浙江师范大学数学分析2013到2004十套考研真题

合集下载

浙江大学2013年数学分析考研试题及解答(部分)

浙江大学2013年数学分析考研试题及解答(部分)

=
∑n
si − si−1 ln(i)
p⩽n
p⩽n
i=2
i=2
=∑nຫໍສະໝຸດ si ln(i)−
∑ n−1
si ln(i +
1)
=
i=2
sn ln n
+
∑ n−1
i=2(
)
ln
1
+
1 i
si
ln(i) ln(i + 1)
,
i=2
最后一行等式的前一部分为
()
1+O
1 ln n
,
再注意到
( ln 1 +
)
1 i
si
1
米考网:Mekaoyan.com QQ:294429505 淘宝店:shop36525268.taobao.com
294429505 网:www.mekaoyan.com 联系QQ: 研 吾要考
凑一点, 具体函数如下:
1, if n is a prime
δ(n) = 0, others
.
于是题设中的公式就变为
sn
=

ln p p
=
∑n
ln(i) δ(i) i
=
ln n
+
O(1),
p⩽n
i=2
我们再约定 s1 = 0, 则

1 p
=

ln p p ln p
=
∑n
1 ln(i)
ln(i) δ(i) i
浙江大学 2013 年数学分析试题及部分解答
微信公众号: 数学十五少 2020.04.09
接近原版的试题 (水印的广告与我无关) 见后面, 这里只打算解一下最后一题.

浙江师范大学904数学分析与高等代数2004-2006、2011-2013历年考研真题汇编

浙江师范大学904数学分析与高等代数2004-2006、2011-2013历年考研真题汇编
5 3 −1 2 0 1 7 2 52 7、(14 分)求行列式 0 − 2 3 1 0 的值 0 −4 −1 4 0 0 2 3 50
第 1 页,共 2 页
0 8、(14 分)已知 A = 1
1 1
2 4
,求
A
−1

2 −1 0
9、(20 分)如果矩阵 A满足Ak = 0, 试证: (E − A)−1 = E + A + A2 + A3 + Λ Ak−1.
0 1 2 −1 4 2 01 2 1 7、(14 分)求行列式 −1 3 5 1 2 的值。 3 31 2 1 2 10 3 5
8、(14
分)已知
A
=
2 1
2 −1
3 0
,求
A
−1

−1 2 1
9、(20 分)设α1,α 2 ,α3 线性无关,证明α1 + α 2 ,α 2 + α3 ,α3 + α1 也线性无关。
(1) lim sin x ; x→π π − x
(2) lim ( 1 n n→∞ 3
+
1+ 2 n3
+
Λ
+
1
+
2
+
3 n
+
3
Λ
+ n)

2、(12 分)试证:对于任意的实数 a 和 b 成立不等式
a+b 1+ a +b
a ≤ 1+ a
+
b 1+ b
.
3、(12 分)求 f (x) = x2 + 432 的极值点与极值。 x

2004考研数学三真题及答案解析

2004考研数学三真题及答案解析
一、填空题(本题共 6 小题,每小题 4 分,满分 24 分. 把答案填在题中横线上)
(1)

lim
x0
sin x ex a
(cos
x
b)
5
,则
a
=
1
,b =
4
.
【分析】本题属于已知极限求参数的反问题.
【详解】因为
lim
x0
sin x ex a
(cos
x
b)
5
,且
lim
x0
sin
x
(cos
x
b)
(3)

f (x)
xe
x
2
1
,1 2
, x 1
x
1 2
,则
2 1
f
(
x
1)dx
2
1 2
.
2
【分析】本题属于求分段函数的定积分,先换元:x 1 = t,再利用对称区间上奇偶函数
的积分性质即可.
【详解】令 x 1 = t,
2 1
f
(
x
1)dx
1 1
f
(t)dt
1
1 f (x)dt
2
2
(A) 至少存在一点 x0 (a,b) ,使得 f (x0 ) > f (a).
(B) 至少存在一点 x0 (a,b) ,使得 f (x0 ) > f (b).
(C) 至少存在一点 x0 (a,b) ,使得 f (x0 ) 0 .
(D) 至少存在一点 x0 (a,b) ,使得 f (x0 ) = 0.
降低价格反而使收益增加.
(19) (本题满分 9 分)
设级数
x4 x6 x8 ( x ) 24 246 2468

数学分析_各校考研试题及答案

数学分析_各校考研试题及答案

2003南开大学年数学分析一、设),,(x y x y x f w-+=其中),,(z y x f 有二阶连续偏导数,求xy w解:令u=x+y,v=x-y,z=x 则z v u x f f f w ++=;)1()1()1(-++-++-+=zv zu vv vu uv uu xy f f f f f f w二、设数列}{n a 非负单增且a a nn =∞→lim ,证明a a a a n n n n n n =+++∞→121][lim解:因为an 非负单增,故有n n n nnn n n n na a a a a 1121)(][≤+++≤由a a n n =∞→lim ;据两边夹定理有极限成立。

三、设⎩⎨⎧≤>+=0,00),1ln()(2x x x x x f α试确定α的取值范围,使f(x)分别满足:(1) 极限)(lim 0x f x +→存在(2) f(x)在x=0连续 (3) f(x)在x=0可导 解:(1)因为)(lim 0x f x +→=)1ln(lim 20x x x ++→α=)]()1(2[lim 221420n nn x x o nx x x x +-++--→+α极限存在则2+α0≥知α2-≥(2)因为)(lim 0x f x -→=0=f(0)所以要使f(x)在0连续则2->α(3)0)0(='-f 所以要使f(x)在0可导则1->α四、设f(x)在R 连续,证明积分ydy xdx y x f l ++⎰)(22与积分路径无关解;令U=22y x+则ydy xdx y x f l ++⎰)(22=21du u f l )(⎰又f(x)在R 上连续故存在F (u )使dF(u)=f(u)du=ydy xdx y x f ++)(22所以积分与路径无关。

(此题应感谢小毒物提供思路) 五、设f(x)在[a,b]上可导,0)2(=+ba f 且Mx f ≤')(,证明2)(4)(a b Mdx x f b a -≤⎰ 证:因f(x)在[a,b]可导,则由拉格朗日中值定理,存在)2)(()2()(),(ba x fb a f x f b a +-'=+-∈ξξ使即有dx ba x f dx x f bab a)2)(()(+-'=⎰⎰ξ222)(4])2()2([)2)((a b M dx b a x dx x b a M dx b a x f bb a ba a ba-=+-+-+≤+-'≤⎰⎰⎰++ξ六、设}{n a 单减而且收敛于0。

