机构创新实例-9机械系统创新实例
实例分析机械制造的创新技术

实例分析机械制造的创新技术一、前言机械制造技术作为生产企业一项重要的技术一直得到很大的重视,机械制造技术的不断创新,为机械设备的后续使用和自动化水平提供了更多的帮助。
以汽车制造行业为例,其继续制造技术的不断发展和创新,为汽车的高性能,节能环保等方面可以起到非常社会的效果。
机械制造技术的不断改进和创新,可以为汽车的后续使用,缩小尾气的排放含量等方面提供巨大的帮助。
因此,不断的创新机械制造技术对于以汽车制造行业为例的各类机械制造行业的发展和进步都具有非常大的意义。
所以,本文从机械制造技术创新的重要性出发,分析了目前机械制造技术发展中经常出现的问题,在此基础上,探讨了未来机械制造技术的发展方向,并重点的探讨了机械制造技术未来发展的主要创新内容和发展方向。
二、目前机械制造技术发展中出现的问题要想研究机械制造技术的发展和创新,必须要首先了解近年来机械制造技术发展中存在的问题,通过以前出现的问题进行分析,来更加有效的解决问题。
其存在的问题主要体现在以下几个方面。
第一,我国的制造技术相比国外发达国家来说,其生产工艺和管理水平方面都还存在较大的差距。
第二,在我国现阶段机械制造技术发展过程中,关于制造过程中的应变能力还是有待提高。
第三,在我国现阶段机械制造技术发展过程中,对于相关标准的制定和管理还处在缺位状态。
三、未来机械制造技术的发展方向未来机械制造技术的发展方向主要是三个方面,一是刚性自动化技术,二是柔性自动化技术,三是综合自动化技术。
这三方面的发展,促使我国的机械制造技术能够达到一个新的水平。
以汽车制造行业为例,通过这三个方向的发展,使得我国的汽车生产水平可以保持与国外的汽车生产水平的竞争力,让中国的汽车制造在全世界占有一定的地位。
刚性自动化技术的发展主要是保障机械制造过程的设计工艺路线完全自动化,加工工具完全自动化,产品的设定完全自动化。
例如,汽车制造行业的汽车零部件涂装过程这一汽车制造工艺过程来说,传统的制造过程不但会出现很多废弃物,还会增加环境污染。
机械创新设计实例分析

10.1
新型内燃机的开发实例
(2) 活塞往复运动造成曲柄连杆机构较大的往复惯性力,此惯性力随 转速的平方增长,使轴承上的惯性载荷增大,系统由于惯性力不平衡而 产生强烈振动。往复运动限制了输出轴转速的提高。 (3) 曲轴回转两圈才有一次动力输出,效率低。 上述问题引起了人们改变现状的愿望,社会的需求促进产品的改造 和创新,多年来,在原有发动机的基础上不断开发了一些新型发动机。
10.1
新型内燃机的开发实例
2) 旋转式发动机的设计特点 (1) 功能设计。内燃机的功能是将燃气的能量转化为回 转的输出动力,通过内部容积变化,完成燃气的吸气、压缩、 燃爆和排气4个动作以达到目的。旋转式发动机抓住容积变
化这个主要特征,以三角形转子在椭圆形气缸中偏心回转的
方法达到功能要求。而且三角形转子的每一个表面与缸体的 作用相当于往复式发动机的一个活塞和气缸,依次平稳地连
1. 往复式内燃机的技术矛盾
目前,应用最广泛的往复式内燃机 由气缸、活塞、连杆、曲轴等主要机件 和其他辅助设备组成。 活塞式发动机工作时具有吸气、压 缩、做功 ( 燃爆 ) 、排气 4 个冲程,做功冲 程输出转矩,对外做功 这种往复式活塞发动机存在以下明 显的缺点。 (1) 工作机构及气阀控制机构组成 复杂,零件多;曲轴等零件结构复杂, 工艺性差。 活塞1 连杆2 气缸3 曲轴4 进气阀5 排气阀6
控制回转运动平稳。
这种无曲轴式活塞发动机若将圆柱凸轮安装在发动机的中
心部位,可在其周围设置多个气缸,制成多缸发动机。通过
改变圆柱凸轮的凸轮轮廓形状可以改变输出轴的转速,达到 减速增矩的目的。这种凸轮式无曲轴发动机已用于船舶、重
型机械、建筑机械等行业。
10.1
