15种蛋白质单晶培养的方法

合集下载

蛋白质晶体生长的实验技术

蛋白质晶体生长的实验技术

蛋白质晶体生长的实验技术蛋白质是生命体中不可或缺的一部分,它们扮演着众多生物过程中的关键角色,如酶催化、信号转导、结构支持等。

对于理解这些生物学过程,通过蛋白质晶体学的研究相当重要。

但是,蛋白质晶体学的实验技术并不是一件容易的事情。

本文将介绍一些先进的实验技术,可以帮助我们更好地理解蛋白质晶体的生长过程。

在了解蛋白质晶体学的实验技术之前,我们需要先了解什么是蛋白质晶体。

蛋白质晶体是由蛋白质分子组成的周期性结构,它们具有高度的对称性和长程有序性。

在蛋白质晶体学中,晶体通常是通过结晶来制备的。

制备蛋白质晶体的核心问题是蛋白质晶体生长。

蛋白质晶体生长是一个复杂的过程,其中许多因素都可以影响晶体生长速率和质量。

这些因素包括蛋白质的化学和物理性质、结晶条件、晶体培养介质等等。

因此,制备高质量的蛋白质晶体依赖于对蛋白质生长机制的深入了解,并结合适当的实验技术。

其中一个先进的实验技术是减少晶体生长中的溶解过程,从而提高晶体的生长速率和质量。

溶解是晶体生长的一步,在这一步中,溶液中的蛋白质分子离开了晶体表面,并返回到溶液中。

这个过程会导致晶体生长速率减慢,晶体质量下降。

为了减少溶解过程,通常采用增加晶体生长溶液的浓度、增加晶体生长溶液中相应物质的溶解度、减少晶体生长溶液的pH等方法。

这些方法有效地提高了晶体的生长速率和质量。

另一个实验技术是使用微重力条件来促进晶体生长。

在地球上,晶体生长过程受到重力影响,容易出现晶体形态不完整、晶体大小分布不均等问题。

而在微重力条件下,晶体生长受到的重力影响较小,晶体生长速率和质量均能得到提高。

因此,使用微重力条件制备高质量的蛋白质晶体是一个重要的技术手段。

此外,X射线自由电子激光(XFEL)也是一种先进的实验技术,用于解决单晶蛋白质晶体学中的重要问题。

传统的X射线晶体学要求晶体具有一定的大小和完整度,才能够进行数据采集和结构解析。

但是,由于蛋白质晶体本身的性质、晶体生长条件等因素的影响,很难得到完美的晶体。

很好的培养单晶的经验,可以借鉴一下

很好的培养单晶的经验,可以借鉴一下

很好的培养单晶的经验,可以借鉴一下。

单晶培养技巧1.单晶培养的方法多种多样,我们没必要把握那些难以操作的,如升华法、共结晶法等。

最简单的最实用。

常用的有1.溶剂缓慢挥发法;2.液相扩散法;3.气相扩散法。

99%的单晶是用以上三种方法培养出来的。

2.单晶培养所需样品用量一般以10-25mg为佳,假如你只有2mg左右样品,也没关系,但这时就要选择液相扩散法和气相扩散法,不能使用溶剂缓慢挥发法。

3.单晶培养的样品的预处理样品溶解后一定要过滤,不能用滤纸,而是用一小团棉花轻轻的塞在滴管的中下部或下部,不要塞太紧,否则流的太慢。

样品当然是越纯越好,不过假如实在没办法弄纯也没关系,培养一次就相当于提纯了一次,我经常用一些TLC显示有杂点的东西长单晶,但得多养几次。

4.一定要做好记录一次就得到单晶的可能性比较小。

因此最好的方法就是在第一次培养单晶的时候,采取少量多溶剂体系的办法。

假如你有50mg样品,建议你以5mg为一单位,这样你可以同时实验10种溶剂体系,而不是选两种溶剂体系,每个体系25mg。

这是做好记录就非凡重要,以免下次又采用已经失败的溶剂体系,而且单晶解析时必须知道所用的溶剂。

5.培养单晶时,最好放到没人碰的地方,这点大家都知道。

我想说的是你不能一天去看几次也不能放在那里5,6天不管。

也许有的溶剂体系一天就析出了晶体,结果5天后,溶剂全干了。

一般一天看一次合适,看的时候不要动它。

明显不行的体系(如析出絮状固体)就要重新用别的溶剂体系再重新培养。

6.液相扩散法中良溶剂与不良溶剂的比例最好为1:2-1:4。

7.烷基链超过4个碳的很难培养单晶。

8.分子中最好不要有叔丁基,因为轻易无序,影响单晶解析的质量。

9.含氯的取代基一般轻易长单晶,如4-氯苯基取代化合物比苯基取代化合物轻易长单晶。

10.单晶培养-无水无氧条件下的单晶培养,麻烦的方法我就不说了,最简单的方法就是将你的固体样品加入一带橡皮塞的容器(最常用的就是核磁管,塞子不是我们常用的硬塞子,而是软的橡皮塞(随便什么塞子都行,只要能密封且能扎针头),先抽真空,然后通氮气,再用注射器加入良性溶剂,充分溶解(超声),然后再用注射器沿器壁加入不良溶剂即可培养单晶指南综述:你将会发现,培养单晶不仅需要耐心,而且还需要一双灵巧的双手。

有机合成单晶培养经验与技巧总结

有机合成单晶培养经验与技巧总结

有机合成单晶培养经验与技巧总结所谓单晶,即结晶体内部的微粒在三维空间呈有规律地、周期性地排列,或者说晶体的整体在三维方向上由同一空间格子构成,整个晶体中质点在空间的排列为长程有序。

