09工程力学答案 第11章 压杆稳定讲课教案

合集下载

建筑力学课件 第十一章 压杆稳定

建筑力学课件 第十一章 压杆稳定

11.1平衡的三种形态与压杆稳定的概念
1.如图11-3b所示,当杆承受的轴向 压力数值FN小于某一数值FNcr时 ,在撤去干扰力以后,杆能自动 恢复到原有的直线平衡状态而保 持平衡,这种原有的直线平衡状 态称为稳定的平衡。
11.1平衡的三种形态与压杆稳定的概念
2.如图11-3c所示,当杆承 受的轴向压力数值FN逐渐 增大到等于某一数值FNcr 时,即使撤去干扰力,杆 仍然处于微弯形状,不能 再自动恢复到原有的直线 平衡状态,但也不继续弯 曲,这种原有的直线平衡 状态就是临界的平衡。
11.1平衡的三种形态与压杆稳定的概念
压杆经常被应用于各种工程实际中,例如内燃机的连杆 (如图11-4)和液压装置的活塞杆(如图11-5),这 些构件在处于图示位置时,均承受压力。虽然这些受 压构件,不会受人为的干扰力作用,但是由于制造误 差可能造成初始弯曲、轴向力不一定完全与轴线重合 等因素,相当于作用了干扰力。所以此时必须考虑其 稳定性,以免产生压杆失稳破坏。
如图11-9所示,为一端固定一 端自由的细长压杆的挠曲 线形状,其长度为2l的挠 曲线形状,形成一半波正 弦曲线,即当将其原长度 乘以2的长度系数后,就 与长度为2l的两端铰支压 杆相同。所以,一端固定 一端自由的细长压杆的长 度系数等于2。
为方便查用,将几种不同杆 端约束情况下的长度系数 μ值列于表11—1中。
建筑力学 第十一章 压杆稳定
第十一章 压杆稳定
【学习目标】
1.理解稳定与失稳的概念; 2.掌握用欧拉公式计算压杆的临 界荷载与临界应力;
3.了解压杆的临界应力总图; 4.理解压杆稳定条件及其实用计 算。
11.1平衡的三种形态与压杆稳定的概念
在前面各章中,讨论了构件的强度计算问题,现在讨论 稳定问题。

第十一章 压杆失稳解析

第十一章 压杆失稳解析

例2 压缩机的活塞杆受活塞传来轴向压力F=100kN的作用,活塞杆 的长度L=1000mm,直径d=50mm,材料为45钢,σs=350MPa, σp=280MPa,E=210GPa,a=460MPa,b=2.57MPa,安全系数 [nst]=4,试进行稳定性校核。

解:
l
i
l
d
11000 50
80
p
l
i
1、对于粗短杆,属于强度问题,可选用高强度材料 2、对于中柔度杆,选用高强度杆可适当提高压杆的稳定性 3、对于大柔度杆,由于各种钢材的弹性模量差别不大, 选用高强度钢对于提高压杆的稳定性作用不大
压杆稳定
弹性稳定与不稳定的静力学准则
平衡—压杆的两种平衡形式:
F<Fcr : 直线平衡状态
F>Fcr :
弯曲平衡状态 (在扰动作用下)
压杆稳定
FP<FPcr :在扰动作用下,直线平 衡形式转变为弯曲平衡形式,扰 动除去后,能够恢复到直线平衡 形式,则称原来的直线平衡形式 是稳定的。
FP>FPcr :在扰动作用下,直线 平衡形式转变为弯曲平衡形式, 扰动除去后,不能恢复到直线 平衡形式,则称原来的直线平 衡形式是不稳定的。。
粗短杆: 不发生失稳,而发生 屈服(< s ) 强度问题
压杆稳定
稳定性计算
临界应力校核:
cr
nst
安全系数校核:
nst
cr
nst
• 例2 压缩机的活塞杆受活塞传来轴向压力 F=100kN的作用,活塞杆的长度L=1000mm, 直径d=50mm,材料为45钢,σs=350MPa, σp=280MPa,E=210GPa,a=460MPa, b=2.57MPa,规定压缩机活塞杆安全系数 [nst]=4,试进行稳定性校核。

