历年华罗庚金杯试题

合集下载

华杯赛历届真题

华杯赛历届真题

10.有一个电子钟,每走 9 分钟亮一次灯,每到整点响一次铃.中午 12 点整, 电子钟响铃 又亮灯.问:下一次既响铃又亮灯是几点钟? 11.一副扑克牌有四种花色,每种花色有 13 张,从中任意抽牌.问:最少要抽多少张牌,才 能保证有 4 张牌是同一花色? 12.有一个班的同学去划船.他们算了一下,如果增加一条船,正好每条船坐 6 人;如果减 少一条船,正好每条船坐 9 人.问:这个班共有多少同学? 13.四个小动物换座位.一开始,小鼠坐在第 1 号位子,小猴坐在第 2 号,小兔坐在第 3 号, 小猫坐在第 4 号.以后它们不停地交换位子.第一次上下两排交换.第二次是在第一次交 换后再左右两排交换.第三次再上下两排交换.第四次再左右两排交换……这样一直换下 去.问:第十次交换位子后,小兔坐在第几号位子上?(参看下图)
参考答案 1.【解】 1986 是这五个数的平均数,所以和=1986× 5=9930。 2.【解】方框的面积是 叠部分共有 8 个 。每个重叠部分占的面积是一个边长为 1 厘米的正方形。重
10
2
Байду номын сангаас
5 一 l× 8=(100—64)× 5—8=36× 5—8=172(平方厘米)。 82 ×
故被盖住的面积是 172 平方厘米。 3.【解】 105=3× 5× 7,共有(1+1)× (1+1)× (1+1)=8 个约数,即 1,3,5,7,15,21,35, 105。 4. 【解】在这道题里,最合理的安排应该最省时间。先洗开水壶,接着烧开水,烧上水以后, 小明需要等 15 分钟,在这段时间里,他可以洗茶壶,洗茶杯,拿茶叶,水开了就沏茶,这样 只用 16 分钟。 5.【解】149 的个位数是 9,说明两个个位数相加没有进位,因此,9 是两个个位数的和, 14 是两个十位数的和。于是,四个数字的总和是 14+9=23。 6.【解】松鼠采了:112÷ 14=8(天) 假设这 8 天都是晴天,可以采到的松籽是:20× 8=160(个) 实际只采到 112 个,共少采松籽:160-112=48(个) 每个下雨天就要少采:20-12=8(个) 所以有 48÷ 8=(6)个雨天。 7. 【解】因为正方体的边长是 1 米,2100 个正方体堆成实心长方体的体积就是 2100 立方米。 已经知道,高为 10 米,于是长× 宽=210 平方米 把 210 分解为质因数:210=2× 3× 5× 7 由于长和宽必须大于高(10 米),长和宽只能是:3× 5 和 2× 7。也就是 15 米和 14 米。14 米 +15 米=29 米。 答:长与宽的和是 29 米。

华罗庚金杯数学题初中试卷

华罗庚金杯数学题初中试卷

一、选择题(每题10分,共60分)1. 下列数中,能被3整除的是()A. 1234B. 5678C. 91011D. 1213142. 已知一个数的平方等于它的两倍,这个数是()A. 1B. 2C. 3D. 43. 下列图形中,面积最大的是()A. 正方形B. 长方形C. 等腰三角形D. 梯形4. 在直角坐标系中,点A(2,3)关于原点的对称点是()A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,-3)5. 已知一个数的立方等于它的三倍,这个数是()A. 1B. 2C. 3D. 46. 下列数中,能被5整除的是()A. 1234B. 5678C. 91011D. 1213147. 下列图形中,周长最大的是()A. 正方形B. 长方形C. 等腰三角形D. 梯形8. 在直角坐标系中,点B(-3,4)关于x轴的对称点是()A.(-3,-4)B.(3,4)C.(3,-4)D.(-3,4)二、填空题(每题10分,共40分)9. 下列数中,最小的偶数是______,最大的奇数是______。

10. 下列数中,最小的质数是______,最小的合数是______。

11. 下列图形中,面积最大的是______,周长最大的是______。

12. 在直角坐标系中,点A(2,3)关于y轴的对称点是______。

13. 下列数中,最小的正整数是______,最小的负整数是______。

14. 下列图形中,面积最小的是______,周长最小的是______。

三、解答题(每题20分,共40分)15. 已知一个数的平方等于它的两倍,求这个数。

16. 已知一个数的立方等于它的三倍,求这个数。

四、附加题(20分)17. 已知一个长方形的长和宽分别为6cm和4cm,求这个长方形的面积和周长。

18. 已知一个圆的半径为5cm,求这个圆的面积和周长。

华杯赛决赛第13~16届(初一组)试题及答案

华杯赛决赛第13~16届(初一组)试题及答案
2 (2) x y xy x . 由后一等式同样得到, y 1或 y 1, 同样, y 1是不可能
y 的, 而当 y 1时, 由第一个等式得到 2x 1, 所以 x 1 .
2 评分参考: 1) (1)之前给 2 分; 2) (1)和(2)各给 4 分.
三、解答下列各题(每题 15 分,共 30 分,要求写出详细过程)

1 k

4k 2 9


4k
2
9
,
其中,
对于有理数
x,
x= x x.
所以有1 k2

,
9
1

1

k

4k 9
2
0.
当 k 取不同整数时, 1 k 4k 2 的情况如下表: 9
k
2
1
0
=1
=2
xy 0 . 因此, 三个相等的式子只有两种可能:
(1) x y xy x . 由后一等式得到, y 1或 y 1, 而 y 1是不可能的, 因为 y
此时由第一个等式得到 x 1 x , 矛盾. 当 y 1 时, 由第一个等式得到 x 1 x , 即 2x 1 , 所以 x 1 .
第十三届全国“华罗庚庚金杯”少年数学邀请赛决赛试卷(初一组)
第十三届“华罗庚金杯”少年数学邀请赛 决赛试卷(初一组)
(建议考试时间:2008 年 4 月 19 日 10:00~11:30)
一、填空(每题 10 分,共 80 分)
1. 某地区 2008 年 2 月 21 日至 28 日的平均气温为-1℃,2 月 22 日至 29 日的平
枚围棋
第十三届全国“华罗庚庚金杯”少年数学邀请赛决赛试卷(初一组)