2004年考研数学三真题与解析

2004年考研数学三真题与解析

2004 年考研数学(三)真题一、 填空题 (本题共 6 小题,每小题 4 分,满分 24 分 . 把答案填在题中横线上)(1) 若 limsin xb)5 ,则 a =______, b =______.(cos xx 0exa(2) 设函数 f (u , v)由关系式 f [xg(y) , y] = x + g(y)确定,其中函数g(y)可微,且 g(y) 0,则2 f.u vxe x21 1设 f (x),2x2,则 2 (3) 1 f (x 1)dx.1 , x122(4) 二次型 f ( x 1 , x 2 , x 3 )( x 1 x 2 )2 ( x 2 x 3 ) 2 (x 3 x 1 ) 2 的秩为.(5) 设随机变量 X 服从参数为λ的指数分布 ,则P{X DX } _______.(6) 设总体 X 服从正态分布 N ( μ, σ2), 总体 Y 服从正态分布 N ( μ , σ2),X , X 2, Xn 1 和 Y,Y,Y1211 2n 2分别是来自总体X 和 Y 的简单随机样本 , 则n 12n 22( X i X )(Y j Y)Ei 1n 1 n 2 j 1.2二、选择题 (本题共 6 小题,每小题 4 分,满分 24 分 . 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)函数 f (x)| x | sin( x 2)(7) x( x 1)( x2)2 在下列哪个区间内有界 .(A)( 1,0). (B) (0 , 1). (C) (1 , 2). (D) (2 , 3). [ ]1,则(8) 设 f (x)在 (, + )内有定义,且 lim f (x) a , g( x)f ( x ) , xx0 , x(A) x = 0 必是 g(x)的第一类间断点 . (B) x = 0 必是 g(x)的第二类间断点 .(C) x = 0 必是 g(x)的连续点 .(D) g(x)在点 x = 0 处的连续性与 a 的取值有关 .[](9) 设 f (x) = |x(1 x)|,则(A) x = 0 是 f (x)的极值点,但 (0 , 0) 不是曲线 y = f (x)的拐点 .(B) x = 0 不是 f (x)的极值点,但 (0 , 0)是曲线 y = f (x)的拐点 .(C) x = 0 是 f (x)的极值点,且 (0 , 0) 是曲线 y = f (x)的拐点 . (D) x = 0 不是 f (x)的极值点, (0 , 0) 也不是曲线 y = f (x)的拐点 .[ ](10) 设有下列命题:(1) 若(u 2n 1 u 2n ) 收敛,则u n 收敛 .(2) 若u n 收敛,则u n 1000收敛.n 1n 1(3) 若 lim u n 1 1,则u 发散 .nu nnn 1(4) 若(u n v n ) 收敛,则u n ,v n 都收敛 .n 1n 1n 1则以上命题中正确的是(A) (1) (2).(B) (2) (3). (C) (3) (4). (D) (1) (4). [](11) 设 f ( x) 在 [a , b] 上连续,且 f ( a) 0, f (b) 0 ,则下列结论中错误的是(A) 至少存在一点 x 0 ( a,b) ,使得 f ( x 0 ) > f (a).(B) 至少存在一点 x 0(a, b) ,使得 f (x 0 ) > f (b).(C) 至少存在一点 x 0 (a, b) ,使得 f ( x 0 ) 0.(D) 至少存在一点 x 0 ( a,b) ,使得 f ( x 0 ) = 0.[ D](12) 设 n 阶矩阵 A 与 B 等价 , 则必有(A) 当| A| a(a 0) 时, | B | a .(B) 当| A| a(a 0) 时, |B| a .(C) 当|A|0时, |B| 0.(D) 当|A| 0时 , | B | 0 .[](13) 设 n 阶矩阵 A 的伴随矩阵 A *0, 若 ξ1,ξ2, ξ3, ξ4 是非齐次线性方程组Ax b 的互不相等的解,则对应的齐次线性方程组Ax 0 的基础解系(A) 不存在 .(B) 仅含一个非零解向量 .(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量 .[ ](14) 设随机变量 X 服从正态分布N (0,1) , 对给定的 α (0,1) , 数 u α满足 P{ Xu α}α,若 P{| X | x} α, 则 x 等于(A)u α.(B) u α.(C)u 1 α.(D) u 1α.[]2122三、解答题 (本题共 9 小题,满分 94 分 . 解答应写出文字说明、证明过程或演算步骤 .)(15) (本题满分 8 分)求 lim (1 cos2 x ) .x 0sin 2xx 2(16) ( 本题满分 8 分 )求( x 2 y 2y)d ,其中 D 是由圆 x2y 2 4 和 (x 1)2 y21 所围成的D平面区域 (如图 ).(17) (本题满分 8 分)设 f (x) , g( x)在 [a , b] 上连续,且满足x xg(t) dt ,x b b af (t )dt[a , b),f (t) dtg(t) dt .aaab b证明:xf (x) dx xg(x)dx .aa(18) (本题满分 9 分)设某商品的需求函数为 Q = 100 5P ,其中价格 P (0 , 20) ,Q 为需求量 .(I) 求需求量对价格的弹性 E d ( E d > 0) ;(II)dR E d ) (其中 R 为收益 ),并用弹性 E d 说明价格在何范围内变化时,推导Q(1dP降低价格反而使收益增加 .(19) (本题满分 9 分)设级数x 4x6x 8(x)2 4 2 4 6 2 4 6 8的和函数为 S(x). 求:(I) S(x)所满足的一阶微分方程;(II) S(x)的表达式 .(20)( 本题满分 13 分 )α (1,2,0)Tα(1,α 2, 3α) Tα ( 1, b 2, α 2b) T,β (1,3, 3) T ,设 1, 2,3试讨论当 a,b 为何值时 ,(Ⅰ ) βα1, α2, α3线性表示 ;不能由(Ⅱ ) β可由 α1 ,α2 , α3 唯一地线性表示 , 并求出表示式 ;(Ⅲ ) β可由 α1 ,α2 , α3 线性表示 , 但表示式不唯一 , 并求出表示式 .(21) (本题满分 13 分)设 n 阶矩阵1bb Ab 1 b .bb1(Ⅰ ) 求 A 的特征值和特征向量 ;(Ⅱ ) 求可逆矩阵 P , 使得 P 1AP 为对角矩阵 .(22) ( 本题满分 13 分)设 A , B 为两个随机事件 ,且 P( A)1P(B | A)1P(A|B)1 ,,, 令4321, 发生,1, 发生,XAYB, 不发生, , 不发生 .0 A0 B 求(Ⅰ ) 二维随机变量 ( X ,Y) 的概率分布 ;(Ⅱ ) X与 Y的相关系数XYρ ;(Ⅲ )Z X 2 Y 2 的概率分布 .(23) (本题满分 13 分) 设随机变量X 的分布函数为α β1 , x ,F ( x, α,β)x αx, ,0 α其中参数 α 0, β 1. 设 X 1 , X 2 , , X n 为来自总体 X 的简单随机样本 , (Ⅰ) 当α 1时 , 求未知参数β的矩估计量 ;(Ⅱ ) 当 α 1 时 , 求未知参数 β的最大似然估计量 ;(Ⅲ ) 当 β 2 时 , 求未知参数α的最大似然估计量 .2004 年考研数学(三)真题解析一、 填空题 (本题共 6 小题,每小题 4 分,满分 24 分 . 把答案填在题中横线上)(1) sin x(cos x b) 5,则a =1 , b =4.若 limax 0ex【分析 】本题属于已知极限求参数的反问题.【详解 】因为 lim sin x (cos xb ) 5 ,且 lim sin x (cos x)0 ,所以abx 0exx0 lim (exa)0 ,得 a = 1. 极限化为x 0limsin x(cos x b) limx(cos xb) 1 b5,得 b =4.x 0exax0 x因此, a = 1, b = 4.【评注 】一般地,已知 limf (x)= A ,g(x)(1) 若 g(x) 0,则 f (x)0;(2) 若 f ( x)0,且 A 0,则 g(x) 0.(2) 设函数 f (u , v)由关系式 f [xg(y) , y] = x + g(y)确定,其中函数g(y)可微,且 g(y)0,2fg (v) .则g 2(v)u v【分析 】令 u = xg(y), v = y ,可得到 f (u , v)的表达式,再求偏导数即可 .【详解 】令 u = xg(y), v = y ,则 f (u , v) =ug(v) ,g(v)f 1,2fg (v)所以,u vg 2 .u g (v)(v)x 2,1x1xe 2 221(3) 设 f (x),则1 f ( x 1) dx. 1 , x 1222【分析 】本题属于求分段函数的定积分,先换元:x1 = t ,再利用对称区间上奇偶函数的积分性质即可 .2 1 1【详解 】令 x1 = t , 1 f ( x 1)dx1 f (t )dt 1 f ( x)dt2 2212111 = 21 xexdx 1 ( 1) dx 0 ( ).2222【评注 】一般地,对于分段函数的定积分,按分界点划分积分区间进行求解.(4) 二次型 f ( x , x, x ) ( x x 2) 2 (x2x ) 2( xx ) 2 的秩为 2 .1231331【分析 】二次型的秩即对应的矩阵的秩, 亦即标准型中平方项的项数, 于是利用初等变换或配方法均可得到答案 .【详解一 】因为 f ( x 1 , x 2 , x 3 ) ( x 1x 2 ) 2(x 2 x 3 ) 2 ( x 3 x 1 ) 22x 2 2x 22x22x x 2 x x32 x x31 231 2122 1 1 于是二次型的矩阵为A1 2 1 , 1 1 21 12 1 1 2由初等变换得A0 3 3 0 3 3 ,33从而r ( A)2 , 即二次型的秩为 2.【详解二 】因为 f ( x 1 , x 2 , x 3 )( x 1 x 2 ) 2 (x 2 x 3 ) 2 ( x 3 x 1 ) 22 x 1 2 2x 2 2 2x3 22x 1 x 2 2x 1 x 3 2x 2 x 32( x 11x 21x 3 )23(x 2 x 3 ) 22222 y 1 23 y 2 2 ,2 1 1y 1x 1x 3 ,y 2x 2x 3 .其中x 222. 2所以二次型的秩为(5) 设随机变量X服从参数为λ则 P{ X DX }1 .的指数分布 ,e【分析 】 根据指数分布的分布函数和方差立即得正确答案.【详解 】 由于 DX1 X 的分布函数为2 ,λF ( x)1e λx , x0,0,x0.故P{ XDX} 1 P{XDX }1 P{X1} 1 F(1) 1 .λλ e【评注 】本题是对重要分布, 即指数分布的考查 , 属基本题型 .22X 1 , X 2 , X n 1 和 Y 1 ,Y 2 , Y n 2 分别是来自总体X 和 Y 的简单随机样本 , 则22n 1n 2( X i X )(Y j Y)i 1j 12Eσ .n 1 n 2 2【分析 】利用正态总体下常用统计量的数字特征即可得答案.1n 1221 n 22E[ ] E[2] 【详解 】因为1 i 1 ( X i X ) σ,n 2 1 j(Y j Y)σ,n 112故应填 σ .【评注 】本题是对常用统计量的数字特征的考查.二、选择题 (本题共 6 小题,每小题 4 分,满分 24 分 . 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7) 函数 f (x)| x | sin( x2)x( x 1)( x2)2 在下列哪个区间内有界 .(A)( 1,0).(B) (0 , 1).(C) (1 , 2).(D) (2 , 3).[ A ]【分析 】如 f (x)在 (a , b)内连续,且极限lim f ( x) 与 lim f ( x) 存在,则函数 f (x)x ax b在 (a , b)内有界 .【详解 】当 x0,1,2时, f (x)连续,而 lim f ( x)sin 3, lim f (x)sin 2 ,x118x 04lim f ( x)sin 2,lim f ( x),lim f (x),x 04x1x 2所以,函数 f (x)在 ( 1 , 0) 内有界,故选 (A).【评注 】一般地, 如函数 f (x)在闭区间 [ a , b]上连续, 则 f (x)在闭区间 [a , b]上有界; 如函数 f (x)在开区间 (a ,b)内连续,且极限lim f ( x) 与 lim f ( x) 存在,则函数f (x)在开区间 (a , b)内有界 .xax b(8) 设 f (x)在 (, + )内有定义,且lim f ( x) a ,x1g( x)f ( x ) , x,则0 , x(A) x = 0 必是 g(x)的第一类间断点 . (B) x = 0 必是 g(x)的第二类间断点 .(C) x = 0 必是 g(x)的连续点 .(D) g(x)在点 x = 0 处的连续性与a 的取值有关 . [D ]【分析 】考查极限 limg (x ) 是否存在,如存在,是否等于g(0) 即可,通过换元 1,ux 0x可将极限 lim g ( x) 转化为 lim f (x) .x 0x【详解 】因为 lim g( x) limf ( 1 ) lim f (u) = a(令 u1 ),又 g(0) = 0 ,所以,x 0xx u x当 a = 0 时, lim g ( x) g(0) ,即 g(x)在点 x = 0 处连续,当 a0 时,xlim g( x) g(0) ,即 x = 0是 g( x)的第一类间断点,因此,g(x)在点 x = 0 处的连续性x 0与 a 的取值有关,故选 (D).【评注 】本题属于基本题型,主要考查分段函数在分界点处的连续性.(9) 设 f (x) = |x(1x)|,则(A) x = 0 是 f (x)的极值点,但 (0 , 0) 不是曲线 y = f (x)的拐点 . (B) x = 0 不是 f (x)的极值点,但 (0 , 0)是曲线 y = f (x)的拐点 .(C) x = 0 是 f (x)的极值点,且 (0 , 0) 是曲线 y = f (x)的拐点 . (D) x = 0 不是 f (x)的极值点, (0 , 0) 也不是曲线y = f (x)的拐点 .[ C ]【分析 】由于 f (x)在 x = 0 处的一、二阶导数不存在,可利用定义判断极值情况,考查 f (x)在 x = 0 的左、右两侧的二阶导数的符号,判断拐点情况.【详解 】设 0 < < 1 ,当 x(, 0)(0 , )时, f (x) > 0 ,而 f (0) = 0 ,所以 x = 0 是 f (x)的极小值点 .显然, x = 0 是 f (x)的不可导点 . 当 x(, 0)时, f (x) = x(1x), f (x)2 0,当 x(0 , )时, f (x) = x(1x) , f ( x) 2 0 ,所以 (0 , 0) 是曲线 y = f (x)的拐点 .故选 (C).【评注 】对于极值情况,也可考查 f (x)在 x = 0 的某空心邻域内的一阶导数的符号来判断 .(10) 设有下列命题:(1) 若(u 2n 1 u 2n ) 收敛,则u n 收敛 .n 1n 1(2) 若u n 收敛,则u n 1000收敛.n 1n 1(3) 若 lim u n 1 1,则u 发散 .nu nnn 1(4) 若(u n v n ) 收敛,则u n ,v n 都收敛 .n 1n 1n 1则以上命题中正确的是(A) (1) (2).(B) (2) (3). (C) (3) (4). (D) (1) (4).[B ]【分析 】可以通过举反例及级数的性质来说明 4 个命题的正确性 .【详解 】 (1)是错误的,如令u(1)n ,显然,u 分散,而(uu )收敛.nn 2 n 12nn 1 n 1(2)是正确的,因为改变、增加或减少级数的有限项,不改变级数的收敛性.(3)是正确的,因为由lim un 11可得到 u不趋向于零 (n),所以u 发散.n u n n nn 1(4)是错误的,如令 un 1, vn1,显然,u ,v都发散,而n n n nn 1n 1(u n v n ) 收敛.故选(B).n 1【评注】本题主要考查级数的性质与收敛性的判别法,属于基本题型.