单晶整个晶格是连续的,具有重要的工业应用。

在有机合成中,培养单晶主要是为了通过X-RAY确认结构。

一、长单晶经验总结1、低温缓慢挥发。

一般保持在-20度,用微量真空缓慢抽去溶剂。

通常24~48小时里就可以见到结果,成不成。

这个方法需要注意添加液氮和干冰。

此方法适于室温和空气中不太稳定的化合物。

2、高温溶解缓慢降温。

通常采取高沸点的溶剂溶解样品,然后用铝薄膜包住整个油浴,停止加热,令其温度缓慢下降到室温,再保持1到2天,让过饱和的溶液尽量结晶出来。

这个方法需要注意,降温不能太快,还要注意溶液的浓度。

此方法适合于化合物溶解度差异比较大,而且对无水无氧要求的化合物比较合适。

3、混和溶剂挥发。

用易挥发良溶剂溶解样品,然后小心加入不良溶剂,尽量保持分层状态,令其自我缓慢扩散。

这个方法需要注意溶剂搭配选择。

4、简单挥发。

也就是用溶剂溶解之后,用septum封住,然后插根细针头,令其缓慢挥发。

5、浓缩。

样品溶解于溶剂之后,加一个90度弯管和一个接受瓶。

整个体系稍微抽一点点真空,接受瓶用干冰冷却,令溶剂蒸气在接受瓶里面缓慢冷凝下来,直到有单晶形成。

这个方法需要注意冷凝速度,太快不能得到单晶。

6、溶剂扩散。

这是上面(3)的变通。

加工一底下细瓶颈的带teflon stopper的长管。

用良溶剂把少量样品溶解,转入长管,体积大概1~2 mL,加的量刚好在细瓶颈中间。

然后直立长管,在上面加入不良溶剂直到接近上面的出口,堵死。

之后,小心令长管直立绑在没有振动的地方,让溶剂缓慢相互扩散。

此方法适合于少量样品,无水无氧操作。

7、核磁管办法。

这个跟上面的(4)差不多,量少而且需要耐心等待。

8、冰箱冷冻。

通常比较难于结晶的样品,室温下配成接近饱和溶液之后,放入冰箱,令其缓慢结晶。

单晶的培养方法和手段

单晶的培养方法和手段

单晶的培养方法和手段单晶是指由同一种材料构成的晶体,其内部结构完全一致。

单晶具有优异的物理和化学性能,广泛应用于材料科学、电子工程、光学等领域。

为了获得高质量的单晶,科学家们不断探索和改进单晶的培养方法和手段。

一、传统的单晶培养方法1. 液相培养法液相培养法是最早被应用于单晶培养的方法之一。

它的基本思想是将晶体原料溶解在适当的溶液中,然后通过控制温度、浓度和溶液的饱和度等因素,使晶体在溶液中长大。

液相培养法简单易行,适用于许多材料的单晶生长。

2. 气相培养法气相培养法是用气体作为晶体原料,通过物理或化学反应使气体在晶体生长区域沉积并形成单晶。

气相培养法具有单晶生长速度快、晶体质量高的优点,广泛应用于半导体材料、金属材料等领域。

3. 溶液培养法溶液培养法是将晶体原料溶解在适当的溶剂中,然后通过调节温度、浓度和溶液的饱和度等因素,使晶体在溶液中生长。

溶液培养法适用于许多无机材料和生物材料的单晶培养。

4. 熔融培养法熔融培养法是将晶体原料加热至熔融状态,然后冷却使其凝固成单晶。

熔融培养法适用于高熔点材料和不溶于常见溶剂的材料的单晶培养。

二、新兴的单晶培养方法1. 气体相生长法气体相生长法是一种新兴的单晶培养方法,它利用气体在高温和高压下的反应生成单晶。

这种方法可以获得高质量的单晶,并且可以控制晶体的形状和尺寸。

2. 分子束外延法分子束外延法是一种利用分子束的能量和动量控制晶体生长的方法。

通过控制分子束的能量和角度,可以在基底上生长出单晶薄膜。

3. 气相输运法气相输运法是一种利用气相中的原子或分子在高温和高压下迁移并在基底上生长单晶的方法。

这种方法适用于高熔点材料和不溶于常见溶剂的单晶培养。

4. 水热合成法水热合成法是一种利用高温高压水溶液中的化学反应生成单晶的方法。

这种方法适用于许多无机材料和生物材料的单晶培养。

三、单晶培养的关键技术1. 晶体原料的纯度控制晶体原料的纯度对单晶的质量和生长速度有很大影响。

单晶生长方法介绍

单晶生长方法介绍

石英滤波器具有比一般电感电容做的滤波器体 积小,成本低,质量好等特点。在有线电通讯中 用石英滤波器安装各种载波装臵,在载波多路通 讯装臵(载波电话、载波电视等)的一根导线上 可以同时使用几对、几百对、甚至几千对电话而 互不干扰。使用石英的可透过红外线、紫外线和 具有旋光性等特点,在化学仪器上可做各种光学 镜头,光谱仪透镜等。
溶液法-水热法合成石英水晶
石英(水晶)有许多重要性质,它广泛地应用于国防、电 子、通讯。冶金、化学等部门。石英有正、逆压电效应。 压电石英大量用来制造各种谐振器、滤波器、超声波发生 器等。 石英谐振器是无线电子设备中非常关键的一个元件,它 具有高度的稳定性(即受温度、时间和其它外界因素的影 响极小),敏锐的选择性(即从许多信号与干扰中把有用的 信号选出来的能力很强) ,灵敏性(即微弱信号响应能力强), 相当宽的频率范围(从几百赫到几兆频),人造地球卫星、导 弹、飞机,电子算机等均需石英谐振器才能正常工作。
式中x≥2。在接近石英培育的条件下,测得的x值约在7/3和5/2之间,
这意味着反应产物应当是Na2Si2O5、Na2Si3O7以及它们的电离和水解产 物。而Na2Si2O5和Na2Si3O7经电离和水解,在溶液中产生大量的
NaSi2O5-和NaSi3O7-。
因此,石英的人工合成含下述两个过程:
① 溶质离子的活化
原理:在一定温度的溶液中置入晶核,搅拌下降温, 最后长成单晶。 特点:设备简单成本低 安全 晶体形状不易控制 主要仪器设备: 温控装置 搅拌装置 擎晶装置或晶核 育晶器 晶核--晶体生长的基础,例如:蜂蜜结晶、冬天结 冰。 搅拌--有利于提高晶体的完整性和规整性。
降温法制备单晶装臵示意图
按晶体走向和提拉方法的不同,又可分