历届华杯赛初赛小高真题库

历届华杯赛初赛小高真题库

初赛试卷(小学高年级组)一、选择题(每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1.两个有限小数的整数部分分别是7和10,那么这两个有限小数的积的整数部分有()种可能的取值.(A)16 (B)17 (C)18 (D)192.小明家距学校,乘地铁需要30分钟,乘公交车需要50分钟.某天小明因故先乘地铁,再换乘公交车,用了40分钟到达学校,其中换乘过程用了6分钟,那么这天小明乘坐公交车用了()分钟.(A)6 (B)8 (C)10 (D)123.将长方形ABCD对角线平均分成12段,连接成右图,长方形ABCD内部空白部分面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米.(A)14 (B)16 (C)18 (D)204.请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是().(A)2986 (B)2858 (C)2672 (D)2754CD BA5. 在序列20170……中,从第5个数字开始,每个数字都是前面4个数字和的个位数,这样的序列可以一直写下去.那么从第5个数字开始,该序列中一定不会出现的数组是( ). (A )8615(B )2016(C )4023(D )20176. 从0至9中选择四个不同的数字分别填入方框中的四个括号中,共有( )种填法使得方框中话是正确的.(A )1(B )2(C )3(D )4二、填空题 (每小题 10 分, 共40分)7. 若15322.254553923444741A ⎛⎫-⨯÷+=⎪ ⎪ ⎪+ ⎪⎝⎭,那么A 的值是________. 8. 右图中,“华罗庚金杯”五个汉字分别代表1—5这五个不同的数字.将各线段两端点的数字相加得到五个和,共有 ________种情况使得这五个和恰为五个连续自然数.9. 右图中,ABCD 是平行四边形,E 为CD 的中点,AE 和BD 的交点为F ,AC 和BE 的交点为H ,AC 和BD 的交点为G ,四边形EHGF 的面积是15平方厘米,则ABCD 的面积是__________平方厘米.10. 若2017,1029与725除以d 的余数均为r ,那么d r -的最大值是________.第二十届华罗庚金杯少年数学邀请赛这句话里有( )个数大于1,有( )个数大于2,有( )个数大于3,有( )个数大于4. 罗华庚金 杯决赛试题B (小学高年级组)一、填空题(每小题10份,共80分)1. 计算:8184157.628.814.48012552⨯+⨯-⨯+=________.2. 甲、乙、丙、丁四人共植树60棵.已知,甲植树的棵数是其余三人的二分之一,乙植树的棵数是其余三人的三分之一,丙植树的棵数是其余三人的四分之一,那么丁植树________棵.3. 当时间为5点8分时,钟表面上的时针与分针成________度的角.4. 某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小为________.5. 贝塔星球有七个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国.对于一种这样的星球局势,共可以组成________个两两都是友国的三国联盟.6. 由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是________,最小的是________.7. 见右图,三角形ABC 的面积为1,3:1:=OB DO ,5:4:=OA EO ,则三角形DOE 的面积为________.8. 三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么这3个数之积的末尾3位数字有________种可能数值.二、解答下列各题(每题10分,共40分,要求写出简要过程)9. 将1234567891011的某两位数字交换能否得到一个完全平方数?请说明理由.10. 如右图所示,从长、宽、高为15,5,4的长方体中切走一块长、宽、高为,5,y x 的长方体(,x y 为整数),余下部分的体积为120,求x 和y .yx515411. 圆形跑道上等距插着2015面旗子,甲与乙同时同向从某个旗子出发,当甲与乙再次同时回到出发点时,甲跑了23圈,乙跑了13圈.不算起始点旗子位置,则甲正好在旗子位置追上乙多少次?12. 两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后多得2分者胜.两人的得分总和都是31分,一人赢了第一局并且赢得了比赛,那么第二局的比分共有多少种可能?三、解答下列各题(每小题15分,共30分,要求写出详细过程)13. 如右图所示,点M 是平行四边形ABCD 的边CD 上的一点,且2:1: MC DM ,四边形EBFC 为平行四边形,FM 与BC 交于点G .若三角形FCG 的面积与三角形MED 的面积之差为13cm 2,求平行四边形ABCD 的面积.14. 设“一家之言”、“言扬行举”、“举世皆知”、“知行合一”四个成语中的每个汉字代表11个连续的非零自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数.如果每个成语中四个汉字所代表的数之和都是21,则“行”可以代表的数最大是多少?第十八届华罗庚金杯少年数学邀请赛 初赛试题C (小学高年级组) (时间: 2013 年3月23日)一、选择题 (每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 如果mn=+⨯⨯20122014201420132013(其中m 与n 为互质的自然数), 那么m +n 的值是( ). (A )1243 (B )1343 (C )4025 (D )40292. 甲、乙、丙三位同学都把25克糖放入100克水中混合成糖水, 然后他们又分别做了以下事情:最终,( )得到的糖水最甜.(A )甲 (B )乙 (C )丙 (D )乙和丙3. 一只青蛙8点从深为12米的井底向上爬, 它每向上爬3米, 因为井壁打滑, 就会下滑1米,下滑1米的时间是向上爬3米所用时间的三分之一. 8点17分时, 青蛙第二次爬至离井口3米之处, 那么青蛙从井底爬到井口时所花的时间为( )分钟. (A )22 (B )20 (C )17 (D )164. 已知正整数A 分解质因数可以写成γβα532⨯⨯=A , 其中α、β、γ 是自然数. 如果A的二分之一是完全平方数, A 的三分之一是完全立方数, A 的五分之一是某个自然数的五次方, 那么 γβα++ 的最小值是( ).再加入50克含糖率20%的糖水.再加入20克糖和30克水.再加入100克糖与水的比是2:3的糖水.(A)10 (B)17 (C)23 (D)315.今有甲、乙两个大小相同的正三角形, 各画出了一条两边中点的连线. 如图, 甲、乙位置左右对称, 但甲、乙内部所画线段的位置不对称. 从图中所示的位置开始, 甲向右水平移动, 直至两个三角形重叠后再离开. 在移动过程中的每个位置, 甲与乙所组成的图形中都有若干个三角形. 那么在三角形个数最多的位置, 图形中有()个三角形.(A)9 (B)10 (C)11 (D)126.从1~11这11个整数中任意取出6个数, 则下列结论正确的有()个.①其中必有两个数互质;②其中必有一个数是其中另一个数的倍数;③其中必有一个数的2倍是其中另一个数的倍数.(A)3 (B)2 (C)1 (D)0二、填空题(每小题10 分, 满分40分)7.有四个人去书店买书, 每人买了4本不同的书, 且每两个人恰有2本书相同, 那么这4个人至少买了_______种书..8.每天, 小明上学都要经过一段平路AB、一段上坡路BC和一段下坡路CD (如右图). 已知AB:BC:CD =1:2:1, 并且小明在平路、上坡路、下坡路上的速度比为3:2:4. 那么小明上学与放学回家所用的时间比是.9.黑板上有11个1, 22个2, 33个3, 44个4. 做以下操作: 每次擦掉3个不同的数字,并且把没擦掉的第四种数字多写2个. 例如: 某次操作擦掉1个1, 1个2, 1个3, 那就再写上2个4. 经过若干次操作后, 黑板上只剩下3个数字, 而且无法继续进行操作, 那么最后剩下的三个数字的乘积是.10.如右图, 正方形ABCD被分成了面积相同的8个三角形, 如果DG = 5, 那么正方形ABCD面积是.第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)(时间: 2015年12月12日10:00—11:00)一、选择题 (每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 算式43421Λ43421Λ个个2016201699999999⨯的结果中含有( )个数字0.(A )2017 (B )2016 (C )2015 (D )20142. 已知A , B 两地相距300米.甲、乙两人同时分别从A , B 两地出发, 相向而行, 在距A 地140米处相遇; 如果乙每秒多行1米, 则两人相遇处距B 地180米.那么乙原来的速度是每秒( )米.(A )532 (B )542(C )3 (D )513 3. 在一个七位整数中, 任何三个连续排列的数字都构成一个能被11或13整除的三位数, 则这个七位数最大是( ).(A )9981733 (B )9884737 (C )9978137 (D )98717734. 将1, 2, 3, 4, 5, 6, 7, 8这8个数排成一行, 使得8的两边各数之和相等, 那么共有( )种不同的排法.(A )1152 (B )864 (C )576 (D )2885. 在等腰梯形ABCD 中, AB 平行于CD , 6=AB , 14=CD , AEC ∠是直角, CE CB =, 则2AE 等于( ).(A )84 (B )80(C )75 (D )646. 从自然数1,2,32015,2016L ,,中, 任意取n 个不同的数, 要求总能在这n 个不同的数中找到5个数, 它们的数字和相等. 那么n 的最小值等于( ). (A )109 (B )110 (C )111 (D )112 二、填空题 (每小题 10 分, 共40分)7. 两个正方形的面积之差为2016平方厘米, 如果这样的一对正方形的边长都是整数厘米, 那么满足上述条件的所有正方形共有 对.8. 如下图, O , P , M 是线段AB 上的三个点, AB AO 54=, AB BP 32=, M 是AB 的中点, 且2=OM , 那么PM 长为 .9. 设q 是一个平方数. 如果2-q 和2+q 都是质数, 就称q 为P 型平方数. 例如, 9就是一个P 型平方数.那么小于1000的最大P 型平方数是 .10. 有一个等腰梯形的纸片, 上底长度为2015, 下底长度为2016. 用该纸片剪出一些等腰梯形, 要求剪出的梯形的两个底边分别在原来梯形的底边上, 剪出的梯形的两个锐角等于原来梯形的锐角, 则最多可以剪出 个同样的等腰梯形.第十七届华罗庚金杯少年数学邀请赛初赛试题A (小学高年级组)一、选择题1、计算:19+⨯+-=[(0.8)24]7.6(___)514(A)30 (B)40 (C)50 (D)602、以平面上4个点为端点连接线段,形成的图形中最多可以有()个三角形。