新型内燃机的开发实例
机械创新设计(设计实例论文)

机械创新设计(设计实例论文)本设计的目的在于改进洗瓶机推瓶机构,以适应现代啤酒瓶的回收和清洗要求,提高生产效率和经济效益。
传统的人工刷洗工艺已无法满足生产需求,因此自动化的洗瓶机设备应运而生。
本文将对洗瓶机推瓶机构的原理方案进行分析和设计。
洗瓶机主要由推瓶机构、导辊机构、转刷机构组成。
瓶子放在两个同向转动的导辊上,导辊带动瓶子旋转。
当推头M 把瓶子推向前进时,转动着的刷子就把瓶子外面洗净。
当前一个瓶子将洗刷完毕时,后一个待洗的瓶子已送入导辊待推。
为了完成设计任务,需要通过组合机构使推头M以接近均匀的速度推瓶,平稳地接触和脱离瓶子,然后推头快速返回原位,准备第二个工作循环。
同时,导辊及其上方的转动的刷子不停地转动,完成瓶子外围的清洗。
洗瓶机推瓶机构的改进设计将采用新的技术和材料,以提高清洗效果和耐用性。
具体方案包括使用外部推力或传送带传送等方式实现瓶子的移动,以及使用刷子清洗或高压水清洗等方式完成清洗功能。
动力源可以选择电动机、汽油机、柴油机或液动机等,传动方式可以采用气动马链传动、移物传动、齿轮传动、蜗杆传动或带传动等。
同时,可以使用清洗毛巾、高压水清洗、刷子清洗等不同的清洗方式,以满足不同瓶子的清洗需求。
通过以上的设计和改进,洗瓶机推瓶机构将实现更加高效、自动化的生产方式,为工业生产和社会生活带来更大的便利和经济效益。
根据使用要求或工艺要求设计机构时,首先需要考虑采用何种功能原理来实现这些要求。
不同的功能原理所要求的运动规律设计也不同。
洗瓶机构的工作情况示意图如下图所示。
待洗的瓶子放在两个转动的导辊上,导辊带动瓶子旋转。
推头M将瓶子推向前进时,转动的刷子就把瓶子外面洗净。
当一个瓶子将洗涮完毕时,后一个待洗的瓶子已进入导辊待推。
根据原始设计数据和设计要求,瓶子尺寸为大端直径D=80mm,长200mm,小端直径d=25mm。
推进距离l=600mm,推瓶机构应使推头M以接近均匀的速度推瓶,平衡地接触和脱离瓶子。
总结机械创新设计案例

总结机械创新设计案例第一篇:总结机械创新设计案例机械创新设计案例案例一:新型内燃机的开发实例一般圆柱凸轮机构是将凸轮的回转运动变为从动杆的往复运动,而此处利用反动作,即当活塞往复运动时,通过连杆端部的滑块在凸轮槽中滑动而推动凸轮转动,经输出轴输出转矩。
活塞往复两次,凸轮旋转360°。
系统中没有飞轮,控制回转运动平稳。
这种无曲轴式活塞发动机若将圆柱凸轮安装在发动机的中心部位,可在其周围设置多个气缸,制成多缸发动机。
通过改变圆柱凸轮的凸轮轮廓形状可以改变输出轴的转速,达到减速增矩的目的。
这种凸轮式无曲轴发动机已用于船舶、重型机械、建筑机械等行业。
旋转式发动机与传统的往复式发动机相比,在输出功率相同时,具有体积小、重量轻、噪声低、旋转速度范围大以及结构简单等优点,但在实用化生产的过程中还有许多问题需要解决。
随着生产科学技术的发展,必然会出现更多新型的内燃机和动力机械。
人们总是在发现矛盾和解决矛盾的过程中不断取得进步。
而在开发设计过程中敢于突破,善于运用类比、组合、替代等创新技法,认真进行科学分析,将会使人们得到更多创新的、进步的、高级的产品。
案例二:圆柱凸轮数控铣削装置的创新设计实例圆柱凸轮作为一种机械传动控制部件,具有结构紧凑、工作可靠等突出优点,但其加工制作比较困难。
东北大学东软集团生产的医用全身CT扫描机,有一对复杂的圆柱凸轮,过去一直采用手工加工,不仅制造精度低,而且劳动强度大,生产效率低,成本高。
为此,负责机械加工的东北大学机械厂提出要研制一种精度较高、操作方便、成本较低的圆柱凸轮加工装置。
圆柱凸轮数控铣削装置包括工作台直线运动坐标轴和工件回转运动坐标轴,在加工圆柱凸轮时,本装置根据数控加工程序控制工件作旋转进给运动和直线进给运动,通过普通立式铣床工作台的垂直运动进行切深调整,这样就可以实现一条凸轮曲线槽的连续自动化加工。
