选)关于α粒子散射实验,下列说法正确的是()A.在实验中,观察到的现象是:绝大多数α粒子穿过金箔后,仍沿原来的方向前进,极少数发生了较大角度的偏转B.使α粒子发生明显偏转的力来自带正电的核和核外电子,当α粒子接近核时,是核的斥力使α粒子发生明显偏转;当α粒子接近电子时,是电子的吸引力使之发生明显偏转C.实验表明:原子中心有一个极小的核,它占有原子体积的极小部分D.实验表明:原子中心的核带有原子的全部正电荷和全部原子的质量答案AC解析α粒子散射实验的现象是:绝大多数α粒子几乎不发生偏转;少数α粒子发生了较大角度的偏转;极少数α粒子发生了大角度偏转,A正确;当α粒子接近核时,是核的斥力使α粒子发生明显偏转,B错误;从绝大多数α粒子几乎不发生偏转,推测使粒子受到排斥力的核体积极小,C正确;实验表明原子中心的核带有原子的全部正电和绝大部分质量,D错误.4.(原子的核式结构模型)(多选)卢瑟福原子核式结构理论的主要内容有()A.原子的中心有个核,叫原子核B.原子的正电荷均匀分布在整个原子中C.原子的全部正电荷和几乎全部质量都集中在原子核内D.带负电的电子在核外绕着核旋转答案ACD解析卢瑟福原子核式结构理论的主要内容是:在原子的中心有一个很小的核,叫做原子核,原子的全部正电荷和几乎全部质量都集中在原子核内,带负电的电子在核外空间绕着核旋转,由此可见,B选项错误,A、C、D选项正确.5.(原子的核式结构模型)(多选)关于α粒子散射实验和卢瑟福的原子核式结构,下列说法正确的是()A.α粒子散射实验揭示了原子核的组成B.少数α粒子发生了较大偏转,卢瑟福认为是环境的影响C.利用α粒子散射实验可以估算原子核的半径D.能发生大角度偏转的α粒子是穿过原子时离原子核较近的α粒子答案CD解析α粒子散射实验揭示了原子的核式结构模型,不能说明原子核的组成,A错误;实验中少数α粒子发生大角度偏转是由于受到了原子核的库仑斥力作用,利用α粒子散射实验现象,极少数α粒子大角度偏转,可以估算原子核的半径,故B错误,C正确;只有离原子核较近的α粒子受到的库仑力较大,方向改变的大.题组一电子的发现及对电子的认识1.关于阴极射线的本质,下列说法正确的是()A.阴极射线本质是氢原子B.阴极射线本质是电磁波C.阴极射线本质是电子D.阴极射线本质是X射线答案 C解析阴极射线是原子受激发射出的电子,关于阴极射线是电磁波、X射线都是在研究阴极射线过程中的一些假设,是错误的.2.(多选)关于阴极射线,下列说法正确的是()A.阴极射线就是很微弱的荧光B.阴极射线是在真空管内由正极放出的电子流C.阴极射线是由德国物理学家戈德斯坦命名的D.阴极射线沿直线传播,但可被电场、磁场偏转答案CD解析阴极射线是在真空管中由负极发出的电子流,故A、B错;最早由德国物理学家戈德斯坦在1876年提出并命名为阴极射线,故C对;阴极射线本质是电子流,可被电场、磁场偏转,故D对.3.1897年英国物理学家汤姆孙发现了电子,下列关于电子的说法正确的是()A.汤姆孙通过阴极射线在电场和磁场中的运动得出了阴极射线是带负电的粒子的结论,并没能求出阴极射线的比荷B.汤姆孙通过对光电效应的研究,发现了电子C.电子的质量无法测定D.汤姆孙通过对不同材料的阴极发出的射线的研究,并研究光电效应等现象,说明电子是原子的组成部分,是比原子更基本的物质单元答案 D解析汤姆孙研究阴极射线发现了电子,并求出了比荷,A、B错误.电子的质量是可以测定的,C错误.汤姆孙证明了电子是原子的组成部分,D正确.4.(多选)如图1所示是阴极射线显像管及其偏转圈的示意图,显像管中有一个阴极,工作时它能发射阴极射线,荧光屏被阴极射线轰击就能发光.安装在管颈的偏转线圈产生偏转磁场,可以使阴极射线发生偏转.下列说法中正确的是( )图1A.如果偏转线圈中没有电流,则阴极射线应该打在荧光屏正中的O 点B.如果要使阴极射线在竖直方向偏离中心,打在荧光屏上A 点,则偏转磁场的磁感应强度的方向应该垂直纸面向里C.如果要使阴极射线在竖直方向偏离中心,打在荧光屏上B 点,则偏转磁场的磁感应强度的方向应该垂直纸面向里D.如果要使阴极射线在荧光屏上的位置由B 点向A 点移动,则偏转磁场的磁感应强度应该先由小到大,再由大到小 答案 AC解析 偏转线圈中没有电流,阴极射线沿直线运动,打在O 点,A 正确.由阴极射线的电性及左手定则可知B 错误,C 正确.由R =m vqB 可知,B 越小,R 越大,故磁感应强度应先由大变小,再由小变大,故D 错误.题组二 对α粒子散射实验的理解5.(多选)在α粒子散射实验中,选用金箔的原因下列说法正确的是( ) A.金具有很好的延展性,可以做成很薄的箔 B.金核不带电C.金原子核质量大,被α粒子轰击后不易移动D.金核半径大,易形成大角度散射 答案 ACD解析 α粒子散射实验中,选用金箔是因为金具有很好的延展性,可以做成很薄的箔,α粒子很容易穿过,A 正确.金原子核质量大,被α粒子轰击后不易移动,C 正确.金核带正电,半径大,易形成大角度散射.故D 正确,B 错误.6.在卢瑟福的α粒子散射实验中,某一α粒子经过某一原子核附近时的轨迹如图2所示,图中P 、Q 两点为轨迹上的点,虚线是过P 、Q 两点并与轨道相切的直线.两虚线和轨迹将平面分成四个区域,不考虑其他原子核对α粒子的作用,那么关于该原子核的位置,下列说法正确的是( )图2A.可能在①区域B.可能在②区域C.可能在③区域D.可能在④区域答案 A解析 因为α粒子与此原子核之间存在着斥力,如果原子核在②、③或④区,α粒子均应向①区偏折,所以不可能.7.当α粒子穿过金箔发生大角度偏转的过程中,下列说法正确的是( ) A.α粒子先受到原子核的斥力作用,后受原子核的引力作用 B.α粒子一直受到原子核的斥力作用C.α粒子先受到原子核的引力作用,后受到原子核的斥力作用D.α粒子一直受到库仑斥力,速度一直减小答案 B解析 α粒子与金原子核带同种电荷,两者相互排斥,故A 、C 错误,B 正确;α粒子在靠近金原子核时斥力做负功,速度减小,远离时斥力做正功,速度增大,故D 错误. 题组三 卢瑟福的核式结构模型8.关于原子结构,汤姆孙提出枣糕模型、卢瑟福提出行星模型(如图3甲、乙所示),都采用了类比推理的方法.下列事实中,主要采用类比推理的是( )图3A.人们为便于研究物体的运动而建立的质点模型B.伽利略从教堂吊灯的摆动中发现摆的等时性规律C.库仑根据牛顿的万有引力定律提出库仑定律D.托马斯·杨通过双缝干涉实验证实光是一种波 答案 C解析 质点的模型是一种理想化的物理模型,是为研究物体的运动而建立的;伽利略发现摆的等时性是通过自然现象发现的;托马斯·杨通过实验证明光是一种波,是建立在事实的基础上的.9.(多选)关于卢瑟福的原子核式结构学说的内容,下列叙述正确的是( ) A.原子是一个质量分布均匀的球体 B.原子的质量几乎全部集中在原子核内C.原子的正电荷和负电荷全部集中在一个很小的核内D.原子半径的数量级是10-10 m ,原子核半径的数量级是10-15 m 答案 BD10.(多选)α粒子散射实验中,当α粒子最接近原子核时,α粒子符合下列哪种情况( ) A.动能最小 B.势能最小C.α粒子与金原子组成的系统的能量小D.所受原子核的斥力最大 答案 AD解析 α粒子在接近金原子核的过程中,要克服库仑斥力做功,动能减少,电势能增加,两者相距最近时,动能最小,电势能最大,总能量守恒.根据库仑定律,距离最近时,斥力最大. 题组四 综合应用11.为了测定带电粒子的比荷qm,让这个带电粒子垂直电场方向飞进平行金属板间,已知匀强电场的场强为E ,在通过长为L 的两金属板间后,测得偏离入射方向的距离为d ,如果在两板间加垂直于电场方向的匀强磁场,磁场方向垂直于粒子的入射方向,磁感应强度为B ,则粒子恰好不偏离原来的方向,求qm为多少?答案 2EdB 2L2解析 设带电粒子以速度v 0垂直电场方向进入匀强电场,则d =12at 2=qE 2m ⎝⎛⎭⎫Lv 0 2 ①此带电粒子垂直入射到正交的电磁场区域时不发生偏转, 由平衡条件qE =q v 0B ,得v 0=EB②由①②两式得qEL 22md =E 2B 2解得q m =2Ed B 2L2.12.在α粒子散射实验中,根据α粒子与原子核发生对心碰撞时所能达到的最小距离可以估算原子核的大小.现有一个α粒子以2.0×107 m/s 的速度去轰击金箔.若金原子的核电荷数为79,求该α粒子与金原子核间的最近距离.(已知带电粒子在点电荷电场中的电势能表达式为E p =k q 1q 2r,α粒子的质量为6.64×10-27 kg) 答案 2.7×10-14 m解析 当α粒子靠近原子核运动时,α粒子的动能转化为电势能,达到最近距离时,动能全部转化为电势能,所以α粒子与原子核发生对心碰撞时所能达到的最小距离d 为12m v 2=k q 1q 2d所以d =2kq 1q 2m v 2=2×9.0×109×2×79×(1.6×10-19)26.64×10-27×(2.0×107)2 m ≈2.7×10-14 m.所以α粒子与金原子核间的最近距离为2.7×10-14 m.。