华杯赛历届试题及答案

华杯赛历届试题及答案

华杯赛历届试题及答案华杯赛,全称“华罗庚数学金杯赛”,是一项面向中学生的数学竞赛,旨在激发学生对数学的兴趣,提高他们的数学素养。

以下是历届华杯赛的部分试题及答案,供参考:一、选择题1. 下列哪个数是最小的正整数?- A. 0- B. 1- C. 2- D. 3答案:B2. 如果一个数除以3的余数是2,除以5的余数是1,那么这个数除以15的余数是多少?- A. 3- B. 4- C. 5- D. 6答案:A二、填空题1. 一个长方体的长、宽、高分别是8cm、6cm和5cm,其体积是________ 立方厘米。

答案:2402. 计算下列数列的第10项:1, 1, 2, 3, 5, 8, 13, 21, 34, ...答案:55三、解答题1. 一个水池有注水口和排水口,单开注水口每小时可注水20吨,单开排水口每小时可排水10吨。

如果同时打开注水口和排水口,水池每小时净增水量是多少吨?如果池中原有水100吨,需要多少时间才能将水排空?答案:同时打开注水口和排水口时,水池每小时净增水量是20吨- 10吨 = 10吨。

要将100吨水排空,需要的时间为100吨÷ 10吨/小时 = 10小时。

2. 一个班级有48名学生,其中1/3是男生,剩下是女生。

问这个班级有多少名女生?答案:班级中有48名学生,其中1/3是男生,即48 * (1/3) = 16名男生。

剩下的学生是女生,所以女生人数为48 - 16 = 32名。

四、证明题1. 证明对于任意的正整数n,n的立方与n的和不小于n的平方与n 的两倍之和。

答案:设n为任意正整数。

我们需要证明n^3 + n ≥ n^2 + 2n。

展开立方项,得到n^3 + n - n^2 - 2n = n(n^2 - n - 1) = n(n - (1 + √5)/2)(n - (1 - √5)/2)。

由于n是正整数,(n - (1 +√5)/2)和(n - (1 - √5)/2)都是负数或零,因此整个表达式是非负的,即n^3 + n ≥ n^2 + 2n。

“华罗庚金杯”少年数学邀请赛(口试)试题1-10届

“华罗庚金杯”少年数学邀请赛(口试)试题1-10届

华罗庚金杯少年数学邀请赛口试试题第01届华罗庚金杯少年数学邀请赛口试试题1. 这是七巧板拼成的正方形,正方形边长20厘米,问七巧板中平行四边形的一块(如右图中阴影部分)的面积是多少?2.从所有分母小于10的真分数中,找出一个最接近0.618的分数。

3.有49个小孩子,每人胸前有一个号码,号码从1到49各不相同,请你挑选出若干个小孩,排成一个圆圈,使任何相邻两个小孩的号码数的乘积小于100,你最多能挑选出多少个小孩子?4.有一路公共汽车,包括起点和终点站共有15个车站,如果有一辆车,除终点到站外,每一站上车的乘客中,恰好各有一位乘客从这一站到以后的每一站,为了使每位乘客都有座位,问这辆公共汽车最少要有多少个座位?5.正方形的树林每边长1000米,里面有白杨树和榆树,小明从树林的西南角走入树林,碰见一株白杨树就往正北走,碰见一株榆树就往正东走,最后他走了东北角上,问:小明一共走了多少米的距离?6.自然数按从小到大的顺序排成螺旋形,在2处拐第一个弯,在3处拐第二个弯,在5处拐第三个弯……问拐第二十个弯的地方是哪一个数?第02届华罗庚金杯少年数学邀请赛口试试题1、如下图是一个对称的图形,黑色部分面积大还是阴影部分面积大?2、你能不能将自然数1到9分别填入右面的方格中,使得每个横格中的三个数之和都是偶数?3、司机开车按顺序到五个车站接学生到学校(如下图),每个站都有学生上车,第一站上了一批学生,以后每站上车的人数都是前一站上车人数的一半,车到学校时,车上最少有多少学生?4、如图中五个正方形的边长分别是1米、2米、3米、4米、5米。

