运用正反比例解决问题综合练习

合集下载

正反比例应用以及综合练习

正反比例应用以及综合练习
3.一个车间装配一批电视机,如果每天装50台,60天完成任务,如果要用40天完成任务,每天应装多少台?
4.电视机厂要生产一批电视机,头30天生产180台,照这样计算,要生产1320台,需要多少天?
5.一捆铅丝重520克,剪下20米,这捆铅丝少了130克,这捆铅丝还剩多少米?
6.生产一批零件,计划每天生产160个,15天可以完成,实际每天超产80个,可以提前几天完成?
一、判断题
1、正方形的边长和周长成正比例。()
2、正方形的边长和面积成正比例。()
3、a是b的5/7,数a和数b成正比例。()
4、在比例里,如果两个内项的乘积是1,那么,组成比例外项的两个数一定互为倒数。()
5、如果4a=3b,那么a∶b=3∶4。()
6、圆的周长一定,直径和圆周率成反比例。()
7、A=B,那么A和B成反比例。()
6.正方形的周长和边长成()比例,正方形的面积和边长()比例。
7.圆的周长与直径成()比例。
三、解决问题(用比例知识解答)
1.学校组织同学参观爱国主义图片展,每60名同学聘请2名讲解员作介绍。全校990名同学参观,需要聘请几名讲解员?
2.有一堆煤,3辆卡车8次可以运完。如果要6次运完,需要安排几辆这样的卡车?
8、如果x与y成反比例,那么3 x与y也成反比例。()
二、填空题。
1.总价一定,购买算草本的本数和单价成()比例。
2.工作效率一Biblioteka ,工作总量和工作时间成()比例。3.除数不变,被除数和商成()比例。
4.汽车每千米耗油量一定,所行的路程和耗油总量成()比例。
5.有120吨货物,每次运的吨数和运的次数成()比例。

正、反比例综合练习

正、反比例综合练习

正反比例综合练习一、选择1、如果3a=4b ,那么a∶b=( )。

A 、3∶4 B 、4∶3 C 、3a∶4b2、一项工程,单独做甲队要10天,乙队要8天,甲乙两队工效比是 ( )。

A 、10∶8 B 、5∶4 C 、4∶53、下面不成比例的是( )。

A 、正方形的周长和边长 B 、从家到学校的步行速度和所用时间 C 、圆的体积和表面积4、下列各式中(a 、b 均不为0),a 和b 成反比例的是( )。

A 、a×8=b5B 、9a =6bC 、a×13 -1÷b= 0D 、 a +710 =b5、根据3A =5B 可以写成( )。

A 、3:A=5:B B 、A:B=5:3 C 、A:B=3:5二、填空1、如果a×8=b×12.5%,那么a ∶b=( )∶( )2、如果y=15x, x 和y 成( )比例;如果y=x 15, x 和y 成( )比例 3、甲数是乙数的20%,甲数与乙数的比是( ),乙数与甲乙两数之和的比是( )。

4、要配制石灰水320千克,石灰与水的比是1:7,石灰要用( )千克,水要用( )千克。

5、甲数的13 等于乙数的14,甲乙两数的比是( )。

6、如果 Y = 8X ,X 和 Y 成( )比例; 如果 Y = 8x,X 和 Y 成( )比例。

7、如果3A=7X ,那么X ∶A=( )8、某班男生人数比女生人数多17,女生人数与男生人数的比是( ). 9、某班男生人数与女生人数的比是5∶4,女生人数比男生人数少( )% 。

10、甲数与乙数的比值是25,那么乙数比甲数多( )% 。

11、12÷15=( )∶5=16( )=( )%。

12、在A ÷13=B ÷4中,A 和B 成( )比例。

13、一件工作,甲独做6小时完成,乙独做10小时完成,甲乙工作效率的比是( )。

14、相遇问题,时间一定,速度和路程成( )比例。

用正反比例解决团队合作问题的对比练习

用正反比例解决团队合作问题的对比练习

用正反比例解决团队合作问题的对比练习介绍团队合作是成功实现共同目标的关键因素之一。

然而,在团队合作中经常会遇到各种问题,例如沟通不畅、角色冲突和决策分歧等。

为了解决这些问题,一种可行的方法是使用正反比例。

本文将讨论如何利用正反比例方法来解决团队合作问题。

正比例策略正比例策略是指在团队合作中注重增加积极因素的比例,以促进团队关系的和谐与发展。

以下是一些可以采取的正比例策略:1. 建立积极的团队文化:鼓励成员之间相互尊重和支持,设立奖励和认可机制,以激励团队成员做出优异表现。

2. 提供明确的目标和角色:确保每个团队成员清楚了解其在团队中的职责和目标,以便更好地协同合作。

3. 加强沟通与协作:通过定期组织团队会议、使用协作工具和建立有效的沟通渠道,促进成员之间的信息共享和协作工作。

4. 建立透明的决策流程:确保团队成员都能参与决策过程,并了解决策的依据和结果,以减少决策分歧和不满情绪的产生。

反比例策略反比例策略是指在团队合作中减少负面因素的比例,以缓解团队合作中的问题和冲突。

以下是一些建议的反比例策略:1. 促进有效的冲突管理:鼓励团队成员积极表达意见和观点,但同时确保冲突能够以建设性的方式得到解决,避免冲突升级影响团队关系。

2. 提供必要的培训和支持:为团队成员提供相关技能培训和支持资源,以提升他们的能力和自信心,从而减少潜在的问题和障碍。

3. 高效的时间管理:确保团队成员有足够的时间来完成任务,并合理安排工作优先级,避免因时间紧迫导致的压力和冲突。

4. 建立有效的反馈机制:定期进行绩效评估和反馈,以帮助团队成员识别自己的问题并提供改进的机会,促进个人和团队的成长。

正反比例的综合运用通过正反比例的综合运用,团队合作问题得以更全面地解决和管理。

正比例策略可以增强团队合作的积极动力和合作意愿,而反比例策略可以帮助缓解潜在的问题和冲突。

在实际运用时,团队领导者应根据具体情况和团队特点合理运用正反比例策略。

正反比例综合练习题

正反比例综合练习题

正反比例综合练习题练习一:1. 小明买了6件同样的商品,总共花费了90元。

如果小明再买6件相同的商品,他需要花费多少钱?解答:根据正反比例的原理,我们可以得到小明一件商品的价格是90元/6件 = 15元/件。

因此,小明再买6件商品的花费是15元/件 * 6件 = 90元。

答案:小明再买6件商品需要花费90元。

2. 一个建筑队伍共有30名工人,如果需要在15天内完成一项工程,那么增加到50名工人,需要多少天才能完成相同的工程?解答:根据正反比例的原理,我们可以设完成这项工程所需的时间为x天。

那么正比例关系可以表示为:30人 * 15天 = 50人 * x 天。

解方程可得:x = (30 * 15) / 50 = 9天。

答案:增加到50名工人需要9天才能完成相同的工程。

3. 一辆汽车以每小时60公里的速度行驶,如果行驶8小时,总共行驶了多少公里?解答:根据正反比例的原理,我们可以设行驶总距离为x公里。

那么正比例关系可以表示为:60公里/小时 * 8小时 = x。

解方程可得:x = 60公里/小时 * 8小时 = 480公里。

答案:汽车总共行驶了480公里。

练习二:1. 一张纸大小为20cm x 30cm,放大到原来的1.5倍后,新的纸的大小是多少?解答:根据正反比例的原理,我们可以设新纸的大小为xcm x ycm。