高中物理人教版选修3-5习题第18章原子结构第2节word版含解析

高中物理人教版选修3-5习题第18章原子结构第2节word版含解析

高中物理人教版选修3-5习题第18章原子结构第3节
word版含答案
1.请判断下列叙述是否正确:
A.原子核外的质子负电荷由电子构成。

B.原子核质子的负电荷由质子构成。

A.错误
B.正确
2.原子核由质子和中子组成,其中质子具有多少电荷?
质子具有正电荷1.602×10-19C.
3.核子数和质子数之比是什么?
核子数和质子数之比称为原子序数,一般比例为1:1
4.原子的质量数等于原子核的质子数加上什么?
原子的质量数等于原子核的质子数加上中子数。

5.阿伏加德罗常数是什么?
阿伏加德罗常数又称为电子基本电荷,表示电子电荷的定值,数值为1.602×10-19C。

6.原子核的半径大约等于原子的什么?
原子核的半径大约等于原子的10-3分之一
7.原子核由质子、中子和什么组成?
原子核由质子、中子和原子核粒子组成。

8.什么粒子携带正电荷?
质子携带正电荷。

9.比色法是用谁发现的?
比色法是由霍金斯发现的。

10.下列说法正确的是?
A.原子核由质子和中子构成
B.电子的基本电荷为1.602×10-19C。

高中物理 第十八章 原子结构 1 电子的发现课后训练 新

高中物理 第十八章 原子结构 1 电子的发现课后训练 新

1 电子的发现课后训练基础巩固1.来自宇宙的质子流,以与地球表面垂直的方向射向赤道上空的某一点,则这些质子在进入地球周围的空间时,将( )A.竖直向下沿直线射向地面B.相对于预定地点向东偏转C.相对于预定地点向西偏转D.相对于预定地点向北偏转2.1897年英国物理学家汤姆孙发现了电子并被称为“电子之父”,下列关于电子的说法正确的是( )A.汤姆孙通过阴极射线在电场和磁场中的运动得出了阴极射线是带负电的粒子的结论,并求出了阴极射线的比荷B.汤姆孙通过光电效应的研究,发现了电子C.电子的质量是质子质量的1 836倍D.汤姆孙通过对不同材料做阴极发出的射线进行研究,并研究光电效应等现象,说明了电子是原子的组成部分,是比原子更基本的物质单元3.下列是某实验小组测得的一组电荷量,哪些是符合事实的( )A.+3×10-16 C B.+4×10-16 CC.-3.2×10-16 C D.-4.8×10-16 C4.关于密立根“油滴实验”,下列说法正确的是( )A.密立根利用磁场力和重力平衡的方法,测得了带电体的最小带电荷量B.密立根利用电场力和重力平衡的方法,推测出了带电体的最小带电荷量C.密立根利用磁偏转的知识推测出了电子的电荷量D.密立根“油滴实验”直接验证了电子的质量不足氢离子的千分之一5.电子枪发射出的电子打在荧光屏上时,会在那里产生一个亮斑,如果在荧光屏上得到如图所示的亮斑P,那么示波管中的( )A.极板X应带正电B.极板X′应带正电C.极板Y应带正电D.极板Y′应带正电6.电子所带电荷量的精确数值最早是由美国物理学家密立根通过油滴实验测得的。