案例一图案例二图内燃机是从实现相同工作原理的不同机构入手创新尝试,数控机是利用反求新思维进行了创新改造,机械发展史中有无数的创新事例,并不可能一一例举,而是以上述典型实例举一反三、启迪思维,点燃学习者创新设计智慧的火花。
机械创新设计实例分析课件PPT(共 36张)

第一节 平动齿轮传动机构
1. 应用了平行四边形机构和齿轮机构的串 行连接;
平动齿轮创新设计方法总结: 2. 应用了三套机构的并行连接;
3. 应用了转动副的销钉扩大和尺寸变化等 演化与变异设计。
第一节 平动齿轮传动机构
二、平动齿轮传动的关键技术
使齿轮实现圆平动运动的机构称为圆平动机构。常用的圆平动机构有: 1.用平行四边形机构实现齿轮圆平动
第一节 平动齿轮传动机构
2.用正弦机构实现齿轮圆平动 3.用孔销机构实现齿轮圆平动
应用“机构同性异形变换原理”,还可以演化出多种圆平动机构。它 的性能决定了平动齿轮传动的性能,所以每综合出一种圆平动机构,就得 到一种新型平动齿轮传动。
第一节 平动齿轮传动机构
三、平动齿轮机构的演化
平动发生器是平动齿轮机构的关键技术。不同的平动发生器,会演化出 结构不同的平动齿轮机构,相同的平动发生器,结构不同,也会演化出性能 差异很大的平动齿轮传动装置。
•
13、要相信,这个世界上永远能够依靠的只有你自己。所以,管别人怎么看,坚持自己的坚持,直到坚持不下去为止。
•
14、也许你想要的未来在别人眼里不值一提,也许你已经很努力了可还是有人不满意,也许你的理想离你的距离从来没有拉近过......但请你继续向前走,因为别人看不到你的努力,你却始终看得见自己。
•
第二节 机构应用创新设计案例分析
三.Stewart机构的应用创新设计
Stewart平台机构
Stewart平台机构用于运动模拟器
第二节 机构应用创新设计案例分析
三.Stewart机构的应用创新设计
俄罗斯Lapic 公司的KNM-750
世界上第一台并联机床
第二节 机构应用创新设计案例分析
机械创新设计案例

机械创新设计案例在当今社会,机械创新设计已经成为了各行各业中不可或缺的一部分。
无论是汽车制造、航空航天、还是工业制造,都需要不断地进行机械创新设计,以适应市场需求和科技发展的变化。
本文将以几个实际案例为例,介绍机械创新设计在不同领域的应用和意义。
首先,我们来看看汽车制造领域中的机械创新设计。
随着社会的发展,人们对汽车的要求也越来越高,不仅要求汽车具有更高的安全性能,还要求汽车具有更好的燃油经济性和更高的环保性能。
因此,汽车制造商们不断进行机械创新设计,推出了一系列新型汽车。
比如,采用了更轻、更坚固的材料,提高了汽车的安全性能;采用了更先进的发动机技术,提高了汽车的燃油经济性和环保性能。
这些机械创新设计的应用,不仅提升了汽车的性能,也满足了人们对汽车的新需求。
其次,航空航天领域也是机械创新设计的重要应用领域。
航空航天领域的机械创新设计,不仅需要满足飞行器的安全性和可靠性要求,还需要满足飞行器的高速、高温、高压等极端环境下的工作要求。
因此,航空航天领域的机械创新设计往往更加复杂和严谨。
比如,飞机的机翼设计需要具有更好的升力和阻力特性,发动机的设计需要具有更高的推力和更低的燃油消耗。
这些机械创新设计的应用,不仅推动了航空航天技术的发展,也提高了飞行器的性能和安全性。
最后,工业制造领域也是机械创新设计的重要应用领域。
工业制造领域的机械创新设计,不仅需要满足产品的性能和质量要求,还需要提高生产效率和降低生产成本。
因此,工业制造领域的机械创新设计往往更加注重工艺和装备的改进。
比如,采用了更先进的数控机床和自动化装配线,提高了产品的加工精度和生产效率;采用了更先进的材料和工艺,提高了产品的质量和降低了生产成本。