那么正比例关系可以表示为:20cm/30cm = x/1.5x。

解方程可得:1.5x = 20cm,x = 20cm / 1.5 = 13.3cm。

因此,新纸的大小为13.3cm x 20cm。

答案:新纸的大小是13.3cm x 20cm。

2. 一家工厂使用5台机器生产产品,如果需要在20天内完成订单,那么增加到10台机器,需要多少天才能完成相同的订单?解答:根据正反比例的原理,我们可以设完成订单所需的时间为x天。

那么正比例关系可以表示为:5台机器 * 20天 = 10台机器* x天。

解方程可得:x = (5 * 20) / 10 = 10天。

正反比例的练习题

正反比例的练习题

正反比例的练习题练习题一:某商店购买10个商品的总价格为20元,那么购买20个商品的总价格是多少?解答:我们可以设商品的单价为x元。

根据题意,10个商品的总价格为20元,那么可以得到等式:10x = 20解得:x = 2因此,商品的单价为2元。

再根据单价,我们可以计算购买20个商品的总价格:20 × 2 = 40所以,购买20个商品的总价格是40元。

练习题二:一辆汽车以每小时60公里的速度行驶,行驶2小时所走的路程是多少?解答:根据题意,汽车以每小时60公里的速度行驶,那么可以得到等式:60 × 2 = 路程解得:路程 = 120公里所以,一辆汽车行驶2小时所走的路程是120公里。

练习题三:甲、乙两人同时开始在同一地点往同一方向行走,甲每分钟行进20米,乙每分钟行进15米。

他们相遇需要多少时间?解答:根据题意,甲每分钟行进20米,乙每分钟行进15米。

他们相遇相当于他们行进的距离之和等于他们相遇的地点距离出发地点的距离。

假设他们相遇所需要的时间为t分钟。

那么可以得到等式:20t + 15t = 距离解得:35t = 距离由于他们同时开始,在同一地点往同一方向行走,所以距离相等,即甲、乙相遇所需要的时间为t分钟。

练习题四:小明在做练习,每分钟可以做6道数学题,如果他共用时18分钟,那么他一共做了多少道数学题?解答:根据题意,小明每分钟可以做6道数学题,共用时18分钟。

假设他一共做了x道数学题。

那么可以得到等式:6 × 18 = x解得:x = 108所以,小明一共做了108道数学题。

练习题五:某工程队10天可以修建完一条公路,现在计划增加工人的数量,问几天可以修建完?解答:根据题意,某工程队10天可以修建完一条公路。

假设增加工人的数量为x人,那么可以设修建完一条公路所需天数为t天。

那么可以得到等式:10 × x = t解得:t = 10x所以,增加工人的数量,修建完一条公路所需的天数是10x天。

热点:关于比例尺及正反比例的实际应用问题-2024年小升初数学(解析版)

热点:关于比例尺及正反比例的实际应用问题-2024年小升初数学(解析版)

热点:关于比例尺及正反比例的实际应用问题1“朝辞白帝彩云间,千里江陵一日还”,这是唐朝著名诗人李白的诗。

在一幅比例尺是1∶3000000的地图上量得白帝城到江陵的距离是14cm。

王杰开车以60千米/时的速度从白帝城出发,行驶7时能否到达江陵?请计算说明。

【答案】能【分析】根据题意,结合图上距离÷比例尺=实际距离,求出实际距离,再换算成以“千米”作单位,根据速度×时间=路程,求出行驶7小时行驶的路程后与白帝城到江陵的距离比较后得出答案。

【详解】1∶3000000=1÷3000000=1300000014÷13000000=14×3000000=42000000(厘米)42000000厘米=420千米60×7=420(千米)答:行驶7时能到达江陵。

2在比例尺是1500的平面图上,量得一个正方形花圃的边长是14cm,这个花圃实际面积是多少公顷?【答案】0.49公顷【分析】比例尺是图上距离与实际距离的比值,已知正方形边长的图上距离是14cm,图上距离除以比例尺得到实际距离,再根据正方形的面积=边长×边长,求出花圃的实际面积。

【详解】14÷1500÷100=14×500÷100=7000÷100=70(米)70×70=4900(平方米)4900平方米=0.49公顷答:这个花圃实际面积是0.49公顷。

【点睛】本题考查比例尺的应用,本题注意要先求出花圃边长的实际距离后,最后求出花圃的实际面积。

3在比例尺为1∶5000000的地图上,量得杭州东站到上海虹桥站的长度是3.4厘米。

杭州东站到上海虹桥站的实际距离是多少千米?一列动车,从杭州东站到上海虹桥站,用时40分钟,那么这列动车平均每小时行多少千米?【答案】170千米;255千米/小时【分析】实际距离=图上距离÷比例尺,则用3.4÷15000000即可求出实际距离,1千米=100000厘米,将结果化成千米即可;速度=路程÷时间,代入数据计算即可。

正比例和反比例-常考题型练习

正比例和反比例-常考题型练习

实际应用题型的常见陷阱与误区
单位不统一
在涉及不同单位的问题中,需要 注意单位是否统一,避免因为单
位不统一而导致的错误。
忽视实际情况
在解题过程中,需要注意实际情况 的限制条件,如物理定律、逻辑关 系等,避免得出不符合实际情况的 答案。
计算错误
在解题过程中,需要注意计算正确, 避免因为计算错误而导致答案错误。
答案解析
由于y与x成反比例,我们可以设y=k/x。将已知 条件代入得方程组:1/2=k/3和3=k/(1/2)。解 得k=3/2。因此,y关于x的函数解析式为 y=(3/2)/x。
高阶练习题及答案解析
题目
已知f(x)为一次函数,且 f[f(x)]=9x+5,求f(x)的解析式。
答案解析
设f(x)=kx+b(k≠0),则 f[f(x)]=k(kx+b)+b=k^2x+kb+b。 根据题意,有方程组:$k^2=9$ 和$kb+b=5$。解得k=3和b=2或 k=-3和b=-5。因此,f(x)的解析式 为f(x)=3x+2或f(x)=-3x-5。
80%
代数运算
在解题过程中,需要进行代数运 算,如乘法、除法、方程求解等 。
正反比例综合题型的常见陷阱与误区
混淆正反比例
在解题过程中,需要注意区分 正反比例,避免混淆。
忽视实际意义
在解题过程中,需要注意问题 的实际意义,避免得出不符合 实际情况的答案。
忽视单位换算
在解题过程中,需要注意单位 换算,避免出现单位不一致的 情况。
反比例的应用场景
总结词
反比例关系在日常生活和科学领域中有着广泛的应用,如物 理、化学、工程等。

