变量与函数重难点突破设计教学设计

合集下载

《变量与函数》第2课时 教学设计

《变量与函数》第2课时 教学设计

《变量与函数》教学设计第2课时进一步研究运动变化过程中变量之间的对应关系,在观察具体问题中变量之间对应关系的基础上,抽象出函数的概念.1.进一步体会运动变化过程中的数量变化;2.从典型实例中抽象概括出函数的概念,了解函数的概念.概括并理解函数概念中的对应关系.多媒体:PPT课件、电子白板.一、观察思考,分析变化问题1 下面变化过程中,是否包含两个变量?同一问题中的变量之间有什么联系?(1)汽车以60 km/h 的速度匀速行驶,行驶的时间为t h,行驶的路程为s km;(2)每张电影票的售价为10 元,设某场电影售出 x张票,票房收入为y 元;(3)圆形水波慢慢地扩大,在这一过程中,圆的半径为 r ,面积为 S ;(4)用10 m 长的绳子围一个矩形,当矩形的一边长为 x,它的邻边长为 y.[活动说明与建议]说明:本问题主要是给出具体事例让学生认识并抽象得到函数的概◆教材分析◆教学目标◆教学重难点◆◆课前准备◆◆教学过程念,函数概念的抽象应循序渐进,首先让学生知道这些事例是一个变换的过程,其次这些变换过程中都含有两个变量,这两个变量之间存在着某种联系,最后由教师引导通过具体的数据,发现当给定一个变量的值时,有唯一的另一个变量的值与之对应,这种对应关系每个问题都不同.建议:在教师的引导下,充分的让学生通过实例感知函数,感知这种对应关系.【归纳】上面每个问题中的两个变量相互联系,当其中一个变量取定一个值时,另一个变量就有唯一的值与之对应.二、观察思考,再次概括问题2:一些用图或表格表达的问题中,也能看到两个变量之间存在上面那样的关系.(1)下面是中国代表团在第23 届至30 届夏季奥运会上获得的金牌数统计表,届数和金牌数可以分别记作 x 和 y,对于表中每一个确定的届数 x,都对应着一个确定的金牌数y 吗?(2)如图是北京某天的气温变化图,你能根据图象说出某一时刻的气温吗?问题3:综合以上这些现象,你能再次归纳出上面所有事例的变量之间关系的共同特点吗?函数的定义:一般地,在一个变化过程中,如果有两个变量x 与y,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说 x 是自变量,y 是 x 的函数.如果当 x =a 时,对应的 y =b,那么 b 叫做当自变量的值为 a 时的函数值.三、初步应用,巩固知识:练习1 下列问题中,一个变量是否是另一个变量的函数?请说明理由.(1)向一水池每分钟注水0.1 m3,注水量 y(单位:m3)随注水时间 x(单位:min)的变化而变化;(2)改变正方形的边长 x,正方形的面积 S 随之变化;(3)秀水村的耕地面积是106m2,这个村人均占有耕地面积 y (单位:m2)随这个村人数 n 的变化而变化;(4)P是数轴上的一个动点,它到原点的距离记为 x,它的坐标记为 y,y 随 x 的变化而变化.练习2 下面的我国人口数统计表中,人口数y 是年份x 的函数吗?为什么?练习3 下图是一只蚂蚁在竖直的墙面上的爬行图,请问:蚂蚁离地高度 h 是离起点的水平距离 t 的函数吗?为什么?【追问】蚂蚁离起点的水平距离 t 是离地高度 h 的函数吗?为什么?练习4 你能举出一个函数的实例吗?四、课堂小结:。