蛋白质结晶的方法与技巧

蛋白质结晶的方法与技巧

蛋白质结晶的方法与技巧为了研究蛋白质的结构与功能,科学家们需要将其结晶。

然而,蛋白质结晶并不是一件简单的任务。

科学家们必须经过反复尝试和不断摸索才能最终得到理想的蛋白质晶体。

本文将探讨蛋白质结晶的方法与技巧,希望能为蛋白质晶体的制备提供帮助。

1. 选择合适的蛋白质蛋白质的结晶最重要的依据就是蛋白质的性质,尤其是它的稳定性。

蛋白质分子越稳定,结晶就会越容易,而不稳定的蛋白质则容易出现聚集、凝胶化等问题,导致结晶失败。

因此,科学家们需要选择稳定的蛋白质,在这个选择过程中,要注意以下因素:- 纯度:纯度越高,结晶成功的几率就会越大。

- 分子量:分子量较小的蛋白质结晶更容易,分子量过大的蛋白质可能会出现聚集问题。

- pH值:蛋白质在特定的pH值下更容易结晶,所以需要在试验中通常在不同的pH值下尝试结晶。

- 溶解度:溶解度应该合适,过高或者过低都会影响结晶。

2. 优化溶液条件在蛋白质结晶的过程中,溶液是关键因素之一。

科学家们需要做出合适的溶液,包括盐度、缓冲液等。

在制备溶液的过程中,需要考虑以下问题:- pH值:根据蛋白质的特性,选择合适的pH值,可以在不同pH值下尝试调节蛋白质的溶液。

- 盐度:可以逐步提高盐度来避免蛋白质复性,同时也可以增加晶体生长的速度。

- 缓冲液:选择合适的缓冲液可以帮助维持溶液的pH值,也可以防止氧化和分解。

3. 优化晶体生长条件蛋白质晶体的生长是一个极微妙的过程,需要合适的温度和时间来保证晶体的生长。

在晶体生长前,科学家们需要将蛋白质转移到另一个溶液中。

以下是一些优化晶体生长条件的建议:- 优化溶液条件:根据晶体生长过程中的变化来调节缓冲液、盐度等溶液条件。

- 温度:不同的蛋白质需要在不同的温度下进行结晶。

通常,45摄氏度以下的温度是比较适合晶体生长的。

- 时间:合适的时间周期可以保证晶体生长的大小和成熟度。

通常时间越长,晶体越大,但需要避免晶体生长太久而失效。

4. 辅助方法除了上述的方法与技巧之外,还有一些辅助的方法可以帮助科学家们制备合适的蛋白质晶体。

单晶培养的方法及技巧

单晶培养的方法及技巧

单晶培养的方法及技巧单晶培养的方法一、挥发法原理:依靠溶液的不断挥发,使溶液由不饱和达到饱和过饱和状态。

条件:固体能溶解于较易挥发的有机溶剂理论上,所有溶剂都可以,但一般选择 60~120℃。

注意:不同溶剂可能培养出的单晶结构不同方法:将固体溶解于所选有机溶剂,有时可采用加热的办法使固体完全溶解,冷却至室温或者再加溶剂使之不饱和,过滤,封口,静置培养。

经验: 1.掌握好溶解度,一般 100mL 可溶解 0.2g~2g, 50mL 的烧杯,0.5g~0.8g.2.纯度大的易长出晶体。

3. 可选用混合溶剂,但必须遵循高沸点的难溶低沸点易容的原则。

混合溶剂必须选用完全互溶的二种或多种溶剂。

υ※怎么看是否形成单晶:如果析出的固体有发亮的颗粒或者在显微镜下可观察到凹凸的多面体形状。

※怎么挑选单晶:不要等溶剂挥发完再挑,一定要在有母液存在下挑单晶,用毛细管将晶体吸出,滴到滤纸上,用针将单晶挑到密封管中,3~5 颗即可。

二、扩散法原理:利用二种完全互溶的沸点相差较大的有机溶剂。

固体易溶于高沸点的溶剂,难溶或不溶于低沸点溶剂。

在密封容器中,使低沸点溶剂挥发进入高沸点溶剂中,降低固体的溶解度,从而析出晶核,生长成单晶。

液体等。

一般选难挥发的溶剂,如DMF,DMSO,甘油甚至离子条件:固体在难挥发的溶剂中溶解度较大或者很大,在易挥发溶剂中不溶或难溶。

经验:固体在难挥发溶剂中溶解度越大越好。

培养时,固体在高沸点溶剂中必须达到饱和或接近过饱和。

方法:将固体加热溶解于高沸点溶剂,接近饱和,放置于密封容器中,密封容器中放入易挥发溶剂,密封好,静置培养。

三、温差法原理:利用固体在某一有机溶剂中的溶解度,随温度的变化,有很大的变化,使其在高温下达到饱和或接近饱和,然后缓慢冷却,析出晶核,生长成单晶。

一般,水,DMF, DMSO,尤其是离子液体适用此方法。

条件:溶解度随温度变化比较大。

经验:高温中溶解度越大越好,完全溶解。

推广:建议大家考虑使用离子液体做溶剂,尤其是对多核或者难溶性的配合物。

2015-结构生物学-5蛋白质晶体的培养

2015-结构生物学-5蛋白质晶体的培养

结构生物学Structural Biology蛋白表达系统有哪几种?•1).原核表达系统•2).酵母表达系统•3).昆虫表达系统•4).哺乳表达系统层析技术根据生物分子物理化学特性的不同而达到分离•Ion Exchange (IEX)-离子交换–电荷–可用于层析的任何步骤,根据纯度要求,包括粗纯捕获、中间纯化和最后的精细纯化,根据等电点来选择•Size Exclusion (SEC)-分子筛(或凝胶过滤)–分子大小–用于中间纯化、脱盐和缓冲液交换、最后精细纯化•Affinity (AC)-亲和–生物相互作用–用于复杂样品的最早捕获或中间纯化•Hydrophobic Interaction (HIC和RP) -疏水和反相–疏水相互作用-用于中间纯化,去除脂类和脂多糖蛋白质的含量测定•目前蛋白质的直接定量分析技术只能测定样品的总蛋白含量;目前没有任何方法能直接分析样品中某一特定蛋白成分的含量;•最常用的蛋白定量方法是比色法,包括Bradford(考马斯亮蓝)、BCA法、紫外分光光度法等。

