工程热力学-第五章 第六章 作业答案
工程热力学(张忠进 华自强 高青)第四版第五、六章答案
T= TATB ;
W0=mcp(TA+TB-2 TATB )
证明 物体A初终两态的温度为TA及T; 物 体B初终两态的温度为TB及T ,它们的熵变分别 为:
热力学第二定律·69·
∆s A = mc p ln
T TA
, ∆s B = mc p ln
T TB
可逆条件下的熵方程可表示为:
∆s isol = ∆sA + ∆sB + ∆sknj = 0
1 1
1
⎞ k −1 ⎛ 1000 ⎞ 0.4 ⎟ ⎟ = 81.1 ⎟ = 4⎜ ⎝ 300 ⎠ ⎠
k
(3)最高压力与最低压力之比:
pmax pa pa pd ⎛ Ta = = ⋅ =⎜ pmin pc p d p c ⎜ ⎝ Td
⎞ k −1 pd ⎛ 1000 ⎞ 0.4 0.4 ⎟ = 270 =⎜ ⎟ ⎟ pc ⎝ 300 ⎠ 0.1 ⎠
热机经过一个循环,因此有 ∆sknj = 0 即
∆s A = − ∆s B ; ln
T T = ln B TA T
T = TATB
可以得出: 根据能量方程,有:
W0 = Q1 − Q2
= mc p (TA − T ) − mc p (T − TB ) = mc p (TA + TB − 2T ) = mc p TA + TB − 2 TA ⋅ TB
(
)
5-12 卡诺热机按逆向 循环 工作时称为逆向卡诺循环,如图 5-16所示。现利用它来制冷,消耗 循环净功 w0 ,由低温热源吸热q2 向高温热源放热q1, 试证明其制冷 系数的公式为ε=
Tr2 。 Tr1 − Tr2
图 5-16 逆向卡诺循环的 T-s 图
工程热力学 第五版 廉乐明 谭羽非 著 课后习题答案 中国建筑工业出版社 第5章 第6章作业 09年修订 1
5
湖南工业大学土木工程学院
建筑环境与设备工程教研室编制
过程。必要的一步是使系统先进行可逆绝热膨胀,等系统温度达到与环境 温度相等时,再进行可逆定温传热,过程就从 1-A-2,如图所示。而题中 进行的过程,是从点 1-B。
解:逆卡诺循环时,热泵供热系数为:
ε 2,c
=
T1 T1 − T2
=
20 + 273 (273 + 20) − (273 −10)
= 9.77
(1)热泵每小时从室外吸热量Q2
ε 2,c
=
Q1 Q1 − Q2
⇒ Q2
=
Q1 (ε 2,c ε 2,c
− 1)
= 100000 × (9.77 −1) 9.77
上。
4
湖南工业大学土木工程学院
建筑环境与设备工程教研室编制
p 1
T1
2
s
4
v
T2
3
T
1
2
T1
T1
s
v
T2
T2
4
3
v
s
解:首先把每个过程的热量交换计算出来:
1-2 定温吸热 q12 = T1 (s2 − s1 )
2-3 定容放热 q23 = cv (T2 − T1 )
3-4 定温放热 q34 = T2 (s4 − s3 ) 4-1 定熵压缩 q34=0
η tc
=
W Q1
⇒W
= ηtcQ1
=
30% ×10000
=
3000kJ
/h
建筑物得到的热量,即热泵输送的热量Q1’
ε 2,c
=
Q1' W
⇒
Q1'
工程热力学-第五章题目5.9以后和第六章 作业答案
进、出口截面熵变为负
4) (d) 稳定流动:S=0
1
5-1:9 热源之间存在温差传热,设想热源与工质之间 插入中间热源,使与热源接触的一侧紧接1000K,与 工质接触一侧温度接近950K;恒温冷源也插入中间 热源,相同处理。因此在两个中间热源之间的循环为 内可逆循环:
1)Th 950K Tl 350K
c
1 Tl Th
63.16%
2)I1
T0S1
T0
(
Q1 950
Q1 ) 1000
15.7895kJ
I2
T0S2
T0
(
Q2 300
Q2 ) 350
52.63kJ
I=I1 I2 68.42kJ
2
5-20
绝热:Q 0 U不变 设混合后温度为t摄氏度
m1cv[(t 273) (20 273)] m2cv[(t 273) (80 273)] 0 t 60摄氏度
(Tm )2 T1T2
I
T0 S=T0 mc p In
(Tm )2 T1T2
4
6-1
2
w 1 pdVm
p
RT Vm
b
a Vm2ຫໍສະໝຸດ w 21 pdVm
2 1
RT ( Vm
b
a Vm2
)dVm
w RTIn(Vm b)
2 1
a Vm
2 1
RTIn(Vm2 b) a Vm1 b Vm2
a
Vm1
5
6-3 1) pV mRgT
pV
4106 3
midea
RgT
8.314 32 103
(273 113)
288.68kg
工程热力学课后题答案
习题及部分解答第一篇 工程热力学 第一章 基本概念1. 指出下列各物理量中哪些是状态量,哪些是过程量:答:压力,温度,位能,热能,热量,功量,密度;2. 指出下列物理量中哪些是强度量:答:体积,速度,比体积,位能,热能,热量,功量,密度;3. 用水银差压计测量容器中气体的压力,为防止有毒的水银蒸汽产生,在水银柱上加一段水;若水柱高mm 200,水银柱高mm 800,如图2-26所示;已知大气压力为mm 735Hg,试求容器中气体的绝对压力为多少kPa 解:根据压力单位换算4. 锅炉烟道中的烟气常用上部开口的斜管测量,如图2-27所示;若已知斜管倾角 30=α,压力计中使用3/8.0cm g =ρ的煤油,斜管液体长度mm L 200=,当地大气压力MPa p b 1.0=,求烟气的绝对压力用MPa 表示解:5.一容器被刚性壁分成两部分,并在各部装有测压表计,如图2-28所示,其中C 为压力表,读数为kPa 110,B 为真空表,读数为kPa 45;若当地大气压kPa p b 97=,求压力表A 的读数用kPa 表示 kPa p gA 155=6. 试述按下列三种方式去系统时,系统与外界见换的能量形式是什么;1.取水为系统;2.取电阻丝、容器和水为系统;3.取图中虚线内空间为系统;答案略;7.某电厂汽轮机进出处的蒸汽用压力表测量,起读数为MPa 4.13;冷凝器内的蒸汽压力用真空表测量,其读数为mmHg 706;若大气压力为MPa 098.0,试求汽轮机进出处和冷凝器内的蒸汽的绝对压力用MPa 表示 MPa p MPa p 0039.0;0247.021==8.测得容器的真空度mmHg p v 550=,大气压力MPa p b 098.0=,求容器内的绝对压力;若大气压变为MPa p b102.0=',求此时真空表上的读数为多少mmMPa MPa p MPa p v8.579,0247.0='= 9.如果气压计压力为kPa 83,试完成以下计算:1.绝对压力为11.0MPa 时的表压力;2.真空计上的读数为kPa 70时气体的绝对压力;3.绝对压力为kPa 50时的相应真空度kPa ;4.表压力为MPa 25.0时的绝对压力kPa ;1.kPa p g 17=;2.kPa p 13=;3.kPa p v 33=;4.kPa p 333=;10.摄氏温标取水在标准大气压下的冰点和沸点分别为0℃和100℃,而华氏温标则相应地取为32℉和212℉;试导出华氏温度和摄氏温度之间的换算关系,并求出绝对零度所对应的华氏温度;将水在标准大气压下的冰点值032和F ℃,以及沸点值100292和F ℃代入,得解该二元一次方程组,得:32,8.1==B A ;从而有 328.1+=t t F当15.273-=t ℃时,有11.气体进行可逆过程,满足pV C =C 为常数,试导出该气体从状态1变化到状态2时膨胀功的表达式,并在p V -图上定性画出过程线、示出膨胀功;答案:略12.某气体的状态方程为g pV R T =,试导出:1.定稳下气体,p v 之间的关系;2.定压下气体,v T 之间的关系;3.定容下气体,p T 之间的关系;答案:1.2112v v p p =;2.1212T T v v =;3. 1212T T p p =;第二章 热力学第一定律1.一蒸汽动力厂,锅炉的蒸汽产量为318010/q kg h =⨯,输出功率为55000P kW =,全厂耗煤,19.5/m c q t h =,煤的发热量为33010/c q kJ kg =⨯;蒸汽在锅炉中吸热量2680/q kJ kg =;试求:1.该动力厂的热效率t η;2.锅炉的效率B η蒸汽总吸热量煤的总发热量;解:1.锅炉中蒸汽吸热量热效率 %411034.1550005=⨯=Φ=H t P η 2.锅炉效率2.系统经一热力过程,放热8kj 对外做功26kJ ;为使其返回原状态,对系统加热6kJ ,问需对系统作功多少解:由W U Q +∆=得对于返回初态的过程故需对系统做功kj 28;3.气体在某一过程只能感吸收了54kJ 的热量,同时热力学能增加了94kJ ;此过程是膨胀过程还是压缩过程系统与外界交换的功是多少答案:此过程为压缩过程;此过程中系统与外界交换的功是kj 40-;4.1kg 空气由115,0.5p MPa t MPa ==膨胀到220.5,500p MPa t ==℃,得到热量506kJ ,对外做膨胀功506kJ ;接着又从终态被压缩到初态,热出热量390kJ ,试求:1.膨胀过程空气热力学能的增量;2.压缩过空气热力学能的增量;3.压缩过程外界消耗的功;答案:1.0=∆U ;2. 0=∆U ;3.kj W 390-=;5.闭口系统中实施以下过程,试填补表中的空缺数据;表中括号内的数为答案;6.如图所示,某封闭系统沿b c a --途径由状态a 变化到b ,吸入热量kj 90,对外做功kj 40,试问:1.系统从a 经d 至b ,则吸收热量是多若对外做功kj 10,少2.系统由b 经曲线所示过程返回a ,若外界对系统左贡kj 23,吸收热量为多少3.设,45,5kj U kj U d adb ==,那么过程d a -和b d -中系统吸收的热量各为多少答案 1.kj Q adb 60=;2.kj Q ba 73-=;2.kj Q ad 50=;4.kj Q db 10=;7.容积为31m 的绝热封闭的气缸中装有完全不可压缩的流体,如图2-31所示;试问:1.活塞是否对流体做功2.通过对活塞加压,把流体压力从MPa p 2.01=提高到MPa p 33=,热力学能变化多少焓变化多少答案 1.0=W ;2.kj H U 3108.2,0⨯=∆=∆;8.一质量为kg 4500的汽车沿坡度为 15的山坡下行,车速为s m /300;在距山脚m 100处开始刹车,且在山脚处刚好刹住;若不计其它力,求因刹车而产生的热量;kj Q 51004.2⨯=;9.某蒸汽动力装置,蒸汽流量为h t /40,汽轮机进出口处压力表读数为MPa 9,进口比为kg kj /3440,汽轮机出口比焓为kg kj /2240,真空表读数为kPa 06.95,当时当地大气压力为kPa 66.98,汽轮机对环境放热为;试求:1.汽轮机进出口蒸汽的绝压各为多少2.单位质量蒸汽经汽轮机对外输出功为多少3.汽轮机的功率为多少答案 1.2.kg kj sh /1200=ω3.kW P 410332.1⨯=4.考虑进出口动能差后sh ω的相对偏差10.进入冷凝器的泛汽的蒸汽为MPa p 005.0=,比焓kg kj h /25001=,出口为同压下的水,比焓为kg kj h /77.1372=,若蒸汽流量为h t /22,进入冷凝器的冷却水温为171='t ℃,冷却水出口温度为302='t ℃,试求冷却水流量为多少水的比热容为)./(18.4K kg kj ;答案 )/(104.9563,h kg q w m ⨯=11.某活塞式氮气压气机,压缩的氮气的参数分别为:MPa p 1.01=,kg m v /88.031=;MPa p 0.12=,kg m v /16.03=;设在压缩过程中每kg 氮气热力学能增加kj 180,同时向外放出热量kj 60;压气机每min 生产压缩氮气kg 18,试求:1.