《17.1变量与函数(1)》教学设计

《17.1变量与函数(1)》教学设计

17.1《变量与函数》教学设计(打磨后教案)惠安县小岞中学庄文河指导老师:康荣彬一、教学目标1.知识技能目标(1)掌握常量和变量、自变量和因变量(函数)基本概念;(2)了解表示函数关系的三种方法:解析法、列表法、图像法,并会用解析法表示数量关系.2.过程性目标(1)通过实际问题,引导学生直观感知,领悟函数基本概念的意义;(2)引导学生联系代数式和方程的相关知识,继续探索数量关系,增强数学建模意识,列出函数关系式.二、教学过程(一)创设情境在学习与生活中,经常要研究一些数量关系,先看下面的问题.问题1 如图是某地一天内的气温变化图.看图回答:(1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温.(2)这一天中,最高气温是多少?最低气温是多少?(3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?(公开课打磨后添加)解:(1)这天的6时、10时和14时的气温分别为-1℃、2℃、5℃;(2)这一天中,最高气温是5℃.最低气温是-4℃;(3)这一天中,3时~14时的气温在逐渐升高.0时~3时和14时~24时的气温在逐渐降低.(公开课打磨后添加)从图中我们可以看到,随着时间t (时)的变化,相应地气温T (℃)也随之变化.那么在生活中是否还有其它类似的数量关系呢?(二)探究归纳问题2 银行对各种不同的存款方式都规定了相应的利率,下表是2002年7月中国工商银行为“整存整取”的存款方式规定的年利率:观察上表,说说随着存期x 的增长,相应的年利率y 是如何变化的.解:随着存期x 的增长,相应的年利率y 也随着增长.问题3 收音机刻度盘的波长和频率分别是用米(m )和千赫兹(kHz )为单位标刻的.下面是一些对应的数值:观察上表回答:(1)波长l 和频率f 数值之间有什么关系?(2)波长l 越大,频率f 就________.解:(1) l 与 f 的乘积是一个定值,即lf =300 000,或者说l300000 f . (2)波长l 越大,频率f 就 越小.问题4 圆的面积随着半径的增大而增大.如果用r 表示圆的半径,S 表示圆的面积则S 与r 之间满足下列关系:S =_________.利用这个关系式,试求出半径为1 cm 、1.5 cm 、2 cm 、2.6 cm 、3.2 cm 时圆的面积,并将结果填入下表:由此可以看出,圆的半径越大,它的面积就_________.解:S =πr 2.圆的半径越大,它的面积就越大.(公开课打磨后添加)在上面的问题中,我们研究了一些数量关系,它们都刻画了某些变化规律.这里出现了各种各样的量,特别值得注意的是出现了一些数值会发生变化的量.例如问题1中,刻画气温变化规律的量是时间t 和气温T ,气温T 随着时间t 的变化而变化,它们都会取不同的数值.像这样在某一变化过程中,可以取不同数值的量,叫做变量(variable ).上面各个问题中,都出现了两个变量,它们互相依赖,密切相关(公开课打磨后添加) 一般地,如果在一个变化过程中,有两个变量,例如x 和y ,对于x 的每一个值,y 都有惟一的值与之对应,我们就说x 是自变量(independent variable ),y 是因变量(dependent variable ),此时也称y 是x 的函数(function ).表示函数关系的方法通常有三种:(1)解析法,如问题3中的l300000f ,问题4中的S =π r 2,这些表达式称为函数的关系式.(2)列表法,如问题2中的利率表,问题3中的波长与频率关系表.(3)图像法,如问题1中的气温曲线.问题的研究过程中,还有一种量,它的取值始终保持不变,我们称之为常量(constant ),如问题3中的300 000,问题4中的π等.(三)实践应用例1 下表是某市2000年统计的该市男学生各年龄组的平均身高.(1)从表中你能看出该市14岁的男学生的平均身高是多少吗?(2)该市男学生的平均身高从哪一岁开始迅速增加?(3)上表反映了哪些变量之间的关系?其中哪个是自变量?哪个是因变量?解:(1)平均身高是146.1cm;(2)约从14岁开始身高增加特别迅速;(3)反映了该市男学生的平均身高和年龄这两个变量之间的关系,其中年龄是自变量,平均身高是因变量.例2 写出下列各问题中的关系式,并指出其中的常量与变量:(1)圆的周长C与半径r的关系式;(2)火车以60千米/时的速度行驶,它驶过的路程s(千米)和所用时间t(时)的关系式;(3)n边形的内角和S与边数n的关系式.解:(1)C=2π r,2π是常量,r、C是变量;(2)s=60t,60是常量,t、s是变量;(3)S=(n-2)×180,2、180是常量,n、S是变量.(四)交流反思(公开课打磨后添加)1.函数概念包含:(1)两个变量;(2)两个变量之间的对应关系.2.在某个变化过程中,可以取不同数值的量,叫做变量;数值始终保持不变的量,叫做常量.例如x和y,对于x的每一个值,y都有惟一的值与之对应,我们就说x是自变量,y是因变量.3.函数关系三种表示方法:(1)解析法;(2)列表法;(3)图像法.(五)检测反馈1.举3个日常生活中遇到的函数关系的例子.2.分别指出下列各关系式中的变量与常量:(1)三角形的一边长5cm ,它的面积S (cm 2)与这边上的高h (cm )的关系式是h S 25 ; (2)若直角三角形中的一个锐角的度数为α,则另一个锐角β(度)与α间的关系式是β=90-α ;(3)若某种报纸的单价为a 元,x 表示购买这种报纸的份数,则购买报纸的总价y (元)与x 间的关系是:y =ax .3.写出下列函数关系式,并指出式中的自变量与因变量:(1)每个同学购一本代数教科书,书的单价是2元,求总金额Y (元)与学生数n (个)的关系;(2)计划购买50元的乒乓球,求所能购买的总数n (个)与单价a (元)的关系.4.填写如图所示的乘法表,然后把所有填有24的格子涂黑.若用x 表示涂黑的格子横向的乘数,y 表示纵向的乘数,试写出y 关于x 的函数关系式.。

人教版数学八年级下册教学设计:第19章 变量与函数(一)

人教版数学八年级下册教学设计:第19章 变量与函数(一)

人教版数学八年级下册教学设计:第19章变量与函数(一)一. 教材分析人教版数学八年级下册第19章《变量与函数(一)》是学生在学习了初中数学基础知识后,进一步深入研究数学的一个章节。