第三节、蛋白质晶体培养晶体的定义“由原子(或离子、分子)在空间周期排列构成的固体物质。

”注意:(1)一种物质是否是晶体是由其内部结构决定的,而非由外观判断;(2)周期性是晶体结构最基本的特征。

晶体的基本性质1、内部结构周期性2、对称性3、均一性4、各向异性5、自范性(自限性)6、最小内能性7、稳定性8、固定熔点9、晶面角守恒定律10、使X射线产生衍射清澈的蛋白质溶液↓饱和溶液↓过饱和溶液↓发生沉淀↓蛋白质的无定形沉淀条件,蛋白质就有可能以晶体形式从溶液中析出。

•蛋白质结晶原理与一般的小分子类似。

不同的是,蛋白质分子分子量大,蛋白质分子的不稳定性和敏感性较大,必须维持其基本水合状态,处于或接近生理pH及温度。

保持蛋白质分子的天然状态对蛋白质的结晶至关重要。

1234结晶相图饱和曲线晶体可能出现的区域?待白质分O X晶液清澈的蛋白质溶液↓饱和溶液↓过饱和溶液↓发生沉淀↓蛋白质的无定形沉淀条件,蛋白质就有可能以晶体形式从溶液中析出。

培养单晶的方法

培养单晶的方法

培养单晶的方法1) 挥发溶剂法:将纯的化合物溶于适当溶剂或混和溶剂。

(理想的溶剂是一个易挥发的良溶剂和一个不易挥发的不良溶剂的混和物。

)此溶液最好稀一些。

用氮/氩鼓泡除氧。

容器可用橡胶塞(可缓慢透过溶剂)。

为了让晶体长得致密,要挥发得慢一些,溶剂挥发性大的可置入冰箱。

大约要长个几天到几星期吧。

2) 扩散法:在一个大容器内置入易挥发的不良溶剂(如戊烷、已烷),其中加一个内管,置入化合物的良溶剂溶液。

将大容器密闭,也可放入冰箱。

经易挥发溶剂向内管扩散可得较好的晶体。

时间可能比挥发法要长。

另外如果这一化合物是室温反应得到,且产物比较单一,溶解度较小,可将反应物溶液分两层放置,不加搅拌,令其缓慢反应沉淀出晶体。

容易结晶的东西放在那里自己就出单晶,不容易结晶的怎么弄也是不出。

好象不是想做就能做出来的。

---首先看一下产物的溶解度,将产物抽干后用良性溶剂溶解成饱和溶液(如用二氯甲烷),然后加入相同体积的不良性溶剂,若产物不稳定应在惰性气体的保护下进行操作,完成后置于冰箱中冷冻至单晶析出,或直接用惰性气体鼓泡直至单晶析出是的,首先所用的仪器要干净,其次挥发溶剂不能太快,仪器上面盖一层保鲜膜,用针刺上几个小孔,慢慢挥发。

还有好多方面要注意的。

祝你成功!单晶培养的经验1.单晶培养的方法多种多样,我们没必要掌握那些难以操作的,如升华法、共结晶法等。

最简单的最实用。

常用的有1.溶剂缓慢挥发法;2.液相扩散法;3.气相扩散法。

99%的单晶是用以上三种方法培养出来的。

2.单晶培养所需样品用量一般以10-25mg为佳,如果你只有2mg左右样品,也没关系,但这时就要选择液相扩散法和气相扩散法,不能使用溶剂缓慢挥发法。

3.单晶培养的样品的预处理样品溶解后一定要过滤,不能用滤纸,而是用一小团棉花轻轻的塞在滴管的中下部或下部,不要塞太紧,否则流的太慢。

样品当然是越纯越好,不过如果实在没办法弄纯也没关系,培养一次就相当于提纯了一次,我经常用一些TLC显示有杂点的东西长单晶,但得多养几次。

蛋白质结晶方法大总结.

蛋白质结晶方法大总结.

蛋白质结晶方法大总结1.1结晶方法(Crystallization Techniques)1.1.1 分批结晶(Batch Crystallization) 这是最老的最简单的结晶方法,其原理是同步地在蛋白质溶液中加入沉淀剂,立即使溶液达到一个高过饱和状态。

幸运的话,不需进一步处理即可在过饱和溶液中逐渐长出晶体。

一个用于微分批结晶的自动化系统已被Chayen等人设计出(1991,1992),其微分批方法中,他们在1-2μl包含蛋白质和沉淀剂的液滴中生长晶体。

液滴被悬浮在油(如石蜡)中,油的作用是作为封层以防止蒸发,它并不干扰普通沉淀剂,但是干扰能溶解油的有机溶剂(Chayen, 1997; see also Chayen, 1998)。

1.1.2 液-液扩散(Liquid–Liquid Diffusion) 这种方法中,蛋白质溶液和含有沉淀剂的溶液是彼此分层在一个有小孔的毛细管中,一个测熔点用的毛细管一般即可(如图1.2)。