问:白色部分面积与阴影部分面积之比是多少?5、用1、2、3、4、5这五个数两两相乘,可以得到10个不同的乘积,问乘积中是偶数多还是奇数多?6、7、将右边的硬纸片沿虚线折起来,便可作成一个正方体,问:这个正方体的2号面对面是几号面?(如下图)8、下面是一个11位数,它的每三个相邻数之和都是20,你知道打“?”的数字是几?9、有八张卡片,右图分别写着自然数1到8,从中取出三张,要使这三张卡片上的数字之和为9,问有多少种不同的取法?第03届华罗庚金杯少年数学邀请赛团体决赛口试1.一条白色的正方形手帕,它的边长是18厘米,手帕上横竖各有二道红条,如右图阴影所示部分,红条宽都是2厘米.问:这条手帕白色部分的面积是多少?2.伸出你的左手,从大拇指开始如图所示的那样数数字,1,2,3,……,问:数到1991时,你数在那个手指上?3.有3个工厂共订300份吉林日报,每个工厂订了至少99份,至多101份.问:一共有多少种不同的订法?4.图上有两条垂直相交的直线段AB、CD,交点为E(如下图).已知:DE=2CE,BE=3AE.在AB和CD上取3个点画一个三角形.问:怎样取这3个点,画出的三角形面积最大?5.如下图中有两个红色的圆,两个蓝色的圆,红色圆的直径分别是1992厘米和1949厘米,蓝色圆的直径分别是1990厘米和1951厘米.问:红色二圆面积大还是蓝色二圆面积大?6.在一张9行9列的方格纸上,把每个方格所在的行数和列数加起来(如下图),填在这个方格中,例如a=5+3=8.问:填入的81个数字中,奇数多还是偶数多?7.能不能在下式:1□2□3□4□5□6□7□8□9=10的每个方框中,分别填入加号或减号,使等式成立?8.把一个时钟改装成一个玩具钟(如右图),使得时针每转一圈,分针转16圈,秒针转36圈.开始时3针重合.问:在时针旋转一周的过程中,3针重合了几次?(不计起始和终止的位置).9.将1,2,3,4,5,6,7,8这8个数分成3组,分别计算各组数的和.已知这3个和互不相等,且最大的和是最小的和的2倍.问:最小的和是多少?10.这是一个棋盘,将一个白子和一个黑子放在棋盘线交叉点上,但不能在同一条棋盘线上.问:共有多少种不同的放法(如下图)?11.这是两个圆,它们的面积之和为1991平方厘米,小圆的周长是大圆周长的90%(如右图).问:大圆的面积是多少?12.有一根1米长的木条,第一次去掉它的,第二次去掉余下木条的;第三次又去掉第二次余下木条的,等等;这样一直下去,最后一次去掉上次余下木条的.问:这根木条最后还剩下多长?13.这是一个楼梯的截面图(如下图),高2.8米,每级台阶的宽和高都是20厘米.问:此楼梯截面的面积是多少?14.请找出6个不同的自然数,分别填入6个括号中,使这个等式成立.第04届华罗庚金杯少年数学邀请赛团体决赛口试1.2×3×5×7×11×13×17这个算式中有七个数连乘,请回答:最后得到的乘积中,所有数位上的数字和是多少?请讲一讲你是怎样算的?2.这是一个中国象棋盘(图中小方格都是相等的正方形,“界河”的宽等于小正方形边长),黑方有一个“象”,它只能在1,2,3,4,5,6,7位置中的一个,红方有两个“相”,它们只能在8,9,10,11,12, 13,14中的两个位置.问:这三个棋子(一个“象”和两个“相”)各在什么位置时,以这三个棋子为顶点构成的三角形的面积最大?3.将一根长为374厘米的合金铝管截成若干根36厘米和24厘米两种形状的短管(加工损耗忽略不计)问:剩余部分的管子最少是多少厘米?4.乙两人同时从A出发向B行进,甲速度始终不变,乙在走前面路程时,速度为甲的2倍,而走后面路程时,速度是甲的,问甲、乙二人谁选到B?请你说明理由。

历届小学华罗庚少年金杯赛试题及解答

历届小学华罗庚少年金杯赛试题及解答

历届⼩学华罗庚少年⾦杯赛试题及解答历届⼩学华罗庚少年⾦杯赛试题及解答2010年第⼗五届华杯赛决赛试题C及…2010年第⼗五届华杯赛决赛试题A及…2010年第⼗五届华杯赛决赛试题B及…第⼗四届华罗庚⾦杯少年数学邀请赛…第⼗四届华罗庚⾦杯少年数学邀请赛…第⼗三届“华罗庚⾦杯”少年数学邀请…第⼗三届“华罗庚⾦杯”少年数学邀请…第⼗⼆届华杯赛总决赛⼆试试题及解…第⼗⼆届华杯赛总决赛⼀试试题及解…第⼗⼆届华杯赛决赛试题及解答第⼗⼆届华杯赛初赛试题及解答第⼗⼀届华杯赛决赛试题及解答第⼗⼀届华杯赛初赛试题及解答第⼗届华罗庚⾦杯少年数学邀请赛⼝…第⼗届华杯赛总决赛⼆试试题及解答第⼗届华杯赛总决赛⼀试试题及解答第⼗届华杯赛决赛试题及解答第⼗届华杯赛初赛试题及解答第九届华杯赛总决赛⼆试试题及解答第九届华杯赛总决赛⼀试试题及解答第九届华杯赛决赛试题及解答第九届华杯赛初赛试题及解答第⼋届华杯赛决赛⼆试试题及解答第⼋届华杯赛决赛⼀试试题及解答第⼋届华杯赛复赛试题及解答第七届华杯赛决赛⼆试试题及解答第七届华杯赛决赛⼀试试题及解答第七届华杯赛复赛试题及解答第七届华杯赛初赛试题及解答第六届华罗庚⾦杯少年数学邀请赛团…第六届华杯赛决赛⼆试试题及解答第六届华杯赛决赛⼀试试题及解答第六届华杯赛复赛试题及解答第六届华杯赛初赛试题及解答第五届华杯赛团体决赛⼝试备⽤题第五届华杯赛团体赛⼝试试题第五届华杯赛决赛⼆试试题及解答第五届华杯赛决赛⼀试试题及解答第五届华杯赛复赛试题及解答第五届华杯赛初赛试题及解答第四届华罗庚⾦杯少年数学邀请赛团…第四届华杯赛决赛⼆试试题及解答第四届华杯赛决赛⼀试试题及解答第四届华杯赛复赛试题及解答第四届华杯赛初赛试题及解答第三届华罗庚⾦杯少年数学邀请赛团…第三届华杯赛决赛⼆试试题及解答第三届华杯赛决赛⼀试试题及解答第三届华杯赛复赛试题及解答第三届华杯赛初赛试题及解答第⼆届华罗庚⾦杯少年数学邀请赛⼝…第⼆届华杯赛决赛⼆试试题及解答第⼆届华杯赛决赛⼀试试题及解答第⼆届华杯赛复赛试题及解答第⼆届华杯赛初赛试题及解答第⼀届华杯赛团体赛⼝试试题第⼀届华杯赛决赛⼆试试题及解答第⼀届华杯赛决赛⼀试试题及解答。

第10~21届全国华罗庚金杯少年数学邀请赛试题

第10~21届全国华罗庚金杯少年数学邀请赛试题

第十届“华罗庚金杯”少年数学邀请赛初赛试题1、2005年是中国伟大航海家郑和首次下西洋600周年,西班牙伟大航海家歌伦布首次远洋航行是在1492年。

问这两次远洋航行相差多少年?2、从冬至之日起每九天分为一段,依次称之为一九,二九,……,九九,2004年的冬至为12月21日,2005年的立春是2月4日。

问立春之日是几九的第几天?3、右下方是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的正方形。

问这个直三棱柱的体积是多少?4、爸爸、妈妈、客人和我四人围着圆桌喝茶。

若只考虑每人左邻的情况,问共有多少种不同的入座方法?5、在奥运会的铁人三项比赛中,自行车比赛距离是长跑的4倍,游泳的距离是自行车的,长跑与游泳的距离之差为8.5千米。