正反比例练习题-正比例和反比例练习题

正反比例练习题-正比例和反比例练习题

正反比例练习题-正比例和反比例练习题正比例或反比例练习题一、判断下面两个量是否成正比例或反比例,说明理由。

1、每箱木瓜的个数一定,运来木瓜的箱数和木瓜的总个数。

2、看一本书,每天看的页数和所看的天数。

3、房间的面积一定,铺地砖的块数与每块地砖的面积。

4、每块地砖的面积一定,铺地面积与所需地砖的块数。

二、用比例尺知识解决问题。

1、一条跑道全长200米,在图纸上的长度是10厘米。

这幅图的比例尺是多少?2、一个零件的实际长度是8毫米,在设计图上用4厘米表示,这幅图的比例尺是多少?3、在一幅比例尺是1:4500000的地图上,量得甲乙两地之间的距离是20厘米,甲乙两地的实际距离是多少千米?4、在一张图纸上,量得学校操场的长是12厘米,宽是8厘米。

这张图纸的比例尺是1:200,这个操场的实际面积是多少平方米?5、甲乙两地的实际距离是300千米,在一幅地图上量得两地之间的距离是6厘米。

在这一幅地图上,又量得甲丙之间的距离是4厘米,甲丙的实际距离是多少千米?三、用正反比例解决问题。

1、光辉服装厂4天加工服装160套,照这样计算,生产360套服装,需要多少天?2、化肥厂有一批煤,每天用12吨,可用40天。

如果这批煤要用60天,每天只能用多少吨?3、修路队3天修路150米,照这样的速度,再修10天,又修多少米?4、一辆汽车从甲城开往乙城,每小时行45千米,5小时到达。

返回时,每小时行驶50千米,几小时回到甲城?5、一间房子,用面积是16平方分米的方砖铺地,需要54块。

如果改用面积是9平方分米的方砖,需要多少块?7、用同样的砖铺地,铺18平方米要用砖618块。

如果铺24平方米,要用砖多少块?1、一幅图的比例尺是,那么图上的1厘米表示实际距离();实际距离50千米在图上要画()厘米。

把这个线段比例尺改写成数值比例尺是()。

3.一种微型零件的长5毫米,画在图纸上长20厘米,这幅图的比例尺是()。

4.判断下列各题中两种量是否成比例?成什么比例?(1)路程一定,车轮的周长和车轮滚动的圈数。

用正反比例解决问题

用正反比例解决问题

用比例解决问题1、小兰的身高1.5m,她的影子长是2 .4m。

如果同一时间,同一地点测得一棵树的影子长4 m,这棵树有多高?2、一间教室,用面积是0.16平方米的方砖铺地,需要275块,如果用面积是0.25平方米的方砖铺地,需要方砖多少块?3、某工程队修一条水渠,每天工作6小时12天可以完成。

如果工作效率不变,每天工作8小时,多少天可以完成任务?4、一种农药水是用药和水按1:100配成的,要配制这种农药水8080千克,需要药粉多少千克?5、盖一幢职工宿舍。

计划使用6米长的水管240根。

后来改用8米长的水管,共需要多少根?6、做一批零件,如果每天做200个,15天可以做完,现在要在12天完成,平均每天做多少个?7、甲地到乙地的公路长392千米。

一辆汽车3小时行了168千米。

照这样计算,行完全程还需要几小时?8、一台碾米机5小时碾米2000千克,照这样计算,6.5小时可以碾米多少千克?要碾米3.6吨需要几小时?9、金光电子厂要生产一批零件,原计划每天生产180个,12天完成。

实际的生产效率是原计划的120%,实际多少天可以完成?10、一辆汽车4小时行140千米,照这样计算,7小时行多少千米?行驶315千米需要几小时?11、铁路工人修铁路,用每根长9米的新铁轨替换原来每根6米的旧铁轨,共换下旧铁轨240根,换上的新铁轨有多少根?12、水泥厂5天生产水泥320吨。

照这样计算,要生产6600吨水泥,需要多少天完成?13、某工程队修一条路,12天共修780米,还剩下325米没有修。

照这样速度,修完这条公路,共需要多少天?14、50千克花生仁可以榨油19千克。

要榨200千克花生油需多少千克花生仁?1的平面图上,量得一块长方形操场的长是24厘米,宽是18厘米,这块长15、在1000方形操场的实际面积是多少?。

正反比例解决问题(2)

正反比例解决问题(2)

正反比例解决问题教学内容:用正反比例解决问题学习目标:进一步熟练掌握用正反比例解决问题的方法导学过程:一、基础训练1、把1.2∶0.9化成最简单的整数比是(),比值是().2、比的前项是0.5,比值是2,比的后项是()。

3、在一张图上,用20 厘米表示实际距离600 米,这张图的比例尺是()。

4、减数相当于被减数的,差与减数的比是()。

5、x+y=4 ,x 和y 成()比例。

6、已知a×b=c(c不是0),a一定时,b与c成()比例,c一定时,a和b 成()比例。

二、判断题,对的打√,错的打×。

1、速度与路程成正比例。

2、圆的周长公式中,当c一定时,π和x 成正比例。

3、y∶8=x(x ≠0),y 和x 成正比例。

4、比例尺一定时,图上距离和实际距离成正比例1、判断下列各题中相关联的量成什么比例(1)三角形的面积一定吗,底和高水池的容积一定,水管每小时注水量和所用时间(3)总面积一定,每块砖的面积和砖的块数(4)在一定时间里,加工每个零件所用的时间和加工零件个数2、说一说①判断两种量成正比例还是成反比例的关键是什么?②用比例解决问题的步骤、探讨式的练习解答下列各题,并比较它们的思维过程和解题方法:(1)有一批纸,可以装订每本24 页的练习本216 本,如果要装订成每本18页的练习本,可以装订几本?(2)装订一种练习本,装订200本要用4800页纸,有12000页的纸可以装订多少本?三、自我检测1、完成书本相应习题2、解决问题(1)500千克的海水中含盐25千克,120 吨的海水中含盐多少吨?(2)体积是40 立方分米的钢材重312 千克,重1248 千克的这种钢材,体积是多少立方分米?(3)用一批纸装订练习本,如果每本20 页,可以装订600 本①如果每本12 页,可以装订多少本?②如果装订成500 本,每本可装订多少页?① 如果每本多装订10 页,只能装订多少本?三,用比例知识解答小红8 分钟走了500 米,照这样的速度,她从家到学校用了14 分钟,小红家离学校大约多少米?2、一辆汽车从甲城开往乙城,每小时行42 千米,5小时到达,返回时每小时行45 千米,几小时到达甲城?3、学校买来161米塑料绳,先剪下21 米,做12 根跳绳,照这样计算,剩下的塑料绳还可以做几根跳绳?(用多种方法解)4、一辆汽车从甲地到乙地,计划每小时行50千米,7小时到达,实际3 小时行180 千米,照这样速度,行完全程要几小时?(用正反比例解答)正反比例意义教学内容::正反比例意义的巩固练习学习目的:通过练习,使学生进一步理解正反比例的意义和判断方法。

正反比例练习题

正反比例练习题

基本练习:1 判断两种量是不是成正比例(1)苹果的单价一定,购买苹果的数量和总价.(2)轮船行驶的速度一定,行驶的路程和时间.(3)每小时织布米数一定,织布总米数和时间.(4)小新跳高的高度和他的身高.(1)正方形的面积和边长(2)正方形的周长和边长综合练习:1 判断x和y是否成正比例⑴y︰x= 5⑵y = x⑶xy =5⑷x =⑸5+x =y2 判断m和n是否成正比例如果7a =8 b,那么a 和b ( )。