他测定了数千个带电油滴的电荷量,发现这些电荷量都等于某个最小电荷量的整数倍。

这个最小电荷量就是电子所带的电荷量。

密立根实验的原理如图所示,A、B是两块平行放置的水平金属板,A板带正电,B板带负电。

从喷雾器喷出的小油滴落到A、B两板之间的电场中,小油滴由于摩擦而带负电,当调节A、B两板间的电压为U时,可使油滴匀速下降。

高中物理第十八章原子结构1电子的发觉学案新人教版选

高中物理第十八章原子结构1电子的发觉学案新人教版选

1 电子的发觉1.阴极射线 (1)气体的导电特点:通常情形下,气体是不导电的,但在强电场中,气体能够被电离而导电。

平时咱们在空气中看到的放电火花,就是气体电离导电的结果。

在研究气体放电时一般都用玻璃管中的稀薄气体,导电时能够看到辉光放电现象。

(2)产生:在研究低于 Pa 气压以下气体导电的玻璃管内有阴、阳两极,当两极间加必然电压时,阴极便发出一种射线,这种射线命名为阴极射线。

(3)阴极射线的特点:碰着荧光物质能使其发光。

【例1】 关于空气导电性能,下列说法正确的是( )A .空气导电,因为空气分子中有的带正电,有的带负电,在强电场作用下向相反方向运动的结果B .空气能够导电,是因为空气分子在射线或强电场作用下电离的结果C .空气密度越大,导电性能越好D .空气越稀薄,越容易发出辉光解析:空气是由多种气体组成的混合气体,在正常情形下,气体分子不带电(显中性),是较好的绝缘体.但在射线、受热及强电场作用下,空气分子被电离,才具有导电功能,且空气密度较大时,电离的自由电荷很容易与其他空气分子碰撞,正、负电荷从头复合,难以形成稳固的放电电流,因此电离后的自由电荷在稀薄气体环境中导电性能更好,综上所述,正确答案为B 、D 。

答案:BD 2.电子(1)电子:从阴极射线管中射出的粒子称为电子。

注意:电子是原子的组成部份,是比原子更大体的物质微粒。

(2)电子的电荷和质量①电子的电荷量:e =×10-19C ;②电子的质量:m e =×10-31kg ;③电子的比荷:e /m e =1011C/kg 。

(3)密立根油滴实验①美国物理学家密立根在1910年通过著名的油滴实验精准测定了电子的电荷量。

②密立根实验的重要意义:发觉电荷是量子化的,即任何电荷只能是e 的整数倍。

【例2】 电子所带电荷量的精准数值最先是由美国物理学家密立根通过油滴实验取得的。

他测定了数千个带电油滴的电荷量,发觉这些电荷量都等于某个最小电荷量的整数倍。

2017-2018学年高中物理 第十八章 原子结构 18.1 电子的发现检测 新人教版选修3-5

2017-2018学年高中物理 第十八章 原子结构 18.1 电子的发现检测 新人教版选修3-5

18.1 电子的发现新提升·课时作业基础达标1.关于阴极射线,下列说法正确的是( )A.阴极射线就是很微弱的荧光B.阴极射线是在真空管内由正极放出的电子流C.阴极射线是由德国物理学家戈德斯坦命名的D.阴极射线的比荷比氢离子的比荷小【答案】 C2.(多选)关于阴极射线的性质,判断正确的是( )A.阴极射线带负电B.阴极射线带正电C.阴极射线的比荷比氢原子比荷大D.阴极射线的比荷比氢原子比荷小【解析】通过让阴极射线在电场、磁场中的偏转的研究发现阴极射线带负电,而且比荷比氢原子的比荷大得多,故选项A、C正确.【答案】AC3.阴极射线从阴极射线管中的阴极发出,在其间的高电压下加速飞向阳极,如图所示,若要使射线向上偏转,所加磁场的方向应为( )A.平行于纸面向左 B.平行于纸面向上C.垂直于纸面向外 D.垂直于纸面向里【解析】由题目可获取以下信息:(1)阴极射线的方向向右.(2)加磁场使射线向上偏转.由于阴极射线的本质是电子流.阴极射线方向向右,说明电子的运动方向向右,相当于存在向左的电流.利用左手定则,使电子所受洛伦兹力方向平行于纸面向上,由此可知磁场方向应为垂直于纸面向外,故选项C正确.【答案】 C4.阴极射线管中的高电压的作用是( )A.使管内气体电离B.使管内产生阴极射线C.使管中障碍物的电势升高D.使电子加速【解析】在阴极射线管中,阴极射线是由阴极处于炽热状态而发射的电子,通过高压对电子加速获得能量,与玻璃发生碰撞而产生荧光,故D正确.【答案】 D5.关于阴极射线,下列说法正确的是( )A.阴极射线就是稀薄气体导电时的辉光放电现象B.阴极射线是在真空管内由正极放出的电子流C.阴极射线是由德国物理学家戈德斯坦命名的D.阴极射线的比荷比氢原子的比荷小【解析】阴极射线是在真空管中由负极发出的电子流,故A、B错;最早由德国物理学家戈德斯坦在1876年提出并命名为阴极射线,故C对;阴极射线本质是电子流,故其比荷比氢原子比荷大的多,故D错.【答案】 C6.关于阴极射线的本质,下列说法正确的是( )A.阴极射线本质是氢原子B.阴极射线本质是电磁波C.阴极射线本质是电子流D.阴极射线本质是X射线【解析】阴极射线是原子受激发射出的电子流,关于阴极射线是电磁波、X射线都是在研究阴极射线过程中的一些假设,是错误的.【答案】 C7.关于电荷量,下列说法错误的是( )A.物体的带电荷量可以是任意的B.物体的带电荷量只能是某些值C.物体的带电荷量的最小值为1.6×10-19 CD.一个物体带上1.6×10-9 C的正电荷,这是它失去了1010个电子的缘故【解析】电子的带电荷是最小值1.6×10-19C,物体的带电荷量只能是它的整数倍,所以A错误,B、C正确;一个物体带正电,是因为失去电子的缘故,所以D正确.【答案】 A8.(多选)如图所示是阴极射线显像管及其偏转线圈的示意图,显像管中有一个阴极,工作时它能发射阴极射线,荧光屏被阴极射线轰击就能发光.安装在管颈的偏转线圈产生偏转磁场,可以使阴极射线发生偏转.下列说法中正确的是( ).如右图所示为示波管中电子枪的原理示意图,示波管内抽成真空,之间电压为U,电子离开阴极时的速度可以忽略,电的小孔中射出的速度大小为v,下列说法正确的是不变,则电子离开不变,则电子离开间距离保持不变而电压减半,则电子离开vD.如果A K间距离保持不变而电压减半,则电子离开K时的速度为2【解析】当A K间电压不变、距离变化时,电场力对电子做功不变,即射出时速度仍为,减小磁感应强度B,增大电场强度E美国科学家密立根通过油滴实验首次测得电子电量.油滴实验的原理如图所示,两块水平放置的平行金属板与电源相连,上下板分别带正、负电荷.油滴从喷雾器喷出后,由于摩擦而带电,经上板中央小孔落到两板间的匀强电场中,通过显微镜可以观察到它运动的情年用阴极射线管测量了电子的比荷(电子电荷量与质量之比理如图所示.电子流平行于极板射入,极板P、P′间同时存在匀强电场时,电子流不发生偏转;极板间只存在垂直纸面向里的匀强磁场rad.已知极板长L=3.0×10=5.0×10-4 T.求电子比荷.无偏转时,洛伦兹力和电场力平衡,有eE=百度文库是百度发布的供网友在线分享文档的平台。