求三项的总距离。

6、如右图,用同样大小的正三角形,向下逐次拼接出更大的正三角形。

其中最小的三角形顶点的个数(重合的顶点只计一次)依次为:3,6,10,15,21,……问这列数中的第9个是多少?7、一个圆锥形容器甲与一个半球形容器乙,它们圆形口的直径与容器的高的尺寸如图所示。

若用甲容器取水来注满乙容器,问:至少要注水多少次?8、100名学生参加社会实践,高年级学生两人一组,低年级学生三人一组,共有41组。

问:高、低年级学生各多少人?9、小鸣用48元钱按零售价买了若干练习本。

如果按批发价购买,每本便宜2元,恰好多买4本。

问:零售价每本多少元?10、不足100名同学跳集体舞时有两种组合:一种是中间一组5人,其他人按8人一组围在外圈;另一种是中间一组8人,其他人按5人一组围在外圈。

问最多有多少名同学?11、输液100毫升,每分钟输2.5毫升。

请你观察第12分钟时吊瓶图像中的数据,回答整个吊瓶的容积是多少毫升?12、两条直线相交所成的锐角或直角称为两条直线的“夹角”。

现平面上有若干条直线,它们两两相交,并且“夹角”只能是30°,60°或90°。

第十六届华罗庚金杯少年邀请赛(初中组)决赛试题

第十六届华罗庚金杯少年邀请赛(初中组)决赛试题

第十六届华罗庚金杯少年邀请赛(初中组)决赛试题一、填空题(每小题10分,共80分)1.计算:)161()21()3(12012.13--⨯-÷-+-÷-= 。

2.算式:兔×兔年×吉祥如意=兔兔兔兔兔兔中的汉字代表0~9的数字,相同的汉字代表相同的数字,不同的汉字代表不同的数字,吉祥如意所代表的四位数是 。

3.将12个小球放入编号为1至4的四个盒子中,每个盒子中的小球数不小于盒子编号数,那么共有 种不同的放法。

4.有一列数,第一个数是10,第二个数是20,从第三个数开始,每个数都是前面所有数的平均数,那么第2011个数是 。

5.设x 是有理数,P=63-x +3-x +62-x +9-x ,则P 的最小值为 。

6.将自然数1~22分别填在下面的“□”内(每个“□”只能填一个数),在形成的11个分数中,分数值为整数的最多能有 个。

□□,□□,□□,□□,□□,□□,□□,□□,□□,□□,□□7.下面两串单项式各有2011个单项式:6032603160296028231387542,,,,,,,y x y x y x y x y x xy n n ⋅⋅⋅⋅⋅⋅++ 10058100571005310052352513128732,,,,,,,y x y x y x y x y x y x m m ⋅⋅⋅⋅⋅⋅++其中m n ,为非负整数,则这两串单项式中共有 对同类项。

8.将能被3整数除、被5除余2、被11除余4的所有这种正整数按照从小到大的顺序排成一列,记为⋅⋅⋅,,,,4321a a a a 。

如果n n a a <<-20111,则n = 。

二、解答下列各题(每题10分,共40分,要求写出简要过程) 9.将9个各不相同的正整数填在3×3表格的格子中,一个格子填 一个数,使得每个2×2子表格中四个数的和都恰好等于100.求 这9个正整数总和的最小值。

历年华杯赛试题及答案小学

历年华杯赛试题及答案小学

历年华杯赛试题及答案小学华杯赛,全称“全国青少年数学华罗庚金杯赛”,是中国最具影响力的青少年数学竞赛之一,旨在激发青少年对数学的兴趣,培养他们的数学思维能力。

以下是一些历年华杯赛小学组的试题及答案,供参考。

试题一:小明有3个红球和2个蓝球,他随机从袋子里摸出一个球,然后放回。

接着,他又随机摸出一个球。

请问小明两次都摸到红球的概率是多少?答案:小明第一次摸到红球的概率是3/5,放回后,第二次摸到红球的概率仍然是3/5。

因此,两次都摸到红球的概率是(3/5) * (3/5) = 9/25。

试题二:有一个数字序列:1, 1, 2, 3, 5, 8, 13, 21, ... 这个序列的特点是每一项都是前两项的和。

请问这个序列的第10项是多少?答案:这是一个斐波那契数列。

根据题目给出的数列,第10项是第9项(21)和第8项(13)的和,即21 + 13 = 34。

试题三:一个班级有40名学生,其中20名男生和20名女生。

如果随机选择一名学生,那么选择到男生的概率是多少?答案:班级中有20名男生,总共40名学生,所以选择到男生的概率是20/40 = 1/2。

试题四:一个圆形的直径是14厘米,求这个圆的面积。

答案:圆的面积公式是A = πr²,其中r是圆的半径。

直径是14厘米,所以半径是14/2 = 7厘米。

代入公式得到面积A = π * 7² = 49π ≈ 153.94平方厘米。

试题五:小华有5个苹果,他决定将这些苹果平均分给3个朋友。

如果每个朋友分得的苹果数必须是整数,小华应该如何分配?答案:小华可以将5个苹果分成1, 2, 2的组合,这样每个朋友得到的苹果数都是整数。

试题六:一个长方体的长、宽、高分别是8厘米、6厘米和5厘米。

求这个长方体的体积。

答案:长方体的体积公式是V = 长 * 宽 * 高。

代入数值得到V = 8 * 6 * 5 = 240立方厘米。

试题七:如果一个数的平方等于这个数本身,那么这个数是什么?答案:这个数是0或1,因为0² = 0,1² = 1。

初二华罗庚杯试题及答案

初二华罗庚杯试题及答案

初二华罗庚杯试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是华罗庚杯的全称?A. 华罗庚数学竞赛B. 华罗庚杯数学竞赛C. 华罗庚杯数学挑战赛D. 华罗庚数学邀请赛答案:B2. 华罗庚杯数学竞赛的主要目的是什么?A. 选拔数学天才B. 促进数学教育C. 选拔数学教师D. 选拔数学运动员答案:B3. 华罗庚杯数学竞赛通常在每年的哪个月份举行?A. 1月B. 5月C. 9月D. 12月答案:B4. 参加华罗庚杯数学竞赛的学生通常需要具备哪些条件?A. 必须是数学专业的学生B. 必须通过学校选拔C. 必须有数学竞赛经验D. 必须是初二学生答案:B5. 华罗庚杯数学竞赛的题目难度通常如何?A. 非常简单B. 适中C. 非常困难D. 随机答案:C6. 华罗庚杯数学竞赛的题目类型包括哪些?A. 选择题B. 填空题C. 解答题D. 所有以上答案:D7. 华罗庚杯数学竞赛的评分标准是什么?A. 根据解题步骤给分B. 根据解题结果给分C. 根据解题速度给分D. 根据解题思路给分答案:B8. 华罗庚杯数学竞赛的获奖者通常会得到哪些奖励?A. 奖杯B. 证书C. 奖学金D. 所有以上答案:D9. 华罗庚杯数学竞赛对于学生的意义是什么?A. 增加学习压力B. 提高数学能力C. 增加课外负担D. 减少学习兴趣答案:B10. 华罗庚杯数学竞赛的组织者是谁?A. 学校B. 教师C. 教育部门D. 学生家长答案:C二、填空题(每题2分,共20分)1. 华罗庚杯数学竞赛的创始人是_______。