压缩过程对每kg 氮气所做的功;2.生产每kg 压缩氮气所需的功;3.带动比压气机至少要多大的电动机;答案 1.kg kj /240-=ω;2.kg kj sh /312-=ω;3.kW P 6.93=;12.流速为s m /600的高速空气突然受阻停止流动,即02=c ,称为滞止;如滞止过程进行迅速,以致气流受阻过程中与外界的热交换可以忽略,问滞止过程空气的焓变化了多少答案 kg kj h /180=∆第三章 理想气体及其混合物1.把2CO 压送到体积为35.0m 的贮气罐内;压送前贮气罐上的压力表读数为kPa 3,温度为C 20,压送终了时压力表读数为kPa 30,温度为C 50;试求压送到罐内的2CO 的质量;大气压力为MPap b 1.0=;解由 ()())[]()kg T p T p R V T R V p T R V p m TmR pV K kg kJ M R R kPa p p p kPa p p p g g g g g g b g b 143.02732010103273501013010189.05.0.189.044314.813030101.01033101.033311221122322311=⎪⎪⎭⎫ ⎝⎛+⨯-+⨯⨯⨯=⎪⎪⎭⎫⎝⎛-=-=∆=====+⨯=+==+⨯=+=2. 体积为303.0m 的某钢性容器内盛有了C kPa 20,700的氮气;瓶上装有一排气阀,压力达到kPa 875时发门开启,压力降到kPa 840时关闭;若由于外界加热的原因造成阀门开启,问:1阀门开启时瓶内气体温度为多少2因加热造成阀门开闭一次期间瓶内氮气失去多少设瓶内空气温度在排气过程中保持不变;答案 13.932=t ℃;2kg m 0097.0=∆3.氧气瓶的容积330.0m V =瓶中氧气的表压力为Ct MPa p g 30,4.111==;问瓶中盛有多少氧气若气焊时用去一半氧气,温度降为C t202=,试问此时氧气的表压力为多少当地大气压力MPap b 1.0=答案 MPa p kg m g 625.0;86.72==4.某锅炉每小时燃煤需要的空气量折合表准状况时为h m 366000;鼓风机实际送入的热空气温度为C 250,表压力为kPa 0.20,当地大气压为MPa p b 1.0=,求实际送风量()m 3; 解 ()MPa p p p g b 12.010201.03=⨯+=+=- 由T R q pq g m V =得()()m P T T q p q T q p T pq V V V V 3511000000010068.112.027325027366000101325.0.⨯=+⨯⨯===5.某理想气体比热比4.1==V p c c k ,定压比热容()K kg kJ c p .042.1=,求该气体的摩尔质量;解 由k c c Vp =及MRR c c g V p ==-得 ()()()mol g k c R M p 93.274.111042.1314.811=-⨯=-=6.在容积为31.0m 的封闭容器内装有氧气,其压力为kPa 300,温度为C15,问应加入多少热量可使氧气温度上升到C8001按定值比热容计算;2按平均比热容计算;解 ()[]k kg kJ M R R g .26.032314.8===1()()()kJ t t R m t mc Q g V 3.6121580026.0252.12512=-⨯⨯⨯=-=∆=2查得()K kg kJ c V.656.015=7.摩尔质量为kg 30的某理想气体,在定容下由C 275,加热到C 845,若热力学能变化为kg kJ 400,问焓变化了多少答案kg kJ h 9.557=∆8.将kg 1氮气由C t 301=定压加热到C400,分别用定值比热容,平均比热容表计算其热力学能和焓的变化;用定值比热容计算用平均比热容计算9. kg 2的2CO ,由C t kPa p 900,80011==膨胀到C t kPa p 600,12022==,试利用定值比热容求其热力学能、焓和熵的变化;解10. 在体积为35.1mV=的钢性容器内装有氮气;初态表压力为MPapg0.21=,温度为C230,问应加入多少热量才可使氮气的温度上升到C750其焓值变化是多少大气压力为MPa1.0; 1按定值比热容计算;2按真实比热容的多项式计算;3按平均比热容表计算;4按平均比热容的直线关系式计算;解12查得()()()()()()()()()()()()kJ TnR Q dT nC kJ T T nR T a T a T a n T nR dT aT T a a n dT nR dT nC n dT R C n dT nC Q kmol m M n a a a T a T a a C m p T T m p m p m V m p 4321,3228223123221021212121021,,21,823102210,10226.150********.87532.010005.910005.9]5031023314.87532.050310231042.0315031023102335.52150310233146.27[7532.0327532.02809.211042.0,102335.5,3146.2721⨯=-⨯⨯+⨯=∆+==∆H ⨯=-⨯⨯--⨯⨯-⨯+-⨯⨯⨯+-⨯⨯=--⎪⎭⎫ ⎝⎛++=∆-++=-=-=====⨯-=⨯==++=⎰⎰⎰⎰⎰⎰----3查得4查得11. 某氢冷却发电机的氢气入口参数为C t MPa p g 40,2.011==,出口参数为C t MPa p g 66,19.022==;若每分钟入口处体积流量为35.1m ,试求氢气经过发电机后的热力学能增量、焓增量和熵增量;设大气压力为MPa p b 1.0=;1按定值比热容计算;2按平均比热容直线关系式计算;解(1) 按定值比热()[]()[]()()()()()[]min .4504.03.029.0ln 157.42734027360ln 55.143459.0ln ln min 9.130406655.143459.0min 44.93406639.103459.0.39.10157.455.14.55.14157.427271212K kJ p p R T T c q S kJ t c q kJ t c q U K kg kJ R c c K kg kg R c g p m p m V m g p V g p =⎪⎭⎫ ⎝⎛-++⨯=⎪⎪⎭⎫ ⎝⎛-=∆=-⨯⨯=∆=∆H =-⨯⨯=∆=∆=-=-==⨯==2按平均比热容的直线关系式12. 利用内燃机排气加热水的余热加热器中,进入加热器的排气按空气处理温度为C 300,出口温度为C 80;不计流经加热器的排气压力变化,试求排气经过加热器的比热力学能变化,比焓变化和比熵的变化;1按定值比热容计算;2按平均比热容表计算;答案1213. 进入气轮机的空气状态为C kPa 600,600,绝热膨胀到C kPa300,100,略去动能、位能变化,并设大气温度为KT 3000=,试求:1每千克空气通过气轮机输出的轴功;2过程的熵产及有效能损失,并表示在s T -图上;3过程可逆膨胀到kPa 100输出的轴功;解12熵产g s ∆及有效能损失i 如图3-36中阴影面积所示;314.由氧气、氮气和二氧化碳组成的混合气体,各组元的摩尔数为试求混合气体的体积分数、质量分数和在C t kPa p 27,400==时的比体积;解15.试证明:对于理想气体的绝热过程,若比热容为定值,则无论过程是否可逆,恒有()211T T k R w g --=式中:1T 和2T 分别为过程初终态的温度;证明 对于理想气体的绝热过程,有又 ⎪⎩⎪⎨⎧==-kc c R c c V p gV p得 1-=k R c g V故 ()211T T k R w g --=证毕第四章 理想气体的热力过程1. 某理想气体初温K T 4701=,质量为kg 5.2,经可逆定容过程,其热力学能变化为kJ U 4.295=∆,求过程功、过程热量以及熵的变化;设气体()35.1,.4.0==k K kg kJ R g ,并假定比热容为定值;解由⎪⎩⎪⎨⎧==-kc c R c c V p g V p得()[]()()()K kJ T T mc S K T mc U T T T mc T mc U K kg kJ k R c V V V V gV 568.04704.573ln 143.15.2ln3.573470143.15.24.295.143.1135.14.01121212=⨯==∆=+⨯=+∆=-=∆=∆=-=-=2. 一氧化碳的初态为K T MPa p 493,5.411==;定压冷却到K T 2932=;试计算kmol 1的一氧化碳在冷却过程中的热力学能和焓的变化量,以及对外放出的热量;比热容取定值;答案 kJ kJ U 441082.5,10154.4⨯=∆H ⨯=∆3. 氧气由MPa p C t 1.0,3011== 被定温压缩至MPa p 3.02=;1试计算压缩单位质量氧气所消耗的技术功;2若按绝热过程压缩,初态与终态与上述相同,试计算压缩单位质量氧气所消耗的技术功;3将它们表示在同一副v p -图和s t -图上,试在图上比较两者的耗功;解 ()[]K kg kJ M R R g .26.032314.8===155.863.01.0ln 30326.0ln211,-=⨯==p p T R w g T t 23两过程在v p -图和s T -图上的表示分别如图3-37a 和3-37b 所示;图中过程线T21-为定温过程,s 21-为绝热过程线;从v p -图中可以看到,绝热过程耗功比定温过程耗功多出曲边三角形面积s T 221--;4.使将满足以下要求的理想气体多变过程在v p -和s t -图上表示出来先画出4个基本热力过程:1气体受压缩、升温和放热;2气体的多变指数8.0=n ,膨胀;3气体受压缩、降温又降压;4气体的多变指数2.1=n ,受压缩;5气体膨胀、将压且放热;答案 如图3-38a 和图3-38b 所示的v p -图和s T -图上,1-1,1-2,1-3,1-4和1-5分别为满足1,2,3,4和5要求的多变过程线;5.柴油机汽缸吸入温度C t 601=的空气33105.2m -⨯,经可逆绝热压缩;空气的温度等于燃料的着火温度;若燃料的着火温度为C 720,问空气应被压缩到多大的体积答案3421063.1m V -⨯=6.有kg 1空气,初态为C t MPa p 27,6.011==,分别经下列三种可逆过程膨胀到MPa p 1.02=,试将各过程画在v p -图和s t -图上,并求各过程始态温度、做工量和熵的变化量:1定温过程;225.1=n 的多变过程;3绝热过程;答案123v p -图和s T -图如图3-39所示; 7.一容积为32.0m 的贮气罐,内装氮气,其初压力MPa p 5.01=,温度C t 371=;若对氮气加热,其压力、温度都升高;贮气罐上装有压力控制阀,当压力超过MPa 8.0时,阀门便自动打开,防走部分氮气,即罐中维持最大压力为MPa 8.0,问当贮气罐中氮气温度为C 287时,对罐内氮气共加入多少热量设氮气比热容为定值;解()[]K kg kJ M R R g .297.028314.8===由 T mR pV g =开始过程是定容过程,则8.容积为36.0m V =的空气瓶内装有压力MPa p 101=,温度为K T 3001=的压缩空气,打开压缩空气瓶上的阀门用以启动柴油机;假定留在瓶中的空气进行的是绝热膨胀;设空气的比热容为定值,)./(287.0K kg kj R g =;1.