(11) 设f ( x)在 [a , b] 上连续,且 f (a) 0, f (b)0 ,则下列结论中错误的是(A)至少存在一点 x0( a,b) ,使得 f ( x0 ) > f (a).(B)至少存在一点 x0(a, b) ,使得 f (x0 ) > f (b).(C)至少存在一点 x0 (a, b) ,使得 f ( x0 ) 0.(D) 至少存在一点x0( a,b) ,使得 f ( x0 ) = 0.[D]【分析】利用介值定理与极限的保号性可得到三个正确的选项,由排除法可选出错误选项.【详解】首先,由已知f( x) 在[a , b]上连续,且 f (a) 0, f (b)0 ,则由介值定理,至少存在一点x(a,b) ,使得 f(x) 0;00另外, f (a)lim f ( x) f (a)0,由极限的保号性,至少存在一点x0(a,b) x ax a使得f ( x)f ( a)0,即 f ( x ) f ( a) .同理,至少存在一点x(a,b)x0a00使得 f ( x0 ) f (b) .所以,(A) (B) (C)都正确,故选 (D).【评注】本题综合考查了介值定理与极限的保号性,有一定的难度.(12)设 n 阶矩阵A与B等价,则必有(A)当| A |a(a 0) 时, | B | a .(B) 当| A |a(a 0) 时, | B | a .(C) 当|A|0时, |B| 0.(D) 当|A|0时, |B| 0.[ D]【分析】利用矩阵 A 与 B 等价的充要条件:r ( A)r ( B) 立即可得.【详解】因为当 | A | 0时, r ( A) n ,又 A 与 B 等价,故r (B)n ,即| B |0 ,故选(D).【评注 】本题是对矩阵等价、行列式的考查, 属基本题型 .(13) 设 n 阶矩阵 A 的伴随矩阵 A *0, 若 ξ,ξ, ξ, ξ 是非齐次线性方程组Axb 的12 34互不相等的解,则对应的齐次线性方程组Ax 0 的基础解系(A) 不存在 .(B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量 . [ B]【分析 】 要确定基础解系含向量的个数 , 实际上只要确定未知数的个数和系数矩阵的秩 .【详解 】 因为基础解系含向量的个数= nr ( A) , 而且n,r ( A) n,r ( A * )1, r ( A) n 1, 0, r ( A) n 1.根据已知条件 A *0, 于是 r ( A) 等于 n 或 n 1 . 又 Ax b 有互不相等的解 ,即解不惟一 , 故 r ( A)n 1. 从而基础解系仅含一个解向量, 即选 (B).【评注 】本题是对矩阵 A 与其伴随矩阵 A * 的秩之间的关系、 线性方程组解的结构等多个知识点的综合考查.(14) 设随机变量X 服从正态分布N (0,1), 对给定的α (0,1), 数u α满足P{ Xα,u }α若P{| X | x} α, 则 x 等于(A)u α.(B) uα.(C)u 1 α.(D) u 1α.[ C ]2122【分析 】 利用标准正态分布密度曲线的对称性和几何意义即得.【详解】由P{| X|x} α, 以及标准正态分布密度曲线的对称性可得P{ Xx}1 α2 . 故正确答案为 (C)., 严格地说它的上分位数概念的考查.【评注 】本题是对标准正态分布的性质三、解答题 (本题共 9 小题,满分 94 分. 解答应写出文字说明、证明过程或演算步骤 .)(15) (本题满分 8 分)求 lim (1cos 2x ) . x 0sin 2 x x 2【分析 】先通分化为“”型极限,再利用等价无穷小与罗必达法则求解即可.【详解 】 lim (1 cos 2xx 2 sin 2 xcos 2 xsin 2xx 2) limx 2 sin 2 xx 0xx21sin 22x2x1sin 4 x1 cos4x 1(4 x)2= lim4lim2lim lim242.432【评注 】本题属于求未定式极限的基本题型,对于“”型极限,应充分利用等价无穷小替换来简化计算.(16) ( 本题满分 8 分 )求 ( x2y 2y)d,其中 D 是由圆 x2y24和 (x 1) 2 y 2 1 所围成的平面区域 (如图 ).D【分析 】首先,将积分区域D 分为大圆 D 1{( x, y) | x2y24} 减去小圆D 2{( x, y) | (x1)2 y 2 1} ,再利用对称性与极坐标计算即可 .【详解 】令 D{( x, y) | x2y24}, D2{( x, y) | ( x 1)2y21} ,1由对称性,yd0 .Dx 2y 2 dx 2y 2 dx 2y 2 dDD 1D 222 r 2dr 32cos r 2dr .d2 d2 016 32 16 (3 2)39 9所以,( x2y2y)d16 (32) .D9【评注 】本题属于在极坐标系下计算二重积分的基本题型,对于二重积分,经常利用对称性及将一个复杂 区域划分为两个或三个简单区域来简化计算.(17) ( 本题满分 8 分)设 f (x) , g( x)在 [a , b] 上连续,且满足x xg(t) dt ,x[a , b),b b af (t )dtf (t) dtg(t) dt .aaab b 证明:xf (x) dx xg(x)dx .aa【分析 】令 F(x) = f (x)g(x), G(x) xF (t )dt ,将积分不等式转化为函数不等式即可.a 【详解 】令 F(x) = f (x)g(x), G(x)x F (t )dt ,a由题设 G(x) 0,x [a , b],G(a) = G(b) = 0 , G (x) F ( x) .b b xG(x)bbb 从而xF ( x)dxxdG( x)G(x)dxG( x)dx ,aaaaa由于 G(x) 0, x[a , b] ,故有b0,G( x) dxab0 .即xF( x)dxab b因此xf ( x)dx xg( x)dx .a a【评注】引入变限积分转化为函数等式或不等式是证明积分等式或不等式的常用的方法.(18)(本题满分 9 分)设某商品的需求函数为Q = 100 5P,其中价格 P (0 , 20) ,Q 为需求量 .(I)求需求量对价格的弹性 E d( E d>0) ;(II)dRQ(1E d ) (其中R为收益),并用弹性E d说明价格在何范围内变化时,推导降低价格反而使dP收益增加 .【分析】由于 E> 0,所以E P dQ;由 Q=PQ 及EP dQ可推导d d Q dP d Q dP dRQ(1 E d ) .dP【详解】 (I) E dP dQ PQ dP .20 P (II)由R = PQ,得dR Q P dQ Q (1P dQ) Q (1 E d ) .dP dP Q dP又由 EP1,得P=10. d20P当 10<P<20dR0 ,时, E d> 1,于是dP故当 10<P<20时,降低价格反而使收益增加 .【评注】当 E d> 0时,需求量对价格的弹性公式为 E dP dQ P dQQ dP .Q dP 利用需求弹性分析收益的变化情况有以下四个常用的公式:dR(1E d )Qdp ,dR(1E d )Q ,dR(11) p ,dp dQ E dEREp 1 E d(收益对价格的弹性).(19)(本题满分 9 分)设级数x 4x6x 8(x)2 4 2 4 6 2 4 6 8的和函数为 S(x). 求:(I) S(x)所满足的一阶微分方程; (II) S(x)的表达式 .【分析 】对 S(x)进行求导,可得到 S(x)所满足的一阶微分方程,解方程可得S(x)的表达式 .【详解 】 (I) S(x) x 4 x6x 8 ,2 42 46 246 8易见S(0) = 0,S (x)x 3 x 5 x 72 2 4 2 4 6x(x 2 x 4x 6)2 2 4 2 4 6x[ x 2 S( x)] .2因此 S(x)是初值问题yxyx 30的解.2 , y(0)(II) 方程 yxyx 3的通解为2y exdxx 3 xdxC ][ edx2x 2x 21 Ce2,2由初始条件 y(0) = 0 ,得 C = 1.x 2 x 2x 2x 2故 ye 21 ,因此和函数 S( x)e 21 . 22【评注 】本题综合了级数求和问题与微分方程问题, 2002 年考过类似的题 .(20)( 本题满分 13 分 )设α1 (1,2,0)T ,α2(1,α2, 3α)T ,α ( 1, b 2, α 2b) T,β (1,3, 3)T ,3试讨论当 a,b 为何值时 ,(Ⅰ )β不能由 α1, α2 , α3 线性表示 ;(Ⅱ )β可由α1,α2 , α3唯一地线性表示 , 并求出表示式 ;(Ⅲ )β可由α1,α2 , α3线性表示 , 但表示式不唯一 , 并求出表示式 .【分析】将可否由α1,α2,α3线性表示的问题转化为线性方程组k1α1 k2α2 k3α3ββ是否有解的问题即易求解.【详解】设有数 k1, k2 , k3 , 使得k1α kαk αβ(*)12 2 3 3.记 A(α1, α2 , α3 ) .对矩阵 ( A, β)施以初等行变换, 有1111( A, β)2a2b2303a a 2b3 (Ⅰ ) 当a0时,有1111(A, β)00b 1 .0001可知 r ( A)r ( A, β) .故方程组 (*) 无解 ,β不能由11110a b 1 .00 a b0α,α ,α 线性表示.123(Ⅱ ) 当a0 ,且 a b 时,有100111111a( A, β)0a b 10101 a00 a b00010 r ( A) r ( A, β) 3 ,方程组(*)有唯一解:k1 1 1,k 21, k30.a a此时β可由α1,α2,α3唯一地线性表示,其表示式为β(11 α1α2.a)1a(Ⅲ ) 当a b 0时 ,对矩阵 ( A, β) 施以初等行变换,有100111111a1( A, β)0a b 1011,a00 a b00000r ( A) r ( A, β) 2 ,方程组 (*) 有无穷多解,其全部解为k111,k21 c ,k3 c ,其中 c 为任意常数.a aβ 可由α1,α2,α3线性表示,但表示式不唯一 ,其表示式为β(11 α1c) α2cα3.a)1( a【评注】本题属于常规题型,曾考过两次 (1991, 2000).(21)(本题满分 13 分)设n 阶矩阵1b bA b1b.b b1(Ⅰ ) 求A的特征值和特征向量;(Ⅱ )求可逆矩阵 P ,使得 P 1 AP为对角矩阵.【分析】这是具体矩阵的特征值和特征向量的计算问题, 通常可由求解特征方程| λE A |0和齐次线性方程组(λE A)x0来解决.【详解】(Ⅰ ) 1 当 b 0 时,λ 1b b| λE A |bλ 1bb bλ1= [ λ 1(n1)b][ λ (1 b)] n 1,得 A 的特征值为λ1(n1)b ,λλ1 b .12n 对λ 1(n1)b ,1(n1)b b b( n1)11λ1E Ab(n1)b b1(n1)1b b(n1)b11(n 1)n11111111n1n 1111n 11111n1111n1100000000111 1 n10010n0n010100n n001100000000解得ξ (1,1,1,,1) T,所以A的属于λ的全部特征向量为11kξ1k (1,1,1,,1)T( k为任意不为零的常数) .对λ 1 b ,2b b b111λ2E Ab b b000b b b000得基础解系为ξ2(1,1,0,,0)T,ξ3(1,0,1,,0)T,, ξn(1,0,0,, 1)T.故 A 的属于λ的全部特征向量为2k 2ξ2k3ξ3k nξn( k2, k3,, k n是不全为零的常数).2 当 b0 时,λ 100| λE A |0λ10(λ 1)n,00λ 1特征值为λλ1,任意非零列向量均为特征向量.1n( Ⅱ ) 1 当 b 0 时,A 有 n 个线性无关的特征向量,令 Pξ ξ ξ ,则(1 ,2 , ,n )1(n 1)bP 1AP1 b1 b2当 b 0 时, AE ,对任意可逆矩阵 P , 均有P 1APE.【评注 】本题通过考查矩阵的特征值和特征向量而间接考查了行列式的计算, 齐次线性方程组的求解和矩阵的对角化等问题 ,属于有一点综合性的试题. 另外 ,本题的解题思路是容易的, 只要注意矩阵中含有一个未知参数 , 从而一般要讨论其不同取值情况 .(22) ( 本题满分 13 分 )设 A , B 为两个随机事件 ,且 P( A)1P(B | A) 11,, P(A|B), 令4321,发生,1,发生,XAYB, 不发生,, B 不发生 .0 A求(Ⅰ ) 二维随机变量 ( X ,Y) 的概率分布 ;(Ⅱ )X 与 Y 的相关系数 ρXY ;(Ⅲ ) Z X 2Y 2 的概率分布 .【分析 】本题的关键是求出 ( X ,Y) 的概率分布,于是只要将二维随机变量 ( X ,Y) 的各取值对转化为随机事件 A 和 B 表示即可.【详解】(Ⅰ ) 因为 P( AB)P( A)P( B | A)1 于是 P( B)P( AB) 1,P(A | B),126则有P{ X1,Y 1}1P( AB),12 1P{ X1,Y0} P( AB)P( A) P( AB),6P{ X 0,Y1} P( AB)P(B) P( AB) 1 ,122P{ X 0,Y0} P( A B) 1P(AB) 1 [P(A) P( B) P( AB)],1 112 3( 或P{ X0,Y 0}16 12),123即 ( X ,Y) 的概率分布为:YX01021 312111 612(Ⅱ )方法一:因为EX P( A)11, E( XY)1, EY P(B)6,412EX 2P( A)1,EY2P(B) 1 ,436(EY)25DX EX 2(EX )2, DY EY 2,16116Cov ( X ,Y)E( XY)EXEY,24所以 X 与 Y 的相关系数ρCov( X ,Y)1 1 5.XY DX DY 1 5 1 5方法二:X, Y的概率分布分别为X01Y01P 31P51 4466则 EX 1,EY1, DX3, DY=5, E(XY)=1, 461613612故 Cov ( X ,Y )E(XY)EX EY,从而24XY Cov( X ,Y )15 .DX DY15 (Ⅲ ) Z的可能取值为:0,1, 2.P{ Z0}P{ X0,Y0}2,31P{ Z1}P{ X1, Y0}P{ X0,Y1},41P{ Z2}P{ X1, Y1},12即 Z 的概率分布为:Z012P2113412【评注】本题考查了二维离散随机变量联合概率分布,数字特征和二维离散随机变量函数的分布等计算问题,属于综合性题型(23) ( 本题满分13 分 )设随机变量X 的分布函数为β1αx,F ( x, α,β)αxx,α,其中参数α 0, β1.设 X1,X2,, X n为来自总体X的简单随机样本,(Ⅰ )当α 1时 ,求未知参数β的矩估计量 ;(Ⅱ )当α 1时 ,求未知参数β的最大似然估计量 ;(Ⅲ )当β 2 时,求未知参数α的最大似然估计量 .【分析】本题是一个常规题型, 只要注意求连续型总体未知参数的矩估计和最大似然估计都须已知密度函数,从而先由分布函数求导得密度函数.【详解】当α 1 时, X 的概率密度为f(xβββ1 ,x1,,)xx1,0,(Ⅰ )由于ββEX xf ( x; β)dx1xx β 1dx,β 1令βX ,解得βX,β 1X1所以 , 参数β的矩估计量为βX. X1(Ⅱ )对于总体 X 的样本值x1, x2,, x n,似然函数为nnβL ( β) f (x i ;α)(x1x2x n)β 1,x i1(i 1,2, , n),i 10,其他.当 x i1(i1,2,, n) 时,L ( β)0,取对数得nln L( β)n ln β ( β 1)i 1ln x i,对β求导数,得d[ln L( β)]nnln x i ,d ββ i 1d[ln L ( β)]nn ln x i 0 ,n令解得 β n ,d ββ i 1ln xi i 1于是β的最大似然估计量为? βn n.ln x ii 1( Ⅲ ) 当 β2 时 , X 的概率密度为2α,f ( x, β)23 ,xxα, x,α对于总体 X 的样本值 x 1, x 2 ,, x n , 似然函数为n 2nn2 α, x i α(i 1,2, , n), L ( β)f (x i ; α)( x 1 x 2 x n ) 3 i 10, 其他 .当 x α(i1,2,, n)时 , ααi越大, L(α) 越大 , 即的最大似然估计值为α?m in{ x 1 , x 2 , , x n } ,于是 α的最大似然估计量为? , X 2 , , X n } . α min{ X 1。

