第一讲 数与式的运算(学生版)

合集下载

江苏省海门市东洲国际学校高中数学复习学案(无答案):数与式的运算

江苏省海门市东洲国际学校高中数学复习学案(无答案):数与式的运算
【巩固训练】
1.是否存在整数a、b、c,满足
16
2,若存在,求出a、b、c的值;若不存在,
说明理由.
六、不定方程或方程组
我们知道,如果未知数的个数多于方程的个数,那么,一般来说,它的解往往是不确定的,例如方
【例2】(1) 当x取何值时,x3有最小值?这个最小值是多少?
(2)当x取何值时,5x2有最大值?这个最大值是多少?
(3)求x4x5的最小值.
(4)求x7x8x9的最小值.
【例3】(1)阅读下面材料:点A、B在数轴上分别表示实数a,b,A、B两点这间的距离表示为AB,
当A、B两点中一点在原点时,不妨设点A在原点,如图1,ABOBbab;当A、B
两点都不在原点时,
①如图2,点A、B都在原点的右边ABOBOAbabaab;
②如图3,点A、B都在原点的左边ABOBOAbabaab;
③如图4,点A、B在原点的两边ABOAOBababab.综上,数轴上A、B两点之间的距离ABab.
(2)回答下列问题:
①数轴上表示2和5两点之间的距离是,数轴上表示-2和-5的两点之间的距离是,数轴上表示1和-3的两点之间的距离是;
a
31221
【例12】计算

a2
a24
a2
a2
【巩
345
xyz
1.已知
xyyzzx
,求
(xy)(yz)(xz)
的值.
2.请先将下列代数式化简,再选择一个你喜欢又使原式有意义和数代入求值.
a1
a1
a22a1
五、幂的运算
1、幂的运算法则
①aman amn
②amanamn
③amnamn
④abnanbn

初升高数学衔接完整版191页

初升高数学衔接完整版191页

3
39
说明:多项式乘法的结果一般是按某个字母的降幂或升幂排列.
【公式 2】 (a + b)(a 2 − ab + b2 ) = a3 + b3 (立方和公式)
证明: (a + b)(a 2 − ab + b2 ) = a3 − a 2b + ab2 + a 2b − ab2 + b3 = a3 + b3
2(x + 3)(x − 3)
2(x + 3)(x − 3) 2(x + 3)
说明:(1) 分式的乘除运算一般化为乘法进行,当分子、分母为多项式时,应先因式分 解再进行约分化简;(2) 分式的计算结果应是最简分式或整式.
4、…、10 的立方数,是非常有好处的.
【例 4】已知 x 2 − 3x = 1 = 0 ,求 x3 + 1 的值. x3
解: x2 − 3x = 1 = 0 ∴ x ≠ 0 ∴ x + 1 = 3
x
原式= (x + 1 )(x2 −1 + 1 ) = (x + 1 )[(x + 1 )2 − 3] = 3(32 − 3) = 18
a3 + b3 = (a + b)[(a + b)2 − 3ab] = −c(c2 − 3ab) = −c3 + 3abc ∴ a3 + b3 + c3 = 3abc ②,把②代入①得原式= − 3abc = −3
abc
说明:注意字母的整体代换技巧的应用. 引申:同学可以探求并证明:
a3 + b3 + c3 − 3abc = (a + b + c)(a 2 + b2 + c 2 − ab − bc − ca)

专题03 分式及其运算(4大考点)(学生版)

专题03 分式及其运算(4大考点)(学生版)

第一部分数与式专题03分式及其运算核心考点核心考点一分式的概念核心考点二分式的基本性质核心考点三分式的运算核心考点四分式的化简求值新题速递核心考点一分式的概念(2022·湖南怀化·中考真题)代数式25x,1π,224x+,x2﹣23,1x,12xx++中,属于分式的有()A.2个B.3个C.4个D.5个(2022·内蒙古包头·1x+在实数范围内有意义,则x的取值范围是___________.(2022·湖北黄石·中考真题)先化简,再求值:2269111a aa a++⎛⎫+÷⎪++⎝⎭,从-3,-1,2中选择合适的a 的值代入求值.注意1.分式可以表示两个整式相除,其中分子为被除式,分母为除式,分数线起除号和括号的作用。

2.分式的分子中可以含有字母,也可以不含字母,但分母中必须含有字母,这是区别分式和整式的重要依据。

3.在任何情况下,分式的分母的值都不为0,否则分式无意义。

知识点:分式的概念一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式,其中A 叫做分式的分子,B 叫做分式的分母。

(1)分式有意义的条件:分母不为零,即()0AB B≠(2)分式值为零:分子为零,且分母不为零。

即A B(0A =且0B ≠)【变式1】(2022·河北石家庄·一模)关于代数式M =2211121x x x x x ⎛⎫÷ ⎪⎝⎭--+++,下列说法正确的是()A .当x =1时,M 的值为0B .当x =﹣1时,M 的值为﹣12C .当M =1时,x 的值为0D .当M =﹣1时,x 的值为0【变式2】(2022·广东珠海·模拟预测)若21(1)ma =--(m 为正整数),且a 、b 互为相反数,b 、c 互为倒数,则2()m m ab b b c +--的值为()A .0B .1-C .2-D .0或2-【变式3】(2022·广东·华南师大附中三模)把代数式322363x x y xy -+分解因式,结果正确的是___________;若分式11x x +-的值为零,则x 的值为___________;若代数式26x x b -+可化为()21x a --,则b a -的值是___________.【变式4】(2022·广东·华南师大附中三模)把代数式322363x x y xy -+分解因式,结果正确的是___________;若分式11x x +-的值为零,则x 的值为___________;若代数式26x x b -+可化为()21x a --,则b a -的值是___________.【变式5】(2022·广东佛山·二模)平面直角坐标系中有两个一次函数1y ,2y ,其中1y 的图象与x 轴交点的横坐标为2且经过点()1,2,22y mx =-.(1)求函数1y 的关系式;(2)当2y 的图象经过两点11,22n ⎛⎫- ⎪⎝⎭和(),1n 时,求22n m +的值;(3)当1x >时,对于x 的每一个值,都有12y y <,求m 的取值范围.核心考点二分式的基本性质(2020·河北·中考真题)若a b ¹,则下列分式化简正确的是()A .22a ab b +=+B .22a ab b -=-C .22a a b b=D .1212aa b b =(2020·内蒙古呼和浩特·中考真题)分式22x x -与282x x -的最简公分母是_______,方程228122-=--x x x x的解是____________.(2021·广西梧州·中考真题)计算:(x ﹣2)2﹣x (x ﹣1)3224x x x -+.知识点:分式的基本性质分式的基本性质:分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变。

初高衔接第一课时数与式的运算

初高衔接第一课时数与式的运算

Hale Waihona Puke 典例题例4.1 简化:1 4 24 − 6 54 + 3 96 − 2 150;
2
30 ×
3
2
2
3
2 ÷ −2 2
1
2
.
解:
1 4 24 − 6 54 + 3 96 − 2 150 = 8 6 − 18 6 + 12 6 − 10 6 = −8 6.
2
30 ×
8
3
3
2
2
5
2
2
3
÷ −2
30 × × = −
所以 −
+
2 2 − 2.
=
+ − 2
+ − 2 −2+ −2
+ −
= 2 + 1.
= 2 − 2 + −2 = 2 + 1 − 2 + 2 − 1 =
初高衔接
行,运算中要运用公式 = ≥ 0, ≥ 0 .而对于二次根式的除法,
通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法
与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式。
2 二次根式 2 的意义:
, ≥ 0
2
= =
−, < 0
初高衔接
2 完全平方 ± 2 = 2 ± 2 + 2 .
通过证明得到的乘法公式:
1 立方和公式 + 2 − + 2 = 3 + 3 ;
2 立方差公式 − 2 + + 2 = 3 − 3 ;
3 三数和平方公式 + + 2 = 2 + 2 + ��2 + 2 + + ;

初高中衔接专题讲义一、数与式的运算(4课时)(可编辑修改word版)

初高中衔接专题讲义一、数与式的运算(4课时)(可编辑修改word版)

专题一、数与式的运算课时一:乘法公式一、初中知识1.实数运算满足如下运算律:加法交换律,加法结合律,乘法交换律,乘法结合律,乘法对加法的分配律。

2.乘法公式平方差公式: (a +b)(a -b) =a 2-b 2完全平方公式: (a ±b)2=a 2± 2ab +b 2二、目标要求1.理解字母可以表示数,代数式也可以表示数,并掌握数与式的运算。

2.掌握平方差公式和完全平方公式的灵活运用,理解立方和与差公式,两数和与差的立方公式以及三数和的完全平方公式。

三、必要补充根据多项式乘法法则推导出如下乘法公式(1)(x +a)(x +b) =x 2+ (a +b)x +ab(2)(ax +b)(cx +d ) =acx2+ (ad +bc)x +bd(3)立方和公式: (a +b)(a 2-ab +b 2 ) =a3+b3(4)立方差公式: (a -b)(a 2+ab +b 2 ) =a 3-b3(5)两数和的立方公式:(a +b)3=a3+ 3a 2b + 3ab2+b3(6)两数差的立方公式:(a -b)3=a3- 3a 2b + 3ab 2-b3(7)三数和的平方公式:(a +b +c)2=a 2+b 2+c 2+ 2ab + 2bc + 2ac四、典型例题例1、计算:(1)(x + 2)(x - 5) (3)(2x -1)3(2)(2x + 3)(3x - 2) (4)(2a +b -c)2例2:已知x +y = 3 ,xy = 8 ,求下列各式的值(1)x 2y 2;(2)x 2xy y 2;(3)( x y)2;(4)x 3y 3分析:(1)x 2y 2( x y)2 2 xy(2)x 2xy y 2( x y)2 3 xy(3)( x y)2( x y)2 4 xy(4)x 3y 3( x y)( x 2xy y 2 ) ( x y)[( x y)2 3 xy] 例3:已知a +b +c = 4 ab +bc +ac = 4 求a 2+b 2+c 2的值分析: a2+b2+c2= (a +b +c)2- 2(ab +bc +ac) = 8变式:已知:x2- 3x +1= 0 ,求x3+1x3的值。

高一数学单元知识点专题讲解1---数与式的运算

高一数学单元知识点专题讲解1---数与式的运算
(2 + 3)(2 − 3)
【例 8】计算:
(1) ( a + b + 1)(1 − a + b ) − ( a + b )2
(2)
a
a
+
a − ab a + ab
解: 原式 (1) = (1 + b)2 − ( a )2 − (a + 2 ab + b) = −2a − 2 ab + 2 b + 1
【例 7】计算(没有特殊说明,本节中出现的字母均为正数):
3 (1)
2+ 3
11 (2) +
ab
(3) 2
x −
x3 +
8x
2
解: 原式 (1)
=
3(2 − 3)
3(2 − =
3) = 6 − 3 3
(2 + 3)(2 − 3) 22 − 3
原式 a + b a2b + ab2
(2) =
=
ab
ab
3/7
解:( )原式 1
= 43 + m3 = 64 + m3
( )原式 2
= (1 m)3 − (1 n)3 = 1 m3 − 1 n3
5
2 125 8
( )原式 3
= (a 2 − 4)(a 4 + 4a 2 + 42 ) = (a 2 )3 − 43 = a 6 − 64
( )原式 4
= (x + y)2 (x 2 − xy + y 2 )2 = [(x + y)(x 2 − xy + y 2 )]2
三、分式
4/7