第十一章压杆的稳定 - 工程力学

第十一章压杆的稳定 - 工程力学

第十一章压杆的稳定承受轴向压力的杆,称为压杆。

如前所述,直杆在轴向压力的作用下,发生的是沿轴向的缩短,杆的轴线仍然保持为直线,直至压力增大到由于强度不足而发生屈服或破坏。

直杆在轴向压力的作用下,是否发生屈服或破坏,由强度条件确定,这是我们已熟知的。

然而,对于一些受轴向压力作用的细长杆,在满足强度条件的情况下,却会出现弯曲变形。

杆在轴向载荷作用下发生的弯曲,称为屈曲,构件由屈曲引起的失效,称为失稳(丧失稳定性)。

本章研究细长压杆的稳定。

§11.1 稳定的概念物体的平衡存在有稳定与不稳定的问题。

物体的平衡受到外界干扰后,将会偏离平衡状态。

若在外界的微小干扰消除后,物体能恢复原来的平衡状态,则称该平衡是稳定的;若在外界的微小干扰消除后物体仍不能恢复原来的平衡状态,则称该平衡是不稳定。

如图11.1所示,小球在凹弧面中的平衡是稳定的,因为虚箭头所示的干扰(如微小的力或位移)消除后,小球会回到其原来的平衡位置;反之,小球在凸弧面上的平衡,受到干扰后将不能回复,故其平衡是不稳定的。

(a) 稳定平衡图11.1 稳定平衡与不稳定平衡上述小球是作为未完全约束的刚体讨论的。

对于受到完全约束的变形体,平衡状态也有稳定与不稳定的问题。

如二端铰支的受压直杆,如图11.2(a)所示。

当杆受到水平方向的微小扰动(力或位移)时,杆的轴线将偏离铅垂位置而发生微小的弯曲,如图11.2(b)所示。

若轴向压力F较小,横向的微小扰动消除后,杆的轴线可恢复原来的铅垂平衡位置,即图11.2(a),平衡是稳定的;若轴向压力F足够大,即使微小扰动已消除,在力F 作用下,杆轴线的弯曲挠度也仍将越来越大,如图11.2(c)所示,直至完全丧失承载能力。

在F =F cr 的临界状态下,压杆不能恢复原来的铅垂平衡位置,扰动引起的微小弯曲也不继续增大,保持微弯状态的平衡,如图11.2(b)所示,这是不稳定的平衡。

如前所述,直杆在轴向载荷作用下发生的弯曲称为屈曲,发生了屈曲就意味着构件失去稳定(失稳)。

工程力学中压杆稳定PPT课件

工程力学中压杆稳定PPT课件

端约束情况下的相当长度 l。
29
两杆均为细长杆的杆系如图示,若杆件在ABC面内 因失稳而引起破坏,试求载荷F为最大值时的θ角(设 0<θ<π/2)。设AB杆和BC杆材料截面相同。
细长压杆的失稳往往产生很大的变形甚至导致 整个结构破坏。
16
1875年俄国开伏达河上同名桥,在安装完毕后, 仅当工作车通过时,受压上弦杆发生偏离桁架平面的屈 曲而毁坏。
17
1925年2月13日,修复后的莫济里桥在试车时出现 了问题。幸好桁架落在为试车准备的临时支座上,人 们才可看到斜杆失稳后的情景。
小球在不同 的位置状态 保持平衡状 态的能力不 同。
13
如何判断压杆的稳定与不稳定?
F<Fcr :在扰动作用下,
直线平衡构形转变为弯曲
平衡构形,扰动除去后, 能够恢复到直线平衡构形,
直 线
则称原来的直线平衡构形

是稳定的。



弯弯 曲曲 平平 衡衡 构构 形形
14
如何判断压杆的稳定与不稳定?
F>Fcr :在扰动作用下,
表中将求临界力的欧拉公式写成了同一的形式:
Fcr
π 2 EI
l 2
式中, 称为压杆的长度因数,它与杆端约束情况有关; l
称为压杆的相当长度(equivalent length),它表示某种杆端约束
情况下几何长度为l的压杆,其临界力相当于长度为 l 的两端
铰支压杆的临界力。表13-1的图中从几何意义上标出了各种杆
1
§13-1 压杆稳定性的概念
工程中把承受轴向压力的直杆称为压杆 压杆
2
工程中把承受轴向压力的直杆称为压杆
液压缸顶杆
3

工程力学 第二版 (范钦珊 唐静静 著) 高等教育出版社 课后答案 第11章 压杆的稳定性问题

工程力学 第二版 (范钦珊 唐静静 著) 高等教育出版社 课后答案 第11章 压杆的稳定性问题

角钢(连结成一整体)。试确定梁与柱的工作安全因 数。
解:1.查型钢表得
习题 11-12 图
No.16aI:Iz = 1130cm4,Wz = 141cm3 2No. 63×63×5: A = 2 × 6.143 = 12.286 cm2
i y = 1.94cm I y = 2 × 23.17 = 46.34 cm
采用,欧拉公式计算临界力
FPcr = σ cr A =
轴的工作安全因数
2 π E
λ2
=
所以,轴不安全。
11-11 图示正方形桁架结构,由五根圆截面钢杆组成,
连接处均为铰链,各杆直径均为 d=40 mm,a=1 m。材料 均为 Q235 钢,E=200 GPa,[n]st=1.8。试;

ww w
.k hd 案
μ =1
co
界力。
m
11-5
图示 a、b、c、d 四桁架的几何尺寸、圆杆的横截面直径、材料、加力点及加力
方向均相同。关于四桁架所能承受的最大外力 FPmax 有如下四种结论,试判断哪一种是正确 的。 (A)FPmax(a)=FPmax(c)<FPmax(b)=FPmax(d); (B)FPmax(a)=FPmax(c)=FPmax(b)=FPmax(d); (C)FPmax(a)=FPmax(d)<FPmax(b)=FPmax(c);