浙江师范大学数学分析与高等代数2006真题

浙江师范大学数学分析与高等代数2006真题
浙江师范大学 2006 年研究生
入 学 考 试 试 题
考试科目: 数学分析与高等代数 报考学科、专业: 课程与教学论(数学教育学)
数 学 分 析 部 分
一、求下列极限(每小题 5 分,共 30 分) 1. n lim (1 1 ) n , 3. 5.
2n 1 1 lim , x 1 x 1 ln x n k lim k , n k 1 3 ln(1 x) , tan x n 1 4. n lim , k ( k 1) k 1 1 3 5 2 n 1 6. lim 。 x 2 4 6 2n
2.
a b b b a b b b a b b b
b b b a

七、当 a,b 取何值时,下列方程组有解,在有解的情况下,求解此 线性方程组,并写出方程组的一般解( 12 分)
2 x1 x2 3 x3 2 x4 6 , 3 x1 3 x2 3 x3 2 x4 5 , ax4 3 , x1 2 x2 5 x 4 x 6 x x b . 2 3 4 1
Q3 的一个线性变换 A,满足:
1 A(ε1,ε2,ε3)=(ε1,ε2,ε3) 2 3
1 1 3 7 , 2 4
(1) 求线性变换 A 在 Q 上的特征值与特征向量; ( 8 分) (2) 分别求线性变换 A 的值域 AV 与核 A-1(0)的一组基。 ( 8 分) 十、设 A 是一个实对称矩阵,在 Rn 上定义线性变换 A: Aα=Aα,
n 1
2.