数与式的基本概念及运算法则

数与式的基本概念及运算法则

数与式的基本概念及运算法则在数学中,数与式是基本的概念,它们在各个领域都有广泛运用。

本文将介绍数与式的基本概念和运算法则,希望能帮助读者更好地理解和运用数与式。

一、数的基本概念与运算法则1.1 自然数和整数自然数是最基本的数,即从1开始,依次递增的数。

自然数集合记作N={1, 2, 3, ...}。

整数是包括正整数、负整数和0的数。

整数集合记作Z={..., -3, -2, -1, 0, 1, 2, 3, ...}。

1.2 有理数和无理数有理数是可以表示为两个整数之比的数,它们包括整数、分数和有限小数。

有理数集合记作Q。

无理数是无法用有理数表示的数,它们包括无限不循环小数,如π和根号2等。

无理数集合记作I。

1.3 实数实数是包括有理数和无理数的所有数,它们构成实数集合R。

1.4 数的运算法则数的基本运算法则包括加法、减法、乘法和除法。

加法法则:对于任意的实数a、b和c,满足结合律和交换律,即(a+b)+c=a+(b+c)和a+b=b+a。

减法法则:减法是加法的逆运算,即a-b=a+(-b)。

乘法法则:对于任意的实数a、b和c,满足结合律和交换律,即(a*b)*c=a*(b*c)和a*b=b*a。

除法法则:除法是乘法的逆运算,即a/b=a*(1/b)。

二、式的基本概念与运算法则2.1 代数式代数式是由数字、字母和运算符号组成的表达式。

代数式可以包含加减乘除、指数、根号、括号等。

代数式可以是一元的或多元的。

2.2 方程与不等式方程是含有未知数的等式,表示两个代数式相等的关系。

解方程是求使方程成立的未知数的值。

不等式是含有未知数的不等式表达式,表示两个代数式的大小关系。

求解不等式是求使不等式成立的未知数的取值范围。

2.3 恒等式和条件式恒等式是对于所有满足式中变量范围的值都成立的等式。

条件式是只在满足一定条件时成立的等式。

2.4 表达式的合并与分解合并是指将多个代数式合并成一个更简单的表达式。

分解是指将一个复杂的代数式分解成几个更简单的表达式。

专题1 数与式的运算

专题1 数与式的运算

专题01数与式的运算本专题在初中、高中扮演的角色初中阶段“从分数到分式”,通过观察、分析、类比,找出分式的本质特征,及它们与分数的相同点和不同点,进而归纳得出分式的概念及运算性质,我们已经运用的这些思想方法是高中继续学习的法宝.二次根式是在学习了平方根、立方根等内容的基础上进行的,是对“实数”、“整式”等内容的延伸和补充,对数与式的认识更加完善.二次根式的化简对勾股定理的应用是很好的补充;二次根式的概念、性质、化简与运算是高中学习解三角形、一元二次方程、数列和二次函数的基础.二次根式是初中阶段学习数与式的最后一章,是式的变形的终结章.当两个二次根式的被开方数互为相反数时,可用“夹逼”的方法推出,两个被开方数同时为零.本专题内容蕴涵了许多重要的数学思想方法,如类比的思想(指数幂运算律的推广)、逼近的思想(有理数指数幂逼近无理数指数幂),掌握运算性质,能够区别n的异同. 通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质,掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质.高中必备知识点1:绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即:,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.典型考题【典型例题】阅读下列材料:我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离,即x =0x -,也就是说,x 表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为21x x -表示在数轴上数1x 与数2x 对应的点之间的距离; 例1解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为2±,所以方程|x |=2的解为2±=x .例2解不等式|x -1|>2.在数轴上找出|x -1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x -1|=2的解为x =-1或x =3,因此不等式|x -1|>2的解集为x <-1或x >3.例3解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x 的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的x 对应的点在1的右边或-2的左边.若x 对应的点在1的右边,可得x =2;若x 对应的点在-2的左边,可得x =-3,因此方程|x -1|+|x +2|=5的解是x =2或x =-3.参考阅读材料,解答下列问题:(1)方程|x +2|=3的解为 ;(2)解不等式:|x -2|<6;(3)解不等式:|x -3|+|x +4|≥9;(4)解方程: |x -2|+|x +2|+|x -5|=15.(1)1x =或x =-5;(2)-4<x <8;(3)x ≥4或x ≤-5;(4)103x =-或203x = . (1)由已知可得x+2=3或x+2=-3解得1x =或x =-5.(2)在数轴上找出|x -2|=6的解.∵在数轴上到2对应的点的距离等于6的点对应的数为-4或8, ∴方程|x -2|=6的解为x =-4或x =8,∴不等式|x -2|<6的解集为-4<x <8.(3)在数轴上找出|x -3|+|x +4|=9的解.由绝对值的几何意义知,该方程就是求在数轴上到3和-4对应的点的距离之和等于15的点对应的x 的值. ∵在数轴上3和-4对应的点的距离为7,∴满足方程的x 对应的点在3的右边或-4的左边.若x 对应的点在3的右边,可得x =4;若x 对应的点在-4的左边,可得x =-5,∴方程|x -3|+|x +4|=9的解是x =4或x =-5,∴不等式|x -3|+|x +4|≥9的解集为x ≥4或x ≤-5.(4)在数轴上找出|x-2|+|x+2|+|x-5|=15的解.由绝对值的几何意义知,该方程就是求在数轴上到2和-2和5对应的点的距离之和等于9的点对应的x的值.∵在数轴上-2和5对应的点的距离为7,∴满足方程的x对应的点在-2的左边或5的右边.若x对应的点在5的右边,可得203x=;若x对应的点在-2的左边,可得103x=-,∴方程|x-2|+|x+2|+|x-5|=15的解是103x=-或203x=.【变式训练】实数在数轴上所对应的点的位置如图所示:化简.a-2b解:由数轴知:a<0,b>0,|a|>|b|,所以b-a>0,a-b<0原式=|a|-(b-a)-(b-a)=-a-b+a-b+a=a-2b【能力提升】已知方程组的解的值的符号相同.(1)求的取值范围;(2)化简:.(1) −1<a<3;(2).(1)①+②得:5x=15−5a,即x=3−a,代入①得:y=2+2a,根据题意得:xy=(3−a)(2+2a)>0,解得−1<a<3;(2)∵−1<a<3,∴当−1<a<3时,高中必备知识点2:乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式22()()a b a b ab +-=-; (2)完全平方公式222()2a b a ab b ±=±+.我们还可以通过证明得到下列一些乘法公式:(1)立方和公式2233()()a b aab b a b +-+=+; (2)立方差公式2233()()a b a ab b a b -++=-;(3)三数和平方公式2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式33223()33a b a a b ab b +=+++; (5)两数差立方公式33223()33a b a a b ab b -=-+-.典型考题【典型例题】 (1)计算:203212016(2)(2)2-⎛⎫-++-÷- ⎪⎝⎭(2)化简:2(2)(2)(2)a b a b a b +--- (1)3(2)4ab-8b 2解:(1)原式=4+1+(-8)÷4 =5-2=3(2)原式=a 2-4b 2-(a 2-4ab+4b 2)=a 2-4b 2-a 2+4ab-4b 2=4ab-8b 2【变式训练】计算:(1)0221( 3.14)(4)()3π--+--(2)2(3)(2)(2)x x x --+-(1)8 (2)-6x+13(1)原式=1+16-9=8;(2)原式=x 2-6x+9-(x 2-4)=x 2-6x+9-x 2+4=-6x+13.【能力提升】已知10x =a ,5x =b ,求:(1)50x 的值;(2)2x 的值;(3)20x 的值.(结果用含a 、b 的代数式表示) (1)ab;(2)a b ;(3)2a b. 解:(1)50x =10x ×5x =ab ; (2)2x =xx x 1010a 55b ⎛⎫== ⎪⎝⎭; (3)20x =x x 2x x 1010a 101055b ⎛⎫⨯=⨯= ⎪⎝⎭.高中必备知识点3:二次根式0)a ≥的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式.例如32a b 212x ++,22x y ++1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如与,b 与b 互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式0,0)a b =≥≥;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2a ==,0,,0.a a a a ≥⎧⎨-<⎩典型考题【典型例题】计算下面各题.(1)2163)1526(-⨯-;(2(1) 56-;(2)(1)×3﹣6=﹣=﹣(2)x 4﹣4x=2x 4x2x .【变式训练】时,想起分配律,于是她按分配律完成了下列计算:==她的解法正确吗?若不正确,请给出正确的解答过程.不正确,见解析解:不正确,正确解答过程为:【能力提升】先化简,再求值:(2a b a b -+-b a b -)÷a 2b a b-+,其中,.2a a b -. 解:(2a b a b -+-b a b -)÷a 2b a b-+ =()()()()()2a b a b b a b a b a b a b a 2b ---++⋅+--=2222a 3ab b ab b 1a b a 2b-+--⋅-- =()2a a 2b 1a ba 2b -⋅-- =2a a b -, 当+3,-3时,原式22=33.高中必备知识点4:分式1.分式的意义形如A B 的式子,若B 中含有字母,且0B ≠,则称A B 为分式.当M ≠0时,分式A B具有下列性质: A A M B B M⨯=⨯; A A M B B M÷=÷. 上述性质被称为分式的基本性质.2.繁分式 像a b c d+,2m n p m n p+++这样,分子或分母中又含有分式的分式叫做繁分式.典型考题【典型例题】先化简,再求值22122()121x x x x x x x x +++-÷--+,其中x 满足x 2+x ﹣1=0.21x x -,1. 解:原式=()()()221-211121x x xx x x x x ---=-+210x x +﹣=,21x x ∴=﹣,∴原式=1.【变式训练】化简:22442x xy y x y -+-÷(4x 2-y 2)y x +2122442x xy y x y -+-÷(4x 2-y 2)=2(2)12(2)(2)x y x y x y x y -⨯-+-=y x +21.【能力提升】已知:112a b -=,则ab b a bab a 7222+---的值等于多少?43-.解:∵112a b -=,∴a-b=-2ab ,则2ab 2ab44ab 7ab 3--=--+专题验收测试题1.如图,若实数m =﹣7+1,则数轴上表示m 的点应落在()A .线段AB 上 B .线段BC 上 C .线段CD 上D .线段DE 上B∵实数m+1,23<<∴﹣2<m<﹣1,∴在数轴上,表示m的点应落在线段BC上.故选:B.2.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是()A.36 B.45 C.55 D.66 B(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+4a3b+6a2b2+4ab3+b4;(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6;(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7;第8个式子系数分别为:1,8,28,56,70,56,28,8,1;第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则(a+b)10的展开式第三项的系数为45.故选B.3.已知1-1xx=,则221xx+等于()A.3 B.2 C.1 D.0 A∵1-1 xx=,∴21-1x x ⎛⎫= ⎪⎝⎭, 即221-2+1x x ⎛⎫= ⎪⎝⎭, ∴221-=3x x.故选A . 4.设边长为3的正方形的对角线长为a ,下列关于a 的四种说法:① a 是无理数;② a 可以用数轴上的一个点来表示;③ 3<a<4;④ a 是18的算术平方根.其中,所有正确说法的序号是 A .①④ B .②③C .①②④D .①③④C根据勾股定理,边长为3的正方形的对角线长为a = 根据实数与数轴上的一点一一对应的关系,a 可以用数轴上的一个点来表示,故说法②正确.∵216<a 18<25=,∴4<a =,故说法③错误.∵2a 18=,∴根据算术平方根的定义,a 是18的算术平方根,故说法④正确. 综上所述,正确说法的序号是①②④.故选C .5.定义一种关于整数n 的“F ”运算:一、当n 为奇数时,结果为3n +5;二、当n 为偶数时,结果为2k n(其中k 是使2k n为奇数的正整数),并且运算重复进行.例如:取n =58,第一次经F 运算是29,第二次经F 运算是92,第三次经F 运算是23,第四次经F 运算是74……,若n =449,求第2020次运算结果是( ) A .1 B .2C .7D .8A设449经过n 次运算结果为n a ,则11352a =,2169a =,3512a =,41a =,58a =,61a =,⋯,21n a ∴=,218(2n a n +=且n 为整数).∵2020为偶数,20201a ∴=.故选:A6.如图所示,将形状、大小完全相同的“•”和线段按照一定规律摆成下列图形,第1幅图形中“•”的个数为1a ,第2幅图形中“•”的个数为2a ,第3幅图形中“•”的个数为3a ,…,以此类推,则123191111a a a a ++++…的值为( )A .2021B .6184C .589840D .431760C∵第一幅图中“•”有1133a =⨯=个;第二幅图中“•”有2248a =⨯=个; 第三幅图中“•”有33515a =⨯=个;∴第n 幅图中“•”有()2na n n =+(n 为正整数)个∴111122n a n n ⎛⎫=- ⎪+⎝⎭∴当19n =时123191111a a a a ++++ (1111)3815399=++++11111324351921=++++⨯⨯⨯⨯ 1111111111112322423521921⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1111111112324351921⎛⎫=⨯-+-+-++- ⎪⎝⎭11111222021⎛⎫=⨯+-- ⎪⎝⎭589840=.故选:C 7.定义新运算,*(1)a b a b =-,若a 、b 是方程2104x x m -+=(0m <)的两根,则**b b a a -的值为()A .0B .1C .2D .与m 有关A根据题意可得()()22**11b b a a b b a a b b a a -=---=--+,又因为a ,b 是方程2104x x m -+=的两根,所以2104a a m -+=,化简得214a a m -=-,同理2104b b m -+=,214b b m -=-,代入上式可得()()222211044b b a a b b a a m m ⎛⎫⎛⎫--+=--+-=--+-= ⎪ ⎪⎝⎭⎝⎭,故选A .8.已知1x ,2x ,…,2019x 均为正数,且满足()()122018232019Mx x x x x x =++++++,()()122019232018N x x x x x x =++++++,则M ,N 的大小关系是()A .M N <B .MN >C .MN D .M N ≥B根据题意,设122018p x x x =+++,232018q x x x =++,∴1p q x -=,∴()()12201823201920192019()Mx x x x x x p q x pq p x =++++++=•+=+•; ()()12201923201820192019()N x x x x x x p x q pq q x =++++++=+•=+•;∴20192019()MN pq p x pq q x -=+•-+•=2019()x p q •- =201910x x •>;∴MN >;故选:B.9.下列运算正确的是( )A .1a b a b b a -=--B .m n m na b a b --=- C .11b b a a a+-=D .2221a b a b a b a b+-=--- D根据分式的减法法则,可知:a b a b b a ---=a b a b a b +--=a ba b +-,故A 不正确;由异分母的分式相加减,可知m n a b -==bm an bm anab ab ab --,故B 不正确;由同分母分式的加减,可知11b b a a a+-=-,故C 不正确; 由分式的加减法法则,先因式分解通分,即可知2221a b a b a b a b+-=---,故D 正确.故选:D. 10.已知a ,b 为实数且满足1a ≠-,1b ≠-,设11=+++a b M a b ,1111=+++N a b .①若1ab =时,M N ;②若1ab >时,M N >;③若1ab <时,M N <;④若0a b +=,则0M N ≤.则上述四个结论正确的有( ) A .1 B .2C .3D .4D对于①,可知(1)(1)2(1)(1)(1)(1)a b b a a b ab M a b a b +++++==++++,2(1)(1)a b N a b ++=++,若1ab =时,M N ,正确;对于②,也可分析得到;对于③④同样如此.11.若11122299919991a +=+,22233399919991b +=+,则a 与b 的大小关系为( ) A .a b > B .a b =C .a b <D .无法确定A∵11122299919991a +=+,22233399919991b +=+, ∴1112222223339991999199919991a b ++-=-++ =()()()()()211133322222222299919991999199919991++-+++=()()111333222222333999999999999199291++-⨯+=()()()1112222222223339999999999991999211⨯+-++⨯>()()111222222222333999999999999199291+⨯-⨯+>0,∴a b >.故选A .12.已知实数x ,y ,z 满足1x y ++1y z ++1z x +=76,且z x y x y y z z x+++++=11,则x +y +z 的值为( )A .12B .14C .727D .9A11z x y x y y z z x ++=+++, 11114z x y x y y z z x∴+++++=+++, 即14x y z x y z x y zx y y z z x ++++++++=+++,11114x y y z z x x y z∴++=+++++, 而11176x y y z z x ++=+++, 1476x y z ∴=++,12x y z ∴++=.故选:A .13.已知226a b ab +=,且a>b>0,则a ba b+-的值为( )A B .C .2D .±2A∵a 2+b 2=6ab ,∴(a+b )2=8ab ,(a-b )2=4ab , ∵a >b >0,∴a+b=a-b=∴a ba b +-= A.14有意义,那么直角坐标系中点A(a,b)在( )A.第一象限B.第二象限C.第三象限D.第四象限A根据二次根式的概念,可知a≥0,ab>0,解得a>0,b>0,因此可知A(a,b)在第一象限.故选A15.已知a的最小值为()A.0 B.3 C.D.9B根据题意,由,可知当(a﹣3)2=0,即a=3时,代数的值最小,为故选B.16.已知m、n m,n)为()A.(2,5)B.(8,20)C.(2,5),(8,20)D.以上都不是Cm、n是正整数,∴m=2,n=5或m=8,n=20,当m=2,n=5时,原式=2是整数;当m=8,n=20时,原式=1是整数;即满足条件的有序数对(m,n)为(2,5)或(8,20),故选:C.17.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187…….则3+32+33+34+…+32019的末位数字是____.9.∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187……,∴尾数四个一循环,∴每四个的尾数和是0.∵2019÷4=504…3,∴3+32+33+34+…+32019的末位数字是9.故答案为:9.C,最小正方形的周长是18.如图,将一个正方形分割成11个大小不同的正方形,记图中最大正方形的周长是12C,则12C C =_____.432如图,设,AB x BC y ==,最大正方形标记为0号,被分割成的11个正方形标记为1-11号,其中最小正方形标记为11号,各个正方形的边长求解过程如下: 0号:1号+2号得x y +5号:1号-2号得y x -3号:2号-5号得()2x y x x y --=-4号:0号-2号-3号得(2)22x y x x y y x +---=- 7号:3号-4号得2(22)43x y y x x y ---=- 6号:4号-7号得22(43)56y x x y y x ---=- 10号:0号-1号得x9号:0号-4号-6号-10号得(22)(56)86x y y x y x x x y +-----=- 8号:10号-9号得(86)67x x y y x --=- 11号:6号-7号得56(43)810y x x y y x ---=- 或9号-6号得86(56)1411x y y x x y ---=- 因此x 和y 满足等式:8101411y x x y -=- 整理得:1924x y =所以最大正方形(0号)的周长1434()6C x y y =+=最小正方形(11号)的周长214(1411)3C x y y =-=则12432C C =.19.对于整数a ,b ,c ,d ,定义a d b c =ac ﹣bd ,已知1<1d 4b<3,则b+d 的值为_______.±3根据题意,得1<4–bd <3,化简,得1<bd <3, a ,b ,c ,d 均为整数,∴db =2, ∴当d =1时b =2或当d =–1时b =–2, ∴b +d =3或b +d =–3.20. 已知21x y =⎧⎨=⎩,是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则m+3n 的平方根为______.±3把21x y =⎧⎨=⎩代入方程组得:2821m n n m +=⎧⎨-=⎩①②,①×2-②得:5m =15, 解得:m =3,把m =3代入①得:n =2,则m +3n =3+6=9,9的平方根是±3, 故答案为:±3 21.若m 满足关系式35223x y m x y m +--+-199199x y x y =---+m =________.201由题意可得,199-x-y ≥0,x-199+y ≥0, ∴199-x-y=x-199+y=0,∴x+y=199①.=0,∴3x+5y-2-m=0②,2x+3y-m=0③,联立①②③得,1993520230x y x y m x y m +=⎧⎪+--=⎨⎪+-=⎩①②③,②×2-③×3得,y=4-m , 将y=4-m 代入③,解得x=2m-6,将x=2m-6,y=4-m 代入①得,2m-6+4-m=199,解得m=201. 故答案为:201.22.若214x x x++=,则2211x x ++= ________________.8∵214x x x ++=可化为13x x +=,2211x x ++化为211x x ⎛⎫+- ⎪⎝⎭∴原式=211x x ⎛⎫+- ⎪⎝⎭=32-1=823.已知22143134m n m n =--+,则11m n+的值等于______. 1322143134m n m n =--+221(2)(6)04m n -++=,则20m -=,60n +=, 所以2m =,6n =-, 所以11111263m n +=-=. 故答案是:13. 24.已知函数1x f xx,那么1f _____.2+因为函数1x f xx,所以当1x =时, 211()2221f x .25.先化简,再求值:24211326x x x x -+⎛⎫-÷⎪++⎝⎭,其中1x =..原式=221(1)12(3)232(3)3(1)1x x x x x x x x x ---+⎛⎫⎛⎫÷=⋅= ⎪ ⎪+++--⎝⎭⎝⎭.将1x == 26.观察下列等式:1)131====-====回答下列问题:(1(2;(3+….(1(2;(3)1 (12575752227575 527755=(222121212121n n n n n 2222212121n n n n 22212121n n n n 22221n n2121n n(3)由(22121121n n n n3153757573 =153757573 31537573717573175 531270=(1)求实数,a b 的值;(2的整数部分为x ,小数部分为y①求2x y +的值;②已知10kx m =+,其中k 是一个整数,且01m <<,求k m -的值.(1)7a =;21b =;(2)①4(10=,2490a -=且70a +≠,∴30a b -=,2490a -=且70a +≠, 即7,21a b ;(2)∵162125,∴45<<,即的整数部分为4,小数部分为4,①244)4x y +=+=;②∵12<<,∴8109<<,又∵104kx m k m =+=+,k 是一个整数,且01m <<,∴2,10242k m ==-⨯=∴2(2k m -=--=28.已知下面一列等式: 111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;… (1)请你按这些等式左边的结构特征写出它的一般性等式:(2)验证一下你写出的等式是否成立;(3)利用等式计算:11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++. (1)一般性等式为111=(+11n n n n -+);(2)原式成立;详见解析;(3)244x x+. (1)由111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;…,知它的一般性等式为111=(+11n n n n -+); (2)1111(1)(1)n n n n n n n n +-=-+++111(1)1n n n n ==⋅++, ∴原式成立;(3)11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++ 1111112x x x x =-+-+++11112334x x x x +-+-++++ 114x x =-+ 244x x =+. 29.对有理数a 、b 、c ,在乘法运算中,满足:①交换律:ab ba =;②对加法的分配律:()ca b ca cb +=+.现对a b ⊕这种运算作如下定义,规定:a b a b a b ⊕=⋅++.(1)这种运算是否满足交换律?(2)举例说明:这种运算是否满足对加法的分配律?(1)运算满足交换律;(2)加法的分配律不满足.(1)∵a b a b a b ⊕=⨯++,b a b a b a ⊕=⨯++,∴a b b a ⊕=⊕,∴该运算满足交换律;(2)根据规定,()()()a b c a b c a b c +⊕=+⨯+++a c b c a b c =⨯+⨯+++,∵a c a c a c ⊕=⨯++,b c b c b c ⊕=⨯++, ∴a c b c a c a c b c b c⊕+⊕=⨯+++⨯++2a c b c a b c =⨯+⨯+++, ∵2a c b c a b c a c b c a b c ⨯+⨯+++≠⨯+⨯+++,∴()a b c a c b c +⊕≠⊕+⊕,∴对加法的分配律不满足.30.李狗蛋同学在学习整式乘法公式这一节时,发现运用乘法公式在进行一些计算时特别简便,这激发了李狗蛋同学的学习兴趣,他想再探究一些有关整式乘法的公式,便主动查找资料进行学习,以下是他找来的资料题,请你一同跟李狗蛋同学探究一下:(1)探究:()()a b a b -+=____;()()22a b a ab b -++=___;()()3223a b a a b ab b -+++=_____;(2)猜想:()()1221...n n n n a b a a b ab b -----++++=______(n 为正整数,且2n ≥); (3)利用上述猜想的结论计算:98732222...2221-+-+-+-的值.(1)22a b -,33a b -,44a b -;(2)n n a b -;(3)341 (1)()()22a b a b a b -+=-,()()22322223a b a ab b a a b ab a b ab b -++=++---33=-a b ,()()32234322332234a b a a b ab b a a b a b ab a b a b ab b -+++=+++----44a b =-,故答案为:22a b -,33a b -,44a b -;(2)根据(1)的结果可知:()()1221...n n n n a b a a b ab b -----++++=n n a b -, 故答案为:nn a b -; (3)原式987236278922(1)2(1)...2(1)2(1)2(1)(1)=+⨯-+⨯-++⨯-+⨯-+⨯-+- 98723627891[2(1)][22(1)2(1)...2(1)2(1)2(1)(1)]3=⨯--⨯+⨯-+⨯-++⨯-+⨯-+⨯-+-10101[2(1)]3=⨯-- 10213-= 102413-= 341=.。