这些机械创新设计的应用,不仅推动了工业制造技术的发展,也提高了产品的市场竞争力。
总的来说,机械创新设计在各个领域都发挥着重要作用,推动着科技的进步和社会的发展。
随着科技的不断发展,相信机械创新设计在未来会有更广阔的应用空间,为人类创造出更多的美好未来。
机械创新设计实例分析

输入运动的位移函数 非线性函数 非线性函数
第二十八页,共46页。
表9-3 根据(gēnjù)输出运动函数的数学性质划分原动机的类型
原动机类型 线性原动机 非线性原动机
输出运动的位移函数 线性函数
非线性函数
举例 普通直流马达,普通交流马达
步进马达,伺服马达
二、凸轮机构的主动控制(kò ngzhì)
将控制(kò ngzhì)系统与凸轮机构结合起来,融合其优点, 改善凸轮机构的动态特性,并使凸轮机构标准化,为凸轮机 构的发展开辟出新的途径。
主动。
i
K HG
1 iHGK
1 zG zG zK
zK zK zG
(3)外齿中心轮的齿形综合 (4)外激波摆动活齿传动的优缺点
第二十页,共46页。
第二十一页,共46页。
1)省掉了少齿差传动中的W输出机构 2)提高了摆动活齿与激波器高副的接触强度 3)外齿中心轮K的特点 4)外激波器的尺寸大,动平衡性能差 2.带传动的选择 图9-14a所示为带传动的一种从动带轮结构。如图9-14b所 示,齿轮(chǐlún)副合状态和轴承4的受力状态都得到改善,取得 极好效果。称这种结构的带轮为卸荷带轮。带传动的从动带轮仍 采用卸荷结构。
能传递运动和扭矩的,所以必须要用三片以上的内齿轮才能正常
地工作。
3.运动学分析
iHGK
zK zG zK
4.外平动齿轮传动的特点 (1)传动比大、分级密集,单级传动比在11~99之间,双级传动比
可达9801。 (2)承载能力大 啮合时几乎是面接触,齿面赫兹应力小。单个转
臂轴承变换为多个转臂轴承分担载荷,转臂轴承的寿命可达两万 小时,且转臂轴承等基本(jīběn)构件不受内齿轮尺寸的限制,可 以按强度要求确定,利于按强度进行优化设计。
机构创新实例--2009

示意图
8 从动轴(形成移动副) 9 转动副轴(或滑块)
双销,销回转半径
R=49.5 ㎜
1
15 ㎜
4
30 ㎜
4
L= 45 ㎜
3
60 ㎜
2
75 ㎜
2
数 规格
量
15 ㎜
8
30 ㎜
6
L= 45 ㎜
6
60 ㎜
4
75 ㎜
4
15 ㎜
8
30 ㎜
6
L= 45 ㎜
6
60 ㎜
4
75 ㎜
4
否产生刚性或柔性冲击; ⑺机构是否灵活、可靠的按照设计要求运动到位; ⑻自由度大于 1 的机构,其几个原动件能否使整个机构的各个局部实现良好的协调动作; ⑼控制元件的使用及安装是否合理,是否按预定的要求正常工作。
6、 若观察机构系统运动发生问题,则必须按前述步骤进行组装调整,直至该模型机构灵活、可靠的完全 按照设计要求运动。
二、 核心内容:
使用“机构运动创新设计组件”进行积木式组合调整,从而让学生自己构思创新、试凑选型机械设 计方案,亲手按比例组装成实物模型,亲手安装电机及控制电路,模拟真实工况,动态演示观察机构的 运动情况和传动性能,通过直观调整布局、连接方式及尺寸以及更改电路来验证和改进设计。设计和组 装融为一体,直到该模型机构灵活、可靠地按照设计要求运动到位,最终使学生用实验方法自行确定了 切实可行,性能较优的机械设计方案和参数,即通过创意实验模拟实施环节来实现培养学生创新动手能 力的教改目标。
5、 通过动态观察机构系统的运动,对机构系统的工作到位情况、运动轨迹动力学特性作出定性的分析和 评价。一般包括如下几个方面 ⑴各个杆、副是否发生干涉; ⑵有无“憋劲”现象; ⑶输入转动原动件是否曲柄; ⑷输出杆件是否具有急回特性; ⑸机构的运动是否连续; ⑹最小传动角(或最大压力角)是否超过其许用值,是否在非工作行程中;对机构运动过程中是