问过一段时间后,瓶中空气从室内空气吸热,温度有逐渐升高,最后重新达到与室温相等,即又恢复到K 300,问这时空气瓶中压缩空气的压力3p 为多大答案 1 kg m K T 6.15,1.2712-=∆= 2MPa p 75.73=9.是导出理想气体定值比热容的多变过程的初、终态熵变为解:主要步骤与公式由 ⎪⎩⎪⎨⎧==-k c c R c c Vp gV p 得 1-=k kR c g p10.压力为kPa 160的kg 1空气,K 450定容冷却到K 300,空气放出的热量全部被温度为17℃的大气环境所吸收;求空气所放出热量的饿有效能和传热过程、的有效能损失,并将有效能损失表示在s T -图上;解由于放出的热量全部被环境吸收,使热量有效能全部变成了无效能,故有效能损失有效能损失如图3-40的s T -图上阴影面积所示;11.空气进行可逆压缩的多变过程,多变指数,3.1=n 耗功量为kg kj /95.67,求热量和热力学能变化;答案 kJ U kJ Q 85.50,95.16=∆-=第六章 水蒸气1.湿饱和蒸汽,85.0,9.0==x MPa p ,试由水蒸气表求u s v h t 和,,,,;答案 kg kJ h C t s 99.2468,389.175==2.过热蒸汽,425.0.3==t MPa p ℃,根据水蒸气表求u s h v ,,,和过热度D ,再用s h -图求上述参数;答案 查表:kg kJ h m v 7.3286,103638.03==查图:kg kJ h kg m v 3290,105.03==3.开水房用开水的蒸汽与20=t ℃同压下的水混合,试问欲得t 5的开水,需要多少蒸汽和水解 设需蒸汽为kg m V ,则水为V w m m m -=;由MPa p 1.0=,查得kg kJ h kg kJ h 14.2675,52.417=''='C t 20=时,kg kJ h 96.832=根据热力学第学一定律4.已知水蒸气kg kj h MPa p /1300,2.0==,试求其s t v ,,;答案 )K kg kJ s C t kg m v .5452.3,30.120,3158.03===5.kg 1蒸汽,95.0,0.211==x MPa p ,定温膨胀至MPa p 1.02=,求终态s h v ,,及过程中对外所做的功;解 ()kg kJ w 0.683=6.进汽轮机的蒸汽参数为435,0.311==t MPa p ℃;若经可逆膨胀绝热至MPa p .2=,蒸汽流量为s kg /0.4,求汽轮机的理想功率为多少千克:答案 kW P 31066.4⨯=7.一刚性容器的容积为MPa 3.0,其中51为饱和水,其余为饱和蒸汽,容器中初压为MPa 1.0;欲使饱和水全部汽化,问需要加入多少热量终态压力为多少若热源温度为500℃,试求不可逆温差传热的有效能损失;设环境温度为27℃;8.容积为336.0m 的刚性容器中贮有350=t ℃的水蒸气,其压力表度数为kPa 100;现容器对环境散热使压力下降到压力表度数为kPa 50;试求:1.确定初始状态是什么状态2.求水蒸气终态温度;3.求过程放出的热量和放热过程的有效能损失;设环境温度为20℃,大气压力为MPa 1.0;答案 1过热蒸汽;2C t 8.1452=此结果为利用教材热工基础与应用后附录A-7所得;利用较详细水蒸气热表或s h -图答案应为C 1913kJ I kJ Q 8.35,6.82=-=同上,kJ I kJ Q 2.27,1.59=-=9.气轮机的乏汽在真空度为kPa 96干度为88.0=x 的湿空气状态下进入冷凝器,被定压冷却凝结为饱和水;试计算乏汽体积是饱和水体积的多少倍,以及kg 1乏汽2在冷凝器中放出的热量;设大气压力为MPa 1.0;答案 kg kJ q V V 2140,1005.3411=⨯='10.一刚性绝热容器内刚性各班将容器分为容积相同的B A ,两部分;设A 的容积为316.0m ,内盛有压力为MPa 1.0、温度为300℃的水蒸气;B 为真空;抽掉隔板后蒸汽蒸汽自由膨胀达到新的平衡态;试求终态水蒸气的压力、温度和自由膨胀引起的不可逆有效能损失;设环境温度为20℃,并假设该蒸汽的自由膨胀满足常数=pV ;解1由==1122V p V p 常数得 ()MPa V V p p 5.0210.12112=⨯== (2) 由C t MPa p 300,0.111==,查得 由kg m v MPa p 3225161.0,5.0==,查得11.利用空气冷却蒸汽轮机乏汽的装置称为干式冷却器;瑞哦流经干式冷却器的空气入口温度为环境温度201=t ℃,出口温度为352=t ℃;进入冷凝器的压力为kPa 0.7,干度为8.0,出口为相同压力的饱和水;设乏汽流量为h t /220,空气进出口压力不变,比热容为定值;试求:1.流经干式冷却器的焓增量和熵增;2.空气流经干式冷却器的熵变以及不可逆传热引起的熵产;解1由8.0,0.7==x kPa p 查算得对空气)()K kg kJ c K kg kJ R p g .004.1,.287.0==根据热力学第一定律有2()()()()K kW S kW t t c q a p a m a 18.3910177.12035004.110818.75312,=∆⨯=-⨯⨯⨯=-=∆H3()()K kW S K kW S g V 63.1417.377=∆-=∆39.500,0.911==t MPa p ℃的水蒸汽进入气轮机中作绝热膨胀,终压为kPa p 502=;汽轮机相对内效率式中s h 2——为定熵膨胀到2p 时的焓;试求1.每kg 蒸汽所做的功;2.由于不可逆引起熵产,并表示在s T -图上;答案 由C t MPa p 500,0.911==查得()K kg kJ s kg kJ h .656.6,338511==由()kPa p K kg kJ s s 0.5,.656.6212===查得kg kJ h s 20302=由s T h h h h 2121--=η得()kg kJ h 22202=()kg kJ w sh 1165=(3) 由kg kJ h kPa p 2220,522==查得过程如图所示第七章 湿空气1.设大气压力为MPa 1.0,温度为25℃,试用分析法求湿空气的相对湿度为%55=ϕ,露点温度、含湿量及比焓,并查d h -图校核之;答案 解析法 ()()a kg kJ h a kg kg d C t d 15.53,011.0,8.14===查d h -图:2.空气的参数为%30,20,1.01===ϕC t MPa p b ,在加热器中加热到85℃后送入烘箱取烘干物体/从烘箱出来时空气温度为353=t ℃,试求从烘干物体中吸收kg 1水分所消耗的赶空气质量和热量;解 由%,30,2011==ϕC t 查d h -图得由C t d d 85,212==得3.设大气压力为MPa 1.0,温度为30℃,相对湿度为8.0;如果利用空气调节设备使温度降低到10℃去湿,然后再加热到20℃,试求所的空气的相对湿度;答案 %53=ϕ4.一房间内空气为MPa 1.0,温度为5℃,相对湿度为%80;由于暖气加热使房间温度升至18℃;试求放暖气后房内空气的相对湿度;答案 %32=ϕ5.在容积为3100m 的封闭室内,空气的压力为MPa 1.0,温度为25℃,露点温度为18℃,试求室内空气的含湿量,和相对湿度;若此时室内放置若干盛水的敞口容器,容器的加热装置使水能保持25℃定温蒸发至空气达到室温下饱和空气状态;试求达到饱和空气状态的空气含湿量和水的蒸发量;解 1由C t 25=查得由C t d 18=查得MPa p V 002064.0=所以%65=ϕ2%1002=ϕ6.一股空气流压力为MPa 1.0,温度为20℃,相对湿度为%30,流量为每分钟315m ;另一股空气流压力也为MPa 1.0,温度为35℃,相对湿度为%80,流量为每分钟320m ;混合后压力仍为MPa 1.0,试求混合后空气的温度、相对湿度和含湿量;解: 水蒸气的()[]K kg kJ R v g .462.0,=由%30,2011==ϕC t 查得由%80,3522==ϕC t 查得由热力学第一定律由 ()()a kg kg d a kg kJ h 0181.0,3.7333==查得第八章 气体和蒸汽的流动1.燃气经过燃气轮机中渐缩喷管绝热膨胀,流量为s kg q m /6.0=,燃气参数6001=t ℃,压力MPa p 6.01=,燃气在喷管出口的压力为MPa p 4.02=,喷管进口流速及摩擦损失不计,试求燃气在喷管出口处的流速和出口截面积,设燃气的 热力性质与空气相同,取定值比热容; 答案: s m A s m c /65.7,/43822==2.空气流经一出口截面积为3210cm A =的渐缩喷管,喷管进口的空气参数、为s m c C t MPa p /150,80,0.2111=== ,背压为MPa p b 8.0=,试求喷管出口处的流速和流经喷管的空气流量;若喷管的速度系数为96.0,喷管的出口流速和流量又为多少解:1.528.0356.0246.28.0)(246.2)3332.344(2)()(2.344004.1210150333204.04.111010322110=<===⨯===⨯⨯+=+=--er k k p v p MPa T T p p K c c T T 所以 )(186.1246.2528.002MPa p v p p er er =⨯=⋅==2.3.水蒸气经汽轮机中的喷管绝热膨胀,进入喷管的水蒸气参数525,0.911==t MPa p ℃,喷管背压力为MPa p b 0.4=,若流经喷管的流量为s kg q m /6=,试进行喷管设计计算;解: 由546.044.00.90.41=<==er b v p p 知喷管形状应选缩放型的;由,525,0.911C t MPa p ==s h -图得由,,0.4,),(914.4546.00.912211s s MPa p p s s MPa v p p b cr cr cr =====⨯==和查得4.空气以s m /200的速度在管内流动,用水银温度计测得空气的温度为70℃,假设气流在温度计壁面得到完全滞止,试求空气的实际温度;答案 1.50=f t ℃5.压力kPa p 1001=、温度为271=t ℃的空气,流经扩压管时压力提高到kPa p 1802=,问空气进入扩压管是至少有多大流速这时进口马赫数是多少答案 956.0,/33211==M s m c6.某单级活塞式压气机每小时吸入温度171=t ℃、压力MPa p 1.01=的空气3120m ,输出空气的压力为MPa p 64.02=;试按下列三种情况计算压气机所许的理想功率:1.定温压缩;2.绝热压缩;3.多变压缩2.1=n ;答案 1.kW P T c 19.6,=; 2.kW P s c 2.8,=; 3.kW P n c 3.7,=7.一台两级压气机,几如压气机的空气温度是171=t ℃,压力为MPa p 1.01=,压气机将空气压缩至MPa p 5.23=,压气机的生产量为h m /503标态下,两级压气机中的压缩过程均按多变指数25.1=n 进行;现以压气机耗功最小为条件,试求:1.空气在低压气缸中被压缩后的饿压力为2p ;2.空气在气缸中压缩后的温度;3.压气机耗功量;4.空气在级间冷却器中放出的热量;解 1.)(5.051.051.05.21213MPa p p p p opt opt =⨯=====ππ 2.K T T T T K p p T T nn 400,)(4005290231225.125.011212==='=⨯=⎪⎪⎭⎫ ⎝⎛=- 3.)(9.56)15(125.1290287.018.025.12)1(12)/(180.0)/(6.64627310287.010*********.025.125.01136000kW n T R nq P s kg h kg T R q p q opt n n g m c g v m =-⨯-⨯⨯⨯⨯=--===⨯⨯⨯⨯==-π4.