第一讲 数与式的运算

第一讲 数与式的运算

第一讲数与式的运算一、乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式(ab)(ab)a2b2;(2)完全平方公式(ab)2a22abb2.我们还可以通过证明得到下列一些乘法公式:(1)立方和公式(ab)(a2abb2)a3b3;(2)立方差公式(ab)(a2abb2)a3b3;(3)三数和平方公式(abc)2a2b2c22(abbcac);二、因式分解因式分解是代数式的一种重要的恒等变形,它与整式乘法是相反方向的变形。

在分式运算、解方程及各种恒等变形中起着重要的作用。

是一种重要的基本技能。

因式分解的方法较多,除了初中课本涉及到的提取公因式法和公式法(平方差公式和完全平方公式)外,还有公式法(立方和、立方差公式)、十字相乘法和分组分解法等等。

十字相乘法:x(pq)xpq型的因式分解这类式子在许多问题中经常出现,其特点是:(1)二次项系数是1;(2)常数项是两个数之积;(3)一次项系数是常数项的两个因数之和。

x2(pq)xpqx2pxqxpqx(xp)q(xp)(xp)(xq)因此,x2(pq)xpq(xp)(xq)运用这个公式,可以把某些二次项系数为1的二次三项式分解因式。

巩固练习:1.把下列各式分解因式(1)x2x6________________(2)x25x6_________________ (3)x25x6_______________(4)x211x18________________ (5)6x27x2______________(6)4m212m9________________ (7)x2(a1)xa____________(8)2y24y6_________________2.若x2axb(x2)(x4),则a_______,b________。