机构创新实例-9机械系统创新实例

整理课件
8
图7-3
整理课件
9
图7-4的左上图就不能用A·凯莱作图法,因为三 个连杆机构压缩成一条直线。把O1ABO2作为一个原 始机构,为了找到连杆AB延长线上K点的同轨迹机构, 在机架O1O2 的延长线上作O3,使O1O2:O2O3= AB:BK,然后,依次作三个平行四边形。于是得到了 同迹四杆机构 O2O3B2C2,C2B2延长线上点K与原始 机构中的K点轨迹相同。
①实现联接的作用效应有形联接、力联接、化学分子联接等。联接性质: 刚性、弹性。
②实现传递功能。作用效应有:摩擦效应、啮合效应、磁效应、粘附效 应等。措施有:齿轮传动、带传动、摩擦轮传动、链传动、液压传动、 蜗杆传动等。
整理课件
21
③实现补偿调节功能。作用效应:构件相对运动、构件变形等。 措施:增加元件的活动度,加入中间元件、增加弹性元件等
⑵结构创新构思
将结构中完成主要功能的主要零件的主要表面(功能面)进行 变型,功能面变形的主要参数是形状、大小、位置、顺序、材料。 联轴器的主要功能面是左、右联轴器和中间元件的配合面。 变化可变元素,将工作原理和结构中的可变元素的变化列成形态 矩阵表,见图7-10及图7-11上图。
⑶新型联轴器构思
理论上从图7-10中组合构思,可获得多种联轴器方案。其中 有多种是可行的方案,包括现有的联轴器方案和具有创新原理结 构的联轴器方案,举例说明如图7-11下图所示的一款新结构的联 轴器,还有图7-12所示的上、下两款不同的新款结构的联轴器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 曲轴回转两周才又一次动力输出,效率低。
2.无曲轴式活塞发动机
结构创新:利用机构等效代换原理。以反凸轮机构代还 原发动机的曲柄滑块机构。使零件减少,结构简单,成 本降低。 运动原理:活塞往复运动,由推杆端部的滑块在凸轮槽 中滑动致使凸轮转动,再经输出轴输出转矩。 性能特点:系统中不需要飞轮,转动平稳;通过改变凸 轮轮廓形状可以改变输出轴转速,达到减速增矩的目的。 应用:重型机械、船舶、建筑机械等。
图7-1外激波摆动活齿传动的结构模型和传动原理图
② 传动比计算。 ③ 外齿中心轮的齿形综合。 ④ 外激波摆动活齿传动的优缺点。
⑵带传动的选择 带传动由带轮、带和支承件组成。利用张紧在带轮上的
带和带轮间的摩擦力来传递运动和动力。带传动的优点是结 构简单、传动平稳、能缓和冲击和过载打滑,缺点是传动比 较小且不准确,且在结构上从动带轮占据的空间没有充分利 用。机构和六杆机构。还可求出另两个同迹六杆机构, 如图7-4的下面两图。
图7-4
3.应用实例
图7-5是车轮六杆悬挂装置。
第三节 新型内燃机的开发
1.往复式内燃机的技术矛盾:
• 工作机构及气阀控制机构组成复杂,零件多。曲轴等 零件结构复杂、工艺性差。
1.连杆点K位于连杆两铰链连线上的同迹连杆机构
图形缩放原理如下图7-2a所示为一平行四边形机构, 由平行四边形OBKD与机架在O点铰接而成。A点为BK杆延长 线上的一点。连接AO得交点C。当A点沿任意给定轨迹运动 时,C点将给出与A点相似但缩小了的轨迹。⑴AO除以CO与 AB除以KB的值是相等的为常数m(射线定理)。⑵当此四边 形作为一刚体绕O转动一角度时,A点转到A',按射线定理 有AA'与CC'的比值与AO与CO的比例等于常数m。A点的一切 运动都是这两部分运动的合成。因此C点的运动是以缩小的 比例模拟A点的运动,反之亦然。
图7-3
图7-4的左上图就不能用A·凯莱作图法,因为三 个连杆机构压缩成一条直线。把O1ABO2作为一个原 始机构,为了找到连杆AB延长线上K点的同轨迹机构, 在机架O1O2 的延长线上作O3,使O1O2:O2O3= AB:BK,然后,依次作三个平行四边形。于是得到了 同迹四杆机构 O2O3B2C2,C2B2延长线上点K与原始 机构中的K点轨迹相同。