高中物理第十八章原子结构1电子的发现成长训练新人教版选修3_5201711161124

高中物理第十八章原子结构1电子的发现成长训练新人教版选修3_5201711161124

1 电子的发现主动成长疏导引导1.如图 18-1-3所示,电子在电势差为 U 1的电场加速后,垂直射入电势差为 U 2的偏转电场. 在满足电子能射出偏转电场的条件下,下列四种情况中,一定能使电子的偏转角变大的是( )图 18-1-3A.U 1变大、U 2变大B.U 1变小、U 2变大 C .U 1变大、U 2变小 D.U 1变小、U 2变小思路解析:要使电子的偏转角变大,可以有两种途径:①减小 U 1使发射速度减小,从而 增加偏转时间.②增大 U 2增加偏转力. 答案:B2.如图 18-1-4所示,光电管的阴极被某种频率的光照射后,能产生光电效应.阴极 K 上的电子 被激发逸出表面(初速为零),经电压 U 加速后打到阳极 A 上,并立即被 A 吸收.若电流大小为 I ,电子电荷量为 e ,质量为 m .图 18-1-4(1)A 极在单位时间内所受的冲量为_________.(2)阴极 K 的材料原来为铷,现改为铯,若照射光的频率保持不变,则 A 极受到的光压将 _________(填“增大”或“减小”).思路解析:考查要点:光电子逸出动能增大,光电子数增多,这都会使光压增加.1(1)光电子在电场中加速2eUmv 2 故每个电子的动量为 pmv 2meU 0I =ne ,故电子个数nI e故单位时间的冲量I2mU.(np 0 )Ie(2)改为铯,光电子的初动能变大,故 A 极受的光压增大.答案:(1)I 2mUe(2)增大13.汤姆生认为阴极射线发射的物质是电子,而不是原子,是因为___________.思路解析:由电子的发现过程,我们可知阴极射线发射的物质的比荷,比那时已知质量最小的氢离子的比荷都要大2 000倍;再接着,当测得了发射物质的电荷量,用比荷和带电荷量求出发射物质的质量,得知发射物质的质量要远远小于原子质量.答案:电子的质量远远小于原子质量4.(1)向荧光屏看去,电子向我们飞来,在偏转线圈中通以如图18-1-5所示电流,电子偏转方向为…()图18-1-5A.向上B.向下C.向左D.向右(2)如果发现电视画面的幅度比正常偏小,可能是下列哪些原因引起的()A.电子枪发射能力减小B.加速电压的电压过高,电子速度大C.偏转线圈匝间短路,偏转匝数减少D.偏转线圈电流过小,偏转磁场减弱思路解析:(1)根据安培定则,环形磁铁右侧为N极,左侧为S极,在环内产生水平向左的匀强磁场.利用左手定则可知,电子向上偏转,选项A正确.(2)电视画面幅度减小是由于偏转角太小引起的.其原因一是因为电子的速度太大,即加速电压过高;二是因为偏转磁场的强度太弱.偏转线圈中电流太小和匝间短路引起的有效匝数减少都会使磁感应强度减弱,故选项B、C、D正确.答案:(1)A(2)BCD5.已知电子质量为9.1×10-31kg、静电荷量为-1.6×10-19C,当氢原子核外电子绕核旋转时的轨道半径为0.53×10-10时,求电子绕核运动的速度、频率、动能和等效的电流.(静电力常量k=9.0×109N·m2/C2)思路解析:电子受核的库仑力提供绕核转动的向心力,由公式:k e22vm,可得r r2kv e=2.18×106 m/s,F=v/2πr=6.55×1015Hz,rmE=mv2/2=2.16×10-18J,I=E/T=1.05×10-3A.答案:2.18×106 m/s 6.55×1015 Hz 2.16×10-18J 1.05×10-3A6.S为电子源,它只在图18-1-6所示的纸面上360°范围内发射速率相同、质量为m、电荷量为e的电子,MN是一块足够大的竖直挡板,与S的水平距离OS=L.挡板左侧有垂直纸面向里的匀强磁场,磁感应强度为B,求:图18-1-62(1)要使S发射的电子能够达到挡板,则发射电子的速度至少为多大?(2)若电子发射的速度为eBL/m,则挡板被击中的范围有多大?思路解析:(1)从S发射电子速度方向竖直向上,并且轨道半径恰好等于L2时,为能够达到挡板的最小发射速度.如右图,eBvmv eBL2,v.L/22mmv2(2)如右图,RLeB,Sa=2L,Oa3LOa Sa2SO 3L,3tan 所以击中挡板上边界的电子,2L L发射角应为与水平成30°角斜向上.若要击中挡板下边界,电子发射方向应正对挡板O点,电子在磁场中才能恰好运动1/4圆周达到挡板下边界,Sb L2L22L,Ob Sb2SO2L,ab (31)L.答案:(1)e BL2m(2) (31)L7.如图18-1-7所示,在磁感应强度B=9.1×10-4 T的匀强磁场中,CD是垂直于磁场方向上的同一平面上的两点,相距d=0.05m,在磁场中运动的电子经过C时速度方向与CD成30°角,而后又通过D点.求:图18-1-7(1)在图中标出电子在C点受磁场力的方向;(2)电子在磁场中运动的速度;(3)电子由C点到D点经历的时间.(电子质量m=9.1×10-31kg,电子电荷量e=1.6×10-19 C)思路解析:本题是mvr 和TBq2m的应用,解题关键是画出运动轨迹示意图,从中找Bq出各量之间的关系.3(1)电子在 C 点受磁场力方向如右图所示,垂直于速度方向,沿 CO 方向.(2)O 点为电子运动轨迹的圆心,由几何关系可知∠COD =60°,电子运动轨迹的半径 r=d ,由mvr 得电子在磁场中运动的速度eBve Bd m1.6 10 199.1 10 49.110 310.05m/s =8.0×106 m/s.(3)设所用时间为 t ,由于转过的弧长 CD 所对圆心角为 60°,则t 1 6 Tm 3eB3.149.110313 1.6 109.110194s=6.5×10-9s .答案:(1)如思路解析图所示 (2)8.0×106 m/s (3)6.5×10-9 s 8.已知电子的质量 m =9.1×10-31kg,电荷量 e =1.6×10-19它以初速度 v 0=3.0×106m/s 沿着 与场强垂直的方向射入宽度 l =6.0×10-2的匀强电场中,场强大小为 E =2×103N/C ,方向如 图 18-1-8所示.求:图 18-1-8(1)电子在电场中的运动时间;(2)电子射离电场时速度的大小和方向; (3)电子飞离电场时发生的侧移量 y.思路解析:(1)电子在电场中运动的时间l 6.0 1082ts 2.010 s.v3.0106(2)电子在电场中只受电场力作用,沿电场方向加速度qE 1.61019 2.0103a m/s2=3.5×1014 m/s2m9.11031电子射离电场时沿电场方向的速度分量v′=at=3.5×1014×2.0×10-8 m/s=7.0×106 m/s电子射离电场时速度大小为v.0)(0t=7.6×106 m/sv v2(310627.106)2m/s024偏转角的正切值tanv v 07.01063.01062.33偏转角θ=a r ctan2.33=66.8°. (3)偏转的侧移121yat×3.5×1014×(2.0×10-8)2 m=7.0×10-2m.22答案:(1)2.0×10-8 s (2)7.6×106 m/s 右偏下 66.8° (3)7.0×10-2m9.如图 18-1-9所示,一束阴极射线自下而上进入一水平方向的匀强电场后发生偏转,则电场 方向____________,进入电场后,阴极射线粒子的动能______(填“增加”“减少”或“不 变”).图 18-1-9思路解析:阴极射线为电子流,带负电,现在向右偏转,故电场方向水平向左;进入电场 后,电场力做正功,电子动能增加. 答案:水平向左 增加5。