数与式的运算

数与式的运算

第一讲 数与式 1.1 数与式的运算 1.1.1.绝对值 绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:ba -表示在数轴上,数a 和数b 之间的距离.例1、 解不等式:13x x -+->4.解法一:由01=-x ,得1=x ;由30x -=,得3x =; ①若1<x ,不等式可变为(1)(3)4x x ---->, 即24x -+>4,解得x <0, 又x <1, ∴x <0;②若12x ≤<,不等式可变为(1)(3)4x x --->, 即1>4,∴不存在满足条件的x ;③若3x ≥,不等式可变为(1)(3)4x x -+->, 即24x ->4, 解得x >4. 又x≥3, ∴x >4.综上所述,原不等式的解为 x <0,或x >4. 解法二:如图1.1-1,1-x 表示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|PA|,即|PA|=|x -1|;|x -3|表示x 轴上点P 到坐标为2的点B 之间的距离|PB|,即|PB|=|x -3|. 所以,不等式13x x -+->4的几何意义即为|PA|+|PB|>4. 由|AB|=2,可知10 |x -1||x -3|点P 在点C(坐标为0)的左侧、或点P 在点D(坐标为4)的右侧. x <0,或x >4. 练 习 1.填空: (1)若5=x ,则x=_________;若4-=x ,则x=_________.(2)如果5=+b a ,且1-=a ,则b =________;若21=-c ,则c =________.2.选择题:下列叙述正确的是 ( ) (A )若a b=,则a b = (B )若a b>,则a b >(C )若a b <,则a b< (D )若a b=,则a b =±3.化简:|x -5|-|2x -13|(x >5).1.1.2. 乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+.我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2233()()a b a ab b a b +-+=+; (2)立方差公式 2233()()a b a ab b a b -++=-;(3)三数和平方公式2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式 33223()33a b a a b ab b +=+++; (5)两数差立方公式 33223()33a b a a b ab b -=-+-.对上面列出的五个公式,有兴趣的同学可以自己去证明.例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++ =61x -. 解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++=33(1)(1)x x +-=61x -. 例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值.解:2222()2()8a b c a b c ab bc ac ++=++-++=. 练 习 1.填空:(1)221111()9423a b b a -=+( );(2)(4m + 22)164(m m =++ ); (3 )2222(2)4(a b c a b c +-=+++ ). 2.选择题:(1)若212x mx k++是一个完全平方式,则k 等于 ( ) (A )2m (B )214m (C )213m (D )2116m(2)不论a ,b 为何实数,22248a b a b +--+的值 ( ) (A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数1.1.3.二次根式0)a ≥的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式. 例如 32a b ,等是无理式,而21x ++,22x y +1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如与与,等等.一般地,b与b 互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式0,0)a b =≥≥;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2a ==,0,,0.a a a a ≥⎧⎨-<⎩ 例1、将下列式子化为最简二次根式:(1(20)a ≥; (30)x <.解: (1= (20)a ==≥;(3220)x x x =-<.例2(3.解法一:(3==.解法二:(3.例3 、试比较下列各组数的大小:(1(2解: (1)∵===,===,>(2)∵1===又 4>22,∴6+4>6+22,例4、化简:20042005⋅.解:20042005+⋅=20042004+⋅-⋅-=2004⎡⎤+⋅⋅-⎣⎦=20041⋅例5、化简:(1(21)x<<.解:(1)原式===2=2=.(2)原式1xx=-,∵01x<<,∴11xx>>,所以,原式=1xx-.例6、已知x y==22353x xy y-+的值.解:∵2210x y +==+=,1xy ==,∴22223533()1131011289x xy y x y xy -+=+-=⨯-=. 练 习1.填空:(1_____;(2(x =-x 的取值范围是_____;(3)=____;(4)若2x =+=_______. 2.选择题:=成立的条件是 ( )(A )2x ≠ (B )0x > (C )2x > (D )02x <<3.若1b a =+,求a b +的值.4.比较大小:2- 3 ____5-4(填“>”,或“<”).1.1.4.分式1.分式的意义形如A B 的式子,若B 中含有字母,且0B ≠,则称A B 为分式.当M≠0时,分式AB 具有下列性质: A A M B B M ⨯=⨯; A A M B B M ÷=÷.上述性质被称为分式的基本性质.2.繁分式像abc d +,2m n p m n p +++这样,分子或分母中又含有分式的分式叫做繁分式.例1、若54(2)2x A Bx x x x +=+++,求常数,A B 的值.解: ∵(2)()2542(2)(2)(2)A B A x Bx A B x A x x x x x x x x x ++++++===++++, ∴5,24,A B A +=⎧⎨=⎩解得 2,3A B ==.例2、(1)试证:111(1)1n n n n =-++(其中n 是正整数); (2)计算:1111223910+++⨯⨯⨯ ; (3)证明:对任意大于1的正整数n , 有11112334(1)2n n +++<⨯⨯+ . (1)证明:∵11(1)11(1)(1)n n n n n n n n +--==+++, ∴111(1)1n n n n =-++(其中n 是正整数)成立.(2)解:由(1)可知1111223910+++⨯⨯⨯ 11111(1)()()223910=-+-++- =910. (3)证明:∵1112334(1)n n +++⨯⨯+ =111111()()()23341n n -+-++-+ =1121n -+,又n≥2,且n 是正整数, ∴1n +1一定为正数,∴1112334(1)n n +++⨯⨯+ <12. 例3、设ce a =,且e >1,2c 2-5ac +2a 2=0,求e 的值.解:在2c2-5ac +2a2=0两边同除以a2,得 2e2-5e +2=0,∴(2e -1)(e -2)=0,∴e =12 <1,舍去;或e =2. ∴e =2.练 习1.填空题:对任意的正整数n ,1(2)n n =+ ___ 112n n -+; 2.选择题:若223x y x y-=+,则xy =( ) (A )1 (B )54 (C )45 (D )653.正数,x y 满足222x y xy -=,求x yx y -+的值.4.计算1111 (122334)99100++++⨯⨯⨯⨯.习题1.1 A 组1.解不等式: (1)13x ->; (2)327x x ++-< ; (3)116x x -++>.2.已知1x y +=,求333x y xy ++的值. 3.填空:(1)1819(2(2=________;(22=,则a的取值范围是________;(3=________.B 组1.填空:(1)12a=,13b=,则2223352a aba ab b-=+-________;(2)若2220x xy y+-=,则22223x xy yx y++=+____;2.已知:11,23x y==的值.C 组1.选择题:(1()(A)a b<(B)a b>(C)0a b<<(D)0b a<<(2)计算()(A(B(C)(D)2.解方程:22112()3()10 x xx x+-+-=.3.计算:1111 132435911 ++++⨯⨯⨯⨯.4.试证:对任意的正整数n,有111123234(1)(2)n n n+++⨯⨯⨯⨯++<14.1.2 分解因式因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法. 1.十字相乘法 例1 、分解因式:(1)x2-3x +2; (2)x2+4x -12;(3)22()x a b xy aby -++; (4)1xy x y -+-.解:(1)如图1.2-1,将二次项x2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x2-3x +2中的一次项,所以,有 x2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1.2-1中的两个x 用1来表示(如图1.2-2所示). (2)由图1.2-3,得x2+4x -12=(x -2)(x +6). (3)由图1.2-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y)-1 =(x -1) (y+1) (如图1.2-5所示). 2.提取公因式法与分组分解法例2 、分解因式:(1)32933x x x +++; (2)222456x xy y x y +--+-. 解: (1)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++ =2(3)(3)x x ++. 或32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++ =22[(1)2][(1)(1)22]x x x +++-+⨯+ =2(3)(3)x x ++. (2)222456x xy y x y +--+-=222(4)56x y x y y +--+- =22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-. -1 -2 x x 图1.2-1 -1 -21 1 图1.2-2-2 6 1 1 图1.2-3 -ay -by x x 图1.2-4 -1 1x y图1.2-5或222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+--- =(22)(3)x y x y -++-.3.关于x 的二次三项式ax 2+bx+c(a≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.例3、把下列关于x 的二次多项式分解因式:(1)221x x +-; (2)2244x xy y +-.解: (1)令221x x +-=0,则解得11x =-21x =-,∴221x x +-=(1(1x x ⎡⎤⎡⎤--+--⎣⎦⎣⎦=(11x x ++.(2)令2244x xy y +-=0,则解得1(2x y =-+,1(2x y =--,∴2244x xy y +-=[2(1][2(1]x y x y ++.练 习1.选择题:多项式22215x xy y --的一个因式为 ( ) (A )25x y - (B )3x y - (C )3x y + (D )5x y - 2.分解因式:(1)x2+6x +8; (2)8a3-b3;(3)x2-2x -1; (4)4(1)(2)x y y y x -++-. 习题1.21.分解因式:(1) 31a +; (2)424139x x -+;(3)22222b c ab ac bc ++++; (4)2235294x xy y x y +-++-. 2.在实数范围内因式分解:(1)253x x -+ ; (2)23x --;(3)2234x xy y +-; (4)222(2)7(2)12x x x x ---+. 3.ABC ∆三边a ,b ,c 满足222a b c ab bc ca ++=++,试判定ABC ∆的形状. 4.分解因式:x 2+x -(a 2-a).第二讲 函数与方程 2.1 一元二次方程 2.1.1根的判别式我们知道,对于一元二次方程ax2+bx +c =0(a≠0),用配方法可以将其变形为2224()24b b acx a a -+=. ① 因为a≠0,所以,4a2>0.于是(1)当b2-4ac >0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数根X 1,2=;(2)当b2-4ac =0时,方程①的右端为零,因此,原方程有两个等的实数根X 1=x 2=-2ba ;(3)当b2-4ac <0时,方程①的右端是一个负数,而方程①的左边2()2b x a +一定大于或等于零,因此,原方程没有实数根.由此可知,一元二次方程ax2+bx +c =0(a≠0)的根的情况可以由b2-4ac 来判定,我们把b2-4ac 叫做一元二次方程ax2+bx +c =0(a≠0)的根的判别式,通常用符号“Δ”来表示. 综上所述,对于一元二次方程ax2+bx +c =0(a≠0),有 当Δ>0时,方程有两个不相等的实数根x1,2=;(2)当Δ=0时,方程有两个相等的实数根x1=x2=-2ba ;(3)当Δ<0时,方程没有实数根. 例1、判定下列关于x 的方程的根的情况(其中a 为常数),如果方程有实数根,写出方程的实数根.(1)x2-3x +3=0; (2)x2-ax -1=0; (3) x2-ax +(a -1)=0; (4)x2-2x +a =0. 解:(1)∵Δ=32-4³1³3=-3<0,∴方程没有实数根.(2)该方程的根的判别式Δ=a2-4³1³(-1)=a2+4>0,所以方程一定有两个不等的实数根12a x =,22a x =.(3)由于该方程的根的判别式为Δ=a2-4³1³(a-1)=a2-4a +4=(a -2)2, 所以,①当a =2时,Δ=0,所以方程有两个相等的实数根 x1=x2=1;②当a≠2时,Δ>0, 所以方程有两个不相等的实数根 x1=1,x2=a -1. (3)由于该方程的根的判别式为 Δ=22-4³1³a=4-4a =4(1-a), 所以①当Δ>0,即4(1-a) >0,即a <1时,方程有两个不相等的实数根11x =21x =②当Δ=0,即a =1时,方程有两个相等的实数根 x1=x2=1;③当Δ<0,即a >1时,方程没有实数根.说明:在第3,4小题中,方程的根的判别式的符号随着a 的取值的变化而变化,于是,在解题过程中,需要对a 的取值情况进行讨论,这一方法叫做分类讨论.分类讨论这一思想方法是高中数学中一个非常重要的方法,在今后的解题中会经常地运用这一方法来解决问题.2.1.2 根与系数的关系(韦达定理)若一元二次方程ax2+bx +c =0(a≠0)有两个实数根12b x a -+=,22b x a -=,则有1222b b x x a a -+===-;221222(4)444b b ac ac cx x a a a --====.所以,一元二次方程的根与系数之间存在下列关系:如果ax 2+bx +c =0(a≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a -,x 1²x 2=ca .这一关系也被称为韦达定理.特别地,对于二次项系数为1的一元二次方程x 2+px +q =0,若x 1,x 2是其两根,由韦达定理可知x1+x2=-p ,x1²x2=q ,即 p =-(x1+x2),q =x1²x2,所以,方程x2+px+q=0可化为 x2-(x1+x2)x+x1²x2=0,由于x1,x2是一元二次方程x2+px+q=0的两根,所以,x1,x2也是一元二次方程x2-(x1+x2)x+x1²x2=0.因此有以两个数x1,x2为根的一元二次方程(二次项系数为1)是X2-(x1+x1)x+x1²x2=0.例2 、已知方程2560x kx+-=的一个根是2,求它的另一个根及k的值.分析:由于已知了方程的一个根,可以直接将这一根代入,求出k的值,再由方程解出另一个根.但由于我们学习了韦达定理,又可以利用韦达定理来解题,即由于已知了方程的一个根及方程的二次项系数和常数项,于是可以利用两根之积求出方程的另一个根,再由两根之和求出k的值.解法一:∵2是方程的一个根,∴5³22+k³2-6=0,∴k=-7.所以,方程就为5x2-7x-6=0,解得x1=2,x2=-3 5.所以,方程的另一个根为-35,k的值为-7.解法二:设方程的另一个根为x1,则 2x1=-65,∴x1=-35.由(-35)+2=-5k,得 k=-7.所以,方程的另一个根为-35,k的值为-7.例3、已知关于x的方程x2+2(m-2)x+m2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m的值.分析:本题可以利用韦达定理,由实数根的平方和比两个根的积大21得到关于m的方程,从而解得m的值.但在解题中需要特别注意的是,由于所给的方程有两个实数根,因此,其根的判别式应大于零.解:设x1,x2是方程的两根,由韦达定理,得x1+x2=-2(m-2),x1²x2=m2+4.∵x12+x22-x1²x2=21,∴(x1+x2)2-3 x1²x2=21,即 [-2(m-2)]2-3(m2+4)=21,化简,得 m2-16m-17=0,解得 m=-1,或m=17.当m=-1时,方程为x2+6x+5=0,Δ>0,满足题意;当m=17时,方程为x2+30x+293=0,Δ=302-4³1³293<0,不合题意,舍去.综上,m=17.说明:(1)在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的m的范围,然后再由“两个实数根的平方和比两个根的积大21”求出m的值,取满足条件的m的值即可.(1)在今后的解题过程中,如果仅仅由韦达定理解题时,还要考虑到根的判别式Δ是否大于或大于零.因为,韦达定理成立的前提是一元二次方程有实数根.例4、已知两个数的和为4,积为-12,求这两个数.分析:我们可以设出这两个数分别为x,y,利用二元方程求解出这两个数.也可以利用韦达定理转化出一元二次方程来求解.解法一:设这两个数分别是x,y,则 x+y=4,①xy=-12.②由①,得 y=4-x,代入②,得x(4-x)=-12,即 x2-4x-12=0,∴x1=-2,x2=6.∴112,6,xy=-⎧⎨=⎩或226,2.xy=⎧⎨=-⎩因此,这两个数是-2和6.解法二:由韦达定理可知,这两个数是方程x2-4x-12=0的两个根.解这个方程,得x1=-2,x2=6.所以,这两个数是-2和6.说明:从上面的两种解法我们不难发现,解法二(直接利用韦达定理来解题)要比解法一简捷.例5、若x1和x2分别是一元二次方程2x2+5x-3=0的两根.(1)求| x1-x2|的值;(2)求221211x x+的值;(3)3231xx+.解:∵x1和x2分别是一元二次方程2x2+5x-3=0的两根,∴1252x x+=-,1232x x=-.(1)∵| x1-x2|2=x12+ x22-2 x1x2=(x1+x2)2-4 x1x2=253 ()4() 22 --⨯-=254+6=494,∴| x1-x2|=72.(2)22221212122222221212125325()2()3()2113722439()9()24x x x x x x x x x x x x --⨯-+++-+=====⋅-.(3)x13+x23=(x1+x2)( x12-x1x2+x22)=(x1+x2)[ ( x1+x2) 2-3x1x2]=(-52)³[(-52)2-3³(32-)]=-2158.说明:一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会遇到求这一个量的问题,为了解题简便,我们可以探讨出其一般规律: 设x1和x2分别是一元二次方程ax2+bx +c =0(a≠0),则1x =,2x =,∴| x1-x2|===. 于是有下面的结论:若x1和x2分别是一元二次方程ax2+bx +c =0(a≠0),则| x1-x2|=||a (其中Δ=b2-4ac ).今后,在求一元二次方程的两根之差的绝对值时,可以直接利用上面的结论.例6、若关于x 的一元二次方程x 2-x +a -4=0的一根大于零、另一根小于零,求实数a 的取值范围.解:设x1,x2是方程的两根,则x1x2=a -4<0, ① 且Δ=(-1)2-4(a -4)>0. ② 由①得 a <4, 由②得 a <174 .