下层是密度大的溶液,例如浓硫酸铵或PEG溶液。

如果有机溶剂如MPD被用作沉淀剂,它会在上层。

以1:1混合,沉淀剂的浓度应该是所期最终浓度的二倍。

两种溶液(各自约5μl)通过注射器针头导入毛细管,先导入下层的。

通过一个简易的摇摆式离心机去除气泡。

再加入上层,进而两层之间形成一个明显的界面,它们会逐渐彼此扩散。

Garc´?a-Ruiz and Moreno(1994)已经发展液-液扩散技术至针刺法。

蛋白质溶液通过毛细力被吸入狭窄的管中,管的一端是封闭的。

接着,开放端被插入置于小容器的凝胶中,凝胶使得管竖直,蛋白质溶液与凝胶接触。

含有沉淀剂的溶液被倒在凝胶上,整个装置被保存于封闭的盒子以防蒸发。

沉淀剂通过凝胶和毛细管的扩散时间可以由毛细管插入凝胶的深度控制,从而蛋白质溶液中即可形成过饱和区域,毛细管底部高而顶部低。

这也可作为一个筛选最佳结晶条件的额外信息。

1.1.3 蒸气扩散(Vapor Diffusion)1.1.3.1 悬滴法(The Hanging Drop Method)这种方法中,在一个硅化的显微镜盖玻片上通过混合3-10μl蛋白质溶液和等量的沉淀剂溶液来制备液滴。

蛋白结晶结晶方法

蛋白结晶结晶方法

蛋白结晶结晶方法蛋白结晶是蛋白质颗粒或晶体的形成过程。

它是一种常用且重要的实验方法,用于研究蛋白质的结构和功能。

接下来,我将详细介绍蛋白结晶的方法。

第一步是蛋白质的纯化。

在进行结晶实验之前,必须先获得高纯度的蛋白质样品。

蛋白质来源可以是细菌、动物或植物细胞中。

纯化过程包括裂解细胞,去除杂质,分离蛋白质等步骤。

常用的纯化技术有离心、超滤、层析等。

第二步是蛋白质的溶解。

蛋白质通常以缓冲溶液为载体溶解。

溶液的pH、离子强度和缓冲剂的种类都会对蛋白质的稳定性和结晶性能产生影响。

因此,选择合适的溶解条件对蛋白质结晶是至关重要的。

第三步是蛋白质结晶条件的优化。

结晶条件包括溶解剂、缓冲剂浓度、pH值、温度、反应时间等因素。

通过系统地改变这些条件,可找到最适合蛋白质结晶的条件。

常用的优化方法有试错法、正交实验等。

第四步是蛋白质结晶的诱导方法。

诱导方法的选择直接影响结晶的结果。

常用的诱导方法有扩散法、凝胶法和重结晶法。

扩散法是将蛋白质样品悬于溶液上方,通过溶液中溶剂的挥发来诱导结晶。

凝胶法是在缓冲溶液中加入聚合物、胶体或凝胶,形成结晶骨架。

重结晶法是将蛋白溶液缓慢地加入含有高浓度结晶剂的溶液中,使蛋白质结晶。

第五步是结晶样品的优化和处理。

结晶获得后,需要经过优化和处理,以提高结晶的质量和适用性。

常用的优化方法有晶体生长温度的优化、晶体晶面优化等。

处理方法包括去除溶剂、锁定晶体、优化晶体形态等。

第六步是结晶样品的检测和分析。

检测和分析结晶样品的性质对于后续的X射线衍射实验和结构解析非常重要。

常用的方法有光学显微镜观察晶体的外观和大小,热差示扫描量热仪测量晶体的热性质等。

总结来说,蛋白结晶是一系列复杂的操作步骤,需要经验丰富的科学家在实验中精确控制各种条件。

蛋白结晶的成功与否往往在于技术的熟练程度和对蛋白质本身特性的了解。

蛋白结晶的方法和技术不断发展,为蛋白质科学研究提供了强有力的工具。

单晶生长方法介绍

单晶生长方法介绍

石英滤波器具有比一般电感电容做的滤波器体 积小,成本低,质量好等特点。在有线电通讯中 用石英滤波器安装各种载波装置,在载波多路通 讯装置(载波电话、载波电视等)的一根导线上 可以同时使用几对、几百对、甚至几千对电话而 互不干扰。使用石英的可透过红外线、紫外线和 具有旋光性等特点,在化学仪器上可做各种光学 镜头,光谱仪透镜等。
• 缓慢降温法制备Y3Al5O12 (YAG) (助熔剂法-缓慢降温法) 原料: Y2O3 3.4 mol% 、 Al2O3 7.0 mol% • 助熔剂:PbO 41.5 mole%、PbF2 48.1 mol% • 条件: 1150 C 24 h 4 C/h 降温750 C 用稀HNO3 洗去助熔剂 • 结果: 晶体直径 3 – 13mm 1 – 1.5 g 收率 60 – 70 %
种类很多,原理和作用是 利用液体蒸发产生的温降 使晶体生长,液体称为载 冷剂,有水、醇类等。
主要仪器:擎晶装置
蒸发冷却器(可组装)
蒸发法制备单晶示意图
蒸发法育晶装置
1. 底部加热器 2. 晶体 3. 冷凝器 4. 冷却水 5. 虹吸管 6. 量筒 7. 接触控制器 8. 温度计 9. 水封
3 、水热合成法
3、物料熔融 将装料的坩埚(或料罐)在温度场中加热直至 熔融 加热方式:电阻加热、感应加热 电阻加热法:用石墨、钨等对盛有原材料的坩埚 加热,也可以做成复杂的加热器,起到盛料和 加热的两个目的。该法特点是成本低、可以使 用大电流、低电压电源。 感应加热法:利用中频或高频交流电通过线圈时 产生的交流电磁场,置于线圈内的铱( Ir)或 白金( Pt)坩埚中产生涡流发热,从而融化 坩埚内的原材料。特点是可提供较干净的生长 环境,能快速改变参数而进行精密控制,但成 本费用高。