高中物理第十八章原子结构第1节电子的发现课下作业新人教版选修3_5

高中物理第十八章原子结构第1节电子的发现课下作业新人教版选修3_5

——教学资料参考参考范本——高中物理第十八章原子结构第1节电子的发现课下作业新人教版选修3_5______年______月______日____________________部门1.关于阴极射线的本质,下列说法正确的是( )A.阴极射线本质是氢原子B.阴极射线本质是电磁波C.阴极射线本质是电子D.阴极射线本质是X射线解析:阴极射线是原子受激发射出的电子流,关于阴极射线是电磁波、X射线的说法都是在研究阴极射线过程中的一些假设,是错误的。

答案:C2.关于空气导电性能,下列说法正确的是( )A.空气导电,因为空气分子中有的带正电,有的带负电,在强电场作用下向相反方向运动的结果B.空气能够导电,是因为空气分子在射线或强电场作用下电离的结果C.空气密度越大,导电性能越好D.空气密度变得越稀薄,越容易发出辉光解析:空气是由多种气体组成的混合气体,在正常情况下,气体分子不带电(显中性),是较好的绝缘体。

但在射线、受热及强电场作用下,空气分子被电离,才具有导电功能,且空气密度较大时,电离的自由电荷很容易与其他空气分子碰撞,正、负电荷重新复合,难以形成稳定的放电电流,而电离后的自由电荷在稀薄气体环境中导电性能更好,而气体导电时发出辉光。

综上所述,正确答案B、D。

答案:BD3.关于电量,下列说法正确的是( )A.物体的带电量可以是任意值B.物体的带电量只能是某些值C.物体的带电量的最小值为1.6×10-19 CD.一个物体带1.6×10-9 C的正电荷,这是它失去了1010个电子的缘故解析:电子的电荷量是最小值1.6×10-19 C,物体的带电荷量只能是它的整数倍,所以A不正确,B、C正确;一个物体带正电,是因为失去电子的缘故,所以D正确。

答案:BCD4.如图1所示,一只阴极射线管左侧不断有电子射出,若在管的正下方放一通电直导线AB时,发现射线的轨迹往下偏,则( )A.导线中的电流由A流向B图1B.导线中的电流由B流向AC.若要使电子束的轨迹往上偏,可以通过改变AB中的电流方向来实现D.电子束的轨迹与AB中电流方向无关解析:因为AB中通有电流,所以会在射线管中产生磁场,电子是因为受到洛伦兹力的作用而发生偏转,由左手定则可知,射线管中的磁场方向垂直于纸面向里,所以又根据安培定则可知,AB中的电流方向应是由B流向A,当AB中的电流方向变为由A流向B,则AB上方的磁场方向变为垂直于纸面向外,电子所受洛伦兹力变为向上,电子束的径迹会变为向上偏转。