n 1
n (n 1)!
四、设数列 an 满足 lim
a1 a2 an a a , a 为实数. 求证 lim n 0 。 n n n n

浙江师范大学数学分析考研真题试题2008—2012年

浙江师范大学数学分析考研真题试题2008—2012年

< 1;
2 {xn } 67!TvcA,
22
浙江师范大学 2010 年硕士研究生入学考试初试试题
科目代码: 681 科目名称: 数学分析
适用专业: 基础数学、计算数学、应用数学、运筹学与控制论、系统理论。
提示: 1、请将所有答案写于答题纸上,写在试题上的不给分; 2、请填写准考证号后 6 位:____________。
−1
3
−1≤ x≤1
w 12 "xyzW y = 1 − x2下 y = x2 − 1 `a=1d D,{T|}~ D K
? DD,
12 "N a ≥ 1下







x1
=
a,
x2
=
a
a +
, a
x3
=
a
a +a
a+a
,K ,{g
1 ∀n ≥ 2, 下
1 2

xn
1 3 (2n 1)
6、求极限 lim

n 2 4 2n
7、求级数 (2n 1)x2n2 的收敛域。
n1
2n
8、计算曲线积分 (ex sin y 2 y)dx (ex cos y 2)dy ,其中 L 为上半圆周: L
(x a)2 y2 a2 , y 0 ,沿逆时针方向。
ln(1 t3)
1、求
lim
t0
t2 sin t
.
2、求
lim
x
x( x 1
x).
1
3、求 t ln tdt .
0
4、求 lim (x2 y2 )xy . (x, y)(0,0)

浙江师范大学学科教学(数学)考研真题试题2009、2010年

浙江师范大学学科教学(数学)考研真题试题2009、2010年

学化”。而数学化简单地说就是
组织现实世界的过程。
5.一般认为数学素养的内涵包括 三个方面密切结合。
、数学方法与数学应用三个部分,
二、简释下列概念(每小题 5 分,共 15 分)
1.大众数学(Mathematics for All); 2.数学教育中的“问题解决”; 3.学校数学与数学科学的异同。
三、简述题(简要回答下列问题,1、2 每小题 10 分,3 小题 15 分,共 35 分)
2.“题海战术”(或称“大运动量训练”)的确能有效地提高学生的数学考试成绩,但有人 认为这样会造成学生创造性与学习数学积极性下降的后果。西方强调“理解领先”,而东方强 调“训练领先”,你是如何看待这些问题的?
第 2 页 共 2 页
凭证)。否则,产生的一切后果由考生自负。
第 1 页 共 2 页
一、填空题(每小题 2 分,共 10 分)
1.一般认为数学教育学是以数学的 一门实践性很强的综合性科学。
、课程论与学习论为主要对象的
2.
和《几何原本》东西辉映,是现代数学思想的两大源泉。
3.我国中学数学教学中“三大能力”是指

4.数学教育家弗赖登塔尔认为,学生的学习活动,与其说是学习数学,倒不如说是学习“数
1.解决问题与练习; 2.数学教育家弗赖登塔尔提出的“再创造”教学策略在数学教学中实施的途径与方法; 3.数学研究性学习的内涵是什么?试简要设计一个数学研究性学习教学说课文稿。
四、论述题(结合具体数学教学实践作出恰当的论述,每小题 20 分,共 40 分)
1.已知数列 1,-4,9,-16,……,求出这个数列的前 n 项和。结合这一问题的解答谈谈 如何培养学生的数学合情推理能力。
2009 年在职攻读硕士学位全国联考 专业基础课试卷

浙江师范大学数学分析考研真题试题2008—2012年

浙江师范大学数学分析考研真题试题2008—2012年


!"#$!%
&
!''''''''''''"
()&* 5 +),+) 8 40 -
∫ x − x et2 dt
1、若 f (x)dx 收敛,则 lim f (x) 0 。
a
x
2、 f (x, y) 在 P0 (x0, y0 ) 处两个偏导数存在,则 f 在该点连续。
3、有限区间[a,b] 上的 Riemann 可积函数一定 Riemann 绝对可积
二、简答题(每小题 5 分,共 10 分)
1、叙述含参量广义积分 c f (x,t)dx 在[a,b]上一致收敛的柯西准则。
T.Z/0%
1 2
[*12
-1
f
(x)
=
⎧ ⎪⎪
x
2
sin
⎨ ⎪
A,
π x
,
⎪⎩ ax2 + b,
x<0, x=0, 67 Aa, b 8\% ]^ A, a, b 8 x>0.
_`Ff(x)L x=0 aMP8bcdT. f ′(0) %
e*15 -?@ f (x) L[a,b] fG(ghiRCD%TYV&
(x 2 y 2 2z) ds ,
L
x2 y2 z2 R2
其中
L
为圆周:
x
y
z
0

第 1 页,共 3 页
5、设 f 在 (0, ) 上可微,且
x
t
f
(t)dt
x
x

浙江师范大学数学分析2006真题

浙江师范大学数学分析2006真题
浙江师范大学 2006 年研究生
入学考试试题
考试科目:363 数学分析 报考学科、专业:应用数学、运筹与控制论、基础数学 一 (每小题 5 分,共 30 分)概念题 1、给出函数列{ f n ( x) }在集合 I 上不一致收敛于 f ( x) 的 N 定义. 2、给出微分的几何解释. 3、给出数量场的梯度以及向量场的散度的定义. 4、叙述有限覆盖定理. 5、 给出可度量化几何体 上函数 f 的黎曼积分 fd 的定义.
五 (12 分)试将 f ( x, y, z )dxdydz 分别用直角坐标,柱面坐标和球面坐标表示 V 为一个逐次积分,其中 V 是由 x 2 y 2 R 2 , z 0 与 z 1 所围成的区域.
六 ( 20 分)设函数 f ( x ) 在 (, ) 上连续 . 试证:如果 lim f ( x) 和 lim f ( x)
n k 1 n k 1 n k 1
( ak bk )2 ( ak 2 )( bk 2 ) 并且式中等号当且仅当 ak bk 为一常数时适用(如果 bk 0 ).
第 1 页 共 2 页
四 (10 分)试证当 0 2 时, 1 n 1、 lim( r cos n ) 0 r 1 2 n 1 1 2、 lim r n sin n cot r 1 n 1 2 2

八、 (20 分) 试证明:级数 (1)n x n (1 x) 在 0,1 上绝对收敛和一致收敛,但
n0
由其各项绝对值所组成的级数在 0,1 上却不一致收敛.
第 2 页 共 2 页
x x
都存在且有限, 则 f ( x ) 在 (, ) 上一致连续. 反之成立吗?若成立,试 证之,否则,请举出反例.

浙江师范大学2010年硕士研究生入学考试初试试题681数学分析2010初试科目试题

浙江师范大学2010年硕士研究生入学考试初试试题681数学分析2010初试科目试题

浙江师范大学2010年硕士研究生入学考试初试试

科目代码:681科目名称:数学分析
适用专业:基础数学、计算数学、应用数学、运筹学与控制论、系统理论。

一、计算题:(共8小题,每小题8分,共64分)
1、求极限。

2、。

3、求极限。

4、设,求。

5、若,其中可微,求。

6、求极限。

7、求级数的收敛域。

8、计算曲线积分,其中为上半圆周:,,沿逆时针方向。

二、简答题:(共3小题,每小题5分,共15分)
1、用定义证明。

2、试举一个在某点累次极限存在但重极限不存在的二元函
数。

3、无界数列是无穷大量吗?试说明理由。

三、(11分)讨论函数的可导性,其中
四、(12分)设在上连续,在内二阶可导,连结端点,的弦与曲
线相交于点。

证明存在使。

五、(12分)设在上连续,证明在上一致连续的充要条件是和都
存在。

六、(12分)讨论级数的绝对收敛与条件收敛。

七、(12分)将积分化成(1)直角坐标,(2)柱面坐标,
(3)球面坐标下的三次积分,其中是由所围立体。

八、(12分)证明级数在任何有穷区间上一致收敛,但在任何一
点处不绝对收敛。

2013年考研数学真题分析.doc

2013年考研数学真题分析.doc

学三都相同的题目比较多,这是带有规律性的,所以要求考生在复习的时候公共部分内容要按照相同的要求复习。

第五个特点综合性。

这个题目的综合性,有的题目综合性太强了,涉及的知识点太多.像数二、三第15题,方法简单,但是涉及到的知识点非常多,有无穷小的比较,有罗比达法则,有积化和差等等。

第六个特点是计算量大,虽然今年证明题都涉及到了2个,但是除了中值定理的相关证明之外,剩下其实属于计算型证明题,大部分都是计算题,计算量有点大,像数一第19题,数二15、19题计算量多非常大,考查考生的运算能力。

从以上分分析,对14届考生,在备考的时候,一定要抓重点,既然题目难度不大,所以在复习的时候,基础一定要打牢,复习一定要全面,另外对常见的题型一定要加强训练,最后对真题要反复做,争取将10-15年真题要能够独立做出来。