对于 A3 钢, λ P = 102,
λs = 61.6 。因此,第一杆为大柔度杆,第二杆为中柔度杆,

i μl λ2 = 2 i μl λ3 = 3 i
λ1 =
=
ww w
FPcr = ( a − bλ ) A = (304 − 1.12 × 62.5) × 10 3 ×

09工程力学答案第11章压杆稳定

09工程力学答案第11章压杆稳定

11-1 两端为铰支座的细长压杆,如图所示,弹性模量E=200GPa,试计算其临界荷载。

(1)圆形截面,25,1d l==mm m;(2)矩形截面2400,1h b l===m m;(3)16号工字钢,2l=ml解:三根压杆均为两端铰支的细长压杆,故采用欧拉公式计算其临界力:(1)圆形截面,25,1d l==mm m:2292220.025200106437.81crEIPlπππ⨯⨯⨯⨯===N kN (2)矩形截面2400,1h b l===m m当压杆在不同平面约束相同即长度系数相同均为1μ=时,矩形截面总是绕垂直短边的轴先失稳20.040.02min(,)12y z yI I I I⨯===,故:2292220.040.02200101252.71crEIPlππ⨯⨯⨯⨯===N kN (3)16号工字钢,2l=m查表知:4493.1,1130y zI I==cm cm,当压杆在不同平面约束相同即长度系数相同均为1μ=时4min(,)93.1y z yI I I I===cm,故:2298222001093.110459.42crEIPlππ-⨯⨯⨯⨯===N kN 11-3 有一根30mm×50mm的矩形截面压杆,一端固定,另一端铰支,试问压杆多长时可以用欧拉公式计算临界荷载已知材料的弹性模量E=200GPa,比例极限σP=200MPa。

解:(1)计算压杆能采用欧拉公式所对应的Pλ2299.35P PPEπσλλ=→===(2)矩形截面压杆总是绕垂直于短边的轴先失稳,当其柔度大于Pλ可采用欧拉公式计算临界力。

故0.780.83 1.2290.0399.35x Pyzl ll liμλλ⋅===>>=→mm,即 1.229l >mm 为细长杆,可采用欧拉公式计算临界力。

11-6 某钢材的比例极限230P σ=MPa ,屈服极限274s σ=MPa ,弹性模量E=200GPa ,331 1.09cr σλ=-。

压杆稳定问题教学课件

压杆稳定问题教学课件

BIG DATA EMPOWERS TO CREATE A NEW ERA
06
压杆稳定问题的未来研究方向
新材料与新工艺的应用
总结词
随着新材料和新工艺的不断涌现,它们在压 杆稳定问题中的应用成为了一个重要的研究 方向。
详细描述
通过研究新材料如高强度钢、钛合金等在压 杆中的力学性能和稳定性,以及新工艺如激 光焊接、热处理等对压杆稳定性的影响,可 以进一步优化压杆的设计和制造过程。
非弹性平衡状态
压杆在受到外力作用时,不能通过自 身的弹性形变恢复到原来的平衡状态 ,表现为弯曲或失稳。
临界压力与临界应力
临界压力
当压杆受到的压力超过某一特定值时,压杆将失去稳定性,这个压力值即为临 界压力。
临界应力
在临界压力下,压杆内部的应力值即为临界应力,它表示压杆承受的最大应力 极限。
欧拉公式与压杆临界力计算
欧拉公式
描述了细长直杆在轴向压力作用下的临界压力与临界应力之间的关系,是解决压 杆稳定问题的基本公式。
压杆临界力计算
根据欧拉公式,通过已知的压杆截面尺寸、材料属性等参数,可以计算出压杆的 临界力,进而评估压杆的稳定性。
03
压杆稳定问题的分析方法
BIG DATA EMPOWERS TO CREATE A NEW
按材料分类
按受压方式分类
可分为钢压杆稳定问题、木压杆稳定 问题等。
可分为单向受压杆件、双向受压杆件 等。
按长度分类
可分为长压杆稳定问题、短压
桥梁、建筑、塔架等工程结构中 ,常常涉及到压杆稳定问题,需 要采取相应的措施来保证结构的
稳定性。
机械装备
机械装备中的各种支架、支座、传 动轴等部件,也常常会遇到压杆稳 定问题,需要合理设计以防止失稳 。