高中物理第十八章原子结构第一节电子的发觉课堂探讨学

高中物理第十八章原子结构第一节电子的发觉课堂探讨学

第一节电子的发觉课堂探讨探讨一探讨电子发觉的历程问题导引给阴极射线管加上高压,如图所示,将磁铁靠近阴极射线管。

按照你观察到的现象,结合前面学过的知识,你以为阴极射线是中性的,仍是带电的?若是带电,带什么电?提示:带电。

带负电。

名师精讲1.装置现象:2.德国物理学家戈德斯坦将阴极发出的射线命名为阴极射线。

3.猜想:(1)阴极射线是一种电磁辐射。

(2)阴极射线是带电微粒。

4.英国物理学家汤姆孙让阴极射线在电场和磁场中偏转。

5.密立根通过“油滴实验”精准测定了电子的电荷量和电子的质量。

警示电子的发觉打破了原子不可再分的传统观念,令人们熟悉到原子不是组成物质的最小粒子,原子本身也是有内部结构的。

【例题1】如图所示是阴极射线显像管及其偏转线圈的示用意。

显像管中有一个阴极,工作时它能发射阴极射线,荧光屏被阴极射线轰击就可以发光。

安装在管颈的偏转线圈产生偏转磁场,能够使阴极射线发生偏转。

下列说法中正确的是( )A.若是偏转线圈中没有电流,则阴极射线应该打在荧光屏正中的O点B.若是要使阴极射线在竖直方向偏离中心,打在荧光屏上A点,则偏转磁场的方向应该垂直纸面向里C.若是要使阴极射线在竖直方向偏离中心,打在荧光屏上B点,则偏转磁场的方向应该垂直纸面向里D.若是要使阴极射线在荧光屏上的位置由B点向A点移动,则偏转磁场磁感应强度应该先由小到大,再由大到小解析:若是偏转线圈中没有电流,不产生磁场,则阴极射线将沿直线打在荧光屏上的O 点,A项正确;要使阴极射线打在荧光屏上的A点,则其所受洛伦兹力方向应向上,按照左手定则能够得知,偏转磁场的方向应该由里向外,B项错误;同理可判得C项正确;要使阴极射线在荧光屏上的位置由B向A移动,射线在偏转磁场中运动的半径应先增大后减小,按照带电粒子在磁场中的偏转半径公式r=mvqB知,偏转磁场的磁感应强度应先由大到小,再由小到大,D项错误。

答案:AC反思解答此类题要注意两点:(1)阴极射线是高速电子流(带负电);(2)利用左手定则判断受力方向时,四指应指向电子流运动的反方向。

2017-2018学年高中物理 第十八章 原子结构 第1节 电子的发现随堂检测 新人教版选修3-5

2017-2018学年高中物理 第十八章 原子结构 第1节 电子的发现随堂检测 新人教版选修3-5

第1节电子的发现1.(对应要点一)关于阴极射线,下列说法正确的是( )A.阴极射线就是稀薄气体导电的辉光放电现象B.阴极射线是在真空管内由阴极发出的电子流C.阴极射线是组成物体的原子D.阴极射线可以直线传播,也可被电场、磁场偏转解析:阴极射线是在真空管中由阴极发出的电子流,B正确。

电子是原子的组成部分,C错。

电子可被电场、磁场偏转,D正确。

答案:BD2.(对应要点一)如图18-1-11所示是汤姆孙的气体放电管的示意图,下列说法中正确的是( )图18-1-11A.若在D1、D2之间不加电场和磁场,则阴极射线应打到最右端的P1点B.若在D1、D2之间加上竖直向下的电场,则阴极射线应向下偏转C.若在D1、D2之间加上竖直向下的电场,则阴极射线应向上偏转D.若在D1、D2之间加上垂直纸面向里的磁场,则阴极射线不偏转解析:实验证明,阴极射线是电子,它在电场中偏转时应偏向带正电的极板一侧,可知选项C正确,选项B的说法错误。

加上磁场时,电子在磁场中受洛伦兹力作用,要发生偏转,因而选项D错误。

当不加电场和磁场时,电子所受的重力可以忽略不计,因而不发生偏转,选项A的说法正确。

答案:AC3.(对应要点二)如图18-1-12所示,让一束均匀的阴极射线垂直穿过正交的电磁场,选择合适的磁感应强度B和电场强度E,带电粒子将不发生偏转,然后撤去电场,粒子将做匀速圆周运动,测得其半径为R,则阴极射线中带电粒子的比荷为________。

图18-1-12 解析:因为带电粒子不偏转,所以受到的电场力与洛伦兹力平衡,即qE=qBv,所以v =E/B。

粒子进入磁场后做匀速圆周运动,由洛伦兹力提供向心力qvB=mv2/R,所以,其半径为R =mv /qB ,所以q m =E RB 2。

答案:E RB 24.(对应要点三)电子所带电荷量的精确数值最早是由美国物理学家密立根通过油滴实验测得的。

他测定了数千个带电油滴的电荷量,发现这些电荷都等于某个最小电荷量的整数倍。

2017_2018学年高中物理第十八章原子结构第1节电子的发现课下作业新人教版选修3_5201709

2017_2018学年高中物理第十八章原子结构第1节电子的发现课下作业新人教版选修3_5201709

第1节电子的发现1.关于阴极射线的本质,下列说法正确的是()A.阴极射线本质是氢原子B.阴极射线本质是电磁波C.阴极射线本质是电子D.阴极射线本质是X射线解析:阴极射线是原子受激发射出的电子流,关于阴极射线是电磁波、X射线的说法都是在研究阴极射线过程中的一些假设,是错误的。

答案:C2.关于空气导电性能,下列说法正确的是()A.空气导电,因为空气分子中有的带正电,有的带负电,在强电场作用下向相反方向运动的结果B.空气能够导电,是因为空气分子在射线或强电场作用下电离的结果C.空气密度越大,导电性能越好D.空气密度变得越稀薄,越容易发出辉光解析:空气是由多种气体组成的混合气体,在正常情况下,气体分子不带电(显中性),是较好的绝缘体。

但在射线、受热及强电场作用下,空气分子被电离,才具有导电功能,且空气密度较大时,电离的自由电荷很容易与其他空气分子碰撞,正、负电荷重新复合,难以形成稳定的放电电流,而电离后的自由电荷在稀薄气体环境中导电性能更好,而气体导电时发出辉光。

综上所述,正确答案B、D。

答案:BD3.关于电量,下列说法正确的是()A.物体的带电量可以是任意值B.物体的带电量只能是某些值C.物体的带电量的最小值为1.6×10-19 CD.一个物体带1.6×10-9 C的正电荷,这是它失去了1010个电子的缘故解析:电子的电荷量是最小值1.6×10-19 C,物体的带电荷量只能是它的整数倍,所以A 不正确,B、C正确;一个物体带正电,是因为失去电子的缘故,所以D正确。