2004数一数三考研数学真题及解析

2004数一数三考研数学真题及解析

2004年全国硕士研究生入学统一考试数学一试题一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上.) (1)曲线ln y x =上与直线1=+y x 垂直的切线方程为.(2)已知x x xe e f -=')(,且(1)0f =,则()f x =.(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为 .(5)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100021012A ,矩阵B 满足E BA ABA +=**2,其中*A 为A 的伴随矩阵,E 是单位矩阵,则=B ____.(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >=.二、选择题(本题共8小题,每小题4分,满分32分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===0302sin ,tan ,cos 2γβα排列起来,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A ) γβα,,.(B ) βγα,,.(C ) γαβ,,.(D ) αγβ,,.(8)设函数()f x 连续,且,0)0(>'f 则存在0>δ,使得 (A ) ()f x 在(0,)δ内单调增加.(B ) ()f x 在)0,(δ-内单调减少.(C ) 对任意的),0(δ∈x 有()(0)f x f >. (D ) 对任意的)0,(δ-∈x 有()(0)f x f >.(9)设∑∞=1n na为正项级数,下列结论中正确的是(A ) 若lim n n na →∞=0,则级数∑∞=1n na收敛.(B ) 若存在非零常数λ,使得lim n n na λ→∞=,则级数∑∞=1n na发散.(C ) 若级数∑∞=1n na收敛,则2lim 0n n na →∞=.(D ) 若级数∑∞=1n na发散,则存在非零常数λ,使得lim n n na λ→∞=.(10)设()f x 为连续函数,⎰⎰=ttydx x f dy t F 1)()(,则)2(F '等于(A ) 2(2)f .(B ) (2)f .(C ) (2)f -.(D ) 0.(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足AQ C =的可逆矩阵Q 为(A ) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010.(B ) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010.(C ) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010.(D ) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110.(12)设A ,B 为满足0AB =的任意两个非零矩阵,则必有 (A ) A 的列向量组线性相关,B 的行向量组线性相关. (B ) A 的列向量组线性相关,B 的列向量组线性相关. (C ) A 的行向量组线性相关,B 的行向量组线性相关. (D ) A 的行向量组线性相关,B 的列向量组线性相关.(13)设随机变量X 服从正态分布)1,0(N ,对给定的(01)αα<<,数αu 满足αu X P α=>}{,若αx X P =<}|{|,则x 等于(A ) 2αu .(B ) 21αu-.(C ) 21αu -.(D ) αu -1.(14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ令∑==ni i X n Y 11,则(A ) 21(,).Cov X Y nσ=(B ) 21),(σ=Y X Cov . (C ) 212)(σnn Y X D +=+.(D ) 211)(σnn Y X D +=-.三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分12分)设2e b a e <<<,证明)(4ln ln 222a b ea b ->-.(16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h.经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为66.010k =⨯).问从着陆点算起,飞机滑行的最长距离是多少?(注kg 表示千克,km/h 表示千米/小时.)(17)(本题满分12分) 计算曲面积分,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++= 其中∑是曲面)0(122≥--=z y x z的上侧.(18)(本题满分11分)设有方程01=-+nx x n,其中n 为正整数.证明此方程存在惟一正实根n x ,并证明当1>α时,级数∑∞=1n n x α收敛.(19)(本题满分12分)设),(y x z z =是由0182106222=+--+-z yz y xy x 确定的函数,求),(y x z z =的极值点和极值.(20)(本题满分9分)设有齐次线性方程组)2(,0)(,02)2(2,0)1(212121≥⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++n x a n nx nx x x a x x x x a n n n试问a 取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=51341321a A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化.(22)(本题满分9分) 设,A B 为随机事件,且41)(=A P ,31)|(=AB P ,21)|(=B A P ,令 1,0A X A ⎧=⎨⎩发生,,不发生;⎩⎨⎧=.0,1不发生,发生,B B Y 求:(I )二维随机变量(,)X Y 的概率分布;(II )X 与Y 的相关系数XY ρ.(23)(本题满分9分) 设总体X 的分布函数为11,1,(;)1,0,x F x x x ββ⎧>-⎪=⎨≤⎪⎩ 其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(I )β的矩估计量; (II )β的最大似然估计量.2004年考研数学一试题答案与解析一、填空题(1)【分析】 即求曲线ln y x =上斜率为1的切线方程.解1'(ln )'1y x x=== 得1x =,因此所求切线方程为 1.y x =-(2)【分析】 令ln '()xtt e f t t=⇒=⇒2111ln 1()(1)'()ln ln ln .2tt t s f t f f s ds ds sd s t s =+===⎰⎰⎰因此21()ln .2f x x =(3)【分析】 已知L 的参数方程,,x t y t ==t 从0到2π.直接代入公式得原积分20)()]t t t t dt π=-⎰2220322sin 2.42dt tdt πππππ=+=+⋅=⎰⎰(4)【分析】 求解欧拉方程的方法是:作自变量变换(ln )tx et x ==,将它化成常系数的情形:22(41)20d y dy y dt dt +-+=,即22320.d y dyy dt dt++= 相应的特征方程2320λλ++=,特征根121,2λλ=-=-,通解为212.t t y C e C e --=+因此,所求原方程的通解为122C C y x x =+,其中12,C C 为任意常数.(5)【分析】 由于AA A A A E **==,易见3A =,用A 右乘矩阵方程的两端,有3363(2)32.AB B A A E B A A E B A =+⇒-=⇒-=又012101001A E -==-,故1.9B =(6)【分析】 因X 服从参数为λ的指数分布,所以有21,{}(0)x DX P X x e x λλ-=>=>,111{{}P X P x ee λλ-⋅->=>==.二、选择题(7)【分析】 分别求出,,αβγ关于x 的阶数较为方便.由洛必达法则α⇒是xβ⇒是x 的3阶无穷小.由洛必达法则γ⇒是x 的2阶无穷小.因此,应选(B ).(8)【分析】 由导数定义知0()(0)(0)lim0.x f x f f x→-'=>再由极限的不等式性质⇒∃0>δ,当0x ≠,(,)x δδ∈-时,()(0)0.f x f x->⇒当),0(δ∈x ((,0))x δ∈-时,()(0)0(0).f x f -><因此应选(C ).(9)【分析】 这实质上是正项级数∑∞=1n na的敛散性与无穷小n a 的阶的关系问题.结论(B )中,lim n n na λ→+∞=,即lim 0nn a nλ→+∞=≠,亦即n a 与1n 同阶,故∑∞=1n n a 发散.应选(B ).(10)【分析】 转化为可用变限积分求导公式的情形.1()()t ty F t f x dx dy ⎡⎤=⎢⎥⎣⎦⎰⎰1111111()()()(1)(),t t ty t ty f x dx dy f x dx dyf x dx dy t f x dx ⎡⎤⎡⎤=+⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤=+-⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰11'()()()(1)()(1)(),'(2)(2).ttF t f x dx f x dx t f t t f t F f =++-=-=⎰⎰应选(B ).(11)【分析】 按题意,用初等矩阵描述,有010100,001A B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦100011,001B C ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦即010*********.001001A C ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦从而010100011100011100.001001001Q ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦所以应选(D ).(12)【分析】 若设(1,0),(0,1),TA B ==显然AB O =.但矩阵A 的列向量组线性相关,行向量组线性无关;矩阵B 的行向量组线性相关,列向量组线性无关.由此就可断言选项(A )正确.(13)【分析】 由于(0,1)X N :,故对任何正数0λ>,有1{}{}{}2P X P X P X λλλ>=<-=>. 若αx X P =<}|{|,则因01α<<,必有0x >且1111{}{}{}(1{}).2222P X x P X x P X x P X x α->=>=≥=-<= 由此可见12x u α-=.故应选(C ).(14)【分析】 因12,,,n X X X L独立同分布且他们共同的方差为20σ>,因此有2222111,,(,)().0,,n n ni j i i i i i i i i i j Cov X X D a X a DX a i j σσ===⎧====⎨≠⎩∑∑∑对于(A ), 21111111111(,)(,)(,)(,),n n i i i i Cov X Y Cov X X Cov X X Cov X X n n n nσ======∑∑应选(A ). 有省略三、解答题(15)【分析与证明】 即证222ln ln 4,()b a b a e->-这是适用于用拉格朗日中值定理的形式.令2()ln f x x =,在[,]a b 上用拉格朗日中值定理得22()()ln ln ln '()2,f b f a b a f b a b a ξξξ--===--其中2(,)(,).a b e eξ∈⊂注意ln (),x x x ϕ=则21ln '()0().xx x e x ϕ-=<> ()x ϕ⇒在(,)e +∞单调下降2222ln ln 2()().e e e e ξϕξϕξ⇒=>==因此,222ln ln 4.()b a b a e->-(16)【分析】 从飞机接触跑到开始时(0)t =,设t 时刻飞机的滑行距离为()x t ,速度为()'().v t x t =按题设,飞机的质量9000m kg =,着陆时的水平速度0(0)'(0)700/,v x v km h t ===时刻所受的阻力为()kv t -,于是按牛顿第二定律得.dvmkv dt=-初始条件0(0).v v = 【解】 求出()x x v =,再求0v x =.由于,dv dv dx vdx dt dx dtdv==于是微分方程可改写成,vmkv dx dv=-即.dx m dv k =- 相应的初值00.v v x==易求得此初值问题的解为0().mx v v k=-- 令0v =得飞机滑行的最长距离为01.05().mv x km k==(17)【分析与求解】直接把第二类曲面积分化为二重积分.S 的方程为221z xy =--(0)z ≥,它在xy 平面上的投影区域为22: 1.D xy +≤又''2,2,x y z x z y =-=-代公式得3'3'222[2()2()3((1)1)]x y DI x z y z x y dxdy =+-+-+---⎰⎰44442222422222[443(222)]86()3(),DDDDx y x y x y x y dxdyx dxdy x y dxdy x y dxdy =+++--+=-+++⎰⎰⎰⎰⎰⎰⎰⎰其中,44.DDx dxdy y dxdy =⎰⎰⎰⎰作极坐标变换得122121543508cos 63I r dr d d r dr d r dr πππθθθθ=⋅-⋅+⋅⎰⎰⎰⎰⎰⎰2404431cos 343.33422d ππθθπππππ⋅=-+=⋅⋅⋅-+=-⋅⎰(18)【分析与证明】先证正根n x 的存在唯一性并估计n x .令()1(0)n n f x x nx x =+->,则1'()0(0).n n f x nx n x -=+>>()n f x ⇒在[0,)+∞单调上升.又11(0)10,()()0,n n n f f n n=-<=>则由连续函数的零点存在定理知,存在1(0,),()0.n n n x f x n∈=由于()n f x 在[0,)+∞单调上升,故()0n f x =在[0,)+∞存在唯一正根n x .由于有了n x 估计式110,0().n nx x n nαα<<⇒<<因1>α,11()n n α∞=∑收敛,由比较原理知∑∞=1n n x α收敛.(19)【分析与求解】先求),(y x z z =的驻点,这是隐函数求导问题.将方程两边分别对,x y 求导得26220,6202220.z z z zx y yz x y z y z x x y y∂∂∂∂---=-+---=∂∂∂∂ 由0,0,zx z y∂⎧=⎪∂⎪⎨∂⎪=∂⎪⎩得30,3100,x y x y z -=⎧⎨-+-=⎩即3,.x y z y =⎧⎨=⎩反之亦然(只要0z y ==).代入原方程得 22222918102180, 3.yy y y y y -+--+=⇒=±因此得驻点 (9,3),(9,3)--,相应的函数值为3, 3.-为判断驻点是否是极大(小)值点,需求驻点处的二阶偏导数.将下面两个方程30,3100,z z z zx y yz x y z y z x x y y∂∂∂∂---=-+---=∂∂∂∂ 分别对求,x y 导得2222222222221()0,30,10()0.z z zy z x x x z z z z z y z x x y y x x y z z z z z y z y y y y y∂∂∂---=∂∂∂∂∂∂∂∂----⋅-=∂∂∂∂∂∂∂∂∂∂∂∂-----=∂∂∂∂∂在驻点(9,3)处222(9,3,3)(9,3,3)(9,3,3)22115,,,623z z zA B C xx yy∂∂∂====-==∂∂∂∂ ⇒210,0.36AC B A -=>> 按极值的充分判别法知,点(9,3)是),(y x z z =的极小值点,极小值为(9,3) 3.z =类似地可以算出,在驻点(9,3)--处222(9,3,3)(9,3,3)(9,3,3)22115,,,623z z zA B C xx yy---------∂∂∂==-====-∂∂∂∂⇒210,0.36AC B A -=>< ⇒点(9,3)--是),(y x z z =的极大值点,极大值为(9,3) 3.z --=-(20)【分析】 确定参数,使包含n 个未知量和n 个方程的齐次线性方程组有非零解,通常用两个方法:一是对其系数矩阵作初等行变换化成阶梯形;再就是由其系数行列式为零解出参数值.本题的关键是参数a 有两个值,对每个值都要讨论.【解】 设齐次方程组的系数矩阵为A ,则11[(1)].2n A a n n a -=++那么,0Ax =有非零解00A a ⇔=⇔=或1(1).2a n n =-+当0a =时,对系数矩阵A 作初等变换,有1111111122220000,0000A nn n n ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦L L L L M M M M M M M M LL故方程组的同解方程组为 120,n x x x +++=L 由此得基础解系为121(1,1,0,,0),(1,0,1,,0),,(1,0,0,,1).T T T n ηηη-=-=-=-L L L L于是方程组的通解为1111n n x k k ηη--=++L ,其中11,,n k k -L 为任意常数.当1(1)2a n n =-+时,对系数矩阵作初等行变换,有 11111111222220000aa a a a A n n n n a na a ++⎡⎤⎡⎤⎢⎥⎢⎥+-⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥+-⎣⎦⎣⎦L LL L M M M M M M M M L L1111000021002100.001001a n n+⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦LL L L M M M M M M M M LL故方程组的同解方程组为1213120,30,0,n x x x x nx x -+=⎧⎪-+=⎪⎨⎪⎪-+=⎩L L 由此得基础解系为(1,2,,),Tn η=L于是方程组的通解为,x k η=其中k 为任意常数.(21)【解】A 的特征多项式为2123220143143151511010(2)143(2)13315115(2)(8183),a aaa a λλλλλλλλλλλλλλλλ-----=--------=--=---------=--++(I )若2λ=是特征方程的二重根,则有22161830,a -++=解得 2.a =-当2a =-时,A 的特征值为2,2,6,矩阵1232123123E A -⎡⎤⎢⎥-=-⎢⎥⎢⎥--⎣⎦的秩为1,故2λ=对应的线性无关的特征向量有两个,从而A 可相似对角化.(II )若2λ=不是特征方程的二重根,则28183a λλ-++为完全平方,从而18316a +=,解得2.3a =-当23a =-时,A 的特征值为2,4,4,矩阵32341032113E A ⎡⎤⎢⎥-⎢⎥-=⎢⎥⎢⎥--⎢⎥⎣⎦的秩为2,故4λ=对应的线性无关的特征向量只有一个,从而A 不可相似对角化.(22)【解】 此题解答与原书略有不同,参考2004数三22题(I )易见(,)X Y 的全部可能取值为(0,0),(0,1),(1,0),(1,1),并且各相应概率分别为1{1,1}()()(),121{1,0}()()(),6(){0,1}()()()()()P X Y P AB P A P B A P X Y P AB P A P AB P AB P X Y P AB P B P AB P AB P A B =========-=====-=-111,61212=-=312{0,0}()()(),4123P X Y P AB P A P AB ====-=-= 或 2{0,0}()1()()(),3P X Y P AB P AB P AB P AB ====---=或2{0,0}()1()()().3P X Y P AB P A P B P AB ====--+=即(,)X Y 的概率分布为(II )从(I )所求出(,)X Y 的概率分布容易得出随机变量X 与Y 分别服从参数为14与16的01-分布. 1315,,,,4166361(){1,1}(),121(,)().24EX DX EY DY E XY P X Y P AB Cov X Y E XY EXEY ==========-=因此X 与Y 的相关系数为XY ρ==(23)【解】X 的概率密度为1,1(;)01x f x x x βββ+⎧>⎪=⎨⎪≤⎩,,.(I )11(;),1EX x f x dx xdx xββββμβ+∞+∞+-∞===-⎰⎰@解出被估计参数β与X 的期望μ之间的关系为1μβμ=-.因此β的矩估计量为µ1X X β=-,其中11n i i X X n ==∑.(II )对于总体X 的样本值12,,,n x x x L,似然函数为112,1()(,,,)0ni n x L x x x βββ+⎧>⎪=⎨⎪⎩L ,,其他.1,2,,.i n =L当1ix >(1,2,,)i n =L 时,()0L β>,取对数得1ln ()ln (1)ln ,ni i L n x βββ==-+∑对β求导数,得1ln ()ln ,ni i d L n x d βββ==-∑令ln ()0d L d ββ=,解得1ln nii nxβ==∑,因此参数β的最大似然估计量为1ln nii nxβ∧==∑.。