∴a 的取值范围是a <4. 练 习 1.选择题:(1)方程2230x k -+=的根的情况是 ( )(A )有一个实数根 (B )有两个不相等的实数根(C )有两个相等的实数根 (D )没有实数根(2)若关于x 的方程mx 2+ (2m +1)x +m =0有两个不相等的实数根,则实数m 的取值范围是 ( )(A )m <14 (B )m >-14 (C )m <14,且m≠0 (D )m >-14,且m≠02.填空:(1)若方程x 2-3x -1=0的两根分别是x 1和x 2,则1211x x +=_______. (2)方程mx 2+x -2m =0(m≠0)的根的情况是____________________________. (3)以-3和1为根的一元二次方程是______________________.3|1|0b -=,当k 取何值时,方程kx 2+ax +b =0有两个不相等的实数根?4.已知方程x 2-3x -1=0的两根为x 1和x 2,求(x 1-3)( x 2-3)的值.习题2.1 A 组1.选择题:(1)已知关于x 的方程x 2+kx -2=0的一个根是1,则它的另一个根是( ) (A )-3 (B )3 (C )-2 (D )2 (2)下列四个说法:①方程x 2+2x -7=0的两根之和为-2,两根之积为-7;②方程x 2-2x +7=0的两根之和为-2,两根之积为7;③方程3 x 2-7=0的两根之和为0,两根之积为73-;④方程3 x 2+2x =0的两根之和为-2,两根之积为0. 其中正确说法的个数是 ( )(A )1个 (B )2个 (C )3个 (D )4个(3)关于x 的一元二次方程ax 2-5x +a2+a =0的一个根是0,则a 的值是( ) (A )0 (B )1 (C )-1 (D )0,或-1 2.填空:(1)方程kx 2+4x -1=0的两根之和为-2,则k =_______.(2)方程2x 2-x -4=0的两根为α,β,则α2+β2=__________.(3)已知关于x 的方程x 2-ax -3a =0的一个根是-2,则它的另一个根是_______.(4)方程2x 2+2x -1=0的两根为x 1和x 2,则| x 1-x 2|= __________.3.试判定当m 取何值时,关于x 的一元二次方程m 2x 2-(2m +1) x +1=0有两个不相等的实数根?有两个相等的实数根?没有实数根?4.求一个一元二次方程,使它的两根分别是方程x 2-7x -1=0各根的相反数. B 组1.选择题:若关于x 的方程x 2+(k 2-1) x +k +1=0的两根互为相反数,则k 的值为 ( )(A )1或-1 (B )1 (C )-1 (D )0 2.填空:(1)若m ,n 是方程x 2+2005x -1=0的两个实数根,则m 2n +mn 2-mn 的值等于 _________.(2)如果a ,b 是方程x 2+x -1=0的两个实数根,那么代数式a 3+a 2b +ab 2+b 3的值是______.3.已知关于x 的方程x 2-kx -2=0.(1)求证:方程有两个不相等的实数根;(2)设方程的两根为x 1和x 2,如果2(x 1+x 2)>x 1x 2,求实数k 的取值范围.4.一元二次方程ax 2+bx +c =0(a≠0)的两根为x 1和x 2.求:(1)| x 1-x 2|和122x x +; (2)3231x x +. 5.关于x 的方程x2+4x +m =0的两根为x1,x2满足| x1-x2|=2,求实数m 的值. C 组1.选择题:(1)已知一个直角三角形的两条直角边长恰好是方程2x 2-8x +7=0的两根,则这个直角三角形的斜边长等于 ( )(A(B )3 (C )6 (D )9(2)若x 1,x 2是方程2x 2-4x +1=0的两个根,则1221x x x x +的值为 ( ) (A )6 (B )4 (C )3 (D )32(3)如果关于x 的方程x 2-2(1-m)x +m 2=0有两实数根α,β,则α+β的取值范围为 ( )(A )α+β≥12 (B )α+β≤12 (C )α+β≥1 (D )α+β≤1(4)已知a ,b ,c 是ΔABC 的三边长,那么方程cx 2+(a +b)x +4c=0的根的情况是( )(A)没有实数根(B)有两个不相等的实数根(C)有两个相等的实数根(D)有两个异号实数根2.填空:若方程x2-8x+m=0的两根为x1,x2,且3x1+2x2=18,则m=________.3.已知x1,x2是关于x的一元二次方程4kx2-4kx+k+1=0的两个实数根.(1)是否存在实数k,使(2x1-x2)( x1-2 x2)=-32成立?若存在,求出k的值;若不存在,说明理由;(2)求使1221x xx x+-2的值为整数的实数k的整数值;(3)若k=-2,12xxλ=,试求λ的值.4.已知关于x的方程22(2)04mx m x---=.(1)求证:无论m取什么实数时,这个方程总有两个相异实数根;(2)若这个方程的两个实数根x1,x2满足|x2|=|x1|+2,求m的值及相应的x1,x2.5.若关于x的方程x2+x+a=0的一个大于1、零一根小于1,求实数a的取值范围.2.2 二次函数2.2.1 二次函数y=ax2+bx+c的图像和性质问题1、函数y=ax2与y=x2的图象之间存在怎样的关系?为了研究这一问题,我们可以先画出y=2x2,y=12x2,y=-2x2的图象,通过这些函数图象与函数y=x2的图象之间的关系,推导出函数y=ax2与y=x2的图象之间所存在的关系.先画出函数y=x2,y=2x2的图象.先列表:从表中不难看出,要得到2x2的值,只要把相应的x2的值扩大两倍就可以了.再描点、连线,就分别得到了函数y =x2,y =2x2的图象(如图2-1所示),从图2-1我们可以得到这两个函数图象之间的关系:函数y =2x2的图象可以由函数y =x2的图象各点的纵坐标变为原来的两倍得到.同学们也可以用类似于上面的方法画出函数y =12x2,y =-2x2的图象,并研究这两个函数图象与函数y =x2的图象之间的关系.通过上面的研究,我们可以得到以下结论:二次函数y =ax2(a≠0)的图象可以由y =x2的图象各点的纵坐标变为原来的a 倍得到.在二次函数y =ax2(a≠0)中,二次项系数a 决定了图象的开口方向和在同一个坐标系中的开口的大小. 问题2 函数y =a(x +h)2+k 与y =ax2的图象之间存在怎样的关系?同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y =2(x +1)2+1与y =2x2的图象(如图2-2所示),从函数的同学我们不难发现,只要把函数y =2x2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y =2(x +1)2+1的图象.这两个函数图象之间具有“形状相同,位置不同”的特点.类似地,还可以通过画函数y =-3x2,y =-3(x -1)2+1的图象,研究它们图象之间的相互关系. 通过上面的研究,我们可以得到以下结论:二次函数y =a(x +h)2+k(a≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”.由上面的结论,我们可以得到研究二次函数y =ax2+bx +c(a≠0)的图象的方法:由于y =ax2+bx +c =a(x2+b x a )+c =a(x2+b x a +224b a )+c -24b a224()24b b aca x a a -=++, 所以,y =ax2+bx +c(a≠0)的图象可以看作是将函数y =ax2的图象作左右平移、上下平移得到的,于是,二次函数y =ax2+bx +c(a≠0)具有下列性质:图2.2-2图2.2-1(1)当a >0时,函数y =ax2+bx +c 图象开口向上;顶点坐标为24(,)24b ac b a a --,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而减小;当x >2ba -时,y 随着x 的增大而增大;当x =2b a -时,函数取最小值y =244ac b a -.(2)当a <0时,函数y =ax2+bx +c 图象开口向下;顶点坐标为24(,)24b ac b a a --,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而增大;当x >2ba -时,y 随着x 的增大而减小;当x =2b a -时,函数取最大值y =244ac b a -. 上述二次函数的性质可以分别通过图2.2-3和图2.2-4直观地表示出来.因此,在今后解决二次函数问题时,可以借助于函数图像、利用数形结合的思想方法来解决问题.例1 、求二次函数y =-3x 2-6x +1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x 取何值时,y 随x 的增大而增大(或减小)?并画出该函数的图象.解:∵y =-3x2-6x +1=-3(x +1)2+4, ∴函数图象的开口向下; 对称轴是直线x =-1; 顶点坐标为(-1,4); 当x =-1时,函数y 取最大值y =4;当x <-1时,y 随着x 的增大而增大;当x >-1时,y 随图2.2-3图2.2-4着x 的增大而减小;采用描点法画图,选顶点A(-1,4)),与x 轴交于点B 3(,0)3和C 3(,0)3-,与y 轴的交点为D(0,1),过这五点画出图象(如图2-5所示).说明:从这个例题可以看出,根据配方后得到的性质画函数的图象,可以直接选出关键点,减少了选点的盲目性,使画图更简便、图象更精确.例2、某种产品的成本是120元/件,试销阶段每件产品的售价x (元)与产品的日销售量y (件)之间关系如下表所示:若日销售量y 是销售价x 的一次函数,那么,要使每天所获得最大的利润,每件产品的销售价应定为多少元?此时每天的销售利润是多少?分析:由于每天的利润=日销售量y³(销售价x -120),日销售量y 又是销售价x 的一次函数,所以,欲求每天所获得的利润最大值,首先需要求出每天的利润与销售价x 之间的函数关系,然后,再由它们之间的函数关系求出每天利润的最大值. 解:由于y 是x 的一次函数,于是,设y =kx +(B ) 将x =130,y =70;x =150,y =50代入方程,有70130,50150,k b k b =+⎧⎨=+⎩解得 k =-1,b =200. ∴ y =-x +200. 设每天的利润为z (元),则z =(-x+200)(x -120)=-x2+320x -24000 =-(x -160)2+1600,∴当x =160时,z 取最大值1600.答:当售价为160元/件时,每天的利润最大,为1600元.例3、把二次函数y =x 2+bx +c 的图像向上平移2个单位,再向左平移4个单位,得到函数y =x 2的图像,求b ,c 的值.解法一:y =x2+bx +c =(x+2b)224b c +-,把它的图像向上平移2个单位,再向左平移4个单位,得到22(4)224b b y x c =+++-+的图像,也就是函数y =x2的图像,所以,240,220,4bb c ⎧--=⎪⎪⎨⎪-+=⎪⎩ 解得b =-8,c =14.解法二:把二次函数y =x2+bx +c 的图像向上平移2个单位,再向左平移4个单位,得到函数y =x2的图像,等价于把二次函数y =x2的图像向下平移2个单位,再向右平移4个单位,得到函数y =x2+bx +c 的图像.由于把二次函数y =x2的图像向下平移2个单位,再向右平移4个单位,得到函数y =(x -4)2+2的图像,即为y =x2-8x +14的图像,∴函数y =x2-8x +14与函数y =x2+bx +c 表示同一个函数,∴b =-8,c =14.说明:本例的两种解法都是利用二次函数图像的平移规律来解决问题,所以,同学们要牢固掌握二次函数图像的变换规律.这两种解法反映了两种不同的思维方法:解法一,是直接利用条件进行正向的思维来解决的,其运算量相对较大;而解法二,则是利用逆向思维,将原来的问题等价转化成与之等价的问题来解,具有计算量小的优点.今后,我们在解题时,可以根据题目的具体情况,选择恰当的方法来解决问题.例4、已知函数y =x 2,-2≤x≤a,其中a≥-2,求该函数的最大值与最小值,并求出函数取最大值和最小值时所对应的自变量x 的值.分析:本例中函数自变量的范围是一个变化的范围,需要对a 的取值进行讨论. 解:(1)当a =-2时,函数y =x2的图象仅仅对应着一个点(-2,4),所以,函数的最大值和最小值都是4,此时x =-2;(2)当-2<a <0时,由图2.2-6①可知,当x =-2时,函数取最大值y =4;当x =a 时,函数取最小值y =a2;(3)当0≤a<2时,由图2.2-6②可知,当x =-2时,函数取最大值y =4;当x =0时,函数取最小值y =0;(4)当a≥2时,由图2.2-6③可知,当x =a 时,函数取最大值y =a2;当x =0时,函数取最小值y =0.说明:在本例中,利用了分类讨论的方法,对a 的所有可能情形进行讨论.此外,本例中所研究的①图2.2-6②③二次函数的自变量的取值不是取任意的实数,而是取部分实数来研究,在解决这一类问题时,通常需要借助于函数图象来直观地解决问题.练习1.选择题:(1)下列函数图象中,顶点不在坐标轴上的是()(A)y=2x2(B)y=2x2-4x+2(C)y=2x2-1 (D)y=2x2-4x(2)函数y=2(x-1)2+2是将函数y=2x2()(A)向左平移1个单位、再向上平移2个单位得到的(B)向右平移2个单位、再向上平移1个单位得到的(C)向下平移2个单位、再向右平移1个单位得到的(D)向上平移2个单位、再向右平移1个单位得到的2.填空题(1)二次函数y=2x2-mx+n图象的顶点坐标为(1,-2),则m=_____,n=________.(2)已知二次函数y=x2+(m-2)x-2m,当m=_____时,函数图象的顶点在y轴上;当m=______时,函数图象的顶点在x轴上;当m=______时,函数图象经过原点.(3)函数y=-3(x+2)2+5的图象的开口向_______,对称轴为________,顶点坐标为______;当x=_______时,函数取最____值y=______;当x _______时,y随着x的增大而减小.3.求下列抛物线的开口方向、对称轴、顶点坐标、最大(小)值及y随x的变化情况,并画出其图象:(1)y=x2-2x-3;(2)y=1+6 x-x2.4.已知函数y=-x2-2x+3,当自变量x在下列取值范围内时,分别求函数的最大值或最小值,并求当函数取最大(小)值时所对应的自变量x的值:(1)x≤-2;(2)x≤2;(3)-2≤x≤1;(4)0≤x≤3.2.2.2 二次函数的三种表示方式通过上一小节的学习,我们知道,二次函数可以表示成以下两种形式:1.一般式:y=ax2+bx+c(a≠0);2.顶点式:y=a(x+h)2+k (a≠0),其中顶点坐标是(-h,k).除了上述两种表示方法外,它还可以用另一种形式来表示.为了研究另一种表示方式,我们先来研究二次函数y=ax2+bx+c(a≠0)的图象与x轴交点个数.当抛物线y=ax2+bx+c(a≠0)与x轴相交时,其函数值为零,于是有ax2+bx+c=0.①并且方程①的解就是抛物线y=ax2+bx+c(a≠0)与x轴交点的横坐标(纵坐标为零),于是,不难发现,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与方程①的解的个数有关,而方程①的解的个数又与方程①的根的判别式Δ=b2-4ac有关,由此可知,抛物线y=ax2+bx+c(a≠0)与x 轴交点个数与根的判别式Δ=b2-4ac存在下列关系:(1)当Δ>0时,抛物线y=ax2+bx+c(a≠0)与x轴有两个交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,则Δ>0也成立.(2)当Δ=0时,抛物线y=ax2+bx+c(a≠0)与x轴有一个交点(抛物线的顶点);反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有一个交点,则Δ=0也成立.(3)当Δ<0时,抛物线y=ax2+bx+c(a≠0)与x轴没有交点;反过来,若抛物线y=ax2+bx +c(a≠0)与x轴没有交点,则Δ<0也成立.于是,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点A(x1,0),B(x2,0),则x1,x2是方程ax2+bx+c=0的两根,所以x1+x2=ba-,x1x2=ca,即ba=-(x1+x2),ca=x1x2.所以,y=ax2+bx+c=a(2b cx xa a++)= a[x2-(x1+x2)x+x1x2]=a(x-x1) (x-x2).由上面的推导过程可以得到下面结论:若抛物线y=ax2+bx+c(a≠0)与x轴交于A(x1,0),B(x2,0)两点,则其函数关系式可以表示为y=a(x-x1) (x-x2) (a≠0).这样,也就得到了表示二次函数的第三种方法:3.交点式:y=a(x-x1) (x-x2) (a≠0),其中x1,x2是二次函数图象与x轴交点的横坐标.今后,在求二次函数的表达式时,我们可以根据题目所提供的条件,选用一般式、顶点式、交点式这三种表达形式中的某一形式来解题.例1、已知某二次函数的最大值为2,图像的顶点在直线y=x+1上,并且图象经过点(3,-1),求二次函数的解析式.分析:在解本例时,要充分利用题目中所给出的条件——最大值、顶点位置,从而可以将二次函数设成顶点式,再由函数图象过定点来求解出系数a.解:∵二次函数的最大值为2,而最大值一定是其顶点的纵坐标,∴顶点的纵坐标为2.又顶点在直线y=x+1上,所以,2=x+1,∴x=1.∴顶点坐标是(1,2).设该二次函数的解析式为2(2)1(0)y a x a=-+<,∵二次函数的图像经过点(3,-1),∴21(32)1a-=-+,解得a=-2.∴二次函数的解析式为22(2)1y x=--+,即y=-2x2+8x-7.说明:在解题时,由最大值确定出顶点的纵坐标,再利用顶点的位置求出顶点坐标,然后设出二次函数的顶点式,最终解决了问题.因此,在解题时,要充分挖掘题目所给的条件,并巧妙地利用条件简捷地解决问题.例2、已知二次函数的图象过点(-3,0),(1,0),且顶点到x轴的距离等于2,求此二次函数的表达式.分析一:由于题目所给的条件中,二次函数的图象所过的两点实际上就是二次函数的图象与x轴的交点坐标,于是可以将函数的表达式设成交点式.解法一:∵二次函数的图象过点(-3,0),(1,0),∴可设二次函数为y=a(x+3) (x-1) (a≠0),展开,得 y=ax2+2ax-3a,顶点的纵坐标为2212444a aaa--=-,由于二次函数图象的顶点到x轴的距离2,∴|-4a|=2,即a=12±.所以,二次函数的表达式为y=21322x x+-,或y=-21322x x-+.分析二:由于二次函数的图象过点(-3,0),(1,0),所以,对称轴为直线x=-1,又由顶点到x轴的距离为2,可知顶点的纵坐标为2,或-2,于是,又可以将二次函数的表达式设成顶点式来解,然后再利用图象过点(-3,0),或(1,0),就可以求得函数的表达式.解法二:∵二次函数的图象过点(-3,0),(1,0),∴对称轴为直线x=-1.又顶点到x 轴的距离为2, ∴顶点的纵坐标为2,或-2.于是可设二次函数为y =a(x +1)2+2,或y =a(x +1)2-2, 由于函数图象过点(1,0),∴0=a(1+1)2+2,或0=a(1+1)2-2.∴a =-12,或a =12.所以,所求的二次函数为y =-12(x +1)2+2,或y =12(x +1)2-2.说明:上述两种解法分别从与x 轴的交点坐标及顶点的坐标这两个不同角度,利用交点式和顶点式来解题,在今后的解题过程中,要善于利用条件,选择恰当的方法来解决问题.例3、已知二次函数的图象过点(-1,-22),(0,-8),(2,8),求此二次函数的表达式. 解:设该二次函数为y =ax2+bx +c(a≠0).由函数图象过点(-1,-22),(0,-8),(2,8),可得22,8,842,a b c c a b c -=-+⎧⎪-=⎨⎪=++⎩解得 a =-2,b =12,c =-8.所以,所求的二次函数为y =-2x2+12x -8.通过上面的几道例题,同学们能否归纳出:在什么情况下,分别利用函数的一般式、顶点式、交点式来求二次函数的表达式?练 习 1.选择题:(1)函数y =-x 2+x -1图象与x 轴的交点个数是( )(A )0个 (B )1个 (C )2个 (D )无法确定 (2)函数y =-12(x +1)2+2的顶点坐标是 ( )(A )(1,2) (B )(1,-2) (C )(-1,2) (D )(-1,-2) 2.填空:(1)已知二次函数的图象经过与x 轴交于点(-1,0)和(2,0),则该二次函数的解析式可设为y =a ____________(a≠0) .(2)二次函数y =-x 2+23x +1的函数图象与x 轴两交点之间的距离为____________. 3.根据下列条件,求二次函数的解析式.(1)图象经过点(1,-2),(0,-3),(-1,-6); (2)当x =3时,函数有最小值5,且经过点(1,11);(3)函数图象与x 轴交于两点(1-2,0)和(1+2,0),并与y 轴交于(0,-2).。