()()()()kW T T c q T T c q p m p m 9.19400290004.118.02122-=-⨯⨯=-=-'=Φ8.某轴式压气机,每秒生产kg 20压力为MPa 5.0的压缩空气;若进入压气机的空气温度为201=t ℃,压力为MPa p 1.01,压气机的绝热效率92.0,=s c η,求出口处压缩空气的温度及该压气机的耗功率;解 )(1.4641.05.02934.114.111212K p p T T k k =⎪⎭⎫ ⎝⎛⨯=⎪⎪⎭⎫ ⎝⎛=-- 由12121212,T T T T h h h h s c -'-=-'-=η得 9.一离心式压气机每分钟吸入压力为2010011==t kPa p 、℃的空气3200m ;空气离开压气机的温度为502=t ℃,出口截面上的流速为s m /50,空气的比热容()K kg kJ c p ./004.1=,假定与外界无热量交换;试求压气机的耗功率;答案 kW P 4.124=10.定容加热汽油机循环在每千克空气加入热量kJ 1000,压缩比5/21==v v ε,压缩过程的初参数为15,100kPa ℃;试求:1.循环的最高压力和最高温度;2.循环的热效率;答案 1.K T 1943max =,MPa p 37.3max =; 2.%6.52,=s c η11.一混合加热理想内燃机循环,工质视为空气,已知3.1/,8.1/,12/,50,1.034232111========v v p p v v C t MPa p ρλε ,比热容为定值;试求在此循环中单位质量工质的吸热量、净功量和循环热效率;解 循环s T -图如右图所示;1点:2点: 3点:4点:5点:12.在相同的初态及循环最高压力与最高温度相同的条件下,试在s T -图上利用平均温度的概念比较定容加热、定压加热及混合加热的内燃机理想循环的热效率;答案 s T -图如图所示 若定容加热理想循环热效率为V t ,η,定压加热理想循环热效率为p t ,η,混合加热理想循环热效率为t η,则有p t t V t ,,ηηη<<13.在燃气轮机的定压循环中,工质视为空气,进入压气机的温度271=t ℃,压力MPa p 1.01=,循环增压比4/12==p p π;在燃烧事中加入热量,经绝热膨胀至MPa p 1.04=;设比热为定值;1.画出循环的s T -图;2.求循环的最高温度;3.求循环的净功量和热效率;4.若燃气轮机的相对内效率为91.0,循环的热效率为多少答案 1.s T -图如图所示;2.K T T 11763max ==;3.%7.32,/8.2390==t kg kJ ηω;4.%28=t η14.对于燃气轮机定压加热理想循环,若压气机进出口空气参数为MPa p 1.01=,271=t ℃,燃气轮机进出口处燃气温度10003=t ℃,试向增压比π最高为多少时,循环净功为0 答案 157max =π15.某锅炉每小时生产t 4水蒸气;蒸汽出口的表压为MPa p g 122=,温度3502=t ℃;设给水温度401=t ℃,锅炉效率8.0=B η,煤的发热量热值kg kJ q p /1097.24⨯=,试求每小时锅炉的耗煤量;答案 耗煤量h kg q c m /448,=16、 填空题:1用水银温度计测量高速流动的气流温度,设温度计上读数为t ,气流温度为f t ,则二者的大小关系为____________;2在喷管的气体流动中,气体压力不断__________,流速____,马赫数 ______; 3有一减缩喷管,空气进口压力为MPa p 11=,背压MPa p b 3.0=,册出口压力=2p ;4现设计一喷管,若进口过热蒸汽压为MPa p 91=,背压为MPa p b 2=,此 喷管的形状应选择 ;17、压力为MPa 1.0、温度为C 015的空气,分别以s m /100,s m /200,和s m /400的流速流动,当空气滞止时,问空气的滞止温度和滞止压力各为多少18、某减缩喷管进口氮气压力为MPa p 6.61= ,温度C t 0960= ,背压为MPa p b 0.4=试求出口截面流速;19.某减缩喷管出口截面积为225mm ,进口空气参数C t Pa p 011300,5.0==,初速s m c /1781=,问背压为多大时达到最大质量流量该值是多少20.压力为MPa 1.0,温度C 030的空气经扩压管后压力升高至MPa 16.0,问空气进入扩压管的初速是多少21.压力MPa p 0.91=、温度C t 01550=的水蒸气,经节流阀后压力降为MPa P 6.82=,然后进入喷管作可逆膨胀至压力为MPa p 63=;设环境温度为K T 3000=,流量s kg q m /32=问:1该喷管为何形状;2喷管出口流速及截面积为多少;3因节流引起的熵产及有效能损失为多少第九章 蒸汽动力循环1.蒸汽动力循环的主要设备是什么各起什么作用2.提高蒸汽动力循环热效率的主要措施与方法有那些3.在蒸汽压缩制冷循环中,如果用膨胀代替节流阀,有何优缺点4.试画出蒸汽再循环的s T -图;5.某朗肯循环,水蒸气初参数为C t MPa p 011500,4==,背压为MPa p 004.02=;试求循环吸热、放热量、汽轮机做功和循环热效率;6.某蒸汽动力循环,水蒸气的初参数为C t MPa p 011530,5.4==,背压为MPa p 005.02=,汽轮机相对内效率88.0=T η,试求循环吸热量、放热量、汽轮机做功量和循环热效率;7.某蒸汽压缩制冷循环,制冷剂为氟里昂134a,蒸发器的出口温度为C 045.26-,冷凝器的出口温度C 030;试求:1循环制冷量和压气机耗功量;2制冷系数;3循环热效率;8.某蒸汽动力循环装置为郎肯循环;蒸汽的初压为MPa p 0.41=,背压为MPa p 005.02=,若初温分别为300℃和500℃,试求蒸汽在不同初温下的循环热效率t η及蒸汽的终态干度2x ; 解:1.由MPa p 0.41=,3001=t ℃,查过热蒸汽表得由MPa p 005.02=,查饱和水和饱和蒸汽表得由12s s =得又 kg kJ h h /22.13723='=忽略泵功 34h h =2.过程和上一问相同,最后结果是%39=t η,832.02=x9.某朗肯循环,水蒸气初温为5001=t ℃,背压为MPa p 005.02=,试求当初压分别为MPa 0.4和MPa 0.6时的循环热效率及排汽干度;答案10.某蒸汽动力厂按再热循环工作,锅炉出口蒸汽参数为500,1011==t MPa p ℃,汽轮机排汽压力MPa p 004.02=;蒸汽在进入汽轮机膨胀至MPa 0.1时,被引出到锅炉再热器中再热至500℃,然后又回到汽轮机继续膨胀至排汽压力;设汽轮机和水泵中的过程都是理想的定熵过程,试求: 1.由于再热,使乏汽干度提高多少2.由于再热,循环的热效率提高了多少解: 1.由500,1011==t MPa p 查得由)./(5954.6,0.11K kg kJ s s MPa p a a ===查得由500,0.1==b b t MPa p ℃查得由)(7597.7,004.022K kg kJ s s MPa p b •===且 kg kJ h 3.1212=' 由)(5954.6,004.012K kg kJ s s MPa p a •===查得忽略泵功 kg kJ h h h 3.121234='== 2忽略泵功 ()()210h h h h w w b a T -+-===()())(17060.23378.347628078.3372kg kJ =-+-=()())(3.392128078.34763.1218.3372kg kJ =-+-无再热时第十章 制冷循环1.某蒸气压缩制冷装置如图5-26所示;制冷剂为氨,蒸发器出口氨的温度为 C t ︒-=151,在冷凝器中冷凝后的氨为饱和液,温度C t ︒=251;试求:蒸发器中氨的压力和冷凝器中氨的压力;循环的制冷量L q ,循环净功0w 和制冷系数ε; 若该装置的制冷能力为h kJ L 41042⨯=Φ,氨的流量为多大解 1T-s 图参阅图5-26b。
工程热力学第6章习题答案
第6章 热力学一般关系式和实际气体的性质6-1 一个容积为23.3m 3的刚性容器内装有1000kg 温度为360℃水蒸气,试分别采用下述方式计算容器内的压力:1) 理想气体状态方程; 2) 范德瓦尔方程; 3) R-K 方程;4) 通用压缩因子图;4)查附录,水蒸气的临界参数为:K T cr 3.647=,bar p cr 9.220=,Z Pakg m K K kg J Z p v T ZR p p p cr g cr r 5682.0109.220/0233.015.633/9.461153=×××⋅×=×==978.03.64715.633===K K T T T crr 查通用压缩因子图6-3,作直线r p Z 76.1=与978.0=r T 线相交,得82.0=r p则bar MPa p p p cr r 1819.22082.0=×== 5)查水蒸气图表,得bar p 02.100=6-2 试分别采用下述方式计算20MPa 、400℃时水蒸气的比体积: 1) 理想气体状态方程; 2) 范德瓦尔方程; 3) R-K 方程;()b V V T b V m m m +−5.05.05.022−⎟⎟⎠⎜⎜⎝−+−pT V pT b p V p m m m mm m V V V ⎟⎠⎞⎜⎝⎛×−+×××−××−⇒5.02626315.67320059.14202111.010*******.015.6733.8314102015.6733.8314 067320002111.059.1425.0=××−()000058.002748.00004456.0005907.0279839.023=−−+−×−⇒m m m V V V000058.002112.0279839.023=−×+×−⇒m m m V V Vkmol m V m /1807.03=⇒ 则kg m V v m /01003.002.18/3==⇒4)查附录,水蒸气的临界参数为:K T cr 3.647=,bar p cr 9.220=,905.09.220200===cr r p pp()()()∫∫∫⎟⎠⎞⎜⎝⎛−−+−⎟⎟⎠⎞⎜⎜⎝⎛−=−−21212122221221v v v v v v g dv v a dv b v b b v d b v T R ()()⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−−+⎟⎟⎠⎞⎜⎜⎝⎛−−=1212212211211ln 21v v a b v b v b b v b v T R g 6-4 Berthelot 状态方程可以表示为:2mm TV ab V RT p −−=,试利用临界点的特性即0=⎟⎟⎠⎞⎜⎜⎝⎛∂∂cr T m V p 、022=⎟⎟⎠⎞⎜⎜⎝⎛∂∂crT m V p 推出:cr cr p T R a 326427=,cr cr p RT b 83= 解:()0232=+−−=⎟⎟⎠⎞⎜⎜⎝⎛∂∂m cr m cr T m V T a b V RT V p cr()322m cr m cr V T ab V RT =−⇒ (1) ()0624322=−−=⎟⎟⎞⎜⎜⎛∂∂cr V T a b V RT V p ()433cr V T a b V RT =−⇒ (2)()22T R b v T p g v−−=⎟⎠⎞⎜⎝⎛∂∂()()v C T R b v p g 22+−=⇒ 由于以上两式是同一方程,必然有()()021==v C T C ,即()TR b v p g 2−=6-6 在一个大气压下,水的密度在约4℃时达到最大值,为此,在该压力下,我们可以方便地得到哪个温度点的()T p s ∂∂/的值?是3℃,4℃还是5℃?解:由麦克斯韦关系式p TT v p s ⎟⎠⎞⎜⎝⎛∂∂−=⎟⎟⎠⎞⎜⎜⎝⎛∂∂,可知在一个大气压的定压条件下,4℃时有0=⎟⎠⎞⎜⎝⎛∂∂T v 。