答案:BCD4.如图1所示,一只阴极射线管左侧不断有电子射出,若在管的正下方放一通电直导线AB时,发现射线的轨迹往下偏,则()A.导线中的电流由A流向B 图11B.导线中的电流由B流向AC.若要使电子束的轨迹往上偏,可以通过改变AB中的电流方向来实现D.电子束的轨迹与AB中电流方向无关解析:因为AB中通有电流,所以会在射线管中产生磁场,电子是因为受到洛伦兹力的作用而发生偏转,由左手定则可知,射线管中的磁场方向垂直于纸面向里,所以又根据安培定则可知,AB中的电流方向应是由B流向A,当AB中的电流方向变为由A流向B,则AB上方的磁场方向变为垂直于纸面向外,电子所受洛伦兹力变为向上,电子束的径迹会变为向上偏转。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子的发现题组一阴极射线1.下面对阴极射线的认识正确的是()A.阴极射线是由阴极发出的粒子撞击玻璃管壁上的荧光而产生的B.只要阴阳两极间加有电压,就会有阴极射线产生C.阴极射线可以穿透薄铝片,这说明它是电磁波D.阴阳两极间加有高压时,电场很强,阴极中的电子受到很强的库仑力作用而脱离阴极解析:阴极射线是由阴极直接发出的,A错误;只有当两极间加有高压且阴极接电源负极时,阴极中的电子才会受到足够大的库仑力作用而脱离阴极成为阴极射线,B错误,D正确;可以穿透薄铝片的,可能是电磁波,也可能是更小的粒子,C错误。

答案:D2.(多选)关于阴极射线的性质,判断正确的是()A.阴极射线带负电B.阴极射线带正电C.阴极射线的比荷比氢离子的比荷大D.阴极射线的比荷比氢离子的比荷小解析:汤姆孙通过实验证实,阴极射线是带负电的粒子流;阴极射线所带的电荷量与氢离子相同,但质量比氢离子小得多,所以它的比荷比氢离子的比荷大。

答案:AC3.如果阴极射线像X射线一样,则下列说法正确的是()A.阴极射线管内的高电压能够对其加速而增加能量B.阴极射线通过偏转电场不会发生偏转C.阴极射线通过偏转电场能够改变方向D.阴极射线通过磁场时方向可能发生改变解析:X射线是电磁波,不带电,通过电场、磁场时不受力的作用,不会发生偏转、加速,选项B正确。

答案:B4.阴极射线是从阴极射线管的阴极发出的高速运动的粒子流。

若在如图所示的阴极射线管中部加上竖直向上的匀强电场,阴极射线将向(选填“外”“里”“上”或“下”)偏转;若使阴极射线不偏转,可在匀强电场区域再加一大小合适、方向垂直纸面向(选填“外”或“里”)的匀强磁场。

解析:阴极射线带负电,在竖直向上的匀强电场中受向下的静电力作用,将向下偏转;要使阴极射线不偏转,应使其再受一竖直向上的洛伦兹力与库仑力平衡,由左手定则可判断磁场方向垂直纸面向外。

答案:下外题组二电子的发现5.(多选)关于电荷量,下列说法中正确的是()A.物体所带电荷量可以是任意值B.物体所带电荷量只能是某些值C.物体所带电荷量的最小值为1.6×10-19 CD.一个物体带1.6×10-9 C的正电荷,这是它失去了1.0×1010个电子的缘故解析:电荷量是量子化的,即物体带的电荷量只能是某一最小电荷量的整数倍,这一最小电荷量是1.6×10-19 C,A错误,B、C正确;物体带正电,是由于它失去了带负电的电子,D正确。

答案:BCD6.关于密立根“油滴实验”,下列说法正确的是()A.密立根利用电场力和重力平衡的方法,测得了带电体带的最小电荷量B.密立根利用电场力和重力平衡的方法,推测出了带电体带的最小电荷量C.密立根利用磁偏转的知识推测出了电子的电荷量D.密立根“油滴实验”直接验证了电子的质量不足氢离子质量的千分之一解析:密立根“油滴实验”是利用喷雾的方法,在已知小液滴质量的前提下利用电场力和小液滴的重力平衡,推算出每个小液滴带的电荷量都是元电荷的整数倍,带电体带的电荷量不是连续的,而是量子化的,并且电子带的电荷量也为元电荷,带负电。

故正确选项为B。

答案:B7.汤姆生1897年用阴极射线管测量了电子的比荷(电子电荷量与质量之比),其实验原理如图所示。

电子流平行于极板射入,极板P、P'间同时存在匀强电场E和垂直纸面向里的匀强磁场B时,电子流不会发生偏转;极板间只存在垂直纸面向里的匀强磁场B时,电子流穿出平行板电容器时的偏向角θ= rad。

已知极板长L=3.0×10-2 m,电场强度大小为E=1.5×104 V/m,磁感应强度大小为B=5.0×10-4 T。

求电子比荷。

解析:无偏转时,洛伦兹力和电场力平衡,则eE=evB只存在磁场时,有evB=m,由几何关系r=,偏转角很小时,r≈联立上述公式并代入数据得电子的比荷≈1.3×1011 C/kg。

答案:1.3×1011 C/kg8.1897年,物理学家汤姆孙正式测定了电子的比荷,打破了原子是不可再分的最小单位的观点。

因此,汤姆孙的实验是物理学发展史上最著名的经典实验之一。

在实验中,汤姆孙采用了如图所示的阴极射线管,从电子枪C出来的电子经过A、B间的电场加速后,水平射入长度为L的D、E平行板间,接着在荧光屏F中心出现荧光斑。

若在D、E间加上方向向下、电场强度为E的匀强电场,电子将向上偏转;如果再利用通电线圈在D、E电场区加上一垂直纸面的磁感应强度为B的匀强磁场(图中未画),荧光斑恰好回到荧光屏中心,接着再去掉电场,电子向下偏转,偏转角为α,试根据L、E、B和α,求出电子的比荷。