本章主要介绍了变量的概念,函数的定义及其性质,函数的图像,以及函数的表示方法。

通过本章的学习,使学生能够理解变量与函数之间的关系,掌握函数的基本性质和图像,培养学生解决实际问题的能力。

二. 学情分析学生在学习本章内容前,已经掌握了初中数学的基本知识,对一些概念和性质有一定的理解。

但是,对于函数这一概念,学生可能还存在一定的模糊认识。

因此,在教学过程中,需要教师引导学生深入理解函数的概念,并通过实例使学生能够更好地理解函数的性质和图像。

三. 教学目标1.了解变量与函数的概念,理解函数的性质和图像。

2.掌握函数的表示方法,包括解析式和图像表示。

3.能够运用函数解决实际问题,提高学生的应用能力。

四. 教学重难点1.函数的概念和性质。

2.函数的图像表示。

3.函数的实际应用。

五. 教学方法1.讲授法:教师通过讲解,使学生掌握函数的基本概念和性质。

2.案例分析法:通过实例,使学生更好地理解函数的性质和图像。

3.问题驱动法:引导学生通过解决问题,提高运用函数解决实际问题的能力。

六. 教学准备1.教材:人教版数学八年级下册。

2.教学PPT:包含函数的基本概念、性质、图像和实际应用等内容。

3.实例:选取一些与生活实际相关的问题,用于讲解函数的应用。

七. 教学过程1.导入(5分钟)教师通过一个简单的实例,引导学生回顾已学的数学知识,为新课的学习做好铺垫。

2.呈现(15分钟)教师通过PPT呈现函数的基本概念、性质和图像,使学生初步了解函数。

3.操练(10分钟)教师引导学生通过解决一些实际问题,运用函数的知识,加深学生对函数的理解。

4.巩固(10分钟)教师通过一些练习题,检查学生对函数知识的掌握程度,并对学生的疑问进行解答。

5.拓展(10分钟)教师引导学生进一步深入研究函数,探讨函数的性质和图像之间的关系。

初中数学变量与函数--精品教学设计

初中数学变量与函数--精品教学设计

变量与函数(第1课时)教学设计一、内容和内容解析1. 内容人教版《义务教育课程标准实验教科书数学》八年级下册:“19.1.1变量与函数”第1课时.2. 内容解析本节内容为《一次函数》第一课时. 在学生学习了二元一次方程和找规律的基础上,学生对变量和常量已有一些模糊的认识. 通过生活实例的感悟,由具体到抽象,抽象出量的意义,并对量进行分类得出变化的量和不变的量,归纳出变量与常量的概念. 同时在讨论问题过程中,引出变量间的单值对应关系,体会建模思想,为学习函数的定义、函数的表达方式、函数的取值范围及函数的应用做出铺垫,为《一次函数》全章的学习打下基础.根据以上的分析,本节课的教学重点确定为:通过列举生活实例,理解量的意义,逐步形成常量与变量的概念,并能指出实际问题中的常量与变量.二、目标和目标解析1. 目标(1)理解量的意义、常量与变量的概念,并能指出实际问题中的常量与变量;(2)在实际问题的探究过程中,感受生活中变量间的对应关系,学会分辨不同表达方式中的变量与常量,经历从具体到抽象、从感性认识到理性分析的思维过程,体会函数与方程、数形结合和分类讨论的数学思想,提升数学抽象和数学建模的核心素养.2. 目标解析本节内容从学生熟悉的实际问题出发,让学生体会变量间的单值对应关系,感受一个变量随另一个变量的变化而变化,渗透自变量与函数的关系,从具体到抽象,通过表格、关系式及图象让学会生认识运动过程中的变量和常量概念,进而认识相关概念的联系和区别.达成目标(1)的标志:在探究过程中,正确找到变量与常量,并找出变化规律;达成目标(2)的标志:在练习和拓展中,找到图表中隐藏的变量与常量,能读取不同的数量关系和表达方式.三、教学问题诊断分析学生在字母表示数中,接触过当字母取值变化时,代数式的值随之变化,但学生对量的意义较为模糊.学生在生活中具有对两个量之间关联的体验,如气温随时间变化等,学生对变量与常量的定义理解困难不大,但是对变化中的单值对应关系及在变化过程中寻找变量与常量较难把握,特别是函数中的“唯一确定”仅局限于通过公式求出的唯一值,对不能用公式求出值的单值对应关系难以理解.因此教学难点确定为:理解变化过程中的变量与常量,以及变量与常量的相对性.四、教学支持条件分析从学生学过的小学课文《秋天来了》,引导学生观察现实世界和日常生活中的变化现象,让学生会用“变”的眼光观察现实世界,会用数学思维思考现实世界,会用数学语言表达现实世界.以李强的活动情境为主线引出生活中的变化事例,发现生活中变化的量和不变的量,引出变量与常量,在事例中感悟一个量随另一个量的变化现象,为刻画变量间的依赖关系,形成函数概念做出铺垫.以大量生活问题题材引导学生发现生活中变化的量和不变的量,以及变量间的单值对应关系,引导学生分析、分类、归纳出变量与常量的概念,结合式子、表格和图形给学生多种变量对应关系的呈现方式,帮助学生使用变量与常量准确地表述数学的研究对象,学会用数学的语言表达和交流数学问题,积累抽象思维的经验,提升数学抽象素养。