工程热力学(第五版)课后习题答案(全章节)
工程热力学(第五版)习题答案工程热力学(第五版)廉乐明 谭羽非等编 中国建筑工业出版社第二章 气体的热力性质2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状态下2N 的比容和密度;(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv 。
解:(1)2N 的气体常数2883140==M R R =296.9)/(K kg J •(2)标准状态下2N 的比容和密度1013252739.296⨯==p RT v =0.8kg m /3v 1=ρ=1.253/m kg(3)MPa p 1.0=,500=t ℃时的摩尔容积MvMv =pT R 0=64.27kmol m/32-3.把CO2压送到容积3m3的储气罐里,起始表压力301=g p kPa ,终了表压力3.02=g p Mpa ,温度由t1=45℃增加到t2=70℃。
试求被压入的CO2的质量。
当地大气压B =101.325 kPa 。
解:热力系:储气罐。
应用理想气体状态方程。
压送前储气罐中CO2的质量1111RT v p m =压送后储气罐中CO2的质量2222RT v p m =根据题意容积体积不变;R =188.9Bp p g +=11 (1) Bp p g +=22(2) 27311+=t T (3) 27322+=t T(4)压入的CO2的质量)1122(21T p T p R v m m m -=-=(5)将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg2-5当外界为标准状态时,一鼓风机每小时可送300 m3的空气,如外界的温度增高到27℃,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300 m3,问鼓风机送风量的质量改变多少? 解:同上题1000)273325.1013003.99(287300)1122(21⨯-=-=-=T p T p R v m m m =41.97kg2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1MPa 的空气3 m3,充入容积8.5 m3的储气罐内。
工程热力学(山东联盟)智慧树知到答案章节测试2023年山东华宇工学院
第一章测试1.下列各量可作为工质状态参数的是:A:表压力B:绝对压力C:真空度答案:B2.下列说法中正确的是:A:有摩擦的热力过程不可能是准平衡过程B:准平衡过程一定是可逆过程C:可逆过程一定是准平衡过程答案:C3.下列过程中属可逆过程的是:A:有摩擦的热力过程B:等温传热过程C:自由膨胀过程答案:B4.水的三相点温度比冰点温度应:A:略低些B:略高些C:相等答案:B5.一台功率为600MW的汽轮发电机组连续工作一天的发电量为:A:1.44x107kJB:1.44x107kWhC:5.184x109kJ答案:B第二章测试1.关于理想气体,正确说法是()A:在常温常压下,许多实际气体可当做理想气体B:只有当温度很低时,实际气体才可当做理想气体C:只有压强很大时,实际气体才可当做理想气体D:所有的实际气体在任何情况下,都可以当做理想气体答案:A2.在一定的温度下,理想气体混合物总压P=ΣPB,体积V=ΣVB,n=ΣnB,下列各式中,只有式()是正确的。
A:PBV=nBRTB:PBVB=nBRTC:PBVB=nRTD:PVB=nRT答案:A3.在温度恒定为100℃,体积为2dm3的容器中,含有0.04mol的水蒸气。
若再向上述容器中加入0.02mol的H2O(l),平衡后容器中的H2O必然为()。
A:无法确定其相态B:气态C:液态D:气、液两相平衡答案:B4.Cl2的临界温度为144℃,临界压力为7.7MPa。
在308 K下,某装有Cl2的钢瓶中Cl2的压力为6200kPa,此钢瓶中的Cl2必为()。
A:气、液两相平衡B:液态C:气态D:气、液不分的状态答案:A5.在一定温度下,不论何种气体,当其对比压力Pr=P/Pc趋近于零时,其压缩因子()。
A:<1B:>1C:=0D:=1答案:D第三章测试1.开口系统中,推动功究竟属于下面哪一种形式的能量:A:后面的流体对进、出系统的流体为克服界面阻碍而传递的能量。
工程热力学 课后习题答案 可打印 第三版 第六章
a p + 2 (Vm − b) = RT Vm
得
(16.21×106 +
0.1361 )(Vm − 3.85 ×10−5 ) = 8.3145 ×189 2 Vm
展开可解得
Vm = 0.081× 10−3 m 3 /mol
m=
V 0.425m3 M= × 28.01×10−3 kg/mol = 147.0kg 3 Vm 0.081m / mol
b=
0.08664 RTc 0.08664 × 8.3145J/(mol ⋅ K) × 126.2K = = 0.0268 × 10−3 m3 /mol 6 pc 3.39 ×10 Pa
将 a,b 值代入 R-K 方程:
p=
RT a 8.3145 × 189 0.13864 − 0.5 = − −3 0.5 Vm − b T Vm (Vm + b) Vm − 0.0268 × 10 189 Vm (Vm + 0.0268 × 10−3 )
(2)利用通用压缩因子图 查附表,水的临界参数为 pc = 22.09MPa、Tc = 647.3K
pr =
p 5MPa = = 0.226 pc 22.09MPa
Tr =
T 723.15K = = 1.11 Tc 647.3K
查通用压缩因子图 Z=0.95
v′ =
ZRgT p
=
0.95 × 8.3145kJ /(mol ⋅ K) × 723.15K = 0.063340m3 /kg 18.02 × 10−3 kg/mol × 5 ×106 Pa
将 a,b 值代入 R-K 方程:
p1 =
RT1 a − 0.5 Vm − b T1 Vm (Vm + b) = 8.3145J/(kg ⋅ K) × 298K 3.1985Pam 6 K1/2 /mol2 − −3 3 3 0.5 (0.963m − 0.0296m /mol) × 10 (298K) 0.963m3 (0.963m3 + 0.0296m3 /mol) × 10 −6
工程热力学第五章 习题解答
第五章 习题解答5-1 ⑴ 12,187331364.14%873t c T T T η--===⑵ 0,10.641410064.14 kW t c W Q η==⨯= ⑶ ()()2,1110.641410035.86 kW t c Q Q η=-=-⨯= 5-2 12,1100040060%1000t c T T T η--=== 0,10.61000600 kJ < 700 kJ t c W Q η==⨯= 该循环发动机不能实现5-3 ()()121 1.011000300707 kJ/kg p q c T T =-=⨯-=133323331221.41.41lnln ln 300 0.287300ln 362.8 kJ/kg1000p pT q RT RT RT p p T κκ--⎛⎫=== ⎪⎝⎭⎛⎫=⨯⨯=- ⎪⎝⎭12707362.8344.2 kJ/kg w q q =+=-=1344.248.68%707w q η=== 5-4 12,1100030070%1000t c T T T η--=== ,10.7707495 kJ/kg t c w q η==⨯= 5-5 ⑴221126310000089765 kJ/h 293T Q Q T ==⨯= ⑵12,122939.77293263c T T T ε===-- 12,1000002.84 kW 9.773600cQ P ε===⨯⑶100000100000 kJ/h 27.78 kW 3600P ===5-6 ⑴12,1229314.65293273c T T T ε===-- 12,2010000.455 kW 9.773600cQ P ε⨯===⨯由()1221212003600T T T PT T -⨯=-220t =℃ 得1313 K 40T ==℃5-7 2,10.351000015000 kJ/h t c Q Q ηε==⨯⨯= 5-8 ()()2111000010.37000 kJ/h t Q Q η=-=⨯-=215000700022000 kJ/h Q Q Q =+=+=总 5-9 可逆绝热压缩终态温度2T1 1.411.422110.3300410.60.1p T T p κκ--⎛⎫⎛⎫==⨯= ⎪⎪⎝⎭⎝⎭K可逆过程0Q U W =∆+=,不可逆过程0Q U W ''=∆+= 且 1.1W W '=,则 1.1U U '∆=∆()()21211.1v v mc T T mc T T '-=-()()21211.1300 1.1410.6300421.7T T T T '=+-=+⨯-=K 2211421.70.3ln ln 0.1 1.01ln 0.287ln 3000.1p T p S m c R T p '⎛⎫⎛⎫∆=-=⨯- ⎪ ⎪⎝⎭⎝⎭=0.00286 kJ/kg.K5-10 理论制冷系数:21,122587.37293258c T T T ε===-- 制冷机理论功率:21,1257004.74 kW 7.373600cQ P ε===⨯散热量:12125700 4.743600142756 kJ/h Q Q P =+=+⨯=冷却水量:21H O 1427564867.2 kg/h 4.197Q mc t ===∆⨯5-11 ⑴ 1111003070 kJ W Q U =-∆=-=热源在完成不可逆循环后熵增0.026kJ/kg.K 则第二个过程热源吸热:120.0261006000.026115.6 kJ Q Q T T ⎛⎫=+=+⨯= ⎪⎝⎭工质向热源放热:()22115.63085.6 kJ W Q U =-∆=---=- 5-12 可逆定温压缩过程熵变:211ln0.287ln 0.66 kJ/kg K 0.1p s R p ∆=-=-⨯=-⋅ 可逆过程耗功:1120.1ln0.287400ln 264 kJ/kg 1p w RT p ==⨯⨯=- 实际耗功:()1.25 1.25264330 kJ/kg w w '==⨯-=- 因不可逆性引起的耗散损失:()33026466 kJ/kg q w w ''=-=---=- 总熵变:0660.660.44 kJ/kg K 300q s s T ''∆=∆+=-+=-⋅ 5-13 ()121v q c T T =-,()231p q c T T =-()()31313121121212111111111p v c T T T T v v q wq q c T T T T p p ηκκ---==-=-=-=---- 5-14 1112lnp q RT p =,()421223ln v pq c T T RT p =-+ ()412412223321111122lnln 1111lnlnv p T T pc T T RT T p p q p p q RT T p p κη--++-=-=-=-5-15 ⑴11940 K T '=,2660 K T '=216601166%1940T T η'=-=-=' ⑵01100066%660 kJ W Q η==⨯=20,max11600110001700 kJ 2000T W Q T ⎛⎫⎛⎫=-=⨯-= ⎪ ⎪⎝⎭⎝⎭0,max 0700660 kJ 40 kJ W W W δ=-=-=5-16 11114000.10.445 kg 0.287313p V m RT ⨯===⨯ 22222000.10.238 kg 0.287293p V m RT ⨯===⨯ ()()11220v v U m c T T m c T T ∆=-+-=1122120.4453130.238293306 K 0.4450.238m T m T T m m +⨯+⨯===++()()12120.4450.2380.2873060.3 MPa 0.10.1m m RT p V V ++⨯⨯===++ 1122121122 ln ln ln ln 3060.3 0.4451.01ln 0.287ln 3130.43060.3 0.2381.01ln 0.287ln 0.0093 kJ/K2930.2p p S m s m s T p T p m c R m c R T p T p ∆=∆+∆⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭⎛⎫=⋅-⋅ ⎪⎝⎭⎛⎫+-⋅= ⎪⎝⎭5-17 ⑴2211400 2.51000 K pT T p ==⨯=()()1210.7231000400433.8 kJ/kg v q c T T =-=⨯-=12331ln 0.287400ln 264.3 kJ/kg 10v q RT v ==⨯=-⑵12433.8264.3169.5 kJ/kg w q q =-=-=21264.31139.0%433.8q q η=-=-=5-18 ⑴()12201s R T T W m w m κκκ'-===- ()()21201201.41298258.2 K 0.5 1.40.287T T m R κκ'--=-=-=⨯⨯⑵1 1.412 1.42112980.4229.4 K p T T p κκ--⎛⎫==⨯= ⎪⎝⎭()()120.287298229.40.5 1.41 1.4134.5 kWs R T T W m w m κκκ-⨯-===⨯⨯--= 5-19 1 1.311.322111303515.5 K 0.1n np T T p --⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭()()21 1.3 1.40.287515.53031 1.31 1.4150.8 kJ/kgv n q c T T n κ--=-=⨯⨯----=- 环境熵变:1050.80.175 kJ/kg K 290q s T ∆===⋅空气熵变:22211ln ln p T ps c R T p ∆=-515.511.005ln 0.287ln 0.127 kJ/kg K 3030.1=⨯-=-⋅孤立系统熵变:120.1750.1270.048 kJ/kg K iso s s s ∆=∆+∆=-=⋅ 5-20 1 1.411.422110.2800505.1 K 1p T T p κκ--⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭()()120.2968800505.1218.8 kJ/kg 1 1.41R T T w κ-⨯-===--()()()12120210212112021 505.1800 218.81000.2968167.6 kJ/kg2001000u u v ex ex u u p v v T s s RT RT c T T p p p -=---+-⎛⎫=--- ⎪⎝⎭⎛⎫=-⨯⨯-= ⎪⎝⎭排开环境所作的功为作功能力损失(51.2kJ/kg )5-21 1 1.211.222110.2800611.8 K 1n np T T p --⎛⎫⎛⎫==⨯= ⎪⎪⎝⎭⎝⎭()()120.2968800611.8279.3 kJ/kg 1 1.21R T T w n -⨯-===--31110.29688000.237 m /kg 1000RT v p ⨯=== 32220.2968611.80.908 m /kg 200RT v p ⨯=== 22221111ln ln ln ln 11.40.2968611.80.2ln 0.2968ln 0.20 kJ/kg K1.418000.1p T p T p R s c R R T p T p κκ∆=-=--⨯=-=⋅-()()()()()()1212021021120210 10.2968 800611.81000.9080.2373000.21.41 132.5 kJ/kg u u ex ex u u p v v T s s RT T p v v T s κ-=---+-=---+∆-=⨯--⨯-+⨯-= 5-22 1112001013.94 kg 0.287500pV m RT ⨯===⨯ ()()2113.94 1.0056005001400.7 kJ p Q mc T T =-=⨯⨯-=21600ln1.005ln 0.1832 kJ/kg K 500p T s c T ∆==⨯=⋅ 01400.730013.940.1832634.6 kJ q Ex Q T m s =-⋅∆=-⨯⨯= 030013.940.1832766.1 kJ q An T m s =⋅∆=⨯⨯=5-23 ()()12 1.40.287500320180.74 kJ/kg 1 1.41s R T T w κκ-⨯⨯-===--22113200.1lnln 1.005ln 0.287ln 5000.5 0.0134 kJ/kg Kp T p s c R T p ∆=-=⨯-⨯=⋅()()()1212021120 1.0055003203000.0134184.92 kJ/kgh h p ex ex h h T s s c T T T s -=-+-=-+∆=⨯-+⨯=12180.7497.7%184.92s ex h h w ex ex η===-5-24 ⑴21300201167.3%100020T T η'+=-=-='- ⑵013001170%1000t T T η=-=-= ()()110000.70.67327 kJ t L Q ηη=-=⨯-= ⑶()()211100010.673327 kJ Q Q η=-=⨯-=12110211111111 10003270.09 kJ/K9801000300320S Q Q T T T T ⎛⎫⎛⎫∆=-+- ⎪⎪''⎝⎭⎝⎭⎛⎫⎛⎫=-+-= ⎪ ⎪⎝⎭⎝⎭0iso 3000.0927 kJ L T S =∆=⨯= 符合!。
工程热力学第五章 习题解答
第五章 习题解答5-1 ⑴ 12,187331364.14%873t c T T T η--===⑵ 0,10.641410064.14 kW t c W Q η==⨯= ⑶ ()()2,1110.641410035.86 kW t c Q Q η=-=-⨯= 5-2 12,1100040060%1000t c T T T η--=== 0,10.61000600 kJ < 700 kJ t c W Q η==⨯= 该循环发动机不能实现5-3 ()()121 1.011000300707 kJ/kg p q c T T =-=⨯-=133323331221.41.41lnln ln 300 0.287300ln 362.8 kJ/kg1000p pT q RT RT RT p p T κκ--⎛⎫=== ⎪⎝⎭⎛⎫=⨯⨯=- ⎪⎝⎭12707362.8344.2 kJ/kg w q q =+=-=1344.248.68%707w q η=== 5-4 12,1100030070%1000t c T T T η--=== ,10.7707495 kJ/kg t c w q η==⨯= 5-5 ⑴221126310000089765 kJ/h 293T Q Q T ==⨯= ⑵12,122939.77293263c T T T ε===-- 12,1000002.84 kW 9.773600cQ P ε===⨯⑶100000100000 kJ/h 27.78 kW 3600P ===5-6 ⑴12,1229314.65293273c T T T ε===-- 12,2010000.455 kW 9.773600cQ P ε⨯===⨯由()1221212003600T T T PT T -⨯=-220t =℃ 得1313 K 40T ==℃5-7 2,10.351000015000 kJ/h t c Q Q ηε==⨯⨯= 5-8 ()()2111000010.37000 kJ/h t Q Q η=-=⨯-=215000700022000 kJ/h Q Q Q =+=+=总 5-9 可逆绝热压缩终态温度2T1 1.411.422110.3300410.60.1p T T p κκ--⎛⎫⎛⎫==⨯= ⎪⎪⎝⎭⎝⎭K可逆过程0Q U W =∆+=,不可逆过程0Q U W ''=∆+= 且 1.1W W '=,则 1.1U U '∆=∆()()21211.1v v mc T T mc T T '-=-()()21211.1300 1.1410.6300421.7T T T T '=+-=+⨯-=K 2211421.70.3ln ln 0.1 1.01ln 0.287ln 3000.1p T p S m c R T p '⎛⎫⎛⎫∆=-=⨯- ⎪ ⎪⎝⎭⎝⎭=0.00286 kJ/kg.K5-10 理论制冷系数:21,122587.37293258c T T T ε===-- 制冷机理论功率:21,1257004.74 kW 7.373600cQ P ε===⨯散热量:12125700 4.743600142756 kJ/h Q Q P =+=+⨯=冷却水量:21H O 1427564867.2 kg/h 4.197Q mc t ===∆⨯5-11 ⑴ 1111003070 kJ W Q U =-∆=-=热源在完成不可逆循环后熵增0.026kJ/kg.K 则第二个过程热源吸热:120.0261006000.026115.6 kJ Q Q T T ⎛⎫=+=+⨯= ⎪⎝⎭工质向热源放热:()22115.63085.6 kJ W Q U =-∆=---=- 5-12 可逆定温压缩过程熵变:211ln0.287ln 0.66 kJ/kg K 0.1p s R p ∆=-=-⨯=-⋅ 可逆过程耗功:1120.1ln0.287400ln 264 kJ/kg 1p w RT p ==⨯⨯=- 实际耗功:()1.25 1.25264330 kJ/kg w w '==⨯-=- 因不可逆性引起的耗散损失:()33026466 kJ/kg q w w ''=-=---=- 总熵变:0660.660.44 kJ/kg K 300q s s T ''∆=∆+=-+=-⋅ 5-13 ()121v q c T T =-,()231p q c T T =-()()31313121121212111111111p v c T T T T v v q wq q c T T T T p p ηκκ---==-=-=-=---- 5-14 1112lnp q RT p =,()421223ln v pq c T T RT p =-+ ()412412223321111122lnln 1111lnlnv p T T pc T T RT T p p q p p q RT T p p