如果m:6=n:8,那么m 和n ( )。

如果m+8=n ,那么m 和n ( )3 学生练习.被除数一定,除数和商( )。

.张英的年龄与跳高的高度( )。

.买同一种作业本的本数和钱数( ).长方形周长一定,长和宽( )。

.长方形的长一定,面积和宽。

( ).家庭收入一定,支出和结余( )。

.一个因数一定,积和另一个因数.圆的半径和它的面积( )。

.圆的半径的平方和它的面积( )。

.圆的半径和它的周长( )。

.三角形的底一定,它的高和面积( )减数一定,被减数和差。

( )每袋水泥质量一定,水泥袋数和总质量。

( )订阅《少年报》的份数和钱数。

( )4 选择1.把一根铁丝截成同样长的小段,截成的段数和每段的长度( )。

⑴成正比例⑵不成比例2.修一幢楼房,参加修建的工人数与所修天数( )。

⑴成正比例⑵不成比例3.长方体底面积一定,它的高和体积( )⑴成正比例⑵不成比例5、判断下面每题中的两种量是不是成正比例,并说明理由。

1.每包书中册数相同,包数和总册数。

2.全班的学生人数一定,每组的人数和组数。

3.房间地面面积一定,房间里的人数和每人所占的面积。

4.和一定,加数和另一个加数。

5.一个人的年龄和他的体重。

六年级下册数学试题-小升初复习讲练:正反比例应用题(含答案)sc

六年级下册数学试题-小升初复习讲练:正反比例应用题(含答案)sc

正反比例应用题典题探究例1.有大小两个互相咬合的齿轮,大齿轮有90个齿,小齿轮有18个齿,如果大齿轮每分转100转,小齿轮5分钟转多少转?(用比例知识解答)例2.学校会议室用方砖铺地.用8平方分米的方砖铺需要500块;如果改用10平方分米的方砖铺,需要多少块?例3.修路队每天修路3.2米,15天可以修完,实际每天修4米,几天可以修完?例4.从“六一”儿童节那天开始,小明前4天看了80页书,照这样计算,这个月小明一共可以看多少页书?(用比例知识解)演练方阵A档(巩固专练)选择题(共9小题)1.一个制服厂生产一批童装,每天生产350件,8天可完成任务;如果每天生产400件,多少天可以完成?设X天可以完成.正确列式是()A.400X=350x8B-8400350=xC.350:8=400:X2.(•广州模拟)生产一批零件,前3天生产124个,照这样计算,需再用12天完成全部任务.这批零件共有多少个?如果设这批零件共x个.正确的算式是()A.124x3=12B.124=x飞-=3+12C.12x=124x33.每100千克小麦可出X千克面粉,Y千克小麦可出面粉的千克数为()A.100yB.100xy c.100 D._^yToo4.一个会议室用方砖铺地.用边长3cm的方砖铺,需要350块,如果改用lOcn?的方砖铺,需要()块.A.280B.187C.390D.3155.小明在操场上插几根长短不同的竹竿,在同一时间测量竹竿长和相应的影长,情况如表:这时,小明身边的主强测量出了旗杆的影长是6米,可推算出旗杆的实际高度是()米. |影长(米)0.50.70.80.9 1.1 1.5竹竿长(米)1 1.4 1.6 1.8 2.23A.12米B.3米C.9米D.6米6.用正方形的地砖铺地,铺地的面积和需要地砖的块数()A.正比例B.反比例C.不成比例7.学校会议室用方砖铺地.用8平方分米的方砖铺,需要350块;如果改用10平方分米的方砖铺,需要()块.A.300B.280C.260D.2408.一辆拖拉机的后轮半径是前轮半径的1.2倍,后轮转动6周,前轮转动()A.7.2圈B.5圈C.8圈9.(•长沙)从甲地开往乙地,客车要10小时,货车要15小时,客车与货车的速度比是()A.2:3B.3:2C.2:5填空题(共3小题)060120180km10.在一幅比例尺是____11—的地图上量得A、B两城之间的距离是3cm,A、B两城之间的实际距离是.11.(•当涂县)用3千克绿豆可以做出21千克绿豆芽•照这样计算,18千克绿豆可以做出多少千克绿豆芽?(1)"照这样计算"就是说是一定的.(2)和成比例.(3)所求结果用x表示,写出比例式:.12.一间教室,如果用面积6平方分米的方砖铺,要用96块,如果改用面积是9平方分米的方砖铺,要用多少块?三.解答题(共8小题)13.甲、乙两国的国土面积相等,但甲国人数是乙国人口数的16倍,若乙国的人均国土面积为296000平方米,那么甲国的人均国土面积是多少?14.生产了一批零件,每天生产200个,15天完成,实际每天生产了250个,实际多少天可以完成?(用比例方式列式)15.小伟家用面积是18平方分米的地砖需48块,如果改用面积是9平方分米的地砖,需多少块?16.一间教室用边长8分米的方块来铺,刚好要125块,如果改用边长1米的方砖来铺,需要多少块?比计划多用多少块?(用方程解答)17.学校电脑室计划用面积为9平方分米的瓷砖铺地,需480块,现改用边长为4分米的瓷砖铺地,需要多少块?(用比例解)18.用边长15厘米的方砖铺一块地,需要2000块,如果改用边长为20厘米的方砖铺地,需要多少块?(用比例解)19.一间房子要用方砖铺地.用面积是9平方分米的方砖需要96块.如果改用边长为2分米的方砖,需要多少块?(用比例解)20.丽丽家客厅,用边长0.3m的方砖铺地,需要560块,如果改用边长0.4m的方砖铺地,需要多少块?(用比例解)B档(提升精练)选择题(共10小题)1.比例尺是1:5000000表示地图上1厘米的距离相当于地面上实际距离是()A.50千米B.500千米C.5千米2.下列正确的有()A,因为12=2x2x3,所以*能化成有限小数;12B.自行车行驶的路程一定,车轮转数和直径成反比例;C.正方形边长一定,面积和边长成正比例;D.任何一个三角形至多有两个锐角3.当一个物体两部分之间的比大致符合5:3时,会给人以美的感觉,这个比被称为“黄金比”.亮亮要为自己设计一个“乐学牌”书桌,如果书桌的长度是80厘米,书桌的宽度大约定为(),会给人以最美的感觉.A.80厘米B.40厘米C.48厘米4.一个长方形(如图),被两条直线分成四个长方形,其中三个的而积分别是45平方米, 15平方米和30平方米.图中阴影部分的面积是()平方米.451530A.60B.75C.80D.905.(•龙岗区)李老师准备给健身房铺正方形地砖,如果选择边长为3dm的地砖要400块.那么选择边长为2dm的地砖要()块.2d m3d mA.600B.900C.1200D.18006.甲、乙两辆自行车的车轮直径相同,以同样的速度蹬自行车,()跑得快.