答案:华罗庚2. 华罗庚杯数学竞赛的举办周期是_______。

答案:每年3. 华罗庚杯数学竞赛的参赛对象通常是_______。

答案:中学生4. 华罗庚杯数学竞赛的题目设计旨在考察学生的_______。

答案:数学思维和解题能力5. 华罗庚杯数学竞赛的获奖者有机会获得_______。

答案:进一步的数学竞赛资格6. 华罗庚杯数学竞赛的题目通常包括_______和_______。

第十七届华罗庚金杯少年数学邀请赛决赛笔试试题A参考答案

第十七届华罗庚金杯少年数学邀请赛决赛笔试试题A参考答案

第十七屆華羅庚金杯少年數學邀請賽決賽筆試試題A 參考答案(小學高年級組)一、填空(每題 10 分, 共120分)二、 解答下列各題(每題 10 分, 共40分, 要求寫出簡要過程)13. 答案:是. 解答. 連接AC . 則ECKB CEB BCK S S S ∆∆=+CEB BCA S S ∆∆=+ACE S ∆=EAD S ∆=所以ECKB OBE EAD OBE S S S S ∆∆∆-=-.因此.ECKO ABOD S S = 即四邊形ABOD 的面積=四邊形ECKO 的面積.14. 答案:能解答. 首先構造45⨯的長方形如下:然後用50個45⨯的即可拼成2005⨯的長方形. 15. 答案:2025, 3025, 9801.解答. 設一個四位卡布列克怪數為 100x y +, 其中1099,09x y ≤≤≤≤. 則由題意知2100()x y x y +=+, 兩邊模99得2()(mod99)x y x y +=+,因此 99|()(1)x y x y ++-, 故x y +與1x y +-中有一個能被9整除, 也有一個能被11整除(可能是同一個數), 且有22210()100100x y x y ≤+=+<,即10100x y ≤+<. (*)若x y +能被99整除,由(*)知x y +只能是99,滿足條件的四位數是9801;若x y +-1能被99整除,由(*), 顯然沒有滿足條件的四位數;此外,可設x y +=9m ,x y +-1=11n ,則有9m -11n =1, 由(*), m 和n 均為小於12的正整數,故得到m =5,n =4, x y +只能是45,滿足條件的四位數是2025;反之,可設x y +-1=9m ,x y +=11n ,滿足條件的四位數是3025.故四位數中有三個卡布列克怪數, 它們分別為2025, 3025和9801. 16. 答案:1或2解答. 對於質數3, 23 被3整除. 其餘的質數, 要麼是31k +型的數, 要麼是32k +型的數. 由於22(31)9613(32)1,k k k k k +=++=++被3除餘1, 且222(32)91243(341)1k k k k k +=++=+++,被3除也餘1. 因此有(1)若這98個質數包含3時, N 被3除的餘數等於97被3除的餘數, 等於1. (2)若這98個質數不包含3時, N 被3除的餘數等於98被3除的餘數, 等於2.三、 解答下列各題(每題 15 分, 共30分, 要求寫出詳細過程)17. 答案:18,11,9,3解答. 設起跑時間為0秒時刻, 則小李和小張在劃定區間跑的時間段分別為]9,0[, ]972,972[+-k k , ,3,2,1=k ,和]10,0[, ]1080,1080[+-m m , ,3,2,1=m .其中 [a , b ] 表示第a 秒時刻至第b 秒時刻. 顯然 ]9,0[ 即前9秒裡兩類時間段的公共部分. 此外, 考慮]972,972[+-k k 和]1080,1080[+-m m 的公共區間, m k ,為正整數, 分兩種情況:1) m k 8072=, 即小李和小張分別跑了k 圈和m 圈同時回到起點, 他們二人同時在劃定區域跑了18秒.2) m k 8072≠, 例如10809721080972+≤+≤-≤-m k m k ⇔1972801≤-≤k m ①.兩人同時在劃定區域內跑了)1080(972--+m k )7280(19k m --=. 由①知87280=-k m , 16. 於是兩人同時在劃定區域內跑持續時間為11秒或3秒. 其它情況類似可得同樣結果.綜上, 答案為18,11,9,3. 18. 答案: 150解答. 設立方體的長, 寬, 高分別為x y z ,,, 其中z y x ≤≤, 且為整數. 注意, 兩面有紅色的小立方塊只能在長方體的棱上出現.如果1,1==y x , 則沒有兩面為紅色的立方塊, 不符合題意. 如果1,1>=y x , 則沒有只有一面為紅色的立方塊, 不符合題意.因此2≥x . 此時兩面出現紅色的方塊只能與長方體的棱共棱. 一面出現紅色的方塊只與立方體的面共面. 有下面的式子成立40)]2()2()2[(4=-+-+-⨯z y x , (1)66)]2)(2()2)(2()2)(2[(2=--+--+--⨯z y z x y x . (2)由(1)得到16=++z y x , (3)由(2)得到85=++yz xz xy . (4)由(3)和(4)可得,86222=++z y x ,這樣 9,,1≤≤z y x . 由(4)得到285))((x z x y x +=++. (5)若2=x , 則由(5)得到89189485)2)(2(⨯==+=++z y , z y ,的取值不能滿足(3). 若3=x , 則由(5)得到47294985)3)(3(⨯==+=++z y , z y ,的取值不能滿足(3). 若4=x , 則由(5)得到10111011685)4)(4(⨯==+=++z y , z y ,的取值不能滿足(3).當5x時, 由(5)得到11=+==+,5=y滿足條件.=z=y, 此時6+z2511025⨯855(⨯))(5如果6x, 則18≥x, 與(3)矛盾.y+≥+z綜上, 6yx是問題的解, 這是長方體的體積為150.=z=,5=,5。

历届华罗庚金杯赛试题与答案(初中)

历届华罗庚金杯赛试题与答案(初中)

