057.12.2 第4课时 “斜边、直角边”2

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形全等的判定(四)

直角三角形全等的判定

教学目标

1、经历探索直角三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;

2、掌握直角三角形全等的条件,并能运用其解决一些实际问题。

3、在探索直角三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理。

教学重点

运用直角三角形全等的条件解决一些实际问题。

教学难点

熟练运用直角三角形全等的条件解决一些实际问题。

教学过程

Ⅰ.提出问题,复习旧知

1、判定两个三角形全等的方法:、、、

2、如图,Rt△ABC中,直角边

是、,

斜边是

3、如图,AB⊥BE于C,DE⊥BE于E,

(1)若∠A=∠D,AB=DE,

则△ABC与△DEF (填“全等”或“不全

等” )

根据(用简写法)

(2)若∠A=∠D,BC=EF,

则△ABC与△DEF (填“全等”或“不全

等” )

根据(用简写法)

(3)若AB=DE,BC=EF,

则△ABC与△DEF (填“全等”或“不全等” )

根据(用简写法)

(4)若AB=DE,BC=EF,AC=DF

则△ABC与△DEF (填“全等”或“不全等” )

根据(用简写法)

Ⅱ.导入新课

(一)探索练习:(动手操作):已知线段a ,c (a

AB=c ,CB= a

1、按步骤作图: a c

①作∠MCN=∠α=90°,

②在射线CM上截取线段CB=a,

③以B 为圆心,C为半径画弧,交射线CN于点A,α

④连结AB

2、与同桌重叠比较,是否重合?

3、从中你发现了什么?

斜边与一直角边对应相等的两个直角三角形全等.(HL)

(二)巩固练习:

1.如图,△ABC中,AB=AC,AD是高,

则△ADB与△ADC (填“全等”或“不全等” )

根据(用简写法)

2.如图,CE⊥AB,DF⊥AB,垂足分别为

E、F,

(1)若AC//DB,且AC=DB,则△ACE≌△BDF,

根据

(2)若AC//DB,且AE=BF,则△ACE≌△BDF,根据

(3)若AE=BF,且CE=DF,则△ACE≌△BDF,根据

(4)若AC=BD,AE=BF,CE=DF。则△ACE≌△BDF,根据

(5)若AC=BD,CE=DF(或AE=BF),则△ACE≌△BDF,根据

3、判断两个直角三角形全等的方法不正确的有()

(A ) 两条直角边对应相等 (B )斜边和一锐角对应相等

(C )斜边和一条直角边对应相等 (D )两个锐角对应相等

4、如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F ,DE ⊥BC 于E ,

AB=DC ,BE=CF ,你认为AB 平行于CD 吗?说说你的理由

答:

理由:∵ AF ⊥BC ,DE ⊥BC (已知)

∴ ∠AFB=∠DEC= °(垂直的定义)

在Rt △ 和Rt △ 中

⎨⎧==_______________________________ ∴ ≌ ( )

∴∠ = ∠ ( )

∴ (内错角相等,两直线平行)

5、如图,广场上有两根旗杆,已知太阳光线AB 与DE 是平行的,经过测量这两根旗杆在太阳光照射下的影子是一样长的,那么这两根旗杆高度相等吗?说说你的理由。

(三)提高练习:

1、判断题:

(1)一个锐角和这个锐角的对边对应相等的两个直角三角形全等。( )

(2)一个锐角和锐角相邻的一直角边对应相等的两个直角三角形全等( )

(3)一个锐角与一斜边对应相等的两个直角三角形全等( )

(4)两直角边对应相等的两个直角三角形全等( )

(5)两边对应相等的两个直角三角形全等( )

(6)两锐角对应相等的两个直角三角形全等( )

(7)一个锐角与一边对应相等的两个直角三角形全等()

(8)一直角边和斜边上的高对应相等的两个直角三角形全等()

2、如图,∠D=∠C=90°,请你再添加一个条件,使△ABD≌△BAC,并在添加的条件后的()内写出判定全等的依据。

(1)()

(2)()

(3)()

(4)()

课时小结

至此,我们有六种判定三角形全等的方法:

1.全等三角形的定义

2.边边边(SSS)

3.边角边(SAS)

4.角边角(ASA)

5.角角边(AAS)

6.HL(仅用在直角三角形中)

作业1.课本习题11.2 复习巩固6、7、8

初中数学公式大全

1 过两点有且只有一条直线

2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12 两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

15 定理三角形两边的和大于第三边

16 推论三角形两边的差小于第三边

17 三角形内角和定理三角形三个内角的和等于180 °

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形

21 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形

22 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形

23 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形

24 矩形性质定理 1 矩形的四个角都是直角

25 矩形性质定理 2 矩形的对角线相等

26 矩形判定定理 1 有三个角是直角的四边形是矩形

27 矩形判定定理 2 对角线相等的平行四边形是矩形

28 菱形性质定理 1 菱形的四条边都相等

29 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

相关文档
最新文档