变量与函数教学设计 (3)

变量与函数教学设计 (3)

变量与函数【教学目标】1.了解常量变量的概念,体验在一个过程中常量与变量相对地存在。

2.了解函数与自变量概念能在某简单的过程中辨别函数与自变量 。

【教学重点】自变量与函数的概念。

【教学难点】本节范例由于学生知识的限制,对一些量不熟悉,而且涉及一定的物理知识,是本节教学的难点。

【教学方法】观察、比较、合作、交流、探索。

【教学过程】一、引言:一辆长途客车从杭州驶向上海,全程哪些量不变?哪些量在变?当我们用数学来分析现实世界的各种现象时,会遇到各种各样的量,如物体运动中的速度、时间和距离;圆的半径、周长和圆周率;购买商品的数量、单价和总价;某城市一天中各时刻变化着的气温;某段河道一天中时刻变化着的水位……在某一个过程中,有些量固定不变,有些量不断改变。

二、合作交流,探求新知:1.请讨论下面的问题:(1)圆的周长公式为r C π2=,请取r 的一些不同的值,算出相应的C 的值:=r cm =s cm =r cm =s cm=r cm =s cm=r cm =s cm……在计算半径不同的圆的面积的过程中,哪些量在改变,哪些量不变?(2)假设钟点工的工资标准为6元/时,设工作时数为t ,应得工资额为m ,则m =6t 取一些不同的t 的值,求出相应的m 的值:=t cm =mt cm ==mt cm ==mt cm ==m……在根据不同的工作时数计算钟点工应得工资额的过程中,哪些量在改变?哪些量不变?设问:一个量变化,具体地说是它的什么在变?什么不变呢?2.变量与常量的概念形成:在一个过程中,固定不变的量称为常量,如上面两题中,圆周率π和钟点工的工资标准6元/时。

可以取不同数值的量称为变量,如上面两题中,半径r和圆面积s,工作时数t和工资额m都是变量。

又如购买同一种商品时,商品的单价就是常量,购买商品数量和相应的总价就是变量;某段河道一天中各时刻变化着的水位也是变量。

注意:常量与变量必须存在与一个变化过程中。

常量、变量、函数及表达式教学设计

常量、变量、函数及表达式教学设计

常量、变量、函数及表达式教学设计
教后反思:
常量、变量、函数、表达式理论性较强,如果照本宣科,学生学习枯燥乏味,学习效果较差。

本课采用任务驱动,让学生不断探究思考:哪些是常量、哪些是变量、变量怎样取名,变量为什么要事先定义,怎样定义合适的变量类型等,在探究活动中学习知识。

表达式是本课的重点和难点之一,为了能让学生与平时学习中遇到的代数式表达式相区别,采用了计算表达式的值、说出表达式书写的特征、指出并改正表达式的错误、将代数表达式改写成算术表达式等任务,来化解难点,突出重点。

两种字符运算符采用实例对比来强化学生记忆。

除课本P26
页函数练习和P28页探究学习外,适当增加了与表达式有关的练习。

知识点小结采用表格式样,并适当增加有关知识,清晰易懂。

本节课教学效果良好。

变量与函数 教学设计

变量与函数  教学设计

变量与函数教学设计教学设计思想:本节课的主要内容是变量和常量以及函数的概念。

在现实世界中,到处都有变化的量,函数是表达现实世界中数量之间变化规律的一种数学模型。

本节课是用变化的观点研究量,需要学生在解决问题的活动中亲身感受;在对变量有了初步认识的基础上,探索两个变量之间的依赖关系——函数,它是两个变量之间关系的积累和升华,是对问题背景的抽象与概括。

教学目标:知识与技能:知道什么是常量、变量;叙述函数的概念;能确定简单的整式、分式及实际问题中的函数自变量的取值范围。

过程与方法:经历由实际问题抽象出函数模型,感受变量与函数是刻画现实生活中许多变化事物的一种重要的数学工具;学习本节要注意自变量与因变量的意义。

情感态度价值观:通过观察和思考“神州”五号飞船返回过程中的相关记录,意识到知识来源于生活,激发学习兴趣。

教学重点:函数的概念、自变量的取值范围。

教学难点:函数的概念。

教学安排:1课时。

教具:直尺、计算器。

教学过程:一、引入师:大家还记得“神舟”五号飞船嘛,现在我们就那它举一例。

2003年10月15日,我国“神舟”五号载人飞船发射成功。

绕地球飞行14圈后,飞船返回舱于10月16日6时23分顺利返回地面。

下面是“神舟”五号飞船返回舱返回过程中的相关记录:师:看上面的数据,回答下面的问题(1)“神舟”五号飞船返回舱返回地面共用多少分钟?在这段时间里,返回舱的高度共下降了多少米?(2)在这段时间里,飞船返回舱降落的速度最慢?(3)上表中涉及了哪几个量?这几个量的值在这一变化过程中是保持不变还是不断变化?[教学建议]分析“神舟”五号飞船返回舱降落的过程,应在观察表格的基础上先通过自己动手计算、动脑思考完成,然后再通过合作交流形成统一的认识。