工程力学:压杆稳定 习题与答案

工程力学:压杆稳定 习题与答案

一、单选题1、压杆一般分为三种类型,它们是按压杆的()。

A.惯性半径分B.杆长分C.柔度分D.杆端约束情况分正确答案:C2、细长压杆,若其长度系数增加一倍,则()。

A.Pcr增加一倍B.Pcr增加到原来的4倍C.Pcr为原来的二分之一倍D.Pcr为原来的四分之一倍正确答案:D3、下列结论中正确的是()。

①若压杆中的实际应力不大于该压杆的临界应力,则杆件不会失稳;②受压杆件的破坏均由失稳引起;③压杆临界应力的大小可以反映压杆稳定性的好坏;④若压杆中的实际应力大于scr=πE2/λ2,则压杆必定破坏。

A.①+②B.②+④C.①+③D.②+③正确答案:C4、压杆临界力的大小()。

A.与压杆所承受的轴向压力大小有关B.与压杆的柔度大小有关C.与压杆材料无关D.与压杆的柔度大小无关正确答案:B5、两端铰支的圆截面压杆,若λp=100,则压杆的长度与横截面直径之比l/d在时,才能应用欧拉公式()。

A.25B.50C.400D.200正确答案:A6、若两根细长压杆的惯性半径i相等,当()相同时,它们的柔度相等。

①杆长;②约束类型;③弹性模量;④外部载荷A.①+②B.①+②+③C.①+②+④D.①+②+③+④正确答案:A7、a、b两根都是大柔度杆,材料、杆长和横截面形状大小都相同,杆端约束不同。

其中a为两端铰支,b为一端固定,一端自由。

那么两杆临界力之比应为()。

A.4B.1/4C.2D.1/2正确答案:A8、提高水稻抗倒伏性能的可能措施包括()。

A.选用茎秆强壮品种B.选用节间较短的矮秆品种C.使用植物生长调节剂,以调控节间长度与株高等D.以上都是正确答案:D9、圆形压杆和矩形压杆在稳定性校核时有何区别()。

A.圆形压杆不需要考虑失稳方向性,而矩形压杆需要考虑B.圆形压杆需要考虑失稳方向性,而矩形压杆不需要考虑C.两者都不需要考虑D.两者都需要考虑正确答案:A10、压杆合理设计措施包括:①合理选用材料;②合理选择截面;③合理安排压杆约束与杆长()。

工程力学11-压杆的稳定性分析与设计解析

工程力学11-压杆的稳定性分析与设计解析
压杆的稳定性分析与设计
11.1.3 三种类型压杆的临界状态 压杆的分类:
细长杆 ——当F >Fcr时容易发生弹性屈曲 当F≤Fcr时不发生屈曲
中长杆 ——当F >Fcr时发生屈曲,但不再是弹性的
粗短杆 ——不会发生屈曲,失效属于强度破坏
《工程力学》
11.2
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen
长细比概念三类不同压杆判断
11.3.2 三类不同压杆的区分
ห้องสมุดไป่ตู้
因,屈曲在弹性范围内导出
故有:
scr =
Fcr A
≤[sp]
在比例极限内有效
稳定平衡构形到屈曲(不稳定平衡构形)是一个 过程。
介于这个过程之间的平衡构形——临界平衡构形
或称:“临界状态” 临界载荷
处于临界状态时,杆件所受的施压载荷
称:“临界载荷”,或临界力,Fcr
《工程力学》
11.1
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen
令:当材料达到比例极限时的长细比为“lp” 当材料屈服极限时的长细比为“ls”
细长杆 中长杆 粗短杆
—— l ≥ lp —— lp >l ≥ ls —— l < ls
细长压杆的临界载荷

工程力学第11章-压杆稳定

工程力学第11章-压杆稳定
返回 下一张 上一张 小结
例10-4 图示支架中圆形截面压杆AB的直径为28mm,材料为A3钢, E=200GPa。试求荷载P的最大值。 解:AB压杆l=1000mm,
A
i
d 2
4

28 2
4
615 .75mm ; I
2
d 4
64
;
E 200000 96.7 MPa 2 2 142 .9 Pcr cr A 96.7 615 .75 59.6kN N BA ; cr
λ c—修正的分界柔度。 A3钢:λ c=123;16锰钢:λ c=102。
返回 下一张 上一张 小结
例10-3 22a号工字钢柱,长l=3,两端铰接,承受压力P=500kN。 钢的弹性模量E=200GPa,试验算此杆是否能够承受此压力。 解:查表知A=42cm2,imin=2.31cm,μ=1,则柔度
由边界条件x 0, y 0; x l , y 0; 得c2 0; c1 sin k l 0;
因为c1 0, 所以 sin k l 0; 得k l n (n 0、 1、 2、 n); 则 n 2 2 EI Pcr (n 0、 1、 2、 n); 2 l
2
欧拉公式
导出欧拉公式用了挠曲线近似微分方程
要求材料满足胡克定律
cr p
2 欧拉公式的适用范围 导出欧拉公式用了挠曲线近似微分方程 要求材料满足胡克定律
即: 记:
cr p
E P
2
E cr 2 p 2 E p P
2
则欧拉公式成立的条件为:
可以看出:p 只与材料的性质有关。
p