第1讲 数与式的运算(学生版)

第1讲 数与式的运算(学生版)

第1讲 数与式的运算【教学重点】一、 数(式)概念的正确理解. 二、 数的乘方和开方运算及相关公式.突出方法:以问答的方式让学生回顾数的基本知识,举例帮助学生重新熟悉初中阶段学过的数与式的运算知识. 【教学难点】难点:数的乘方及开方运算.化解方法:运用对比、举例的方法巩固数的乘方和开方运算. 【知识梳理】 一、必会的乘法公式【公式1】ca bc ab c b a c b a 222)(2222+++++=++例1 计算:22)312(+-x x【公式2】3322))((b a b ab a b a +=+-+(立方和公式) 例2 计算: (2a+b )(4a 2-2ab+b 2)=8 a 3+b 3【公式3】3322))((b a b ab a b a -=++-(立方差公式)1.计算 (1)(3x+2y )(9x 2-6xy+4y 2)= (2)(2x-3)(4x 2+6xy+9)=(3))916141(31212++⎪⎭⎫ ⎝⎛-m m m =(4)(a+b )(a 2-ab+b 2)(a-b )(a 2+ab+b 2)=2.利用立方和、立方差公式进行因式分解(1)27m 3-n 3=(2)27m 3-81n 3=(3)x 3-125= (4) m 6-n 6=【公式4】33322()33a b a b a b ab +=+++ 【公式5】33223()33a b a a b ab b -=-+-例3 计算:(1))416)(4(2m m m +-+(2))41101251)(2151(22n mn m n m ++-(3))164)(2)(2(24++-+a a a a (4)22222))(2(y xy x y xy x +-++例4 已知2310x x -+=,求331x x +的值.例5 已知0=++c b a ,求111111()()()a b c b c c a a b+++++的值. 二、根式0)a ≥叫做二次根式,其性质如下:例6 化简下列各式:(1)+ (2)1)x +≥例7 计算(没有特殊说明,本节中出现的字母均为正数)(1)83(2)(3)(4) +有理化因式和分母有理化有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个代数式叫做有理化因式。

第1课时 数与运算(1)

第1课时 数与运算(1)

◎教学笔记六复习与关联单元集体备课对比原教科书的总复习,新教科书不仅将“总复习"改成了“复习与关联",更是从结构上进行了改编,按照“总——分——总"的结构引导学生对全册的学习内容从横向、纵向进行各知识点的联系构建。