图4
8.0,1,2,3,4,5,6 这七个数字填在圆圈和方格内,每个数字恰好出现一次,组成有
一位数和两位数的整数算式.问填在方格里的数是几?
○×○ = □ = ○÷○
9.甲、乙、丙、丁与小强五位同学一起比赛象棋,每两人都要比赛一盘.到现在为止,甲已经赛了 4 盘, 乙赛了 3 盘,丙赛了 2 盘,丁赛了 l 盘.问小强赛了几盘? 10.有三堆棋子,每堆棋子一样多,并且都只有黑、白两色棋子.第一堆里的黑子和第二堆里的白子一样
6、6 7、29 8、8 点 11 分 9、19 10、0 16、40 17、 2.718281 18、10 19、108
复赛简略答案 1、85 2、392 3、37.5 4、5000 5、5 11、8/9 12、8 点 32 分 13、162 14、84
6、2.5
7、0.2
பைடு நூலகம்
8、12
9、2
10、4/9
25 20
4.在一条公路上,每隔一百千米有一个仓库,共有五个仓库.一号仓库存有 10 吨货物,
二号仓库存有 20 吨货物,五号仓库存有 40 吨货物,其余两个仓库是空的。现在想把所
30
有的货物集中存放在一个仓库里,如果每吨货物运输一千米需要 0.5 元的运费,那么最少
图3
要花多少运费才行?
5.有一个数,除以 3 的余数是 2,除以 4 的余数是 1,问这个数除以 12 的余数是几?
图6
棋子放在空盒内,再把盒子重新排了一下.小明回来仔细察看了一番,没有发现
有人动过这些盒子和棋子.问共有多少个盒子? 12.如图,把 1.2、3.7、6.5、2.9、4.6 分别填在五个○内.再在每个□中填上和
它相连的三个○种的数的平均值,再把三个□中的数的平均数填在△中,找一个

第十五届华罗庚金杯少年数学邀请赛决赛试题及答案解析

第十五届华罗庚金杯少年数学邀请赛决赛试题及答案解析

第十五屆華羅庚金杯少年數學邀請賽決賽試題A 參考答案參考答案((小學組小學組))一、 填空題(每小題 10分,共120分)二、解答下列各題 (每題10分,共40分, 要求寫出簡要過程)13.13. 答案答案::不能!理由如下理由如下::假設能拼成4×5的長方形,如圖A 小方格黑白相間染色。

其中黑格、白格各10個。

將五塊紙板編號,如圖B 所示,除紙板④之外,其餘4張硬紙板每一張都蓋住2個黑格,而④蓋住3個黑格或一個黑格。

這樣一來,由4個1×1的小正方格組成的不同形狀的5個硬紙板,只能蓋住9或11個黑格,與10個黑格不符! 14. 答案答案::28,72L解:(1)易知 紅線與藍線重合的條數是 31)12,8(=−;紅線與黑線重合的條數是 1121)18,8(=−=−; 藍線與黑線重合的條數是 51)18,12(=−;紅線、藍線、黑線都重合的條數是 1121)18,12,8(=−=−; 由紅線7條,藍線11條,黑線17條確定的位置的個數是(圖A )①②③④ ⑤(圖B )271)513(17117=+++−++. 因此,依不同位置的線條鋸開一共得到 28127=+(段).(2)最小公倍數 72362]9,3,4[2]18,12,8[=×=×=.因此,將木棍等分成72段時,至少有一段是在上述紅、藍、黑線的某兩條之間,並且再短(段數更多)時就做不到了.所以鋸得的木棍最短的一段的長度是72L . 15. 答案答案::5,7.解:設A ,B ,C ,D ,E 五隊的總分分別是a ,b ,c ,d ,e ,五隊的總分為S ,則e e d c b a S +=++++=20.五隊單迴圈共比賽10場,則30≤S . 如果有一場踢平,則總分S 減少1分. 因為00011+++==a ,001311114+++=+++==b , 01337+++==c , 11338+++==d ,所以比賽至少有3場平局,至多有5場平局. 所以330530−≤≤−S ,即272025≤+≤e . 故75≤≤e .事實上,E 隊勝A ,B ,負於C 隊,與D 踢平時,7=e ; E 隊勝A ,負於C ,但與B 、D 踢平時,5=e .所以E 隊至少得5分,至多得7分. 16. 答案:1163是質數.解:1163是質數,理由如下:(1)顯然16424是大於2的偶數,是合數.(2)如果1163是合數,但不是完全平方數,則至少有2個不同的質因數,因為31113311163=>,所以,如果1163有3個以上不同的質因數,必有一個小於11.但是顯然2,3,5,7都不能整除1163,11也不能整除1163,因此1163僅有2個不同的大於11的質因數.大於11的質數是:13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101. 既然237116337311147<<×=,1163的兩個不同的質因數一定有一個小於37,另一個大於11.計算97131261116311578913×=<<=×; 73171241116311566817×=<<=×; 67191273116311596119×=<<=×; 53231219116310814723×=<<=×; 41291189116310733729×=<<=×.所以1163是質數. 三、解答下列各題 (每小題 15分,共30分,要求寫出詳細過程)17. 答案:670.解:如圖,已知△ABC ,△BCD ,△CDE ,△DEF ,△EF A ,△F AB 的面積都等於335平方釐米,它們面積之和為33562010×=平方釐米=六邊形ABCDEF 的面積。

历届华罗庚杯初一试题及答案

历届华罗庚杯初一试题及答案

历届华罗庚杯初一试题及答案一、选择题1. 下列哪个数是质数?A. 4B. 8C. 11D. 15答案:C2. 如果一个直角三角形的两个直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A二、填空题1. 计算 \((a+b)^2\) 的结果是 \(a^2\) 加上 \(2ab\) 再加上\(b^2\)。

答案:正确2. 一个数的平方根是它自身的数是 \_\_\_\_\_\_\_\_\_。

答案:0 或 1三、解答题1. 证明:对于任意正整数 \(n\),\(1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}\)。

答案:证明过程略。

(注:此处应提供详细的证明过程,但因篇幅限制,此处省略。

)2. 一个长方体的长、宽、高分别是 \(a\)、\(b\) 和 \(c\),求其体积。

答案:体积 \(V = abc\)。

四、综合题1. 某校举办了一次数学竞赛,共有100名学生参加。

其中,获得一等奖的有10人,二等奖的有20人,三等奖的有70人。

假设获奖学生的成绩呈正态分布,求平均成绩和标准差。

答案:平均成绩 \(\mu\) 略。

(注:此处应提供详细的计算过程,但因篇幅限制,此处省略。

)标准差 \(\sigma\) 略。

结束语华罗庚杯数学竞赛不仅能够锻炼学生的数学思维,还能培养他们解决问题的能力。

希望以上的试题及答案能够帮助同学们更好地准备竞赛,也祝愿所有参赛者能够取得优异的成绩。

第18华罗庚金杯赛决赛奥数小学中年级组B试卷和答案

第18华罗庚金杯赛决赛奥数小学中年级组B试卷和答案

总分第十八届华罗庚金杯少年邀请赛决赛试题A(小学中年级组)(时间2013年4月20日10:00-11:30)一、填空题《每小跑10分.共80分)1.计算:(2014×20l∙H2012)-20l3×20l3.解析:(20MX20M+2Q12)-2013X2013=(2013+1)×(2013+1)*2013—1-2013×2013-2013×2013*2013^2013H∙201312013X2013=6039或用平方差公式,(2014×2014+2012)-2013×2013=201Γ-2013^2012=2012+2013÷2011=6039考试中展比接的方法,死算也。

K.2.超长方形的纸片A8C/)按右图的方式折:3后;1」'.使形。

“*在三角形。

EF的位置.JS点E恰落在边AB上.己知N1=20°,加么N2是------- 度.解析:因为翎折,∕CFD=∕EFD=9(V-22"=68°λ-------------- S iZ2=i80o-68o-68o=44°3.亮亮上学,若株分钟行∙10米,则8:00准时到校:若年分钟行50米,则7:55到校.亮亮的家与学校的距国是米.解析:行程里盈亏何虺.每分钟行4。