(下面是甲、乙两辆自行车的前后齿轮情况)40齿48齿7.半径为1厘米的小圆在半径为4厘米的固定大圆外滚动一周,则小圆滚动了()周.8.如图,在皮带传动中,大轮的直径是28cm,小轮的直径是12cm,如果传动中没有打滑现象,那么大轮转了12圈,小轮转了()圈.D.289.(•灵石县模拟)两个齿轮,其中一个齿轮的直径是6cm,当另一个齿轮转动一周时,它需转动3周,则另一个齿轮的直径是.()C.1810.一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上(不包括300枝),可以按批发价付款;购买300枝以下(包含300枝)只能按零售价付款.小明来该商店买铅笔,如果给学校六年级同学每人买1枝,那么只能按零售价付款,需要120元;如果多买60枝,那么可以按批发价付款,同样需要120元.若按批发价购买6枝与按零售价买5枝的款相同,那么这个学校六年级的学生有()人.A.240人B.260人C.280人D.300人二.填空题(共10小题)11.(•安次区模拟)张阿姨用计算机打字的个数和所用时间如下表.时间/分2468101214数量/个100200300400500600"Too张阿姨打750个字需要分钟.12.(•广州模拟)玩具厂按1:100的比例生产了一种飞机模型,若该模型的长度为12厘米,则飞机的实际长度约12米..13.(•吴江市)一列动车在高速铁路上行驶的时间和路程如图.看图填写下表:时间/小时2_____________路程/千米_____________800这列动车行驶的时间和路程成比例.14.(•海珠区)(1)如图是表示某种规格钢筋的质量与长度成比例关系的图象.(2)不计算,根据图象判断,6m的钢筋重____________kg.28642O46789长度为15.(•阜阳模拟)喜喜和欢欢一起照相,喜喜身局1.6米,在照片上她的局是5cm.欢欢在照片上高4cm,欢欢的身高是米.16.(•德宏州模拟)画一张长10cm、宽6cm的图,如果长缩小为2.5cm,按照这个比例,宽应缩小为cm.17.(•延庆县)2010年3月30日中午11:30,六(1)班同学们在学校国旗杆旁边垂直于地面立了一根20厘米长的木棒,测得它的阴影长度是12.5厘米.同时测得国旗杆的阴影长度是16.5米.国旗杆高米.18.(•海安县)当人的下肢长与身高的比值约为0.6时,身材显得最美.刘老师的身高是160厘米,下肢长94厘米,她穿的高跟鞋最佳高度为_____________厘米.19.(•涟源市模拟)用边长为15厘米的方砖铺地,需要2000块.如果改用边长30厘米的方砖铺地,需要块,20.(•江苏)生活中我们一般用摄氏度(°C)来描述温度,但也有一些国家用华氏度(°F)来描述.水的冰点是0°C,沸点是100°C,用华氏度描述水的冰点是32°F,沸点是212T,那么我们人体正常体温36©,用华氏度描述是°F.三.解答题(共8小题)21.(•海安县模拟)如图,求阴影部分的面积(单位:平方厘米).22.(•广州模拟)张老师准备在书房的地面上铺每块面积是900平方厘米的地砖,刚好用了200块.如果全部改铺每块面积是600平方厘米的地砖,需要多少块?23.(•临川区模拟)修一条路,计划每天修50米,40天完成,实际5天修了300米,照这样计算,多少天完成任务?(用正、反比例两种方法解答)24.(•临川区模拟)运一堆52吨重的钢材,3小时运了15.6吨,照这样计算,还要几小时才能运完?(用比例方法解)25.(•临川区模拟)某服装厂加工一批服装,计划每天加工250件,18天可以完成.实际每天比原计划多加工』,实际多少天可以完工?(用比例解)526.(•临川区模拟)学校操场上有棵大树,数学兴趣小组的同学们要测量树的高度,他们想了一个办法,在上午9时,由小王站在太阳下.已知小王身高1.40米,同时测得小王的影长和大树的影长分别是1.12米和8米,你知道树高多少米吗?27.(•永定区模拟)张阿姨家上个月用电65度,电费39元,王大爷家上个月的电费是27元,他家上个月用电多少度?(用比例解)28.(•雨花区)在比例尺是1:3500000的地图上,量得甲、乙两地之间的距离是2.4厘米,求甲、乙两地实际距离是多少千米?正反比例应用题答案W典题探究例1.有大小两个互相咬合的齿轮,大齿轮有90个齿,小齿轮有18个齿,如果大齿轮每分转100转,小齿轮5分钟转多少转?(用比例知识解答)考点:正、反比例应用题.专题:比和比例应用题.分析:因为两个齿轮是相互交合的,即转动齿数相等,所以转动的周数和每周齿数成反比,由此列出比例解决问题.解答:解:设小齿轮每分钟转x转,18x=90xl0018x=9000x=500500x5=2500(转)答:小齿轮5分钟转2500转.点评:解答此题的关键是,根据题意,先判断哪两种相关联的量成何比例,即两个量的乘积一定则成反比例,两个量的比值一定则成正比例.例2.学校会议室用方砖铺地.用8平方分米的方砖铺需要500块;如果改用10平方分米的方砖铺,需要多少块?考点:正、反比例应用题.专题:比和比例应用题.分析:根据学校会议室面积一定,每块砖的面积和所需要的块数成反比例关系,列比例解答即可.解答:解:改用10平方分米的方砖需x块.10xx=8x50010x=4000x=400;答:改用10平方分米的方砖需400块.点评:此题应先判断每块砖的面积和所需要的块数成什么比例关系,列比例解答即可.例3.修路队每天修路3.2米,15天可以修完,实际每天修4米,几天可以修完?考点:正、反比例应用题.专题:简单应用题和一般复合应用题;比和比例应用题.分析:根据题意知道,总工作量一定,工作时间和工作效率成反比例,由此列式解答即可.解答:解:设x天可以修完,4x=3.2xl54x=48x=12答:12天可以修完.点评:解答此题的关键是,弄清题意,根据工作效率,工作时间和工作量三者的关系,判断哪两种量成何比例,然后找出对应量,列式解答即可.例4.从"六一〃儿童节那天开始,小明前4天看了80页书,照这样计算,这个月小明一共可以看多少页书?(用比例知识解)考点:正、反比例应用题.专题:比和比例应用题.分析:抓住“照这样计算”是解题的关键,"照这样计算”意思是小明平均每天看的页数是一定的,即看的页数与看的时间的比的比值是一定的;看书的页数与看的时间成正比例关系,由此解答即可.解答:解:设小明一个月(30天)可以x页书,x:30=80:44x=80x30x=600.答:这个月小明一共可以看600页书.