工程力学压杆稳定ppt课件

工程力学压杆稳定ppt课件

解 (1)圆形截面
直径 惯性半径
D 4 A 4 90 3 0 .8 3 m 5 m 3.8 3 5 1 3 0 m
iI A
D D 4 2 //6 4 4 D 4 3.8 3 4 1 5 3 0 8 .4 1 6 3 0 m
柔度
l 11.2 142
i 8.461 03
P
E P
200190 9.93
200160
因为 14 2 P9.3 9,所以属细长压杆,用欧拉公式计算临界力
F cr 2 lE 2 I 2 20 1精0 9 选1 0 p6 p1 t课.2 件4 2 23 021.8 3 5 1 3 0 48.3 8 KN 35
(2) 正方形截面
截面边长 aA 90 3 0 0 1 3 0 m
p, crp cr22Ep.
2E p
p
2E p
cr
无效
(细长压杆临界柔度)
p
欧拉公式的适用围: p,
有效
cr
2E 2
称大柔度杆(细长压杆 )
例:Q235钢,E20G0P ,p a20M o 0.Pa p
l i
p
2 E 2200103 99 .35100
p
20精0选ppt课件2021
kln (n = 0、1、2、3……)
由 k2 Fcr 可 得 EI
Fcr
n2 2EI
l2
精选ppt课件2021
17
临界载荷:
Fcr
n2 2EI
l2
屈曲位移函数 :y(x)Asinnx
l
临界力 F c r 是微弯下的最小压 力,故取 n = 1。且杆将绕惯性矩最小
的轴弯曲。
最小临界载荷:

《压杆稳定教学》课件

《压杆稳定教学》课件

临界载荷法:通过临界载荷 计算,判断系统稳定性
稳定性图解法:通过稳定性 图解,判断系统稳定性
压杆稳定实验方法
第五章
实验目的
验证压杆稳定理论 掌握压杆稳定实验的基本操作 学习压杆稳定实验数据分析方法 提高压杆稳定实验的实践能力
实验原理
压杆稳定实验是研究压杆在受力作用下的稳定性问题
实验原理基于欧拉-伯努利梁理论,通过测量压杆在不同载荷下的变形和应力分布,分析 压杆的稳定性
第二章
课件背景
压杆稳定是工程力学中的重要概念 课件旨在帮助学生理解压杆稳定的原理和应用 课件包括理论讲解、实例分析、习题练习等环节 课件适用于工程力学、土木工程等专业的学生
教学目标
掌握压杆稳定的 基本概念和原理
学会分析压杆稳 定问题
掌握压杆稳定计 算的基本方法
提高学生的工程 实践能力
适用对象
工程力学专业的学生
结构工程专业的学生
土木工程专业的学生
机械工程专业的学生
相关领域的研究人员 和工程师
内容结构
压杆稳定理 论基础
压杆稳定设 计方法
压杆稳定分 析方法
压杆稳定实 验与验证
压杆稳定实 例分析
压杆稳定发 展趋势
压杆稳定基本概念
第三章
压杆定义
压杆:承受轴向压力的杆件 压杆的种类:直杆、曲杆、斜杆等 压杆的受力:轴向压力、剪切力、弯矩等 压杆的稳定性:压杆在受力作用下的稳定性能,包括临界载荷、临界应力等。
感谢您的观 看
汇报人:PPT
案例总结与启示
案例背景:某建筑工程中,压杆稳定性问题 案例分析:通过理论分析和实验验证,确定压杆稳定性的影响因素 案例启示:在实际工程中,应充分考虑压杆稳定性的影响因素,确保工程安全 案例应用:在工程设计中,采用压杆稳定性分析方法,提高工程安全性能