引导学生借助计算器列出表格:学生得出结论。

二、讲授新知师:通过上面这个活动,我们知道量可以“取不同的数值”,也可以“保持同一数值”。

看下面的例题:一辆汽车,以90km/h的速度行驶在高速公路上,用t表示它行驶的时间(h),用s表示它行驶过的路程(km)。

《变量与函数》公开课教学设计 人教版八年级下册

《变量与函数》公开课教学设计  人教版八年级下册

人教版八年级下册19.1.1变量与函数教学设计因为数是固定不变的,所以在一个关系式中,常量是数,而字母可以取相应变化的值,所以变量是字母。

下列运动变化过程中的关系式,哪些是变量,哪些是常量:①y=0.4x常量:变量:②a=3+2.4b常量:变量:③C=2πR常量:变量:④V=6abc常量:变量:2、函数的相关概念:P73一般地,在一个变化过程中,如果有____个变量___与___,并且对于____的每一个确定的值,____都有___________的值与其对应,那么我们就说 x是_________,y是 x的______.如果当x=a 时,对应的y=b,那么 b 叫做当自变量的值为a时的_______.P74用关于自变量的数学式子表示函数与自变量之间的关系,这种式子叫做函数的_________.x/h 1 2 3 4 (x)y/km 60 120 180 240 (60x)在上述汽车行驶的过程中, y与x的关系式是_________,这其中有____个变量,给一个x,得____个y,所以____是自变量,_____是_____的函数。

x=1时,y的函数值是60;x=2时,y的函数值是120;x=3时,y的函数值是_______;x=4时,y的函数值是_______。

函数解析式即y与x的关系式:___________.y是x的函数吗?如果是,指出自变量。

①y=0.4x 两个变量x和y,给一个x,得一个y,所以,x是自变量,y是x的函数。

②y=±x 反例:当 x=1时,y=±1,给一个x,得两个y,所以y不是x函数。

③y2=x 问题前置的目的。

左题由组代表抢答,并计入本组竞赛成绩,教师根据答题情况纠偏改错。

2、学生齐读并齐答,教师根据回答情况纠偏改错。

①②③④是难点题目,教师先讲解,学生讨论研究。

反例:(±3)2=9,当 x=9时,y=±3,给一个x,得两个y,所以y不是x的函数。

变量与函数说课稿5篇

变量与函数说课稿5篇

变量与函数说课稿5篇变量与函数说课稿【篇1】新课标指出:数学课程要面对全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。

今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。

一、说教材首先谈谈我对教材的理解,《函数的概念》是北师大版必修一第二章2.1的内容,本节课的内容是函数概念。

函数内容是高中数学学习的一条主线,它贯穿整个高中数学学习中。

又是沟通代数、方程、、不等式、数列、三角函数、解析几何、导数等内容的桥梁,同时也是今后进一步学习高等数学的基础。

函数学习过程经历了直观感知、观察分析、归纳类比、抽象概括等思维过程,通过学习可以提高了学生的数学思维能力。

二、说学情接下来谈谈学生的实际情况。

新课标指出学生是教学的主体,所以要成为符合新课标要求的老师,深化了解所面对的学生可以说是必修课。

本阶段的学生已经具备了肯定的分析能力,以及逻辑推理能力。

所以,学生对本节课的学习是相对比较简单的。

三、说教学目标依据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:(一)学问与技能理解函数的概念,能对详细函数指出定义域、对应法则、值域,能够正确使用“区间”符号表示某些函数的定义域、值域。

(二)过程与方法通过实例,进一步体会函数是描述变量之间的依靠关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用进一步加深集合与对应数学思想方法。

(三)情感态度价值观在自主探究中感受到胜利的喜悦,激发学习数学的兴趣。

四、说教学重难点我认为一节好的数学课,从教学内容上说肯定要突出重点、突破难点。

而教学重点的确立与我本节课的内容确定是密不可分的。

那么依据授课内容可以确定本节课的教学重点是:函数的模型化思想,函数的三要素。

本节课的教学难点是:符号“y=f(x)”的`含义,函数定义域、值域的区间表示,从详细实例中抽象出函数概念。

变量与函数2教学设计(精选3篇)

变量与函数2教学设计(精选3篇)

变量与函数2教学设计变量与函数2教学设计(精选3篇)作为一位不辞辛劳的人民教师,编写教学设计是必不可少的,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。

如何把教学设计做到重点突出呢?以下是小编整理的变量与函数2教学设计,希望对大家有所帮助。

变量与函数2教学设计1一、教学目的1、使学生理解自变量的取值范围和函数值的意义。

2、使学生理解求自变量的取值范围的两个依据。

3、使学生掌握关于解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并会求其函数值。

4、通过求函数中自变量的取值范围使学生进一步理解函数概念。

二、教学重点、难点重点:函数自变量取值的求法。

难点:函灵敏处变量取值的确定。

三、教学过程复习提问1、函数的定义是什么?函数概念包含哪三个方面的内容?2、什么叫分式?当x取什么数时,分式x+2/2x+3有意义?(答:分母里含有字母的有理式叫分式,分母≠0,即x≠3/2。