代刚好膨分:苦行分钟行50米,则少5X50=250米所以25。

+(50-40)=25分钟,亮亮的家与学校的距离是25X40=1000米.法二:六年级可以用.走同样路程.速度比与时间成反比,速度比为4:5,则时间比为5:4.8:007:55=5分钟,则若每分伸行40米.亮亮用时5÷(5-4)X5=25分钟,所以亮亮的家3学校的距点是25X10=1000米.1.第一次操作将图a左下角的正方形分为四个小正方形.见图b;笫二次操作再将图b左下角的小正方形分为四个更小的正方形.见图c:这样缚续卜2.当完成第八.次操作时.得到的图形中共有个正方形.解析:找规律,图a有S个正方形,以后短次悚作将•个正方形数日变成四个小正方形,鲜次Je加4个正方形。

历届“华杯赛”初赛决赛试题汇编【小中组(附答案)】

历届“华杯赛”初赛决赛试题汇编【小中组(附答案)】

cm2.
8.
将 10,15,20,30,40 和 60 填入右图的圆圈中,使 A, B, C 三个小三角形顶点上的 3 个数的积都相等. 这相等的积最大为
9.
用 3, 5, 6, 18, 23 这 五 个 数 组 成 一 个 四 则 运 算 式 , 得 到 的 非 零 自 然 数 最 小 是 .
10. 里山镇到省城的高速路全长 189 千米, 途经县城. 县城离里山镇 54 千米. 早上 8:30 一辆客车从里山镇开往县城,9:15 到达,停留 15 分钟后开往省城,午前 11:00 能 够到达. 另有一辆客车于当日早上 9:00 从省城径直开往里山镇,每小时行驶 60 千 米. 那么两车相遇时, 省城开往里山镇的客车行驶了 分钟.
爱国 创新 包容 厚德 北京精神
中, 每个汉字代表 0 ~ 9 的一个数字, 爱、国、创、新、包、容、厚、德分 别代表不同的数字. 当四位数 北京精神 最大时, 厚德 为多少?
2
总分
第十八届华罗庚金杯少年数学邀请赛
初赛试卷 A(小学中年级组)
(时间: 2013 年 3 月 23 日 10:00 ~ 11:00)
一、选择题 (每小题 10 分, 满分 60 分. 以下每题的四个选项中, 仅 有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号 内.)
1. 45 与 40 的积的数字和是( (A)9 (B)11 ). (C)13 (D)15
2. 在下面的阴影三角形中, 不能由右图中的阴影三角形经过旋转、 平移得到的是图( )中的三角形.
总分
第十七届华罗庚金杯少年数学邀请赛
决赛网络版试卷(小学中年级组)
一、填空题(每题 10 分, 共 80 分)

第七届华罗庚金杯少年数学邀请赛试题、答案

第七届华罗庚金杯少年数学邀请赛试题、答案

第七届华罗庚金杯少年数学邀请赛复赛试卷解答1. 计算(1.6-1.125 + 8(3/4))÷37(1/6) + 52.3×(3/41)答:4(13/164)。

解:原式=(1(2/3) - 1(1/8) + 8(3/4)) ÷ (223/6) + (157/3) ×(3/41)= (223/24) ×(6/223)+ 3(34/41)=(1/4) + 3(34/41)=4(13/164)2. 1999年2月份,我国城乡居民储蓄存款月末余额是56767亿元,&127;比月初余额增长18%,那么我国城乡居民储蓄存款2月份初余额是( )亿元 (精确到亿元)。

答:48108亿元。

解: 56767÷(1+18%)≈48108(亿元)3. 环形跑道周长400米,甲乙两名运动员同时顺时针自起点出发,甲速度是 400米/分,乙速度是375米/分。

( )分后甲乙再次相遇。

答:16分钟。

解:400÷(400-375)=16(分钟)注:追及路程是跑道一圈的长度,&127;再次相遇应把出发时看作第一次相遇。

4. 2个整数的最小公倍数是1925,这两个整数分别除以它们的最大公约数, 得到2个商的和是16,这两个整数分别是( )和( )。

答:175和385。

解:这两个数分别除以最大公约数后所得到的商一定互质,而两个商的和是16,则有如下情形(1,15)、(3,13)、(5,11)、(7,9)。

而(5×11)│1925,因此最大公约数为1925÷(5×11)=35,&127;这两个数分别是5×35=175,11×35=385。

5. 数学考试有一题是计算4个分数(5/3) ,(3/2) ,(13/8) ,(8/5)的平均值,小明很粗心,把其中1个分数的分子和分母抄颠倒了。

抄错后的平均值和正确的答案最大相差( )。

第10~16届全国华罗庚金杯少年数学邀请赛决赛试题详细解释答案

第10~16届全国华罗庚金杯少年数学邀请赛决赛试题详细解释答案

第十届全国"华罗庚金杯"少年数学邀请赛决赛试题一、填空(每题10分,共80分)1.下表中每一列为同一年在不同历法中的年号,请完成下表:第1小题:2.计算:① 18.3×0.25+5.3÷0.4-7.13 = ( ); ②= ( )。

答案:10.695;13.计算机中最小的存储单位称为“位”,每个“位”有两种状态:0和1。

一个字节由8个“位”组成,记为B。

常用KB,MB等记存储空间的大小,其中1KB=1024B, 1MB=1024KB。

现将240MB的教育软件从网上下载,已经下载了70%。

如果当前的下载速度为每秒72KB,则下载完毕还需要()分钟。

(精确到分钟)答案:174.a,b和c都是二位的自然数,a,b的个位分别是7与5,c的十位是1。

如果它们满足等式ab+c=2005,则a+b+c=( )。

答案:1025.一个正方体的每个顶点都有三条棱以其为端点,沿这三条棱的三个中点,从这个正方体切下一个角,这样一共切下八个角,则余下部分的体积(图1中的阴影部分)和正方体体积的比是()。

答案:6.某种长方体形的集装箱,它的长宽高的比是4∶3∶2,如果用甲等油漆喷涂它的表面,每平方米的费用是0.9元,如果改用乙等油漆,每平方米的费用降低为0.4元,一个集装箱可以节省6.5元,则集装箱总的表面积是()平方米,体积是()立方米。

答案:13:37.一列自然数0,1,2,3,…,2005,…,2004,第一个数是0,从第二个数开始,每一个都比它前一个大1,最后一个是2024。

现在将这列自然数排成以下数表:规定横排为行,竖排为列,则2005在数表中位于第()行和第()列。

答案:20;458.图2中,ABCD是长方形,E,F分别是AB,DA的中点,G是BF和DE的交点,四边形BCDG 的面积是40平方厘米,那么ABCD的面积是()平方厘米。

图2答案:60二、解答下列各题,要求写出简要过程(每题10分,共40分)9.图3是由风筝形和镖形两种不同的砖铺设而成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档