获得两个同迹连杆机构尺寸的A·凯莱作图法:想象7 -3a中机架铰链A0、B0、C0没有结牢,随后拉动A0、 B0、C0互相脱开,直到各个连杆机构的曲柄、连杆和从 动件形成一条直线,便得到图7-3b,后者的机架距离 不等于前者,但两图中所有活动构件的长度是正确的, 所有的角度也是正确的。对于任一给定的带连杆点的铰 链四杆机构,都可以作出如图7-3b这样一个图形而获 得它的另外两个同迹连杆机构的尺寸。
3.活齿减速带轮的形成 由外激波摆动活齿传动与带传动机构的从动带轮合二为
一形成的行星减速带轮,是一种新型减速装置。它具有带传 动可靠性高、减振能力强等优点,又保持了摆动活齿传动无 W输出机构带来的一系列优点,并成功地克服了外激波摆动 活齿传动外激波器尺寸大带来的动平衡性能差的缺点。 ⑴带轮与外激波器的组合 ⑵带轮激波器使绕固定轴传动的带轮成为外激波器的一部分 ⑶卸荷带轮设计
2.原始机构选择
⑴行星传动的选择-外激波摆动活齿传动。 ①组成结构及传动原理
如图7-1所示为外激波摆动活齿传动的结构模型和 传动原理图。外激波摆动活齿传动是由三部分组成:外 激波器H由内轮廓偏心套和转臂滚针轴承组成;活齿轮G 是由活齿架和一组摆动活齿组成,相当于内齿行星轮, 活齿架为具有等分驻齿槽的筒状构件,与机架固联或与 输出轴固联;中心轮K为外齿轮,齿形为摆动活齿几何中 心运动轨迹的内等距线,与输出轴固联或与机架固联。
第一个同迹连杆机构设计如图7 -2b所示,在原始机构上作平行四边 形导引机构BODK。曲柄C0CDO为所 示的第一个同迹连杆机构,K为连杆 CD延长线上的点。所示曲柄拉摇杆机 构的尺寸,如图中下面的公式。
第二个同迹连杆机构设计如图7 -2c所示,在原始机构上作平行四边 形导引机构A0AKE。双摇杆机构 A0EFCO为所求的第二个同迹连杆机 构。
第三个同迹连杆机构设计如图7 -2d所示,CO是两具同迹连杆机构 中共同的新机架的固定铰链点,机架 的三个固定铰链点A0与O,A0与CO, O与CO。
2.任意连杆点 K的同迹连杆机构
在图7-3a中,四杆机构A0A1B1B0为A1B1上有附 加连杆点K的原始机构。由罗伯特-契贝谢夫定理决定的 另两个四杆机构为A0A2C2C0和B0B3C3C0。在这3个同 迹连杆机构中有四个相似三角形;有三个不同的平行四 边形。
3.旋转式内燃发动机
(直接将燃料的动力转化为回转运动输出)
组成情况:椭圆形汽缸,三角形转子(转子的内孔上有齿),外齿轮,吸 气口,排气口,火花塞。 工作原理:吸气、压缩、燃爆、排气。随着这四个物理功能致使三角形转 子与椭圆汽缸之间的空腔体积发生变化,则转子进行转动。 性能特点:结构简单,零件数量比往复发动机少40%,体积减少50%, 重量下降1/2到2/3;但存在汽缸上产生振纹的问题。其原因是与密封片 的材料与形状有关。 运动设计:三角转子相当于行星内齿轮2,系杆H是发动机的输出轴,1为 中心轮,并且:z2/z1=1.5,则:nH/n2=3 。见下页图。
第二节 同轨迹连杆机构
同轨迹四连杆机构是指自由度 F相同、输入构件 的运动规律相同、输出构件上的一点轨迹相同的一组 连杆机构,但这组连杆机构的运动学尺寸不同,所以 其受力状态、动态性能有巨大差异。因而,同轨迹连 杆机构的形成方法是机构创新设计的重要方法之一。
形成同轨迹连杆机构的罗伯特-契贝谢夫定理是 由美国数学家萨姆尔·罗伯特于1875年和俄国学者契 贝谢夫于1878年分别发现的,因此称为“罗伯特-契 贝谢夫定理”。该定理的内容是:由一个四杆铰链机 构发生的一条连杆曲线,还可以由另外两个四杆铰链 机构发生出来。或表述为同一连杆曲线,可以用三个 不同的机构来实现。