解析:当加上一匀强磁场电子不发生偏转时,则满足eE=Bev。

去掉电场,只在磁场作用下电子向下偏转,偏转角为α,则有evB=。

如图所示,由几何关系得L=R sin α。

解得答案:9.1910年美国物理学家密立根做了测定电子电荷量的著名实验——“油滴实验”,如图所示。

质量为m的带负电的油滴,静止于水平放置的带电平行金属板间,设油滴的密度为ρ,空气密度为ρ',试求:两板间电场强度最大值的表达式。

解析:设油滴的体积为V,所带电荷量为电子电荷量的整数倍,设为ne。

对油滴受力分析如图所示,由平衡条件得G=mg=F电+F浮,F电=Ene,F浮=ρ'gV,m=ρV,由以上各式得E=,当n=1时,电场强度E最大,E max=。

答案:(建议用时:30分钟)1.(多选)下列说法正确的是()A.电子是原子核的组成部分B.电子电荷的精确测定最早是由密立根通过著名的“油滴实验”实现的C.电子电荷量的数值约为1.602×10-19 CD.电子质量与电荷量的比值称为电子的比荷解析:电子是原子的组成部分,电子的发现说明原子是可以再分的。

电子的电荷量与质量的比值称为电子的比荷,也叫荷质比。

答案:BC2.如图是阴极射线管示意图。

接通电源后,阴极射线由阴极沿x轴方向射出,在荧光屏上会看到一条亮线。

要使荧光屏上的亮线向下(z轴负方向)偏转,在下列措施中可采用的是()A.加一磁场,磁场方向沿z轴负方向B.加一磁场,磁场方向沿y轴正方向C.加一电场,电场方向沿z轴负方向D.加一电场,电场方向沿y轴正方向解析:若加磁场,由左手定则可知,所加磁场方向沿y轴正方向,B正确;若加电场,因电子向下偏转,则电场方向沿z轴正方向。

答案:B3.(多选)关于电子的发现,下列叙述中正确的是()A.电子的发现,说明原子是由电子和原子核组成的B.电子的发现,说明原子具有一定的结构C.电子是第一种被人类发现的微观粒子D.电子的发现,比较好地解释了物体的带电现象解析:发现电子之前,人们认为原子是不可再分的最小粒子,电子的发现,说明原子有一定的结构,B 正确;电子是人类发现的第一种微观粒子,C正确;物体带电的过程,就是电子的得失和转移的过程,D 正确。

答案:BCD4.(多选)下列是某实验小组测得的一组电荷量,哪些是符合事实的()A.+3×10-19CB.+4.8×10-19CC.-3.2×10-26CD.-4.8×10-19C解析:电荷是量子化的,任何带电体所带电荷量只能是元电荷的整数倍。

1.6×10-19C是目前为止自然界中最小的电荷量,故B、D正确。

答案:BD5.(多选)1897年英国物理学家汤姆孙发现了电子,因此被称为“电子之父”,下列关于电子的说法正确的是()A.汤姆孙通过阴极射线在电场和磁场中的运动得出了阴极射线是带负电的粒子的结论,并求出了阴极射线的比荷B.汤姆孙通过光电效应的研究,发现了电子C.电子的质量是质子质量的 1 836倍D.汤姆孙通过对不同材料作阴极发出的射线进行研究,并研究光电效应等现象,说明了电子是原子的组成部分,是比原子更基本的物质单元解析:汤姆孙对不同材料的阴极发出的射线进行研究,发现均为同一种相同的粒子——电子,电子是构成物质的基本单元,它的质量远小于质子的质量。

答案:AD6.(多选)关于阴极射线,下列说法正确的是()A.阴极射线就是稀薄气体导电的辉光放电现象B.阴极射线是在真空管内由阴极发出的电子流C.阴极射线是组成物体的原子D.阴极射线沿直线传播,但在电场、磁场中偏转解析:阴极射线是原子受激发射出的电子;碰到荧光物质时,能使荧光物质发光,阴极射线(即电子流)在电场和磁场中会发生偏转。

答案:BD7.(多选)如图所示的阴极射线管,无偏转电场时,电子束加速后打到荧屏中央形成亮斑。

如果只逐渐增大M1、M2之间的电势差,则()A.在荧屏上的亮斑向上移动B.在荧屏上的亮斑向下移动C.偏转电场对电子做的功增大D.偏转电场的电场强度减小解析:设电子由加速电场加速后的速度为v,电子在加速电场中运动过程,由动能定理得,eU1=mv2,解得v=,偏转电场的电场强度E=,电子进入偏转电场后做匀变速曲线运动,沿极板方向做匀速直线运动,沿电场线方向做初速度为零的匀加速直线运动,a=,L=vt,v y=at,y=at2,电子刚离开偏转电场时偏转角的正切为tan α=,电场对电子做的功W=eE y,电子离开偏转电场时的偏转角α随偏转电压的增大而增大,如果只逐渐增大M1M2之间的电势差U2,偏转电场的电场强度增大,在荧屏上的亮斑向上移动,电场力做的功增大,故A、C两项正确。

答案:AC8.如图甲从阴极发射出来的电子束,在阴极和阳极间的高电压作用下,轰击到长条形的荧光屏上激发出荧光,可以显示出电子束运动的径迹。

若把射线管放在如图乙蹄形磁铁的两极间,阴极接高压电源负极,阳极接高压电源正极,关于荧光屏上显示的电子束运动的径迹,下列说法正确的是()A.电子束向上弯曲B.电子束沿直线前进C.电子束向下弯曲D.电子的运动方向与磁场方向无关解析:因为左边是阴极,右边是阳极,所以电子在阴极管中的运动方向是左到右,产生的电流方向是右到左(注意是电子带负电),根据左手定则,四指指向左,手掌对向N极(就是这个角度看过去指向纸面向里),此时大拇指指向下面,所以电子在洛伦兹力作用下轨迹向下偏转,故A、B错误,C正确;根据左手定则可知,磁场的方向会影响洛伦兹力的方向,从而会影响运动方向,故D错误。

答案:C9.电子所带的电荷量的精确数值最早是由美国物理学家密立根通过油滴实验测得的。

他测定了数千个带电油滴的电荷量,发现这些电荷量都等于某个最小电荷量的整数倍。

这个最小电荷量就是电子所带的电荷量。

密立根实验的原理如图所示,A、B是两块平行放置的水平金属板,A板带正电,B 板带负电。

从喷雾器喷嘴中喷出的小油滴落到A、B两板之间的电场中,小油滴由于摩擦而带负电,调节A、B两板间的电压,可使小油滴受到的电场力和重力平衡。

相关文档
最新文档