单晶培养技术

单晶培养技术

单晶培养技术单晶培养技术是一种用于生物晶体生长的技术,它在科学研究、医学和工业生产等领域中有着广泛的应用。

本文将介绍单晶培养技术的原理、方法和应用。

一、原理单晶培养技术是通过控制晶体生长的条件,使其在培养基中形成单晶结构。

晶体生长的过程受到多种因素的影响,包括温度、溶液浓度、pH值、搅拌速度等。

通过调节这些因素,可以控制晶体的生长速度和形态,从而获得所需的单晶。

二、方法单晶培养技术有多种方法,下面介绍其中常用的几种方法。

1. 液体扩散法液体扩散法是最常用的单晶培养方法之一。

首先,将培养基溶液注入培养皿中,然后在培养皿中悬挂晶种,使其与溶液接触。

晶种的溶解度较高,在溶液中会逐渐溶解,而晶体的溶解度较低,会逐渐沉积。

通过调节培养基溶液的浓度和温度,可以控制晶体的生长速度和形态。

2. 气体扩散法气体扩散法是一种将气体中的物质转化为晶体的方法。

将气体通过特定装置,使其与培养基中的物质反应生成晶体。

气体扩散法可以用于生物晶体的生长,也可以用于无机晶体的生长。

3. 悬浮液法悬浮液法是一种将溶液中的溶质转化为晶体的方法。

首先,在溶液中加入晶种,然后通过搅拌或超声波等方式,使晶种与溶液充分混合。

晶种的溶解度较低,在溶液中会逐渐沉积形成晶体。

三、应用单晶培养技术在科学研究、医学和工业生产等领域中有着广泛的应用。

1. 科学研究单晶培养技术可以用于生物晶体的生长,从而研究生物晶体的结构和性质。

生物晶体的结构对于研究蛋白质、核酸等生物大分子的功能和相互作用具有重要意义。

2. 医学应用单晶培养技术可以用于生长人体组织的晶体,从而研究人体组织的结构和功能。

通过研究人体组织的晶体结构,可以了解人体组织的生理和病理变化,为疾病的诊断和治疗提供依据。

3. 工业生产单晶培养技术可以用于生产无机晶体,如硅晶体、氧化铝晶体等。

这些晶体在电子、光电子、光学等领域中有着广泛的应用。

通过控制晶体的生长条件,可以获得高质量的晶体,提高产品的性能。

蛋白质结晶方法大总结

蛋白质结晶方法大总结

蛋白质结晶方法大总结1.1结晶方法(Crystallization Techniques)1.1.1 分批结晶(Batch Crystallization) 这是最老的最简单的结晶方法,其原理是同步地在蛋白质溶液中加入沉淀剂,立即使溶液达到一个高过饱和状态。

幸运的话,不需进一步处理即可在过饱和溶液中逐渐长出晶体。

一个用于微分批结晶的自动化系统已被Chayen等人设计出(1991,1992),其微分批方法中,他们在1-2μl包含蛋白质和沉淀剂的液滴中生长晶体。

液滴被悬浮在油(如石蜡)中,油的作用是作为封层以防止蒸发,它并不干扰普通沉淀剂,但是干扰能溶解油的有机溶剂(Chayen, 1997; see also Chayen, 1998)。

1.1.2 液-液扩散(Liquid–Liquid Diffusion) 这种方法中,蛋白质溶液和含有沉淀剂的溶液是彼此分层在一个有小孔的毛细管中,一个测熔点用的毛细管一般即可(如图1.2)。

下层是密度大的溶液,例如浓硫酸铵或PEG溶液。

如果有机溶剂如MPD被用作沉淀剂,它会在上层。

以1:1混合,沉淀剂的浓度应该是所期最终浓度的二倍。

两种溶液(各自约5μl)通过注射器针头导入毛细管,先导入下层的。

通过一个简易的摇摆式离心机去除气泡。

再加入上层,进而两层之间形成一个明显的界面,它们会逐渐彼此扩散。

Garc´?a-Ruiz and Moreno(1994)已经发展液-液扩散技术至针刺法。

蛋白质溶液通过毛细力被吸入狭窄的管中,管的一端是封闭的。

接着,开放端被插入置于小容器的凝胶中,凝胶使得管竖直,蛋白质溶液与凝胶接触。

含有沉淀剂的溶液被倒在凝胶上,整个装置被保存于封闭的盒子以防蒸发。

沉淀剂通过凝胶和毛细管的扩散时间可以由毛细管插入凝胶的深度控制,从而蛋白质溶液中即可形成过饱和区域,毛细管底部高而顶部低。

这也可作为一个筛选最佳结晶条件的额外信息。

1.1.3 蒸气扩散(Vapor Diffusion)1.1.3.1 悬滴法(The Hanging Drop Method)这种方法中,在一个硅化的显微镜盖玻片上通过混合3-10μl蛋白质溶液和等量的沉淀剂溶液来制备液滴。

单晶培养技巧

单晶培养技巧

单晶培养技巧大多数的合成化学家认为培养出满足质量的单晶更是一门艺术而非科学。

为支持这个说法,他们会提出很多事情,要得到这样的晶体似乎是机遇而且事实上有些人有很好的养单晶的能力。

这个论点有一定道理但是实验已经表明完整的理解晶体生长和溶剂的性质、认真分析过去的成败可以得到一致的积极结果。

事实上,蛋白质晶体化学家已经在这个领域取得了非常大的的成功,我们合成化学家应从中学到很多有用的东西。

1.晶体生长的速率热力学的定律告诉我们,较慢的晶体生长速率及小的熵易引起完美晶体得晶体缺陷,这个证据可以在接近完善的晶体表面经常可以被观察到如经过了数个周期几年到一千年的结晶时间的矿物。

在实验室条件下,实验已经表明生长单晶的最佳时间是数个若干天的周期(over periods of days)偶尔当溶液快速干燥时,所需的单晶会被发现,这种事实非常幸福的但很少见。