点评:此题属于正比例应用题,解题的关键是理解"照这样计算"这句话的意思,判断出两种相关联的量成正比例还是成反比列;如果是比值一定,那么这两种相关联的量就成正比例,如果是积一定,那么这两种相关联的量就成反比列;由此设未知数为x,用比例解答即可.常演练方阵七A档(巩固专练)选择题(共9小题)一.1.一个制服厂生产一批童装,每天生产350件,8天可完成任务;如果每天生产400件,多少天可以完成设X天可以完成.正确列式是()A.400X=350x8B.8400C.350:8=400:X350=x考点:正、反比例应用题.专题:比和比例应用题.分析:由题意可知:这批童装的数量是一定的,即每天生产的件数与需要的天数成反比例,据此即可列比例求解.解答:解:设x天可以完成,由题意可得:400x=350x8,400x=2800,x=7;答:7天可以完成.故选:A.点评:解答此题的关键是:弄清楚哪两种量成何比例,于是列比例即可求解.2.(•广州模拟)生产一批零件,前3天生产124个,照这样计算,需再用12天完成全部任务.这批零件共有多少个?如果设这批零件共x个.正确的算式是()A.124_xB.124_xC.12x=124x3"T^12~3~=3+12考点:正、反比例应用题.分析:照这样计算,说明每一天生产的零件数是一定的,生产的零件总数和相对应生产的天数的比值一定,即两种量成正比例,由此列比例解答问题.解答:解:设这批零件共X个,由题意得,124二x.3=3+12’故选B.点评:此题主要考查对正比例的意义的运用:两种相关联的量,一种量变化,另一种量也随着变化,但两种量的相对应的比值一定,这两种量成正比例.3.每100千克小麦可出X千克面粉,Y千克小麦可出面粉的千克数为()A.100yB.100xC.100D.xyx y xy100考点:正、反比例应用题.专题:比和比例应用题.分析:根据每100千克小麦可出X千克面粉,得出小麦的出粉率一定,所以面粉的千克数和小麦的千克数成正比例,由此设出未知数,列比例解答即可.解答:解:Y千克小麦可出面粉Z千克,x_z100~y,100z=xy,7一xy100答:Y千克小麦可出面粉淄L千克.100故选:D.点评:此题首先判定两种量成正比例,再设出未知数,列出比例式进行解答即可.4.一个会议室用方砖铺地.用边长3cm的方砖铺,需要350块,如果改用lOcn?的方砖铺,需要()块.A.280B.187C.390D.315考点:正、反比例应用题.专题:比和比例应用题.分析:会议室的面积是不变的,每一块方砖的面积与所需块数的乘积是一定的,即两种量成反比例,由此设出未知数,列出比例式解答即可.解答:解:设需要x块砖,由题意得,10x=3x3x35010x=3150x=315;答:需要这样的方砖315块.故选:D.点评:此题首先利用正反比例的意义判定两种量的关系,若两个相关联量的乘积一定,则这两个量成反比例,从而可以列比例求解;解答时关键不要把边长当做面积进行计算.5.小明在操场上插几根长短不同的竹竿,在同一时间测量竹竿长和相应的影长,情况如表:这时,小明身边的王强测量出了旗杆的影长是6米,可推算出旗杆的实际高度是()米.影长(米)0.50.70.80.9 1.1 1.5竹竿长(米)1 1.4 1.6 1.8 2.23A.12米B.3米C.9米D.6米考点:正、反比例应用题;正比例和反比例的意义.专题:比和比例应用题.分析:由题意可知:同样条件下,竹竿的长度与它的影长的比是一定的,则旗杆的实际高度与其影长的比也是一定的,据此即可求解.且这两个比是相等的,据此即可列比例求解.解答:解:设旗杆的实际高度是x米,则有1:0.5=x:6,0.5x=6,x=12;答:旗杆的实际高度是12米.故选:A.点评:解答此题的关键是明白:同样条件下,物体的长度与它的影子的长度比是一定的.6.用正方形的地砖铺地,铺地的面积和需要地砖的块数()A.正比例B.反比例C.不成比例考点:正、反比例应用题.专题:比和比例应用题.分析:因为方砖的面积x所需方砖的块数=要铺的地面的面积,而要铺的地面的面积是一定的,进而根据反比例的意义进行选择.解答:解:铺地的面积x砖的块数=要铺的地面的面积(一定)是两个量对应的乘积一定,符合反比例的意义,所以铺地的面积和需要地砖的块数成反比例.故选:B.点评:解答此题的主要依据是如果两个量对应的乘积一定,则这两个量成反比例.7.学校会议室用方砖铺地.用8平方分米的方砖铺,需要350块;如果改用10平方分米的方砖铺,需要()块.A.300B.280C.260D.240考点:正、反比例应用题.专题:比和比例应用题.分析:此题根据面积一定,每块砖的面积和所需要的块数成反比例关系,列比例解答即可.解答:解:改用面积,10平方分米的方砖需X块.10xx=8x350,10x=2800,x=280;答:改用面积为10平方分米的方砖需280块.故选:B.点评:此题应先判断每块砖的面积和所需要的块数成什么比例关系,列比例解答即可.8.一辆拖拉机的后轮半径是前轮半径的1.2倍,后轮转动6周,前轮转动()A.7.2圈B.5圈C.8圈考点:正、反比例应用题.专题:比和比例应用题.分析:根据题意,可设前轮半径为r,那么后轮半径为1.2r,根据圆的周长公式可计算出前轮滚动一圈的周长和后轮滚动一圈的周长,又因前轮和后轮转动的路程是一定的,也就是说前轮的周长乘圈数,与后轮的周长乘圈数的乘积是一定的,据此即可列比例求解.解答:解:设前轮半径为r,那么后轮半径为1.2r,前轮转动的圈数是x圈,贝lj nx2xrxx=nx2x1.2rx62nrx=14.4nrx=7.2答:前轮转动7.2圈.故选:A.点评:解答此题的关键是明白:前轮和后轮转动的路程是一定的,也就是说前轮的周长乘圈数,与后轮的周长乘圈数的乘积是一定的,从而列比例求解.9.(•长沙)从甲地开往乙地,客车要10小时,货车要15小时,客车与货车的速度比是()A.2:3B.3:2C.2:5考点:正、反比例应用题.分析:两地之间的距离一定,速度和时间成反比例.解答:解:15:10=3:2故选:B.点评:此题首先判定两种量成反比例,列出比例式进行解答即可.填空题(共3小题)二.060120180km10.在一幅比例尺是—;1—的地图上量得A、B两城之间的距离是3cm,A、B两城之间的实际距离是180千米.考点:正、反比例应用题.专题:比和比例应用题.分析:由线段比例尺可知:图上1厘米代表实际距离60千米,则图上3厘米的距离代表实际距离,即求3个60千米是多少,用乘法解答即可.解答:解:60x3=180(千米)答:图上3厘米的距离表示的实际距离是180千米.