工学工程力学压杆稳定PPT教案

工学工程力学压杆稳定PPT教案
第64页/共137页
临界应力计算
1 大柔度杆
欧拉公式
cr
2E 2
2 1 中柔度杆 经验直线公式
cr a b
2 小柔度杆 cr s
临界压力
Fcr cr A
第65页/共137页
发展历史:
文艺复兴时,达芬奇对压杆作了一些开拓性研究工作; 荷兰物理学家教授穆森布洛克1729年对杆件的受拉试验,得出“压曲载荷与杆 长的平方成反比”;
第6页/共137页
失稳或屈曲
上述各种关于平衡形式的突然变化,统称为稳定失效
压杆 承受轴向压力的杆件。
第7页/共137页
压杆失稳
丧失其直线形状的平衡
曲线形状平衡
第8页/共137页
工程中有许多杆件承受轴向压力的作用
第9页/共137页
工程中的压杆
第10页/共137页
工程中的压杆
第11页/共137页
第55页/共137页
§9-4 欧拉公式的适用范围 经验公式
临界应力
cr
Fcr A
2 EI ( l )2 A
2 Ei 2 ( l )2
2E 2
i I A
l
i
截面的惯性半径 工作柔度
又称为压杆的长细比。它全面反映了压杆长度、约束条件、截面尺寸和形状对临 界力的影响。
cr
2E 2
临界应力的欧拉公式
工学工程力学压杆稳定
会计学
第1页/共137页
1
§9-1 压杆稳定的概念 §9-2 两端铰支细长压杆的临界压力 §9-3 其他支座条件下压杆的临界压力 §9-4 压杆的临界应力 §9-5 压杆的稳定校核 §9-6 提高压杆稳定性的措施
第2页/共137页
§9-1 压杆稳定的概念

《压杆稳定教学》课件

《压杆稳定教学》课件

增加约束
总结词
通过增加支撑、固定或增加附加约束,可以 提高压杆的稳定性。
详细描述
约束是影响压杆稳定性的重要因素。通过增 加支撑、固定或附加约束,可以限制压杆的 自由度,从而增强其稳定性。例如,在压杆 的适当位置增加支撑或固定点,可以减小压 杆的弯曲变形,提高其稳定性。此外,通过 增加附加约束,如套箍或加强筋等,也可以 提高压杆的稳定性。
实验结果与分析
实验结果
通过实验观察和数据记录,得到不同条件下 压杆的稳定性表现。
结果分析
根据实验数据,分析影响压杆稳定性的因素 ,如压杆的材料、截面形状、长度、直径等 。通过对比不同条件下的实验结果,总结出
压杆稳定性的一般规律和特点。
THANKS
感谢观看
REPORTING
稳定性安全系数
通过比较临界载荷与实际载荷的大小,来判断压杆的 稳定性。
稳定性试验
通过试验的方法,对压杆进行稳定性测试,以验证其 在实际使用中的稳定性。
PART 02
压杆的分类与计算
REPORTING
长细比较小的压杆
弹性失稳
当受到垂直于杆轴的压力时,杆件会 弯曲并丧失承载能力。
临界压力
当压杆达到临界压力时,杆件将发生 屈曲。
PART 05
压杆稳定性的实验研究
REPORTING
实验目的与原理
实验目的
通过实验研究,掌握压杆稳定性的基本概念和原理,了解影响压杆稳定性的因 素。
实验原理
压杆稳定性是指细长杆在受到轴向压力时,抵抗弯曲变形的能力。当轴向压力 超过某一临界值时,压杆会发生弯曲变形,丧失稳定性。本实验通过观察不同 条件下压杆的变形情况,分析影响压杆稳定性的因素。
根据欧拉公式计算临界应力:$sigma_{cr} = frac{EI}{A}$

横截面对z轴的惯性矩为I

横截面对z轴的惯性矩为I

工程力学教程电子教案
第11章 压杆的稳定性 ‹#›
§11-2 细长中心压杆的临界荷载
理想中心压杆的临界荷载Fcr即为杆能保持微 弯状态的荷载值。
在理论分析中首先找出每一具体情况下杆的 挠曲线方程,而方程成立时的荷载就是所求的临 界荷载。
工程力学教程电子教案
x
δ
Fcr
l
w
x
o
y
z y
第11章 压杆的稳定性 ‹#›
可以把临界状态下按直杆算得的横截面上的
正应力scr=Fcr /A不超过材料的比例极限sp作为欧
拉公式适用范围的判别条件,即
scr sp
——— (1)
式中的scr=Fcr /A称为临界应力。引入Fcr的表达式,

s cr

Fcr
/
A

π2 EI
( l)2 A

π2E
( l)2
(
I) A
——— (2)
定性——失稳。 把理想中心压杆从直线状态的稳定平衡过渡到
不稳定平衡的那个荷载值称之为临界荷载Fcr(能保 持微弯状态的荷载值)。
对于细长压杆: Fcr=Fu
工程力学教程电子教案
第11章 压杆的稳定性 ‹#›
注意: 如果在理论分析中有若干个荷载值均能满
足杆保持微弯状态的条件,那么有实际意义的 应该是其中的最小值。
限sp=200 MPa, 则lp=100。
工程力学教程电子教案
第11章 压杆的稳定性 ‹#›
scr
右图示出了细长压杆临 sp
界应力scr随柔度l的变化情
况,以及欧拉公式的适用范
围。
s cr