典型地当一个人完成一个结晶过程,最好的结晶将在一天或一周后形成。

从我的经验来看,结晶成功的可能性最初的几周之后开始急剧下降,尽管幸运的话也有例外。

2.晶体生长的一般条件在实验室进行的结晶过程大多数温度保持相对恒定,震动级别最小,样品保存在黑暗处。

这常常放在一个小碗橱,密闭、背阴的房间。

记住对流一般来说是你的敌人应试图保持温度相对恒定。

另外对于在狭窄的容器中高粘度溶剂其与温度梯度无关对流相对的低。

.因为结晶总是需要时间,化学家常常不耐烦以至于经常去检查样品。

应避免剧烈的动作,因为这种操作会对优化晶体生长有害。

因此,我推荐不要还没超过一天就去检查他们的样品。

3.溶剂性质和饱和溶液晶体生长必须在饱和溶液中。

为优化结晶生长,化合物在结晶条件下应当适当溶解。

假如饱和时溶解度太大,倾向于得到在一起的丛生晶体。

假如溶解的太少,没有足够的溶质供应晶体表面的生长,会倾向于得到小晶体。

为得到正确的溶解性,应正确的匹配溶质和溶剂。

人们在开始的时候应从文献上查询溶剂的参数如溶剂的极性和介电常数或凭个人的经验。

单晶培养方法1

单晶培养方法1

单晶培养方法汇总单晶培养的方法多种多样,如升华法、共结晶法等。

最简单的最实用常用的有1.溶剂缓慢挥发法;2.液相扩散法;3.气相扩散法。

99%的单晶是用以上三种方法培养出来的。

一、单晶培养要点1、一般以10--25mg为佳,如果你只有2mg左右样品,也没关系,但这时就要选择液相扩散法和气相扩散法,不能使用溶剂缓慢挥发法。

2、单晶培养的样品的预处理样品溶解后一定要过滤,不能用滤纸,而是用一小团棉花轻轻的塞在滴管的中下部或下部,不要塞太紧,否则流的太慢。

样品当然是越纯越好,不过如果实在没办法弄纯也没关系,培养一次就相当于提纯了一次,也可用一些TLC显示有杂点的东西长单晶,但要多养几次。

3、一定要做好记录,一次就得到单晶的可能性比较小。

因此最好的方法就是在第一次培养单晶的时候,采取少量多溶剂体系的办法。

如果你有50mg样品,建议你以5mg为一单位,这样你可以同时实验10种溶剂体系,而不是选两种溶剂体系,每个体系25mg。

这时做好记录就特别重要,以免下次又采用已经失败的溶剂体系,而且单晶解析时必须知道所用的溶剂。

4、培养单晶时,最好放到没人碰的地方,这点大家都知道。

我想说的是你不能一天去看几次也不能放在那里五六天不管。

也许有的溶剂体系一天就析出了晶体,结果五天后,溶剂全干了。

一般一天看一次合适,看的时候不要动它。

明显不行的体系(如析出絮状固体)就要重新用别的溶剂体系再重新培养。

5、液相扩散法中良溶剂与不良溶剂的比例最好为1:2-1:4,可以尝试的溶剂系统:CH2Cl2/乙醚或戊烷;THF/乙醚或戊烷;甲苯/乙醚或戊烷;水/甲醇;CHCl3/正庚烷6、化合物结构中烷基链超过4个碳的很难培养单晶。

7、分子中最好不要有叔丁基,因为容易无序,影响单晶解析的质量。

8、含氯的取代基一般容易长单晶,如4--氯苯基取代化合物比苯基取代化合物容易长单晶。

9、无水无氧条件下的单晶培养,最简单的方法就是将固体样品加入一带橡皮塞的容器(最常用的就是核磁管,塞子是软的橡皮塞(塞子要能密封且能扎针头),先抽真空,然后通氮气,再用注射器加入良性溶剂,充分溶解(超声),然后再用注射器沿器壁加入不良溶剂即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

15种蛋白质单晶培养的方法:
(1)大量养晶法(bulk crystallization):若急着养出单晶,则将纯化之蛋白质溶液加入固体盐类或饱和盐液,直到溶液中出现乳白混浊色,离心后把上清液(suppernatant)放置数天至数周,有可能养出单晶。

(2)批次养晶法(batch method):若发现加入蛋白质的沉淀剂和盐类等化学药品,在浓度C1产生沉淀,浓度Cn为液体,则在C1至Cn之间细分成一串浓度
C1>C2>C3>….>Ci>Cn,(n-2)个小试管进行养晶,可能结出单晶。

此法之主要缺点在于蛋白质的消耗量大。

(3)大量透析法(bulk dialysis):把蛋白质溶液包在半透膜(membrane)内,浸入盛有化学药品的器皿中,半透膜能让小分子进出,却不会让蛋白质等大分子通过,则器皿中沉淀剂、盐类和有机溶液等化学药品会穿过半透膜,与蛋白质起作用,直到膜之内外的浓度梯度(concentration gradient)降到零为止。

此法的好处在于,器皿中化学药品之浓度可作连续之调整,pH值的范围也可探讨。

坏处是膜之内外浓度差异减少时,平衡速率也随之降低。

(4)微量透析法(microdialysis):把半透膜的体积缩小,绑在比钮扣略大的衬架上,架体之凹槽内注入蛋白质溶液,包覆半透膜的体架放入盛有化学药品的器皿,其养晶原理与大量透析法相同,只是使用蛋白质和化学药品的量放得少。

注意凹槽内不得留有气泡,否则膜外的化学药品为气泡所阻止而无法透过气泡,渗入膜内的蛋白质溶液。

(5)连续萃取(sequential extraction):此法所根据的原理是亚可比(Jacoby)的实验,他发现蛋白质在硫酸铵溶液中溶解度随温度的提升而下降。

在4℃以下取得上清液(supernatant),放在室温长晶。

先将蛋白质溶液加入固体硫酸铵或饱和硫酸铵液体,使蛋白质溶液沉淀,离心除去上清液。

接着保持4℃以下处理一系列的蛋白质沉淀物。

准备数种依次递降浓度的沉淀剂(通常为蒸馏水),浓度高的沉淀剂先加入上述蛋白质沉淀物中,以玻棒搅拌并离心,取出上清液,放在室温养晶,再把浓度次高的沉淀剂加入上次未完全溶解的蛋白质沉淀物,搅拌离心,把上清液置于室温养晶,依次类推,直到蛋白质全部溶解为止。

