矩阵的等价标准型定理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩阵的等价标准型定理
王耀伟 学号
摘要:本文阐述并论证矩阵的等价标准型定理,具体探讨这个定理的应用,比如在矩阵的秩的定义方面,在矩阵乘积的行列式等于矩阵行列式的乘积的证明中,在线性方程组的求解中,在向量的线性相关、线性无关性的判断中等等. 关键字:矩阵、等价标准型定理、应用
引言:文章的目的在于证明等价标准型定理,简单介绍其在矩阵方面、在线性方程组方面、以及在向量的线性相关的判断中的应用。
一、等价标准型定理及其证明
对任意m ×n 矩阵A ,用一系列的m 阶初等方阵P 1,P 2,…,P s 左乘A ,以及一系列初等方阵Q 1,
Q 2…Q s 右乘A ,将A 化成()⎪⎪⎭
⎫ ⎝⎛000r I ,其中r=rank A.存在m 阶可逆方阵P 和n 阶可逆方阵Q 使PAQ
具有上述形式。
证明:先证明定理“任意的m ⨯n 矩阵A 都可以通过有限次初等行变换和初等列变换化为()⎪⎪⎭
⎫ ⎝⎛000r I ”
。如果A=O ,则A 已经是所需的形状。设A=(a ij )m ×n ≠O.其中必有某个元a ij ≠0,当k ≠1时将A 的第一行与第k 行互换,可以将非零元a kl 换到第一行;如果l ≠1;再将第一列和第l 列互换,将非零元换到第(1,1)位置。经过这样的初等行变换和初等列变换,一定可以将A=(a ij )m ×n 化为B=(b ij )m ×n ,使b 11≠0.对2≤i ≤m,2≤j ≤n,将B=(b ij )m ×n 的第一行的-b i1b
-111倍加到第i 行,第一列的-b 1j b -111倍加到第j 列,可以将B 中第二至m 行的第一列元化为0,第二
至n 列的第一行元化为0.再将第一行乘b -111可以将第(1,1)元化为1.这样就将B 化成了如下形
式的矩阵C=⎪⎪⎭
⎫ ⎝⎛11
A 。其中A1是(m-1)×(n-1)矩阵。如果A1=0,则C 已经是所需形状。 设A1≠0,重复以上步骤,对A1作初等行变换和初等咧变换可以将A1化为⎪⎪⎭⎫
⎝⎛21
A 的形状。其中A2是(m-2)×(n-2)矩阵。这也就是对C 的第二至m 行作初等行变换,对C 的第二至第n
列作初等列变换,将C 进一步化为⎪⎪⎪⎭
⎫ ⎝⎛211A 重复这个过程,最后可以得到形如()⎪⎪⎭⎫ ⎝⎛000r I
的矩阵。这个矩阵的r 个非零行线性无关,组成行向量集合的极大线性无关组,因此秩为r 。 根据上述定理,A 可以通过有限次初等行变换和有限次初等列变换化为所说形状。而每次初等行变换可以通过左乘某个初等方阵来实现,每次初等列变换可以通过右乘某个初等方阵来实现。因此A 可以左乘有限个初等方阵P 1,P 2,…,P s 和右乘有限个初等方阵Q 1,Q 2…Q s 化为所说形状:P s …P 2P 1AQ 1Q 2…Q s =()⎪⎪⎭⎫ ⎝⎛000r I 令P=P s …P 2P 1,Q=Q 1Q 2…Q s ,则PAQ =()⎪⎪⎭
⎫ ⎝⎛000r I 。P,Q 都是初等方阵的乘积,初等方阵都是可逆方阵,而可逆方阵的乘积仍是可逆方阵,因此P ,Q 是可逆方阵。
二、矩阵的等价标准形的一些应用
1.矩阵的秩:设A 是一组向量,定义A 的极大无关组中向量的个数为A 的秩。
定义1. 在m´n 矩阵A 中,任意决定k 行和k 列 (1£k£min{m,n}) 交叉点上的元素构成A 的一个k 阶子矩阵,此子矩阵的行列式,称为A 的一个k 阶子式。 例如,在阶梯形矩阵中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式 就是矩阵A 的一个2阶子式。
定义2. A=(aij)m×n 的不为零的子式的最大阶数称为矩阵A 的秩,记作r (A),或rank A 。 特别规定零矩阵的秩为零。
由矩阵的等价标准型定理的证明过程可以得知用矩阵的等价标准型定理来找出矩阵A 的秩。
2.证明矩阵乘积的行列式等于矩阵行列式的乘积:|AB|=|A||B|
3.线性方程组求解 给了一个线性方程组
有解的充分必要条件是:它的系数矩阵A=⎪⎪⎪⎪⎪⎭⎫ ⎝