π2E l2
双曲线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

09工程力学答案第11章压杆稳定11-1 两端为铰支座的细长压杆,如图所示,弹性模量E=200GPa,试计算其临界荷载。

(1)圆形截面,25,1d l==mm m;(2)矩形截面2400,1h b l===m m;(3)16号工字钢,2l=ml解:三根压杆均为两端铰支的细长压杆,故采用欧拉公式计算其临界力:(1)圆形截面,25,1d l==mm m:2292220.025200106437.81crEIPlπππ⨯⨯⨯⨯===N kN (2)矩形截面2400,1h b l===m m当压杆在不同平面约束相同即长度系数相同均为1μ=时,矩形截面总是绕垂直短边的轴先失稳20.040.02min(,)12y z yI I I I⨯===,故:2292220.040.02200101252.71crEIPlππ⨯⨯⨯⨯===N kN (3)16号工字钢,2l=m查表知:4493.1,1130y zI I==cm cm,当压杆在不同平面约束相同即长度系数相同均为1μ=时4min(,)93.1y z yI I I I===cm,故:2298222001093.110459.42crEIPlππ-⨯⨯⨯⨯===N kN 11-3 有一根30mm×50mm的矩形截面压杆,一端固定,另一端铰支,试问压杆多长时可以用欧拉公式计算临界荷载?已知材料的弹性模量E=200GPa,比例极限σP=200MPa。

解:(1)计算压杆能采用欧拉公式所对应的Pλ2299.35P PPEπσλλ=→===(2)矩形截面压杆总是绕垂直于短边的轴先失稳,当其柔度大于Pλ可采用欧拉公式计算临界力。

故0.780.83 1.2290.0399.35x P y zlll l i μλλ⋅===>>=→mm , 即 1.229l >mm 为细长杆,可采用欧拉公式计算临界力。

11-6 某钢材的比例极限230P σ=MPa ,屈服极限274s σ=MPa ,弹性模量E=200GPa ,331 1.09cr σλ=-。

试求P s λλ和,并绘制临界应力总图(0150λ≤≤)。

解:(1)计算此钢材的判别柔度①将230P σ=MPa 代入欧拉公式22Eπσλ=可以计算此钢材细长压杆的判别柔度P λ:92.64P λ===②由经验公式331 1.09cr σλ=-知:此钢材的331, 1.09a b ==MPa MPa ,将274s σ=MPa 代入中柔度杆的公式可以此钢材中柔度杆的判别柔度s λ:33127452.291.09s s a b σλ--=== (2)绘制临界应力总图如图:σ(MPa)cr11-7 b=40mm,h=60mm 的矩形截面压杆如图所示,在在平面内,两端铰支,出平面内两端固定。

材料为Q 235钢,其弹性模量210E G =Pa ,比例极限σP =200MPa 。

试求(1)压杆的临界荷载P cr ,(2)若[]3st n =,压杆所承受的最大轴向压力为多大?(3)从稳定性考虑b/h 为何值时最佳?习题11-7图解:(1)计算柔度:①当压杆在在平面内xoy 内失稳,为z 中性轴。

1 2.4138.560.060xy xy zli μλ⋅⨯=== ②当压杆在出平面内xoz 内失稳,为y 中性轴。

0.5 2.4103.920.04xz xz yli μλ⋅⨯=== ③λ越大,压杆越容易失稳,故此压杆将在在平面内先失稳。

max(,)138.56xz xy λλλ==④计算压杆能采用欧拉公式所对应的P λ22101.8P P P E πσλλ=→===⑤101.8138.56P λ=<,故采用欧拉公式计算P cr222362(2101010)(0.0600.040)259.10138.56cr cr E P A Aπσλπ=⋅=⋅⨯⨯⨯=⨯⨯=N kN(2) 由压杆稳定条件求压杆所承受的最大轴向压力[P ]若[]3st n =,[][]259.1086.373cr cr w w w P P n n P P n =≥→≤==kNb(3)求稳定性最佳的b/h当压杆在不同方向的柔度相等时,才不会在某平面内先失稳。

故1 2.41 2.40.5 2.40.50.5 2.4xyxyzxzxzylhibh b hlbiμλμλ⋅⎧⨯==⎪⎪⨯⨯⎪→=→=⎨⋅⨯⎪==⎪⎪⎩补充1 图示边长为a的正方形铰接结构,各杆的E、I、A均相同,且为细长杆。

试求达到临界状态时相应的力P等于多少?若力改为相反方向,其值又应为多少?F BC F N N BCN CD解:(1)各杆的临界力222..222cr BDcrEI EIP Pa aππ===外(2)求各杆的轴力与P的关系。

由对称性可知,外围的四个杆轴力相同,NAB NBC NCD NDAF F F F===。

研究C、B结点,设各杆都是受拉的二力杆,则与结点相联系的杆施与背离结点指向杆内的拉力,C、B结点受力如图所示。

第一种情况:C:)02450x NCB NCBF P F cos F=→--=→=∑压杆B:()02450Y NBD NBC NBD NBCF F F cos F P=→--=→==∑拉杆第二种情况:)NCBF=拉杆()-NBD NBCF P==压杆22.22-==22NBD NBC cr BDEI EIF P P Pa aππ===↔补充2 图示矩形截面松木柱,其两端约束情况为:在纸平面内失稳时,可视为两端固定;在出平面内失稳时,可视为上端自由下端固定。