κη--++-=-=-=-5-15 ⑴11940 K T '=,2660 K T '=216601166%1940T T η'=-=-=' ⑵01100066%660 kJ W Q η==⨯=20,max11600110001700 kJ 2000T W Q T ⎛⎫⎛⎫=-=⨯-= ⎪ ⎪⎝⎭⎝⎭0,max 0700660 kJ 40 kJ W W W δ=-=-=5-16 11114000.10.445 kg 0.287313p V m RT ⨯===⨯ 22222000.10.238 kg 0.287293p V m RT ⨯===⨯ ()()11220v v U m c T T m c T T ∆=-+-=1122120.4453130.238293306 K 0.4450.238m T m T T m m +⨯+⨯===++()()12120.4450.2380.2873060.3 MPa 0.10.1m m RT p V V ++⨯⨯===++ 1122121122 ln ln ln ln 3060.3 0.4451.01ln 0.287ln 3130.43060.3 0.2381.01ln 0.287ln 0.0093 kJ/K2930.2p p S m s m s T p T p m c R m c R T p T p ∆=∆+∆⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭⎛⎫=⋅-⋅ ⎪⎝⎭⎛⎫+-⋅= ⎪⎝⎭5-17 ⑴2211400 2.51000 K pT T p ==⨯=()()1210.7231000400433.8 kJ/kg v q c T T =-=⨯-=12331ln 0.287400ln 264.3 kJ/kg 10v q RT v ==⨯=-⑵12433.8264.3169.5 kJ/kg w q q =-=-=21264.31139.0%433.8q q η=-=-=5-18 ⑴()12201s R T T W m w m κκκ'-===- ()()21201201.41298258.2 K 0.5 1.40.287T T m R κκ'--=-=-=⨯⨯⑵1 1.412 1.42112980.4229.4 K p T T p κκ--⎛⎫==⨯= ⎪⎝⎭()()120.287298229.40.5 1.41 1.4134.5 kWs R T T W m w m κκκ-⨯-===⨯⨯--= 5-19 1 1.311.322111303515.5 K 0.1n np T T p --⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭()()21 1.3 1.40.287515.53031 1.31 1.4150.8 kJ/kgv n q c T T n κ--=-=⨯⨯----=- 环境熵变:1050.80.175 kJ/kg K 290q s T ∆===⋅空气熵变:22211ln ln p T ps c R T p ∆=-515.511.005ln 0.287ln 0.127 kJ/kg K 3030.1=⨯-=-⋅孤立系统熵变:120.1750.1270.048 kJ/kg K iso s s s ∆=∆+∆=-=⋅ 5-20 1 1.411.422110.2800505.1 K 1p T T p κκ--⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭()()120.2968800505.1218.8 kJ/kg 1 1.41R T T w κ-⨯-===--()()()12120210212112021 505.1800 218.81000.2968167.6 kJ/kg2001000u u v ex ex u u p v v T s s RT RT c T T p p p -=---+-⎛⎫=--- ⎪⎝⎭⎛⎫=-⨯⨯-= ⎪⎝⎭排开环境所作的功为作功能力损失(51.2kJ/kg )5-21 1 1.211.222110.2800611.8 K 1n np T T p --⎛⎫⎛⎫==⨯= ⎪⎪⎝⎭⎝⎭()()120.2968800611.8279.3 kJ/kg 1 1.21R T T w n -⨯-===--31110.29688000.237 m /kg 1000RT v p ⨯=== 32220.2968611.80.908 m /kg 200RT v p ⨯=== 22221111ln ln ln ln 11.40.2968611.80.2ln 0.2968ln 0.20 kJ/kg K1.418000.1p T p T p R s c R R T p T p κκ∆=-=--⨯=-=⋅-()()()()()()1212021021120210 10.2968 800611.81000.9080.2373000.21.41 132.5 kJ/kg u u ex ex u u p v v T s s RT T p v v T s κ-=---+-=---+∆-=⨯--⨯-+⨯-= 5-22 1112001013.94 kg 0.287500pV m RT ⨯===⨯ ()()2113.94 1.0056005001400.7 kJ p Q mc T T =-=⨯⨯-=21600ln1.005ln 0.1832 kJ/kg K 500p T s c T ∆==⨯=⋅ 01400.730013.940.1832634.6 kJ q Ex Q T m s =-⋅∆=-⨯⨯= 030013.940.1832766.1 kJ q An T m s =⋅∆=⨯⨯=5-23 ()()12 1.40.287500320180.74 kJ/kg 1 1.41s R T T w κκ-⨯⨯-===--22113200.1lnln 1.005ln 0.287ln 5000.5 0.0134 kJ/kg Kp T p s c R T p ∆=-=⨯-⨯=⋅()()()1212021120 1.0055003203000.0134184.92 kJ/kgh h p ex ex h h T s s c T T T s -=-+-=-+∆=⨯-+⨯=12180.7497.7%184.92s ex h h w ex ex η===-5-24 ⑴21300201167.3%100020T T η'+=-=-='- ⑵013001170%1000t T T η=-=-= ()()110000.70.67327 kJ t L Q ηη=-=⨯-= ⑶()()211100010.673327 kJ Q Q η=-=⨯-=12110211111111 10003270.09 kJ/K9801000300320S Q Q T T T T ⎛⎫⎛⎫∆=-+- ⎪⎪''⎝⎭⎝⎭⎛⎫⎛⎫=-+-= ⎪ ⎪⎝⎭⎝⎭0iso 3000.0927 kJ L T S =∆=⨯= 符合!。
工程热力学第三版第五章曾丹苓答案
工程热力学第三版第五章曾丹苓答案1. 引言《工程热力学第三版》是一本经典的热力学教材,对于工程热力学的基本概念和原理进行了深入浅出的讲解。
本文将针对该教材第五章的习题进行答案解析,解答由曾丹苓老师提供的习题。
2. 习题答案2.1 第1题题目:真空做功的方式有哪些?答案:真空做功的方式有以下几种: - 推动活塞:可将真空作用力转化为机械功; - 翻转电荷:通过翻转电荷的方式改变真空中的电场能; - 控制光束:利用光束对物体施加的压力,在真空中可将光束作用力转化为功; - 利用核力:通过改变核力的方式实现真空做功。
2.2 第2题题目:真空能否传递热量?答案:真空是不具备传递热量的能力的。
传热需要在物质之间进行,真空并不是一种物质,因此不能传递热量。
2.3 第3题题目:真空多壁外壳热量计的特点是什么?答案:真空多壁外壳热量计是一种常用于测量热传导系数和热辐射量的仪器。
其特点包括: - 外壳是由多个壁组成的,壁与壁之间是真空的,这样可以减小热传导的影响; - 外壳表面可通过传热介质(如水)进行冷却,以保持表面温度不变;- 测量时,根据外壳表面上的冷却速率和表面温度,可以计算出所需的热辐射通量。
2.4 第4题题目:真空吸附的传热方式有哪些?答案:真空吸附可以通过以下几种方式进行传热: - 热传导:当真空吸附材料与冷凝物接触时,如果温度差别较大,则会通过热传导将热量传递给冷凝物; - 辐射传热:由于真空吸附材料温度较低,其表面会发出辐射,而冷凝物会吸收这部分辐射能量,实现传热; - 对流传热:在真空吸附材料表面附近,可能会形成对流层,其中的气体传递热量给冷凝物。
2.5 第5题题目:真空制冷的原理是什么?答案:真空制冷是一种利用真空中反磁性气体的磁性逐渐增大的性质来实现制冷的方法。
其原理如下: - 在反磁性气体处于真空状态下时,通过对其施加磁场,反磁性气体的磁矩朝磁场方向排列。
- 将反磁性气体与一个热源接触,通过热力学第二定律,工作物质吸收热量,热源受热。
工程热力学习题答案2015-2016
习题图 3-9
(4) 电 热 丝 加 入 系 统 的 热量;
(5) 左边空气经历的多变过程的指数;
(6) 在同一 p-v 图和 T-s 图表示左右气体经历的过程。
注意:研究对象不是 1kg,故功、热量应求出总量。
解答:
(1)363.3K (2)-54.78J
(3) 828.44K (4) 499.78J (5) -2.106
6、一台可逆卡诺热机,高温热源温度为 600℃,试求下列情况下热机的效率: (1) 我国大部分地区,热机以温度为 20℃的空气为低温热源工作; (2) 中东地区,热机工作以 40℃的的空气为低温热源工作; (3) 北欧地区,热机以 4℃的深层海水为低温热源;
解答:
(1) 0.6644, (2)0.6415, (3)0.6827
循环参数初压mpa14550终压kpa二抽压力mpa016各点参数焓kjkgkjkgk温度3460996564855000142001006564832880005076897902913777047633288000529123465648253582450036564811330016908622447021238475341454911330016功量分析朗肯循环一抽012004锅炉kjkg分段法255237kjkg332322分流法255237255237汽机kjkg分段法124406kjkg145999分流法124406少功法124406凝汽器kjkg130831186324水泵kjkg000kjkg000kjkg124406kjkg145999kjkg124406kjkg145999效率dkgkwh289dkgkwh247第九章混合气体与湿空气3测得湿空气的压力为01mpa温度为30露点温度为20试计算空气中水蒸汽的分压力相对湿度含湿量和焓
工程热力学-课后习题答案
首先求终态时需要充入的空气质量
kg
压缩机每分钟充入空气量
kg
所需时间
19.83min
第二种解法
将空气充入储气罐中,实际上就是等温情况下把初压为0.1MPa一定量的空气压缩为0.7MPa的空气;或者说0.7MPa、8.5 m3的空气在0.1MPa下占体积为多少的问题。
根据等温状态方程
0.7MPa、8.5 m3的空气在0.1MPa下占体积为
容积体积不变;R=188.9
(1)
(2)
(3)
(4)
压入的CO2的质量
(5)
将(1)、(2)、(3)、(4)代入(5)式得
m=12.02kg
2-5当外界为标准状态时,一鼓风机每小时可送300 m3的空气,如外界的温度增高到27℃,大气压降低到99.3kPa,而鼓风机每小时的送风量仍为300 m3,问鼓风机送风量的质量改变多少?