首先,教科书通过“知识图"的形式,引导学生对全册的学习内容进行回顾,构建全册的知识结构;再按照主题逐一对所学内容进行整理,将同一主题的内容进行合并整合,构建各知识点的纵向联系,系统掌握每个主题的知识;最后通过“应用提升"横向沟通各主题间的联系,综合运用各主题知识解决实际问题。

教科书中的“复习与关联”突出体现了课程标准中几个新的要求:(1 )培养学生独立思考、自主探究、合作交流的能力,关注学生数学核心能力的培养。

如教科书中的每个复习板块都采用对话或者是问题的形式,启发学生思考,自主构建体系。

(2)关注知识之间的关联,体现新课标中的知识结构性。

教科书在对话的形式下,呈现出核心知识点,引导学生围绕核心知识点展开思考。

如20以内数的认识,教科书通过两幅图将数位、数的意义和数的组成融合在一起。

(3 )注重学生数学学习方法的渗透。

如一开始就让学生掌握画“知识图"进行整理的方法。

由此可见,"复习与关联"不仅关注“知识整理”,更关注“人的发展”和“知识的建构”。

在前面的学习中,学生已经掌握了基础知识,也通过画“知识图"进行过单元整理。

在教师的引导下,学生通过不同的练习理解知识之间的联系,有了一定的自主探究意识。

所以,解决本单元的问题和习题,对于他们来说应该不难。

但是要自主建构知识体系,发现知识间的内在联系,对于一年级的学生来说,有一定的难度。

如何引导学生自主建构知识间的联系,是复习的难点。

1.对比原来的总复习,“复习与关联"的教学目标有更高要求。

教学时,要突出学生的主体地位,把握好教学目标,以发展学生核心素养为目标导向。

第一讲 数与式的运算

第一讲 数与式的运算
说明:请同学用文字语言表述公式 2.
【例 2】计算: (a b)(a 2 ab b2 )
解:原式=[a (b)][a 2 a(b) (b)2 ] a3 (b)3 a3 b3
我们得到:
【公式 3】 (a b)(a 2 ab b2 ) a3 b3 (立方差公式)
3
39
说明:多项式乘法的结果一般是按某个字母的降幂或升幂排列.
【公式 2】 (a b)(a 2 ab b2 ) a3 b3 (立方和公式)
证明: (a b)(a 2 ab b2 ) a3 a 2b ab2 a 2b ab2 b3 a3 b3
(x3 y3)2 x6 2x3 y3 y6
说明:(1)在进行代数式的乘法、除法运算时,要观察代数式的结构是否满足乘法公式的
结构.
(2)为了更好地使用乘法公式,记住 1、2、3、4、…、20 的平方数和 1、2、3、
4、…、10 的立方数,是非常有好处的.
【例 4】已知 x 2 3x 1 0 ,求 x3 1 的值. x3
(2) 2x 2 y x y (x y 0)
x
2x2 y
B组
1.若 1 1 2 ,则 3x xy 3y 的值为( ):
xy
x xy y
3
A.
5
2.计算:
B. 3 5
(1) ( a b c )( a b c )
C. 5 3
(2) 1 ( 1 1 ) 23
第一讲 数与式的运算
在初中,我们已学习了实数,知道字母可以表示数用代数式也可以表示数,我们把实数和代 数式简称为数与式.代数式中有整式(多项式、单项式)、分式、根式.它们具有实数的属性, 可以进行运算.在多项式的乘法运算中,我们学习了乘法公式(平方差公式与完全平方公式), 并且知道乘法公式可以使多项式的运算简便.由于在高中学习中还会遇到更复杂的多项式乘法运 算,因此本节中将拓展乘法公式的内容,补充三个数和的完全平方公式、立方和、立方差公 式.在根式的运算中,我们已学过被开方数是实数的根式运算,而在高中数学学习中,经常会接 触到被开方数是字母的情形,但在初中却没有涉及,因此本节中要补充.基于同样的原因,还要 补充“繁分式”等有关内容.

小升初数学课程:第一讲 数与式的认识

小升初数学课程:第一讲  数与式的认识

第一讲数与式一、知识梳理第一部分数的意义、分类与性质一、数的意义和分类1、数的意义(1)自然数:0、1、2、3、4……都是自然数.可以表示物体的个数或次数.自然数的个数是无限的,最小的自然数是0,没有最大的自然数.(2)0:一个物体也没有,用0表示.0是最小的自然数.0还有其他多种用法,在写数记数中,可以用0来占位;在测量活动中,用0表示起点;在相反意义量的记录中,用0作分界点.负数:比0小的数是负数,比0大的数是正数.0既不是正数,也不是负数.(4)小数:分母是10、100、1000……的分数可以写成小数.(5)分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数.两个数相除的商可以用分数表示.把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位.(6)百分数:表示一个数是另一个数的百分之几的数叫做百分数.百分数又叫做百分比或百分率.百分数是一种特殊的分数.二、数的联系1、整数与小数:整数和小数在计数方法上是一致的,都是用十进制计数法记录的.整数可以根据小数的基本性质改写成小数.2、小数与分数:小数就是分母是10、100、1000……的十进分数,小数是特殊的分数.3、分数与百分数:百分数虽然在形式上与分数是类似的,但在意义上有明显的不同.百分数只能表示一个数是另一个数的百分之几,所以也叫做百分比(百分率),而分数不仅可以表示一个数是另一个数的几分之几,也可以用来表示一个具体的数量.4、正数与负数:以0为分界点,比0大的数就是正数,比0小的数就是负数.正数可以有正整数、正分数;负数可以有负整数、负分数.0既不是正数,也不是负数.三、数的性质1、整除(1)整除与除尽整除:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说数a能被数b整除,或数b能整除a..除尽:数a除以数b(b≠0),除得的商是整数或是有限小数,这就叫做除尽.整除是除尽的一种特殊情况,整除也可以说是除尽,但除尽不一定是整除.(2)因数和倍数如果数a能被数b整除(b≠0),a就叫做b的倍数,b就叫做a的因数.倍数:一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数.因数:一个数的因数的个数是有限的,其中最小的约数是1,最大的约数是它本身.因数和倍数是相互依存的(3)能被2.3.5整除的数的特征能被2整除的数的特征:个位上是0,2,4,6,8,:能被3整除的数的特征:个位上是0或5能被5整除的数的特征:各个位上的数字的和能被3整除能同时被2、5整除的数的特征:个位是0能同时被2、3、5整除的数的特征:个位是0,而且各个位上的数字的和能被3整除.(4)偶数和奇数一个自然数,不是奇数就是偶数偶数:能被2整除的数.最小的偶数是0奇数:不能被2整除的数.最小的奇数是1.(5)质数和合数质数(素数):只有1和它本身两个因数.最小的质数是2.合数:除了1和它本身还有别的因数.最小的合数是4.1:既不是质数也不是合数一个自然数根据因数的个数,可以分为1、质数和合数.(6)最大公约数和最小公倍数公约数,最大公约数: 几个数公有的约数,叫做这几个数的公约数;其中最大的一个叫做这几个数的最大公约数.公倍数,最小公倍数: 几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数.互质数: 公约数只有1的两个数叫做互质数.互质数的几种特殊情况:①两个数都是质数,这两个数一定互质.②相邻的两个数互质.③1和任何数都互质.求最大公约数和最小公倍数①如果较小数是较大数的因数,那么较小数就是这两个数的最大公约数;较大数就是这两个数的最小公倍数.②如果两个数互质,它们的最大公因数就是1;最小公倍数就是它们的积.③一般情况:可以根据最大公因数和最小公倍数的意义去找,也可以利用短除法去找.2、小数的基本性质:小数的末尾添上0或去掉0,小数的大小不变.根据小数的基本性质,可以化简小数、根据需要把整数或小数改写成指定的几位小数.3、分数的基本性质:分数的分子和分母都乘或除以一个相同的数(0除外),分数的大小不变.根据分数的基本性质,可以化简分数和通分.第二部分式与方程一、用字母表示数1、用字母表示数的意义①用字母不仅可以表示未知数,还可以表示已知量;不仅可以表示特定的数,还可以表示一定范围内变化着的数.②含有字母的式子可以看作数量间的关系,也可以看做运算的结果.2、用字母表示数的规则3、①数字与字母、字母与字母相乘时,乘号可以记作“·”,或者省略不写,数字要写在字母的前面.②当1与任何字母相乘时,1省略不写.③在一个问题中,不同的量用不同的字母来表示,而不能用同一个字母表示.④用含有字母的式子表示问题的答案时,除法结果一般要写成分数形式;如果式子中有加、减、乘、除运算时,要先进行适当的运算,再用括号把含有字母的式子括起来,并在括号后面写上单位名称.⑤具体问题中,字母表示的数总是有一定范围的.3、用字母表示常见的数量关系如路程、速度和时间的关系(s、v、t)和总价、单价和数量的关系(a、b、c)等4、用字母表示运算定律和运算性质加法交换律、结合律;乘法交换律、结合律和分配律等5、用字母表示几何图形的周长、面积、体积计算公式.二、简易方程1、方程和等式等式:表示相等关系的式子叫做等式.方程:含有未知数的等式叫做方程.2、解方程.解方程:求方程中未知数的值的过程叫做解方程.解方程的依据:等式的性质.①等式两边同时加上或减去同一个数,所得结果仍然是等式.②等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式.3、列方程法解决问题的一般步骤①弄清题意,确定未知数并用x表示(也可以用其他字母表示).②找出题中的数量之间的相等关系.③列方程,解方程.④检查或验算,写出答案.二、例题精讲例1:如果把平均成绩记为0分,+12分表示比平均成绩(12),-25分表示(比零少25分),比平均成绩少6分,记作(-6).解析:此题是对负数的概念的理解及掌握,以0为分界点,比0大的数就是正数,比0小的数就是负数.变式1:某班学生平均成绩为89分,如果把平均成绩记作0分,小明得了92分应记作(+3分),小军得了86分应记作(-3分),小兰得了95分应记作(+6分).变式2:如果把公交车上车人数记作正数,下车人数记作负数,公交车经过第一、二、三、四站时分别记作+3、-4、+5、-3、+2,问公交车过了第四站后车上的人数比原来的人数多了还是少了?为什么?解:(3+5+2)-(4+3)= 10-7=3(人)答:公交车过了第四站后车上的人数比原来的人数多了3人.例2:由5个十分之一,7个千分之一组成一个小数,这个小数是( 0.57 ),18个10和25个0.01组成的数是(180.25).解析:主要是对小数的定义的运用,小数就是分母是10、100、1000……的十进分数,小数是特殊的分数变式1:2个十、3个十分之一和5个千分之一组成的数是(20.35 ),读作(二十点三五). 变式2:一个数的十位上是3,十分位上是3,千分位上是8,其余各位上都是0,这个数是( 30.38 ).例3:1. 某小学参加课外小组的同学有100人,参加各个小组的人数如下表.解析:百分数的定义应用,表示一个数是另一个数的百分之几的数叫做百分数.百分数又叫做百分比或百分率.变式1:我们学校进行团体操表演,女生人数占55%.(1)如果有100人参加表演,女生有( 55 )人,男生有( 45 )人.(2)如果有200人参加表演,女生有( 110 )人,男生有( 90 )人.(3)如果女生有220人参加表演,男生有( 180 )人参加表演.变式2:说一说下面这些百分数的意义.(1)一件毛衣, 100%是山羊绒.答:100%是指山羊绒占整件毛衣总量的百分之一百.(2)空气中氧气体积约占20%.答: 20%是指氧气体积占空气体积总量的百分之二十.(3)我校女教师人数约占全校总人数的150%.答: 150%是指我校女教师人数约占全校总人数的百分之一百五十.(4)一种黄酒的酒精度12.1%.答: 12.1%是指酒精占这种黄酒总量的百分之十二点一.例4:试一试.(1)比x多5的数是(x+5);x的6倍是(6x);比x的7倍多4的数是(7x+4).(2)小华买8本书,每本x元,付出45元,应找回(45-8x)元.解析:把x看作已知数,搞清x与数的关系用运算符号连起来,特别注意x与数相乘时数要写在字母前,而且数与字母中间的乘号省略不写.变式1:用字母式子表示下面的数1、一本书X元,买10本同样的书应付多少元?答:10x2、搭一个正方形要4根小棒,搭n个正方形要多少根小棒?答:4n3、仓库里有一批水泥,运走5车,每车n吨,一共运了多少吨水泥?答:5n变式2:用字母式子表示下面的数量关系1、 从100里减去a 加上b 的和.2、x 除以5的商加上n.答:100-a+b 答:x ÷5+n3、320减去12的m 倍的差.4、80加上b 的和乘以5.答:320-12m 答:(80+b )×5例5:解方程X - 27 X=43 2X + 25 = 35 70%X + 20%X = 3.6 解: 4375=x 解: 2x=5253- 解: 0.7x+0.2x=3.6 7543÷=x 2x=51 0.9x=3.6 2011=x x=101 x=4 解析:解方程的依据:等式的性质.① 等式两边同时加上或减去同一个数,所得结果仍然是等式.② 等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式.变式1:解方程X ×53=20×41 25% + 10X = 54 X - 15%X = 68 解:x=534120÷⨯解:0.25+10x=0.8 解:x-203x=68 X=535⨯10x=0.8+0.25 2017x=68 X=318 X=0.105 x=80 变式2:解方程X +83X =121 5X -3×215=75 32X ÷41=1 解: 121811=x 解: 5x-75=75 解: 41132⨯=x X=121811÷ 5x=710 x=3241÷X=88 x=72 x=83 例6:鸡兔共笼,鸡比兔多25只,一共有脚170只,鸡兔各有几只?(用列方程的方法解答)解:设兔子有x 只,则鸡有x+25只4x+2(x+25)=1704x+2x+50=1706x=120X=20鸡的只数:20+25=45(只)答:笼中鸡有45只,兔子有20只.解析:列方程法解决问题的一般步骤①弄清题意,确定未知数并用x 表示(也可以用其他字母表示).②找出题中的数量之间的相等关系.③列方程,解方程.④检查或验算,写出答案.设兔子有x 只,则鸡有x+25只,鸡的脚的只数加上兔子的脚的只数等于170只,列出方程4x+2(x+25)=170解出x 即可.变式1:鸡兔同笼,共52只,鸡的脚比兔的脚多32,问鸡兔各几只?(用列方程的方法解答) 解:设鸡有x 只,则兔子有52-x 只2x-4(52-x)=322x-208+4x=326x=240X=40 兔子的只数:52-40=12(只)答:鸡有40只,兔子有12只.变式2:今有鸡、兔共居一笼,已知鸡头和兔头共35个,鸡腿和兔腿共94只,问鸡兔各多少只?(用列方程的方法解答)解:设兔子有x 只,则鸡有35-x 只4x+2(35-x )=944x+70-2x=942x=94-70x=12鸡的只数:35-12=23(只)答:鸡有23只,兔子有12只.三、课堂总结1、或根据题意正确用字母表达式,找出字母与数之间的关系;2、能解复杂的方程,正确找出应用题中的等量关系,列方程并解方程.四、课后作业1、在足球比赛中会出现2:0的情况,说明我的比的后项可以为0 ,这种说法对吗?为什么? 答:错,比的后项不能为0,比是指两个数相除,除数不能为0,比赛中的2:0是表示足球比赛的进行情况,清楚的反应比赛的进度.2、一根绳子分成两段,第一段为83米,第二段为83,问这两段绳子哪段长? ( A ) A 、第一段长 B 、第二段长C 、两段一样长D 、无法比较3、两段绳子,第一段剪下83米,第二段剪下83,问剪下的两段绳子哪段长? ( D ) A 、第一段长 B 、第二段长C 、两段一样长D 、无法比较4、甲仓存粮32吨,乙仓存粮57吨,以后甲仓每天存人4吨,乙仓每天存人9吨.几天后乙仓存粮是甲仓的2倍?解:设X 天后,乙仓存粮是甲仓的2倍(32+4X )×2=57+9X64+8x=57+9xX=7答:7 天后乙仓存粮是甲仓的2倍.5、一把直尺和一把小刀共1.9元,4把直尺和6把小刀共9元,每把直尺和每把小刀各多少元?解:设直尺每把x 元,小刀每把就是(1.9-x)元4X+6×(1.9-X)=94x+11.4-6x=92.4=2xX=1.2小刀:1.9-1.2=0.7(元)答:一把小刀0.7元,一把直尺1.2元.6、甲、乙两个粮仓存粮数相等,从甲仓运出130吨、从乙仓运出230吨后,甲粮仓剩粮是乙粮仓剩粮的3倍,原来每个粮仓各存粮多少吨?解:设原来每个粮仓各存粮X吨X-130=(X-230)×3X-130=3x-690690-130=3x-x560=2xX=280答:原来每个粮仓各存280吨.。