)3、什么叫二次根式?使二次根式成立的条件是什么?(答:根指数是2的根式叫二次根式,使二次根式成立的条件是被开方数≥0。

)4、举出一个函数的实例,并指出式中的变量与常量、自变量与函数。

新课1、结合同学举出的实例说明解析法的意义:用教学式子表示函数方法叫解析法。

并指出,函数表示法除了解析法外,还有图象法和列表法。

2、结合同学举出的实例,说明函数的自变量取值范围有时要受到限制这就可以引出自变量取值范围的意义,并说明求自变量的取值范围的两个依据是:(1)自变量取值范围是使函数解析式(即是函数表达式)有意义。

(2)自变量取值范围要使实际问题有意义。

3、讲解P93中例2。

并指出例2四个小题代表三类题型:(1),(2)题给出的是只含有一个自变量的整式;(3)题给出的是只含有一个自变量的分式;(4)题给出的是只含有一个自变量的二次根式。

推广与联想:请同学按上述三类题型自编3个题,并写出解答,同桌互对答案,老师评讲。

八年级数学下册《变量与函数》教案、教学设计

八年级数学下册《变量与函数》教案、教学设计
4. **数学建模**:在教学如何建立数学模型时,我会选取与学生生活密切相关的实际问题,如购物优惠、手机计费等,引导学生识别问题中的变量和函数关系,并教会他们如何将实际问题转化为数学问题。
5. **分层教学**:针对学生个体差异,我会设计不同难度的练习题,既保证基础知识的巩固,又提供挑战性的问题,激发学有余力学生的学习兴趣。
4.部分学生对数学学习缺乏兴趣,教师应结合生活实际,设计有趣的问题情境,激发学生的学习兴趣和积极性。
5.学生在团队合作中沟通与协作能力有待加强,教师应注重引导学生在讨论、交流中相互学习,共同提高。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握函数的定义,特别是函数的单值性、对应关系等核心概念。
3.挑战练习:针对学有余力的学生,设计一些具有挑战性的题目,激发他们的学习兴趣,提高他们的数学素养。
(五)总结归纳
在这一环节中,我将引导学生对所学知识进行总结归纳,帮助他们形成完整的知识体系。
1.学生自评:让学生回顾本节课的学习过程,反思自己的学习方法和效果,找出不足之处。
2.教师总结:我会对本节课的重点知识进行梳理,强调函数的定义、表示方法和性质等方面的要点。
2.结合实际问题,引导学生运用数学建模方法,将问题转化为数学问题,培养学生解决问题的能力。
3.通过小组合作学习,让学生在讨论、交流中互相启发,共同提高,培养团队合作意识。
4.利用现代教育技术手段,如几何画板、数学软件等,帮助学生直观地理解函数的性质,提高数学思维能力。
5.设计丰富的课堂练习,巩固所学知识,提高学生的运算能力和逻辑思维能力。
八年级数学下册《变量与函数》教案、教学设计
一、教学目标
(一)知识与技能
1.理解变量的概念,能够识别实际问题中的变量,并描述变量之间的关系。

19.1.1【教学设计】《变量与函数》(人教版)

19.1.1【教学设计】《变量与函数》(人教版)

《19.1.1变量与函数》
本课是函数的起始课,函数是刻画运动变化现象的重要数学模型,要从数学的角度研究变化现象,把握变化规律,首先要关注变化过程中量的变化,这就是变量,本课在充分体会运动变化过程中数量变化的基础上,领会变量与常量的含义.进一步研究运动变化过程中变量之间的对应关系,在观察具体问题中变量之间对应关系的基础上,抽象出函数的概念.进一步讨论函数的自变量取值范围,用解析法和列表法表示函数关系,初步体会用函数描述和分析运动变化规律.
1.了解变量与常量的意义;
2.体会运动变化过程中的数量变化.
3.进一步体会运动变化过程中的数量变化;
4.从典型实例中抽象概括出函数的概念,了解函数的概念.
5.了解解析法和列表法,并能用这两种方法表示简单实际问题中的函数关系;
6.能确定简单实际问题中函数的自变量取值范围;
7.会初步分析简单实际问题中函数关系,讨论变量的变化情况.
1.了解变量与常量的意义,充分体会运动变化过程中量的变化.
2.概括并理解函数概念中的对应关系.
3.用解析法和列表法表示函数关系,确定简单实际问题的自变量取值范围.
多媒体:PPT课件、电子白板
第一课时
一、初步感知统领全章:
1.观察图片,体会变化:
【活动导语】“万物皆变”——行星在宇宙中的位置随时间而变化,气温随海拔而变化,。

《变量与函数》教学设计

《变量与函数》教学设计

《变量与函数》教学设计1、知识技能:运用丰富的实例,使学生在具体情境中领悟函数概念的意义,了解常量与变量的含义,能分清实例中的常量与变量,了解自变量与函数的意义。