试求该木柱的临界力.解:(1)计算柔度:①当压杆在在平面内xoz内失稳,y为中性轴。

0.57101.040.120xzxzyliμλ⋅⨯===②当压杆在出平面内xoy内失稳,z为中性轴。

27242.490.200xyxyzliμλ⋅⨯===③λ越大,压杆越容易失稳,故此压杆将在在平面内先失稳。

max(.)242.49xz xyλλλ==(2)松木75242.49Pλ=<,故采用欧拉公式计算P cr222112(0.110)(0.1200.200)40.28242.49cr cr EP A Aπσλπ=⋅=⋅⨯⨯=⨯⨯=N kN补充3 图示压杆,材料为Q235钢,横截面有四种形式,其面积均为23102.3mm ⨯,试计算其临界力.解:(1)矩形:①计算柔度:23632 3.21010 3.2100.04b b --=⨯⨯=⨯→=0.530.53129.90.04xz xz ylb i μλ⋅⨯⨯==== 129.9>123=xz P λλ=矩形截面压杆属于细长压杆,采用欧拉公式计算其临界力 ②计算其临界力22113222103,210N 374.34kN 129.9cr E P A ππλ-⨯⨯=⋅=⨯⨯= (2)正方形截面:①计算柔度:23633.21010 3.2100.057a a --=⨯⨯=⨯→=0.530.5391.860.057xz xz ylb i μλ⋅⨯⨯==== 06091.86<123=xz P λλλ=<=正方形截面压杆属于中柔度杆,采用经验公式计算其临界力 ②采用直线经验公式计算其临界力63()(304 1.1291.86)10 3.210N 643.57kN cr cr P A a b A σλ-=⋅=-⋅=-⨯⨯⨯⨯=(3)圆形截面: ①计算柔度:23633.21010 3.2100.0644d d π--=⨯⨯=⨯→=0.530.5394.000.06444xz xz yld i μλ⋅⨯⨯==== 0=6094<123xz P λλλ<==圆形截面压杆属于中柔度杆,采用经验公式计算其临界力 ②采用直线经验公式计算其临界力63()(304 1.1294)10 3.210N 635.9kN cr cr P A a b A σλ-=⋅=-⋅=-⨯⨯⨯⨯=(3)圆环形截面: ①计算柔度:2222363(1)(10.7) 3.21010 3.2100.0894m 44D D D ππα---=-=⨯⨯=⨯→=0.530.5354.990.0894xz xz ylD i μλ⋅⨯⨯====054.99<60=xz λλ=圆环形截面压杆属于粗短杆,临界应力为屈服极限 ②计算其临界力()()6323510 3.210N 752kN cr cr s P A A σσ-=⋅=⋅=⨯⨯⨯=补充4 图示结构中,横梁AB 由14号工字钢制成,材料许用应力[]160MPa σ=,CD 杆为Q235轧制钢管,2636d D ==mm,mm 。

其弹性模量210E G =Pa 。

若[] 1.5st n =,试对结构进行强度与稳定校核。

F N 图(kN )M 图(kN m )+2412-解:(1)求反力:取ABC 杆为研究对象,受力如图所示。

()0sin 45122033.941kN ANDCNDC m FF =→-+⨯=→==∑F(2)内力分析:ABC 杆的AC 段发生拉弯组合变形,CB 段发生弯曲;CD 杆为轴向压缩杆件。

内力图如图所示。

(3)对压杆进行稳定性校核。

①求压杆的柔度 127.39liμλ===②求压杆临界力对于Q 235钢材料为100P λ=,127.39>100P λλ==,采用欧拉公式计算压杆临界应力2292221010Pa 127.72MPa 127.39cr E ππσλ⨯⨯===③校核压杆的稳定性 [][]666322127.7210127.7210 1.83 1.526/69.701033.9410/{0.036[1()]}436cr cr w w w w NDC n n n F A σσπσ⨯⨯=≥→===≥=⨯⨯⨯⨯- 故,压杆的稳定性足够。

(4)对梁ABC 进行强度计算梁的C 的左截面为拉弯组合变形的危险面,其上距中性轴最远的上边缘点位危险点。

查表可知14号工字钢的2321.516cm ,102cm z A W ==。

则梁的最大拉应力为:33max max4624101210Pa 11.154117.647MPa 128.8MPa 21.5161010210N z F M A W σ--⨯⨯=+=+=+=⨯⨯故,ABC梁的的强度足够。

相关文档
最新文档