考研数学-浙江师范大学2009年硕士研究生入学考试试题

考研数学-浙江师范大学2009年硕士研究生入学考试试题

浙江师范大学2009年硕士研究生入学考试试题 科目代码: 681 科目名称:数学分析提示:1、 本科目适用专业:基础数学、计算数学、应用数学、运筹学与控制论、系统理论;2、 请将所有答案写于答题纸上,写在试题上的不给分;3、 请填写准考证号后6位:____________。

一、(每小题4分,共20分)叙述下列各概念或定理。

1. 函数项级数()n u x ∑在区间I 上不一致收敛。

2. 二元函数z = f (x , y )在000(,)P x y 点可微。

3. 闭区间套定理。

4. 积分第一中值定理。

5. 黎曼可积的充分必要条件。

二、(每小题10分,共50分)计算下列各题。

1. sin , (,): 0,2Dx y dxdy D x y x y π⎧⎫-=≤≤⎨⎬⎩⎭⎰⎰。

2. 1ln cos(1)lim1sin 2x x x π→--。

3. 3332222, : x dydz y dzdx z dxdy x y z a 球面上半部分,取上侧。

∑++∑++=⎰⎰ 4. 设2(,)zz z z x y z e xy x y 由所确定,求∂=+=∂∂。

5. 求星形线3333cos , sin (,)88a x a t y a t P a 上点==处的切线和星形线以及坐标轴围成的在第一象限部分区域的面积。

三、(14分)求级数211(1)(21)31nn n x n n x -∞=-⎛⎫ ⎪-+⎝⎭∑的收敛域、和函数S (x )以及和1()2S -。

四、(14分)证明不等式221ln(1)1, x x x x x +++≥+∀∈成立。

五、(14分)讨论函数项级数221(1)sin (-,)221sin n n n n x n x ππ∞=-+∑在上的一致收敛性、绝对收敛性以及绝对一致收敛性。

六、(14分)设f (x )在[-1,1]上二阶连续可微,(0)0f =,证明(可用Taylor 展开)1111(), sup ''().3x M f x dx M f x 其中--≤≤≤=⎰ 七、(12分)两抛物线2211y x y x =-=-和围成闭区域D 。

浙江师范大学行知学院《数学分析(四)》考试卷(A)

浙江师范大学行知学院《数学分析(四)》考试卷(A)