这样每次取出的蛋白质浓度依次递减,溶液由低温移至高温,符合亚可比的准则,可能养出蛋白质单晶。

(6)自由接口间的扩散法(free interface diffusion):若蛋白质在不同的溶剂中具有不同的溶解度,则蛋白质注入盛有沉淀剂试管的上方或下方(依密度而定,密度大者放在下方),在两种溶液的交界面扩散会有晶核长出,装置如图7-10所示。

(7)凹盘或玻片上的蒸汽扩散法(vapor diffusion on plates or slides)—座滴法:蛋白质养晶的要领在于蛋白质达成过饱和溶液,同时添加的化学药物与蛋白质起作用,协助晶核的形成。

掺有化学药品的蛋白质溶液,其水分慢慢扩散,达到过饱和溶液则有可能长出单晶。

若蛋白质溶液暴露在空气中,水分蒸发掉,则蛋白质干涸,无法形成单晶,原因是蛋白质单晶约略维持液态的结构,含有大量水分,水分与蛋白质间形成许多氢键,水分蒸发,蛋白质也无以为系,因此必须保持水分,使蛋白质溶液密闭在一个容器中。

同时还得调节水分,所以必须置放两种溶液,使蛋白质溶液中的水分扩散到另一种高浓度的溶液中,以达蛋白质溶液的过饱和。

通常选择适当的盐类和有机溶剂,调在等电点的pH值,形成沉淀剂,把粉晶蛋白质泡成一定浓度,约在5~40mg/ml之间,在凹盘的下凹孔镀硅,注入一些蛋白质溶液和沉淀剂总共10~40 m l。

在凹盘外方的塑料盒,倒
入20~30ml的沉淀剂。

在塑料的四周涂真空油膏(Vacuum grease),加以密封。

通常这样的塑料盒对于每种养晶条件制备两盒,一盒放在4℃的低温,另盒放在室温,待其长晶,快则一周,慢则数月,幸运的话,可望长出单晶。

通常一次制备数拾条件,大量养晶。

要鉴定长出的单晶确实是蛋白质而不是滴入的沉淀剂等化学药品。

若养出蛋白质单晶太小,不足以供X光绕射实验使用,则可使用连续播种法把小晶粒养大:依照养出蛋白质小单晶的条件,炮制母液(蛋白质溶液配合沉淀剂),注入凹孔,外围倒注沉淀剂,加以密封,等待约半天后,打开封盖,把以前所养的小晶粒稍加清洗后放入,企图长大,若长出的晶体仍然不符X光使用,则把最后一次的晶体当新晶种,再继续播种,直到晶体够大。

此种养晶法的好处是:用量少,筛选多种条件相当理想;易于修饰塑料盒内沉淀剂的浓度。

此种养晶法装置,也可用具有凹槽的玻片来取代,在其一凹孔注入10m l的母液,另一凹孔注入20~40m l的沉淀剂,以小玻片密封,等待长晶。

(8)悬滴液蒸汽扩散法(vapor diffusion in hanging drops)—悬滴法: 它在原理上和座滴法相同,皆以蒸汽达到平衡,利用少量蛋白质筛选多种养晶条件。

此法用量比座滴液更少。

在方形或圆形的玻片上镀硅,滴入少于10m l的蛋白质母液,在培养皿的每一凹槽中注入1 ml的沉淀剂,把方形玻片翻转,盖在凹槽孔缘,加以密封,形成悬滴液,进行扩散,蛋白质溶液达到过饱和,长出单晶。

(9)液体桥连法(liquid bridge)如图7-12(b)所示,一小滴母液和一滴沉淀液分别滴在玻璃片的两靠近处,以细针引导细桥相接,把此载有液滴的玻片放在密封容器中,在细桥相连处可望长出单晶。

(10)浓度透析法(concentration dialysis):,离子强度弱,则蛋白质溶解度低,易形成晶核,长出单晶,可利用氮气在装有蛋白质和盐类的透析袋内施压,使盐类穿透透析膜流出,降低袋内盐类浓度,使蛋白质溶液在低离子强度下长出单晶。

(11)pH引导长晶法(crystallization induced by pH):蛋白质的溶解度在等电点的pH值最低,是个良好的养晶条件。

有些蛋白质在不同的数个pH值,具有数个溶解度的极小,这些溶解度极小处可望长晶。

利用透析法改变透析膜外的pH值是个好办法。

也可在蒸汽扩散法中,在外围滴入挥发性酸或碱(如氨水或干冰等)来调节pH值。

(12)温度长晶法(temperature crystallization):蛋白质溶解度为温度的函数,有些溶解度非常温度敏感。

通常温度降低,分子排列较有秩序,引起能趋疲(熵)(entropy)的降低。

由液体转变到固体,其熵会降低,反之亦然。

井然有序排列的分子易于长晶。

通常一种长晶条件泡两份,一份置于室温,另一份放在4℃的冰箱。

(13)蒸发(evaporation):这是最原始的方法,为小分子的长晶常用法,也是某些蛋白质常用的养晶法。

在蛋白质不变性的条件下,慢慢让母液蒸发,使蛋白质溶液达到过饱和,结出单晶。

(14)填加有效分子法(effector addition):与有效分子(effector)结合的蛋白质,其溶解度往往与无有效分子结合者差异大,可达到某些构象(conformation)平衡状态的存在,养出此种构象单晶,通常的有效分子有配位体(ligand)和基质(substrate)等。

(15)对蒸馏水透析法(dialysis against water):离子强度弱则蛋白质溶解度低,以半透膜装母液,外浸蒸馏水,盐类往膜外透出,待膜内蛋白质溶解度降低,可望长出单晶。

此法相当有效,值得首次尝试。

前提是蛋白质不得变性
(denature),有时添加少许的 Sodium azide,或数滴甲苯(toluene)或氯仿(chloroform)有助防止细菌的滋长。

相关文档
最新文档