故答案为:180千米.点评:解答此题的关键是:先理解该线段比例尺的含义,进而根据求几个相同加数的和是多少,用乘法解答.11.(•当涂县)用3千克绿豆可以做出21千克绿豆芽.照这样计算,18千克绿豆可以做出多少千克绿豆芽?(1)"照这样计算"就是说每千克绿豆做出的绿豆芽的量是一定的,(2)绿豆的重量和绿豆芽的重量成正比例.(3)所求结果用x表示,写出比例式:3:21=18:x.考点:正、反比例应用题.专题:比和比例应用题.分析:由题意可知:每千克绿豆做出的绿豆芽的重量是一定的,则绿豆的重量和做出的绿豆芽的重量的比值是一定的,则绿豆的重量和做出的绿豆芽的重量成正比例,据此即可列比例求解.解答:解:设18千克绿豆可以做出x千克绿豆芽,3:21=18:x,3x=21xl8,3x=378,x=126;答:18千克绿豆可以做出126千克绿豆芽.故答案为:每千克绿豆做出的绿豆芽的量;绿豆的重量、绿豆芽的重量、正;3:21=18:X.点评:解答此题的主要依据是:正比例的意义,即若两个相关联量的比值一定,则这两个量成正比例,于是可以列比例求解.12.一间教室,如果用面积6平方分米的方砖铺,要用96块,如果改用面积是9平方分米的方砖铺,要用多少块?考点:正、反比例应用题.专题:比和比例应用题.分析:由题意可知,教室的地板面积一定,即一块方砖的面积x方砖的块数=教室的地板面积(一定),由此得出一块方砖的面积与方砖的块数成反比例,设出未知数列出比例解答即可.解答:解:设需要x块,9x=6x96,x=6x96+9,x=64;点评:解答此题的关键是,根据题意,先判断哪两种相关联的量成何比例,即两个量的乘积一定则成反比例,两个量的比值一定则成正比例;再列出比例解答即可.解答题(共8小题)三.13.甲、乙两国的国土面积相等,但甲国人数是乙国人口数的16倍,若乙国的人均国土面积为296000平方米,那么甲国的人均国土面积是多少?考点:正、反比例应用题.专题:比和比例应用题.分析:根据:人均国土面积x人数=国土面积(一定),国土面积一定,人均国土面积x人数成反比例,由此设出未知数,列出比例式解答即可.解答:解:设甲国的人均国土面积是x平方米,x:196000=1:1616x=196000x=12250答:甲国的人均国土面积是12250平方米.点评:本题主要考查比例在日常生活中的应用,要正确判断哪两种量成反比例.14.生产了一批零件,每天生产200个,15天完成,实际每天生产了250个,实际多少天可以完成?(用比例方式列式)考点:正、反比例应用题.分析:这道题里的这批零件的总数不变.每天生产零件的个数和生产的天数成反比例关系.所以实际和计划每天生产的个数和生产的天数的乘积是相等的.设实际x夭可以 完成,列出方程解方程即可.解答:解:设实际x天可以完成.250x=200xl5x=3000+250x=12;答:实际12天可以完成.点评:此题考查反比例的应用.15.小伟家用面积是18平方分米的地砖需48块,如果改用面积是9平方分米的地砖,需多少块?考点:正、反比例应用题.分析:小伟家铺地的总面积是一定的,每一块地砖的面积和所需的块数成反比例,由此设出未知数,列比例解答即可.解答:解:设需地砖X块,根据题意列比例得,9x=18x48,y_18X489x=96;点评:此题首先判定两种量成反比例,再设出未知数,列出比例式进行解答即可.16.一间教室用边长8分米的方块来铺,刚好要125块,如果改用边长1米的方砖来铺,需要多少块?比计划多用多少块?(用方程解答)考点:正、反比例应用题.专题:比和比例应用题.分析:根据题意知道,一间教室的地面的面积一定,一块方砖的面积x方砖的块数=一间教室的面积(一定),由此判断一块方砖的面积与方砖的块数成反比例,设出未知数,列比例解答即可.解答:解:1米=10分米设需要x块,10xl0x=8x8xl25100x=64xl25y_64X125100x=8O125-80=45(块)答:需要80块,比计划少用45块.点评:关键是判断出一块方砖的面积与方砖的块数成反比例,注意8分米与1米是方砖的边长,不是方砖的面积.17.学校电脑室计划用面积为9平方分米的瓷砖铺地,需480块,现改用边长为4分米的瓷砖铺地,需要多少块?(用比例解)考点:正、反比例应用题.专题:比和比例应用题.分析:由题意可知,地板面积一定,即一块瓷砖的面积x瓷砖的块数=地板面积(一定),由此得出一块瓷砖的面积与瓷砖的块数成反比例,设出未知数列出比例解答即可.解答:解:设需要x块,4x=9x480*_9X4804x=1080答:需要1080块.点评:解答此题的关键是,根据题意,先判断哪两种相关联的量成何比例,即两个量的乘积一定则成反比例,两个量的比值一定则成正比例;再列出比例解答即可.18.用边长15厘米的方砖铺一块地,需要2000块,如果改用边长为20厘米的方砖铺地,需要多少块?(用比例解)考点:正、反比例应用题.专题:比和比例应用题.分析:根据题意知道铺地的面积一定,一块方砖的面积X方砖的块数=铺地的面积(一定),所以一块方砖的面积与方砖的块数成反比例,由此列出比例解答即可.解答:解:设需要X块,20x20xx=15xl5x2000400x=225x2000400x=450000x=1125;答:需要1125块.点评:解答此题关键是判断出一块方砖的面积与方砖的块数成反比例,注意15厘米与30厘米是方砖的边长,不是方砖的面积.19.一间房子要用方砖铺地.用面积是9平方分米的方砖需要96块.如果改用边长为2分米的方砖,需要多少块?(用比例解)考点:正、反比例应用题.专题:比和比例应用题.分析:设用边长为2分米的方砖铺地要用x块,根据房子的面积一定,可以列出比例(2x2)xx=96x9,解比例即可求解.解答:解:设用边长为2分米的方砖铺地要用x块,贝上(2x2)xx=96x94x=864x=864-?4x=216.答:要用216块.点评:考查了反比例的应用,本题注意是每块方砖的面积x方砖的块数的乘积一定.20.丽丽家客厅,用边长0.3m的方砖铺地,需要560块,如果改用边长0.4m的方砖铺地,需要多少块?(用比例解)考点:正、反比例应用题.专题:比和比例应用题.分析:根据题意知道,客厅的面积一定,方砖的面积和方砖的块数成反比例,由此列式解答即可.解答:解:需要x块方砖,0.3x0.3x560=0.4x0.4xx0.16x=50.4x=315答:需要315块.点评:解答此题的关键是,根据题意,正确判断出两种相关联的量成什么比例,找出对应量,列式解答即可.B档(提升精练)。