浙江师范大学行知学院《数学分析(四)》考试卷(A)参考答案及评分标准(2005~2006学年第二学期)考试形式 闭卷 使用学生 行知数学04级考试时间 150 分钟 考试时间 2006 年6月 28 日一、选择题(每小题3分,共18分) 1、极限⎰+→++aaa ax dx12201lim的值是( C ) (A)0, (B) 1, (C) 4π, (D) 2π. 2、已知π=Γ)21(,则)25(Γ的值是 ( D )(A )π5, (B )π25, (C )52π, (D )π43. 3、下列各式中,改变积分dy y x f dx x⎰⎰-101),(的顺序正确的是(A )(A) dx y x f dy y⎰⎰-1010),(, (B) dx y x f dy y ⎰⎰-111),( ,(C)dx y x f dy x⎰⎰-110),(, (D) dx y x f dy y⎰⎰-111),(.4、由光滑闭曲面S 围成的空间区域的体积是 ( C ) (A)⎰⎰++Szdzdx ydydz xdxdy , (B)⎰⎰++Szdzdx ydydz xdxdy 31, (C)⎰⎰-+Szdxdy ydzdx xdydz , (D)⎰⎰-+Szdxdy ydzdx xdydz 31. 5、若L 是右半圆周0,222≥=+x R y x ,则积分⎰+Lds y x 22=( D )(A)R , (B)R π2, (C)R π, (D) 2R π.6、已知无界区域上的二重积分⎰⎰≥++12222)(y x m y x dxdy收敛,则m 的取值范围为( A ) (A) 1>m , (B)1≤m , (C)2>m , (D) 2≤m .二、填空题(每小题3分,共18分)1、设a b p >>,0,则积分⎰+∞--0sin sin dx xaxbx e px=____________________.2、Beta 函数的值)21,21(B =________.3、设L 为抛物线22x y =从(0,0)到(1,2)的一段,积分ydx xdy L-⎰=______.4、设}|),{(22x y x y x D ≤+=,则⎰⎰=Ddxdy x _____________.5、设]1,0[]1,0[]1,0[⨯⨯=V ,则⎰⎰⎰++Vdxdydz z y x )(=__________.6、设S 为平面1=++z y x 在第一卦限中的部分,则⎰⎰=SzdS _____________.三、解答下列各题(每小题5分,共30分)1、证明含参量积分dx y x x y ⎰∞+∞-+-22222)(在),(+∞-∞上一致收敛.证: 由于2222222211|)(|xy x y x x y ≤+≤+-, ……………2分 而dx x ⎰+∞∞-21收敛,根据M 判别法可知, 积分dx y x x y ⎰∞+∞-+-22222)(在),(+∞-∞上一致收敛. ……………5分2、计算积分⎰∞+-->>-0)0(a b dx xe e bxax . 解:由于⎰⎰⎰∞+-∞+--=-00b a xy bxax dy e dx dx xe e , ……………2分又积分⎰+∞-0dx e xy 在[a,b]上一致收敛, ……………3分因此⎰⎰⎰⎰⎰⎰-====-∞+-∞+-∞+--baxy b a b a xy bxax a b dy ydxe dy dy e dx dx xe e ln ln 1000 ……………5分3、计算⎰Lds y ||,其中L 为单位圆周122=+y x .解:⎰Lds y ||pap b arctanarctan -π321582363θθθθπd 2220cos sin |sin |+=⎰ ……………2分4sin 20==⎰πθθd ……………5分4、计算⎰-+-++Ldz x z dy z y dx y x )()()(,其中L 为从(0,0,0)到(1,2,3)的直线段.解: 直线段的参数方程是:1032≤≤⎪⎩⎪⎨⎧===t t z t y t x , ……………2分 于是,⎰-+-++L dz x z dy z y dx y x )()()(⎰-+-++=10)]3(3)32(2)2[(dt t t t t t t ……………4分27710==⎰tdt ……………5分 5、求锥面22y x z +=被柱面x z 22=所截部分的曲面面积.解: 该曲面在xy 平面上的投影是圆x y x 222≤+, ……………2分 因此,rdrd dxdyz z S xy x y x ⎰⎰⎰⎰+=++=∆-≤+θππθcos 202222211122……………4分πθθππ2cos 22222==⎰-d ……………5分6、求全微分dz y zx dy x yz dx z xy )2()2()2(222+++++的原函数. 解: 由于dz y zx dy x yz dx z xy x z z y y x d )2()2()2()(222222+++++=++,…………3分因此,全微分dz y zx dy x yz dx z xy )2()2()2(222+++++的原函数是C x z z y y x +++222. ……………5分四、(8分) 证明:若),(y x f 为有界闭区域D 上的非负连续函数,且在D 上不恒为零,则0),(>⎰⎰Dd y x f σ.证: 由条件,存在点D y x P ∈=),(000,使0),(00>y x f , ……………1分 而),(y x f 为连续函数,因此存在0>δ,使得10),(),(D D P U y x =⋂∈∀δ,有0)(21),(0>>P f y x f , ……………4分 因此,积分⎰⎰⎰⎰⎰⎰-+=11),(),(),(D D D Dd y x f d y x f d y x f σσσ ……………6分 0)(21),(101>∆≥≥⎰⎰D P f d y x f D σ. ……………8分五、(8分) 设球体x z y x 2222≤++上各点的密度等于该点到坐标原点的距离,求该球体的质量.解: 密度函数 222),,(z y x z y x ++=ρ, …………2分因此,质量为⎰⎰⎰++=VdV z y x M 222 …………3分⎰⎰⎰-=πθϕππϕθϕ0cos sin 20322sin dr r d d …………5分⎰⎰-=πππθθϕϕ02245cos sin 4d d …………6分π58= …………8分六、(8分) 求密度为ρ的均匀球面)0(2222≥=++z a z y x 对于z 轴的转动惯量. 解:转动惯量为⎰⎰+=SdS y x J )(22ρ …………2分⎰⎰≤+--+--++=22222222222221)(a y x dxdy y x a y y x a x y x ρ …………4分 ⎰⎰-=πθρ20223adr ra a r d …………6分⎰==2043434sin 2ππρπρa tdt a . …………8分七、(10分) 计算积分⎰⎰++=Sdxdy zx dzdx yz dydz xy I 222,其中S 是椭球面1222222=++cz b y a x 的外侧. 解:由Gauss 公式,得⎰⎰⎰⎰⎰++=++=VSdV z y x dxdy zx dzdx yz dydz xy I )(222222 …………3分由广义球坐标变换⎪⎩⎪⎨⎧===ϕθϕθϕcos sin sin cos sin cr z br y ar x , ϕθϕsin ),,(2abcr r J = …………5分 得⎰⎰⎰++=ππϕϕθϕθϕϕθ202222222212222sin )cos sin sin cos sin (dr abcr r c r b r a d d I…………7分)(154sin )cos sin sin cos sin (522220022222222c b a abc d c b a d abc ++=++=⎰⎰πϕϕϕθϕθϕθππ…………10分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页,共 2 页
四、(12
分)设
f
(x)
=
x
2
sin
A,
x
,
ax2 + b,
x<0, x=0,,其中 A,a, b 为常数。 试问 A, a, b 为 x>0.
何值时,f(x)在 x=0 处可导,为什么?并求 f (0) 。
五、(15 分)叙述 f (x) 在[a,b] 上不一致连续的定义。并证明:
x y
4、求积分
cos 1+
x sin3 x cos2 x
dx

5、计算曲线积分 (sin y + y)dx + x cos ydy ,其中 L 为: y = x( − x) ,起点 L 为 A(0,0), 终点为 B(,0)。
二、简答题:(共 2 小题,每小题 10 分,共 20 分) 1、叙述下面定义:
x→0
x tan x
2、
1 dx 。
x4 (1 + x2 )
3、求极限 lim x→
浙江师范大学 2012 年硕士研究生入学考试初试试题(A 卷)
科目代码: 601 科目名称: 数学分析 适用专业: 070100 数学、071101 系统理论、071400 统计学
提示: 1、请将所有答案写于答题纸上,写在试题纸上的不给分; 2、请填写准考证号后 6 位:____________。
如 lim f (x) = + ,则 f (x) 在[1, +) 上非一致连续。 x→+
六、(12 分)设 f (x) 在[−1,1]上二次连续可微,且有 lim f (x) = 0 。证明: x→0 x
级数 f (1) 绝对收敛。 n=1 n
七、(12 分)证明含参量反常积分 I ( y) = + ye− yxdx 在 0 (1)闭区间[c, d](c > 0)上一致收敛; (2)闭区间[0, d]上不一致收敛。
提示: 1、请将所有答案写于答题纸上,写在试题上的不给分;
2、请填写准考证号后 6 位:____________。
一、计算题:(共 5 小题,每小题 8 分,共 40 分)
x − x et2 dt
1、求极限 lim 0 。 x→0 x2 sin 2x
2、求极限 lim 3n 。 n→ n!
3、设 z = (xy)x ,求 z 和 z 。
(1) lim f (x) = − ; x→+
(2) 当 x → a + 0 时, f(x)不以 A 为极限。
2、讨论二元函数在一点可微与偏导数存在的关系,并说明理由。
三、(12 分)设 0 x1 3, xn+1 = xn (3 − xn ), (n = 1, 2,L ) 。证明{xn}的极限存在, 并求此极限。
x
t
f
(t)dt
=
x
x
f (t) dt
(x 0) ,求 f (x) ;
0
30
6、计算 sin x sin y max(x, y)dxdy ,其中 D = (x, y) 0 x , 0 y 。 D
四、(15 分)二元函数
f
(
x,
y)
=
(x2
+
y2
)
sin
0
1 x2 + y2
x2 + y2 0 x2 + y2 = 0
二、简答题(每小题 5 分,共 10 分)
+
1、叙述含参量广义积分 f (x,t)dx 在[a,b]上一致收敛的柯西准则。 c
2、叙述函数极限 lim f (x) 存在的 Heine 归结原理。 x→x0
三、计算题(每小题 8 分,共 48 分)
1、求极限 lim (x − x2 ln(1+ 1 )) ;
科目代码: 681 科目名称: 数学分析
适用专业: 基础数学、计算数学、应用数学、运筹学与控制论、系统理论。
提示: 1、请将所有答案写于答题纸上,写在试题上的不给分;
2、请填写准考证号后 6 位:____________。
一、计算题:(共 8 小题,每小题 8 分,共 64 分)
1、求极限 lim ( 1+ x −1)sin x 。
x→+
x
2、求不定积分
sin
2
dx x cos
x

3、求(1
+
x)(1
1 +x
2
)(1
+
x4
)

x
=
0
处的幂级数展开式,并确定其收敛域;
4、求
(x2 + y 2 + 2z) ds ,
L
其中LΒιβλιοθήκη 为圆周:x2+
y2
+
z2
=
R2
x+y+z=0

第 1 页,共 2 页
5、设 f 在 (0, + ) 上可微,且
a
x →+
九、(15 分)判定广义积分
+ sin x arctan x dx
1
xp
( p 0) 的敛散性。
(收敛性需说明绝对收敛和条件收敛)
第 2 页,共 2 页
浙江师范大学 2011 年硕士研究生入学考试初试试题(A 卷)
科目代码: 681 科目名称: 数学分析
适用专业: 基础数学、计算数学、应用数学、运筹学与控制论、系统理论。
(1)求 fx (0, 0), f y (0,0) ;
(2)证明 fx 在原点 O (0, 0) 不连续;
(3)判断函数 f 在原点 O (0, 0) 处的可微性。
五、(10 分)设 F (t) = f (x2 + y2 + z2 )dxdydz, f (u) 可微,求 F(t) 。 x2 + y2 + z2 t2
六、(10 分)求幂级数
(−1)n−1
n=1
x2n (2n −1)3n−1
的和函数。
七、(12 分) ez − xyz = 0 确定了隐函数 z = z(x, y) ,求 2z 。 xy
八、(12 分)证明:若 + f (x)dx 收敛,且 f 在 a, + )上一致连续,则 lim f (x) = 0
八、(15 分)求幂级数 (−1)n−1 2n +1x2n 的收敛域及和函数。
n=1
n
九、(12 分)求积分 Ò x3dydz + y3dzdx + z3dxdy ,其中 S 是单位球面 S
x2 + y2 + z2 = 1的内侧。
第 2 页,共 2 页
浙江师范大学 2010 年硕士研究生入学考试初试试题
一、是非判断题
(下列命题正确的证明之,错误的举出反例。每小题 6 分,共 18 分)
1、若 + f (x)dx 收敛,则 lim f (x) = 0 。
a
x→+
2、 f (x, y) 在 P0 (x0, y0 ) 处两个偏导数存在,则 f 在该点连续。
3、有限区间[a,b] 上的 Riemann 可积函数一定 Riemann 绝对可积
相关文档
最新文档