2、过程与方法:通过动手实践与探索,让学生参与变量的发现和函数概念的形成过程,以提高分析问题和解决问题的能力;让学生体会“变化与对应”的数学思想3、情感态度:引导学生探索实际问题中的数量关系,培养对学习数学的兴趣和积极参与数学活动的热情,在解决问题的过程中体会数学的应用价值,并感受成功的喜悦,建立自信心。

重点:函数概念的形成过程难点:正确理解函数的概念课时:一课时教法:教师主导,学生主体,使学生从具体到抽象,感性到理性的认知。

学法:观察、分析、抽象、概括,注重过程的经历和体验。

教学过程:一、问题引入,联系实际设计说明:挖掘和利用生活中与变量有关的问题情景,让学生经历探索具体情境中两个变量关系的过程,直接获得探索变量关系的体验。

问题1:汽车以每小时60千米的速度匀速行驶,行驶路程为s千米,行驶时间为t小时,先填写下面的表,再试着用含t的式子表示。

问题2:已知每张电影票的售价为10元,如果早场售出150张,日场售出205张,晚场售出310张,那么三场电影的票房收入各为多少元?设一场电影售出x张票,票房收入为y元,怎样用含x的式子表示y?问题3:要画一个面积为10平方厘米的圆,圆的半径应取多少?画面积为20平方厘米的圆呢?怎样用含圆面积s 的式子表示半径r?让学生思考后充分发表意见,然后教师进行点评。

教学说明:新课标强调过程,强调学生探索新知识的经历和获得新知识的体验,在这环节的教学中,借助三个时间问题展开教学,让学生自己体验并在交流中也感知一下别人的体验,这样安排是务实和科学的。

这三个问题一脉相承但各有侧重,为函数概念的出现作铺垫。

二、动手实验,加深体验设计说明:充分调动学生的学习积极性,进一步深刻体会了变量间的关系。

问题4:在一根弹簧的下端悬挂重物,原长10cm,每1千克的重物是弹簧伸长0.5cm,设重物质量为m千克,受力后的弹簧长度为lcm,怎样用含m的式子表示l?问题5:用10cm的绳子围成长方形,设长方形的长为xcm,面积为s平方厘米,怎样用含x的式子表示s?分组进行试验活动,然后各组选派代表汇报。

变量与函数教案(一初中赵萍萍)

变量与函数教案(一初中赵萍萍)

“变量与函数”教学设计南通市第一初级中学赵萍萍教材:人教版数学八年级上教学目标:(一)知识与技能目标:(1)学生通过直观感知,能分清实例中的常量与变量,领悟函数概念的意义,能列举函数的实例,并能写出简单的函数关系式。

(2)学生通过对实际问题中数量之间相互依存关系的探索,学会用函数思想去描述、研究其变化规律,初步理解对应的思想,逐步学会运用函数的观点观察、分析问题。

(二)过程与方法目标:(1) 通过实践与探索,让学生参与变量的发现和函数概念的形成过程,强化数学的应用与建模意识。

(2)引导学生体会函数思想,发展学生的思维,提高分析问题和解决问题的能力。

(三)情感与态度目标:(1)学生经历对实际问题数量关系的探索,提高数学学习的兴趣,学会合作学习,在解决问题的过程中体会到数学的应用价值,在探索活动中获得成功的体验,建立良好的自信。

(2)进一步加深认识数学与人类生活的密切联系以及对人类历史发展的作用,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。

教学重点:重点:函数概念的形成过程。

难点:对函数概念的深刻理解和灵活应用。

教学方法和教学手段:本节的教学,以师生互动探究式教学为主。

同时充分发挥多媒体的功能,通过实验,使抽象的问题形象化,静态的方式动态化,从而突破本节的难点。

教学过程(一)导言:同学们,我们生活的世界处在不停的运动变化中,图中有着许多我们熟悉的变化着的事物。

再来欣赏这张图,近处是平静的湖面和绿洲,远处是雪山。

当我们向平静的湖面扔一块石子,湖面会发生怎样的变化?(以石子落入点为圆心向四周荡漾开去);登山运动员登山,随着海拔的升高,气温会怎样变化?(降低)那么,我们如何来看待这些变化的事物?这些运动变化的事物之间又有怎样的联系呢?这一节课就让我们从生活实际出发,从运动变化的角度,研究各种变化着的量之间的关系.--变量与函数(二)概念的引入带着两个思考完成下述三个问题:(1)下列三个问题中,分别涉及到了哪些量?(2)这些量之间存在着怎样的关系?问题1、每张电影票的售价为10元.(1)若一场售出150张电影票,则该场的票房收入是元;若售出205张、310张呢?(2)若一场售出x张电影票,则该场的票房收入y元,则y= .问题2、在一根弹簧的下端悬挂重物。

人教版八年级数学下册变量与函数优质教学设计教案

人教版八年级数学下册变量与函数优质教学设计教案

人教版八年级数学下册变量与函数教案2023年4月第十九章一次函数19.1 函数19.1.1 变量与函数课时1 变量与常量教学目标【知识与技能】借助简单实例,学生初步感知用常量与变量来刻画一些简单的数学问题,能指出具体问题中的常量、变量.初步理解存在一类变量可以用函数方式来刻画,能举出涉及两个变量的实例,并指出由哪一个变量确定另一个变量,这两个变量是否具有函数关系。