⎛mn m m n n a a a a a a a a a ΛM M M ΛΛ212222111211与增广矩阵A =⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛m mn m m n n b a a a b a a a b a a a ΛM M M M ΛΛ21222221111211有相同的秩。当线性方程组有解时,如果r(A)=n ,则有唯一解;如果r(A) 用矩阵等价标准型定理解线性方程组 设齐次线性方程组A m*n X=0, Q2的列向量组是A m*n X=0的一个基础解系。 设非齐次线性方程组A m*n X=B那么 4、判断向量的线性相关和线性无关 定义:对向量组,如果存在一组不全为零的数 ,使得 那么,称向量组线性相关.如果这样的个数不存在,即上述向量等式仅当 时才能成立,就称向量组线性无关. 含零向量的向量组一定线性相关,因为 其中, 不全为零. 只有一个向量组成的向量组线性无关的充分必要条件是 ,线性相关的充分必要条件是 . 考虑齐次线性方程组 (*)它可以写成 , 或 , 其中 . 由此可见,向量组线性相关的充分必要条件是齐次线性方程组(*)有非零解.也就是说,向量组线性无关的充分必要条件是齐次线性方程组(*)只有零解. 但我们课堂上学习的判断向量组是先行先关还是线性无关方法,采用的办法是将每个向量组摆成矩阵的列,然后将矩阵化为行简化阶梯阵,阶梯的行数即为矩阵的秩,然后根据方程组基本定理,当秩等于n 的时候,有唯一解,当秩小于n 的时候,有无穷多个解。这样判断线性相关还是线性无关。其实当我们得到行简化阶梯阵的时候,不同行上的“1”所在的向量就是线性无关的。例如:有向量()()()2,1,4,1,0,3,0,1,2),1,1,1(4321-===-=αααα判断这些向量是线性相关还是线性无关。 解:将这些向量写成⎪⎪⎪⎭ ⎫ ⎝⎛--210110114321,将该矩阵做初等行变化 ⎪⎪⎪⎭⎫ ⎝⎛--210110114321→⎪⎪⎪⎭⎫ ⎝⎛---2220333 04321→⎪⎪⎪⎭⎫ ⎝⎛000011104321→⎪⎪⎪⎭ ⎫ ⎝⎛000011102101,则α1,,α2线性无关,α1, ,α3也为线性无关,α1,,α4同样为线性无关。 其实我们通过矩阵的等价标准型定理找出矩阵的秩,这样就可以知道这些向量是线性相关还是无关。 三、矩阵等价标准型定理的推论 推论1、如果A 是可逆方阵,则A 可以表示为若干个初等方阵的乘积。 证明:由于A 可逆,rank A=n,等价标准型定理所说的矩阵()⎪⎪⎭ ⎫ ⎝⎛000r I 只能是n 阶单位方阵I (n),由定理,A 可以左乘一系列初等方阵P 1,P 2,…,P s ,右乘一系列初等方阵Q 1,Q 2…Q s ,化为I (n),P s …P 2P 1AQ 1Q 2…Q s =I 从而A=1112111211------Q Q Q P P P s s ΛΛ,由于初等方阵P 1, P 2,…,P s ,Q 1,Q 2,…Q s 的逆仍是初等方阵,上式表明A 是初等方阵的乘积。 推论2、可逆方阵A 可以经过有限次初等行变换化为单位阵。 证明:A 是有限个初等方阵P 1,P 2,…,P s 的乘积;从而A=P s …P 2P 1,从而I A P P P s =---11112Λ 111,,21---s P P P Λ都是初等方阵,将它们依次左乘A ,最后得到单位阵I ,其效果相当于对A 进行一系列初等行变换之后得到I 。 推论3、Schur 公式⎪⎪⎭⎫ ⎝ ⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----B CA D A I B A I D C B A I CA I 1110000 证明:初等变换与初等方阵的对应关系也可以应用于分块矩阵。将分块矩阵⎪⎪⎭⎫ ⎝⎛=D C B A S 看做两“行”两“列”的方阵。(这里对行、列加引号是因为它们并不只是一行和一列。而 可能是由若干行组成或若干列组成)如果A 是可逆方阵,则可以将第一行左乘-CA -1加到第二 行消去C ,再将第一列右乘-A -1B 加到第二列,得到 ⎪⎪⎭ ⎫ ⎝⎛-→⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫ ⎝⎛--B CA D A B CA D B A D C B A 11000