初高衔接知识第一讲:数与式的运算(含练习+参考答案)

初高衔接知识第一讲:数与式的运算(含练习+参考答案)

第一讲:数与式的运算班级:______姓名:__________问题一、绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.例1 (1)化简:|x -5|-|2x -13|(x >5).(2)利用绝对值的几何意义求13x x -+-的最小值.问题二、乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-;(2)完全平方公式 222()2a b a ab b ±=±+.我们还可以通过证明得到下列一些乘法公式:(1)立方和公式: (2)立方差公式(3)三数和平方公式 (4)两数和立方公式(5)两数差立方公式例1 (1)计算:22(1)(1)(1)(1)x x x x x x +--+++.(2)已知1x y +=,求333x y xy ++的值.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值.问题三、二次根式0)a ≥a ==,0,,0.a a a a ≥⎧⎨-<⎩例 1 化简:(1; (21)x <<.例2 试比较下列各组数的大小:(1(2问题四、分解因式例1 分解因式:(1)x 2-3x +2;(2)x 2+x -(a 2-a );(3)321x x -+参考答案问题1例1 当1352x <<时,原式5213318x x x =-+-=- 当132x ≥时,原式52138x x x =--+=-例2当1x ≤时,原式1324x x x =-+-+=-+,当1x =时,有最小值2当13x <<时,原式=132x x --+=,恒为2当3x ≤时,原式1324x x x =-+-=-,当3x =时,有最小值2综上所述,最小值为2问题2例1原式()()336111x x x =+-=-例2()33223+331x y x x y y x y =+++=()3331x y xy x y ∴+++=代入1x y +=得3331x y xy ++=问题3例11.原式2= 2.原式11x x x x =-=- 例31.==1010=2.==> 问题四例11.原式()()12x x =--2.原式 ()()221x a x a x a x a =-++=+-+3.原式()()()2111x x x x x x ⎛=-++=-+ ⎝⎭⎝⎭高一数学衔接知识讲义一练习班级:________姓名:_________1.下列叙述正确的是 ( )(A )若a b =,则a b = (B )若a b >,则a b >(C )若a b <,则a b < (D )若a b =,则a b =±2.计算 ( )(A (B (C ) (D )3= ( )(A )a b < (B )a b > (C )0a b << (D )0b a <<4=________;5.比较大小:2-4(填“>”,或“<”).6.不等式13x ->的解为_________________;||x x >的解为___________________;7.利用绝对值的几何意义写出|1||3|x x ---的最大值为___________;最小值为______________;8.化简:20042005⋅=_______________________;9.因式分解324x x --=___________________________;10.若1,1x y xy +==-,则33x y -=__________________. 11.若2220x xy y +-=,求22223x xy y x y +++的值12.解方程22112()3()10x x x x+-+-=.参考答案1-3 D C D4-10 1;>;4x >或2x <-,0x <;2,-22(2)(22)x x x -++;± 11 解:222(2)(-)0x xy y x y x y ++=+=;x y =或2x y =-;当x y =时,原式=22223522x x x x ++=; 当2x y =-时,原式=2222246145y y y y y -+=-+; 综上所述:15-或5212 解:22211()2x x x x+=+-; 令1t x x =+;则22350t t -+=; (25)(1)0t t -+=;152t =,21t =-; 当152x x +=时; 25102x x -+=; 259()416x -=; 12x =,212x =; 当11x x +=-时; 210x x ++=,30∆=-<,无解;综上所述:12x =,212x =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲 数与式的运算
在初中,我们已学习了实数,知道字母可以表示数用代数式也可以表示数,我们把实数和代数式简称为数与式.代数式中有整式(多项式、单项式)、分式、根式.它们具有实数的属性,可以进行运算.在多项式的乘法运算中,我们学习了乘法公式(平方差公式与完全平方公式),并且知道乘法公式可以使多项式的运算简便.由于在高中学习中还会遇到更复杂的多项式乘法运算,因此本节中将拓展乘法公式的内容,补充三个数和的完全平方公式、立方和、立方差公式.在根式的运算中,我们已学过被开方数是实数的根式运算,而在高中数学学习中,经常会接触到被开方数是字母的情形,但在初中却没有涉及,因此本节中要补充.基于同样的原因,还要补充“繁分式”等有关内容.
一、乘法公式
【公式1】ca bc ab c b a c b a 222)(2
2
2
2
+++++=++
【例1】计算:2
2
)3
12(+-x x 【公式2】3
322))((b a b ab a b a +=+-+(立方和公式)
【例2】计算:))((2
2
b ab a b a ++-
【公式3】3
322))((b a b ab a b a -=++-(立方差公式)
请同学观察立方和、立方差公式的区别与联系,公式1、2、3均称为乘法公式. 【例3】计算:
(1))416)(4(2
m m m +-+
(2))4
1101251)(2151(22n mn m n m ++-
(3))164)(2)(2(24
++-+a a a a (4)2
22
2
2
))(2(y xy x y xy x +-++
说明:(1)在进行代数式的乘法、除法运算时,要观察代数式的结构是否满足乘法公式的结
构.
(2)为了更好地使用乘法公式,记住1、2、3、4、…、20的平方数和1、2、3、4、…、
10的立方数,是非常有好处的. 【例4】已知0132
==-x x ,求33
1
x
x +
的值. 说明:本题若先从方程0132==-x x 中解出x 的值后,再代入代数式求值,则计算较烦琐.本题是根据条件式与求值式的联系,用整体代换的方法计算,简化了计算.请注意整体代换法.本题的解法,体现了“正难则反”的解题策略,根据题求利用题知,是明智之举.
【例5】已知0=++c b a ,求
111111
()()()a b c b c c a a b
+++++的值.
说明:注意字母的整体代换技巧的应用. 引申:同学可以探求并证明:
))((32
2
2
3
3
3
ca bc ab c b a c b a abc c b a ---++++=-++
二、根式
0)a ≥叫做二次根式,其性质如下:
【例6】化简下列各式:
(1) + (2)
1)x ≥
说明||a =的使用:当化去绝对值符号但字母的范围未知时,要对字母的取值分类讨论.
【例7】计算(没有特殊说明,本节中出现的字母均为正数):
(1)
(2)
(3)
说明:(1)二次根式的化简结果应满足:①被开方数的因数是整数,因式是整式;②被开方数不含能开得尽方的因数或因式.
(2)二次根式的化简常见类型有下列两种:①被开方数是整数或整式.化简时,先将它分解因数
或因式,然后把开得尽方的因数或因式开出来;②分母中有根式(
)或被开方数有分母(如
() ,转化为 “分母中有根式”的情况.化简时,要把分母中的根式化为有理式,采取分子、分母同乘以一个根式进行化简.(如
化为
,其中2+2-).
【例8】计算:
(1) 21)(1++-+- (2)
+
说明:有理数的的运算法则都适用于加法、乘法的运算律以及多项式的乘法公式、分式二次根式的运算.
【例9
】设x y =
=
33x y +的值.
说明:有关代数式的求值问题:(1)先化简后求值;(2)当直接代入运算较复杂时,可根据结论的结构特点,倒推几步,再代入条件,有时整体代入可简化计算量.
三、分式
当分式A B 的分子、分母中至少有一个是分式时,A
B
就叫做繁分式,繁分式的化简常用以下两种方法:(1) 利用除法法则;(2) 利用分式的基本性质.
【例10】化简
11x
x x x x
-+
-
说明:解法一的运算方法是从最内部的分式入手,采取通分的方式逐步脱掉繁分式,解法二则是利用分式的基本性质
A A m
B B m
⨯=
⨯进行化简.一般根据题目特点综合使用两种方法. 【例11】化简2223961
62279x x x x x
x x x ++-+-+--
说明:(1) 分式的乘除运算一般化为乘法进行,当分子、分母为多项式时,应先因式分解再进行约分化简;(2) 分式的计算结果应是最简分式或整式.
A 组
1a
=-成立的条件是( )
A.0
a>B.0
a<C.0
a≤D.a是任意实数2.若3
x<|6|
x-的值是( )
A.-3B.3C.-9D.9
3.计算:
(1) 2
(34)
x y z
--(2) 2
(21)()(2)
a b a b a b
+---+
(3) 222
()()()
a b a ab b a b
+-+-+(4) 22
1
(4)(4)
4
a b a b ab
-++
4.化简(下列a的取值范围均使根式有意义):
(1) (2) a
(3) (4) +-
5.化简:
(1) 102m
+(2) 0)
x y
>>
B 组
1.若
11
2
x y
-=,则
33
x xy y
x xy y
+-
--
的值为( ):
A.
3
5
B.
3
5
-C.
5
3
-D.
5
3
2.计算:
(1) --(2) 1÷
3.设x y
==
22
x xy y
x y
++
+
的值.
4.当22
320(0,0)
a a
b b a b
+-=≠≠,求
22
a b a b
b a ab
+
--的值.
5.设x 、y 为实数,且3xy =,求+ 6.已知111
20,19,21202020
a x
b x
c x =
+=+=+,求代数式222a b c ab bc ac ++---的值.
7.设12
x =
,求42
21x x x ++-的值. 8.展开4
(2)x -
9.计算(1)(2)(3)(4)x x x x ----
10.计算()()()()x y z x y z x y z x y z ++-++-++- 11.化简或计算:
(1)

(2)
+
(3)
-
(4)
÷+
-。

相关文档
最新文档