初步理解对应的思想,体会函数概念的核心是两个变量之间的特殊对应关系,能判断两个变量间是否具有函数关系。

【过程与方法】借助简单实例,引领学生参与变量的发现和函数概念的形成过程,体会从生活实例抽象出数学知识的方法,感知现实世界中变量之间联系的复杂性,数学研究从最简单的情形入手,化繁为简。

【情感态度与价值观】从学生熟悉、感兴趣的实例引入课题,引领学生参与变量的发现和函数概念的形成过程,体验“发现、创造”数学知识的乐趣。

学生初步感知实际生活蕴藏着丰富的数学知识,感知数学是有用、有趣的学科。

教学重点正方形的定义及正方形与平行四边形、矩形、菱形的联系.教学难点正方形与矩形、菱形的关系及正方形的性质与判定的灵活运用..教学准备多媒体课件一、创设情境、导入新课我们生活在一个运动的世界中,周围的事物都是运动的。

例如,地球在宇宙中的运动这一问题,此时地球在宇宙中的位置随着时间的变化而变化,这是生活中的常识,学生都很容易理解。

再例如,气温随着高度的升高而降低,年龄随着时间的增长而增长。

这几个问题中都涉及两个量的关系,地球的位置与时间,温度与高度,年龄与时间。

教学过程:二、合作交流、解读探究1、气温问题:下图是北京春季某一天的气温T随时间t变化的图象,看图回答:(1)这天的8时的气温是℃,14时的气温是℃,最高气温是℃,最低气温是℃;(2)这一天中,在4时~12时,气温(),在16时~24时,气温()。

A.持续升高B.持续降低C.持续不变思考:(1)气温随的变化而变化,即T随的变化而变化;(2)当时间t取定一个确定的值时,对应的温度T的取值是否唯一确定?2、当正方形的边长x分别取1、2、3、4、5、6、7,……时,正方形的面积S分别是多少?3、某城市居民用的天然气,1m3收费2.88元,使用xm3天然气应缴纳费用y=2.88x ,当x=10时,缴纳的费用为多少?思考:上述三个问题,分别涉及哪些量的关系?哪些量是变化的?哪些量是不变的?哪个量的变化导致另一个量的变化而变化?在一个问题中,当一个量取了确定的值之后,另一个量对应的能取几个值?在上面的三个问题中,其中一个量的变化引起另一个量的变化(按照某种规律变化),变化的量叫作变量;有些量的值始终不变(如正方形的面积……).并且当其中一个变量取定一个值时,另一个变量就随之确定,且它的对应值只有一个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

19.1.1函数与变量重难点创新教学设计
(人教版八年级数学下册19.1.1函数与变量)
教学目标
知识与技能:
1.使学生充分体会运动变化过程中的数量变化,了解变量与常量的意义;
2.从典型实例中抽象概括出函数的概念,使学生了解函数的概念,会根据题意列函数解析式。

3.使学生学会求自变量的取值范围和函数值。

过程与方法:
1.经历函数概念的概括过程,体会函数的模型思想;
2.通过学生观察、操作、交流、归纳等探究活动,让学生体验有效学习模式。

情感、态度与价值观:
1.初步形成学生利用函数观点认识世界的意识和能力;
2.培养学生乐于探究、合作学习的习惯,增强学习自信。

教学重点难点
重点:
1. 变量与常量的意义,函数的概念。

多以举例说明加强概念理解,夯实概念内容。

2.函数自变量的取值范围。

告知学生自变量的取值范围的方法:根据问题的实际意义;代数式有意义的而条件。

3.列函数解析式。

根据列代数式的方法列函数解析式。

难点:
求自变量的取值范围。

根据问题的实际意义和代数式有意义的条件确定自变量的取值范围。

突破重难点:
一、思维突破
回顾所学的旧知识
×2= ×3+5=
问题:
1、你会计算这道题吗?
2、我们把第二列数记为y,你会表示对应的数吗?
2×2 3×2+5
y= 2×3 或者y= 3×3+5
…………
3、如果我把第一列数记为x,第二列数记为y,你有什么发现?
y=2x 或者y=3x+5
二、所学数学事例突破
1.汽车以60千米/时的速度匀速行驶,行驶时间为t小时,行驶路程为s千米。

2.每张电影票的售价为10 元,设某场电影售出x张票,票房收入为y 元。

3.圆形水波慢慢地扩大,在这一过程中,当圆的半径r分别为10 cm,20 cm,30 cm 时,圆的面积S 分别为多少?(圆周率为 )
4.用10 m长的绳子围一个矩形,当矩形的一边长x 分别为3 m,3.5 m,4 m,4.5 m 时,它的邻边长y分别为多少?
……
课后思考:
突破思维和知识之间的疑惑
............,这节课就事半功倍,顺利解决了很多问题,包括取值范围等等。

为了强化知识的理解和掌握,可以联系实际生活,举例讨论强化学生的理解。

2。

相关文档
最新文档