用正反比例解决沟通技巧问题的对比练习

用正反比例解决沟通技巧问题的对比练习

用正反比例解决沟通技巧问题的对比练习引言沟通是人际关系中至关重要的一环,良好的沟通技巧可以帮助人们更好地表达自己、理解他人并建立有效的沟通关系。

然而,许多人在沟通中常常遇到各种问题,如误解、不流畅的表达、争吵等。

本文将介绍一种用正反比例方法解决沟通技巧问题的对比练。

正比例练正比例练旨在加强积极的沟通技巧,促进有效的人际交流。

以下是正比例练的几个关键步骤:1. 积极倾听:学会倾听他人的观点和意见,并展示出真诚的兴趣和尊重。

避免打断他人,让对方感受到被理解和被重视的态度。

2. 温和表达:用温和的语气表达自己的观点和感受,避免过于情绪化或攻击性的言辞。

使用肯定的词汇和语气,让对方感受到你的善意和合作。

3. 提问技巧:学会提出有效的问题,帮助进一步理解对方的观点和意图。

开放性的问题可以促进更深入的对话和思考,而不仅仅停留在表面的交流中。

4. 多元化观点:尊重和接纳不同的观点和意见。

认识到每个人都有自己的真实感受和观点,努力从对方的角度去理解问题。

通过接纳多元化的观点,可以促进更富有成效的沟通过程。

反比例练反比例练旨在识别和克服消极的沟通技巧,解决沟通中的问题。

以下是反比例练的几个关键步骤:1. 思考反应:在沟通过程中,遇到有挑衅性或冲突的回应时,暂时停下来思考,避免冲动的言行。

给自己一些时间来平静下来,并寻找适当的方式来回应。

2. 自信表达:用自信和坚定的语气表达自己的观点和感受。

避免消极的语气和消极的身体语言,让对方感受到你的积极态度和自信心。

3. 寻找共同点:在冲突中,努力寻找双方的共同点和共同利益。

以此为出发点,鼓励合作和解决问题的努力。

4. 授权选择:让对方有选择的权力和自主性,以便他们能够感到被尊重和参与。

共同决策可以增加合作和持续的沟通。

对比练的重要性通过正比例练和反比例练的对比练,人们可以加强积极的沟通技巧,增进理解和建立有效的沟通关系。

这种对比练可以使人们更加敏感和注意到他们在沟通中的言行,帮助他们识别和改进问题,并建立更健康、更积极的沟通模式。

正反比例解决问题练习

正反比例解决问题练习
1、施工队安装下水道,6天安装288m; 照这样的速度,14天可以安装多少米?
总米数 天数 =每天安装米数(一定)
2、施工队安装下水道,每天安装48m, 15天完成;如果要12天完成,每天要安装 多少米?
每天安装米数×天数=总米数(一定)
1、一间房子要用方砖铺地。用面积是9平方分 米的方砖,需要96块。如果改用面积是4平方分 米的方砖,要用多少块?
解:设实际烧了X天。 12×(1-25%)×X=12×45
9×X=540 X=60
?
200
0
4
7
?
时间/小时
1、做360个零件需要多少小时? 2、做7小时可以加工零件多少个?
计划在景观大道种800棵观赏树,前8天种了200 棵。照这样计算,要完成任务,还要多少天?
解:设还要X天。 200 800-200 = 8 X 200X=8×600 X=24
一堆煤,原计划每天烧12吨,可以烧45天;实 际每天比计划节约25%,实际烧了多少天?
解:设需要X块. 4×4×X=3×3×400 16×X=9×400 X=3600÷16 X=225 答:需要225块.
千克苹果?
2.8元/kg
3.5元/kg
一对互相咬合的齿轮,大齿轮有35个齿,每 分钟转100转;小齿轮有20个齿,每分钟转 多少转?
张师傅加工零件个数与时间如下图. 零件个数/个 360
每块砖面积×块数=房子面积(一定) 解:设要用X块砖。 4X=9×96
2、用同样的砖铺地,铺18平方米要用618块砖。 如果铺24平方米,要用多少块砖?
铺地面积 块数 =每块砖面积(一定) 618 18 X 24 解:设要用X块砖。 24 18 = 618 X
=

正反比例解决问题练习

正反比例解决问题练习
_______________________________?
30x=18×15
(2)一批货物,如果每天运160吨,20天可以运完。 _______________________________________?
16x=160×20
例题
一辆汽车从甲地开往乙地,每小时行70千米, 5小时到达.如果要4小时到达,每小时需要行驶 多少千米?
例题: -艘货轮每小时航行20千米,6小时可以到达 目的地。如果要5小时到达,每小时应航行多少千米?
解:设每小时航行x千米。 5x=20×6 x=120÷5 x=24
答:每小时应航行24千米。
如果“每小时航行15千米”,要求 “几小时可以到 达”,
应该解怎:样设计x小算时?可以到达。 15x=20×6 x=120÷15 x=8
答:8小时可以到达。
1、用比例解下面的应用题。 电视机厂生产一批电视机,原计划每天生产 40台,30天完成, (1)实际24天就完成了生产任务,实际每天 生产多少台?
(2)实际每天生产50台,实际几天完成 生产任务?
(3)实际每天比计划多生产1应用题补充完整。 (1)一本故事书,每天读18页,15天读完,
x 解:设每小时需要行驶 千米.
x4 = 70×5
x = 70×5 4
x = 87.5
答:每小时需要行驶87.5千米.
小结
用比例知识解答应用题的关键:是正确找出 题中的两种相关联的量,判断它们成哪种比例 关系,然后根据正反比例的意义列出方程.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《运用正反比例解决问题》综合练习
1.认真填空
(1)运用正反比例解决问题,关键是:找出_________,判断哪两个量________________。

(2)一种盐水,是由盐和水按1:50 配制而成的。

其中,盐的重量占盐水的(—),水的重量占盐水的(—)。

(3)一幅地图,图上A、B距离3厘米,地面上A、B距离180千米。

这幅图的比例尺是()。

(4)如果x÷y = 71×5,那么x和y成()比例;如果x:4=5:y,那么x和y成()比例。

(5)如果甲÷乙=丙,那么,甲一定时,乙和丙成()比例;乙一定时,甲和丙成()比例;丙一定时,甲和乙成()比例。

(6)在比例尺为1:8的图纸上,甲、乙两圆的直径比是2:3,那么甲、乙两圆的实际的直径比是()。

(7)零件的总个数一定,每小时加工个数和加工时间();零件的总个数一定,已经加工零件数和剩下零件个数();两个互相咬合的齿轮的齿数与转数();购买各种学习用品的总价与数量();订数学书的本数与所需要的钱数()。

A 成正比例
B 成反比例
C 不成比例
2.先把题补充完整,使它成为正比例或反比例问题,再在横线上列出相应的方程
(1).一列客车5小时行驶300km。

照这样计算,( )?
_________________________________
(2)修一条长3250m的公路,3天挖了280m。

照这样计算,( )?
__________________________________
(3)一列客车从甲到乙,每小时行驶70km,6小时到达;( )?
___________________________________
(4).修一条公路,每天70m,18天可挖完;如果要15天完成,( )?
___________________________________
3.解决问题
(1) 一种微型零件的长5毫米,画在设计图纸上长20厘米。

这幅设计图的比例尺是多少?
(2)一幅地图的线段比例尺是。

甲乙两城在这幅地图上相距18厘米,两城间的实际距离是多少千米?丙丁两城的地面距离是660千米,在这幅地图上两城之间的距离是多少厘米
(3)加工一批零件,如果每天做1200个,8天可以完成;如果每天加工1500个,几天可以完成?[用比例解]
(4)小明买4本同样的练习本用了4.8元,用3.6元可以买多少本这样的练习本?[用比例解]
(5) 配制一种农药,药粉和水的比是1:500。

①用600kg水配制这种农药,需要药粉多少千克? ②用药粉3.6kg配制这种农药,需加入水多少千克?
(6)一个榨油厂榨26kg豆油,用了黄豆200kg。

照这样计算,用5吨黄豆可榨出豆油多少吨?[用比例解]
(7)机器上有两个互相咬合的齿轮,主动轮有50个齿,每分钟转90转;从动轮有30个齿,每分钟转多少转?[用比例解]
(9)一幅地图,图上3厘米代表实际距离150千米;A、B两地实际距离600千米,在图上为多少厘米?[用比例解]
(10)一间空房间的地面,如果用边长4dm的方砖铺,需要400块;如果用边长5dm的方砖铺,最少要多少块?[用比例解]
(11)小李买来同样数量的方砖,边长4dm的可以铺设地面4000dm²,边长5dm的可以铺设地面多少dm²?[用比例解]
(12)加工1500个零件,3小时完成了20%。

照这样计算,完成余下的任务还要多少小时?[用算术法和比例法解]
(13)一辆汽车从甲地往乙地送货,去时每小时行驶44km,用6小时到达;返回时缩短了半小时,这辆汽车返回时每小时行多少千米?[用算术法和比例法解]。

相关文档
最新文档