解:热力系:左边的空气
系统:整个容器为闭口系统
过程特征:绝热,自由膨胀
根据闭口系统能量方程
绝热
自由膨胀W=0
因此ΔU=0
对空气可以看作理想气体,其内能是温度的单值函数,得
根据理想气体状态方程
=100kPa
3-9一个储气罐从压缩空气总管充气,总管内压缩空气参数恒定,为500 kPa,25℃。充气开始时,罐内空气参数为100 kPa,25℃。求充气终了时罐内空气的温度。设充气过程是在绝热条件下进行的。
解:(1)热力系:礼堂中的空气。
闭口系统
根据闭口系统能量方程
因为没有作功故W=0;热量来源于人体散热;内能的增加等于人体散热。
=2.67×105kJ
(1)热力系:礼堂中的空气和人。
闭口系统
工程热力学第5章习题答案
第5章 热力学第二定律5-1 当某一夏日室温为30℃时,冰箱冷藏室要维持在-20℃。
冷藏室和周围环境有温差,因此有热量导入,为了使冷藏室内温度维持在-20℃,需要以1350J/s 的速度从中取走热量。
冰箱最大的制冷系数是多少?供给冰箱的最小功率是多少? 解: 制冷系数:22253 5.0650Q T W T T ε====−5-4 有一卡诺机工作于500℃和30℃的两个热源之间,该卡诺热机每分钟从高温热源V吸收1000kJ ,求:(1)卡诺机的热效率;(2)卡诺机的功率(kW )。
解:1211500304700.608273500733T T W Q T η−−=====+110000.60810.1360W Q η=⋅=×= kw5-5 利用一逆向卡诺机作热泵来给房间供暖,室外温度(即低温热源)为-5℃,为使室内(即高温热源)经常保持20℃,每小时需供给30000kJ 热量,试求:(1)逆向卡110000100006894.413105.59C W Q =−=−=kJ热泵侧:'C10C C Q W T T T =− '103333105.5922981.3745C C C T Q W T T =⋅=×=− 暖气得到的热量:'1C16894.4122981.3729875.78C Q Q Q =+=+=总kJ5-7 有人声称设计出了一热机,工作于T 1=400K 和T 2=250K 之间,当工质从高温热源吸收了104750kJ 热量,对外作功20kW.h ,这种热机可能吗?解: max 12114002501500.375400400C W T T Q T η−−===== max 11047500.37510.913600C W Q η×=⋅==kW h ⋅<20kW h ⋅∴ 这种热机不可能5-8 有一台换热器,热水由200℃降温到120℃,流量15kg/s ;冷水进口温度35℃,11p 烟气熵变为:22111213731.46 6.41800T T p p n n T T Q T dTS c m c mL L T T T∆====××=−∫∫kJ /K 热机熵变为02.环境熵变为:图5-13 习题5-92210Q S S T ∆==−∆ ∴201()293 6.411877.98Q T S =⋅−∆=×=kJ 3.热机输出的最大功为:0123586.81877.981708.8W Q Q =−=−=kJ5-10 将100kg 、15℃的水与200kg 、60℃的水在绝热容器中混合,假定容器内壁与水之间也是绝热的,求混合后水的温度以及系统的熵变。
工程热力学第五章习题答案
第五章 热力学第二定律5-1 利用逆向卡诺机作为热泵向房间供热,设室外温度为5C −D ,室内温度为保持20C D 。
要求每小时向室内供热42.510kJ ×,试问:(1)每小时从室外吸多少热量?(2)此循环的供暖系数多大?(3)热泵由电机驱动,设电机效率为95%,求电机功率多大?(4)如果直接用电炉取暖,问每小时耗电几度(kW h ⋅)?解:1(20273)K 293K T =+=、2(5273)K 268K T =−+=、142.510kJ/h Q q =×(1)逆向卡诺循环1212Q Q q q T T =214421268K 2.510kJ/h 2.28710kJ/h293KQ Q T q q T ==××=×(2)循环的供暖系数112293K 11.72293K 268KT T T ε′===−−(3)每小时耗电能1244w (2.5 2.287)10kJ/h 0.21310kJ/hQ Q q q q =−=−×=×电机效率为95%,因而电机功率为40.21310kJ/h 0.623kW3600s/h 0.95P ×==×(4)若直接用电炉取暖,则42.510kJ/h ×的热能全部由电能供给442.5102.510kJ/h kJ/s 6.94kW3600P ×=×==即每小时耗电6.94度。
5-2 一种固体蓄热器利用太阳能加热岩石块蓄热,岩石块的温度可达400K 。
现有体积为32m 的岩石床,其中的岩石密度为32750kg/m ρ=,比热容0.89kJ/(kg K)c =⋅,求岩石块降温到环境温度290K 时其释放的热量转换成功的最大值。
解:岩石块从290K 被加热到400K 蓄积的热量212133()()2750kg/m 2m 0.89kJ/(kg K)(400290)K 538450kJQ mc T T Vc T T ρ=−=−=××⋅×−=岩石块的平均温度21m 21()400K 290K342.1K 400Kln ln290Kmc T T Q T T Smc T −−====Δ在T m 和T 0之间运行的热机最高热效率0t,max m290K 110.152342.1KT T η=−=−=所以,可以得到的最大功max t ,max 10.152538450kJ 81946.0kJW Q η==×=5-3 设有一由两个定温过程和两个定压过程组成的热力循环,如图5-1所示。
工程热力学-沈维道课后思考题答案
第一章基本概念与定义1.答:不一定。
稳定流动开口系统内质量也可以保持恒定2.答:这种说法是不对的。
工质在越过边界时,其热力学能也越过了边界。
但热力学能不是热量,只要系统和外界没有热量地交换就是绝热系。
3.答:只有在没有外界影响的条件下,工质的状态不随时间变化,这种状态称之为平衡状态。
稳定状态只要其工质的状态不随时间变化,就称之为稳定状态,不考虑是否在外界的影响下,这是他们的本质区别。
平衡状态并非稳定状态之必要条件。
物系内部各处的性质均匀一致的状态为均匀状态。
平衡状态不一定为均匀状态,均匀并非系统处于平衡状态之必要条件。
4.答:压力表的读数可能会改变,根据压力仪表所处的环境压力的改变而改变。
当地大气压不一定是环境大气压。
环境大气压是指压力仪表所处的环境的压力。
5.答:温度计随物体的冷热程度不同有显着的变化。
6.答:任何一种经验温标不能作为度量温度的标准。
由于经验温标依赖于测温物质的性质,当选用不同测温物质的温度计、采用不同的物理量作为温度的标志来测量温度时,除选定为基准点的温度,其他温度的测定值可能有微小的差异。
7.答:系统内部各部分之间的传热和位移或系统与外界之间的热量的交换与功的交换都是促使系统状态变化的原因。
8.答:(1)第一种情况如图1-1(a),不作功(2)第二种情况如图1-1(b),作功(3)第一种情况为不可逆过程不可以在p-v图上表示出来,第二种情况为可逆过程可以在p-v图上表示出来。
9.答:经历一个不可逆过程后系统可以恢复为原来状态。
系统和外界整个系统不能恢复原来状态。
?10.答:系统经历一可逆正向循环及其逆向可逆循环后,系统恢复到原来状态,外界没有变化;若存在不可逆因素,系统恢复到原状态,外界产生变化。
?11.答:不一定。
主要看输出功的主要作用是什么,排斥大气功是否有用。
第二章热力学第一定律1.答:将隔板抽去,根据热力学第一定律wuq+∆=其中,0==wq所以容器中空气的热力学能不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
5-3 1) 不采用回热时
q1 q12 q23 cp (T2 T2 ) 400 103 1102.8kJ
q2
q34
q41
cp (T2
T2 )
300 400 1000
103
822.8kJ
w 280kJ
= w 25.39%
q1
2) 采用极限回热时
=c
1 T1 T2
T0
(
Q1 950
Q1 ) 1000
15.7895kJ
I2
T0S2
T0
(
Q2 300
Q2 ) 350
52.63kJ
I=I1 I2 68.42kJ
7
5-20
绝热:Q 0 U不变 设混合后温度为t摄氏度
m1cv[(t 273) (20 273)] m2cv[(t 273) (80 273)] 0 t 60摄氏度
(Tm )2 T1T2
I
T0 S=T0 mc p In
(Tm )2 T1T2
9
6-1
2
w 1 pdVm
p
RT Vm
b
a Vm2
w
2
1 pdVm
2 1
RT ( Vm
b
a Vm2
)dVm
w RTIn(Vm b)
2 1
a Vm
2 1
RTIn(Vm2 b) a Vm1 b Vm2
Wmax Q1 Q2 mcp (T1 Tf ) mcp (Tf T2 )
mcp (T1 T2 2Tf )
2)直接传热:Q1 Q2 mcp (T1 Tm ) mcp (Tm T2 ) Tm (T1 T2 ) / 2
S
SA
SB
mc
p
In
Tm T1
mc
p
In
Tm T2
mc p In
S1-2
m1cvIn
T T1
m2cvIn
T T2
4.738kJ/K
I T0S1-2 1388.28kJ
8
5-23
1)A、B一起可以看作孤立系,并且可逆 Siso 0
SA
mc p In
Tf T1
SA
mc p In
Tf T2
Siso
SA
SB
mc
p
In
Tf T1
mc
p
In
Tf T2
0
(Tf )2 T1T2,即:Tf T1T2
n m V m M V MV p pV
M Vm
Vm ZRT ZRgT
m midea 412.4kg
11
Z
70%
2
5-6 1) = W 40% W 40kJ
Q1
'
QH W
QH
140kJ
2)c
1 T0 T1
1 290 1000
71%
Wnet 71% 100 71kJ
' TH 5.143
TH T0
QH Wnet ' 365.14kJ
T1 Q1 W
E
Q2 T0
TH QH
P QL
能实现,并且是不可逆循环
4
5-8
Ñ Q 0 Q1 Q2 Q3 0
T
T1 T2 T0
Q3 862.5kJ
Wnet Q1 Q2 Q3 1137.5kJ
因此能实现
2) Wnet,max 1137.5kJ
5
5-9
1) (a) 吸热:S f 0 S=S f Sg 0
可逆:Sg =0
6
5-1:9 热源之间存在温差传热,设想热源与工质之间 插入中间热源,使与热源接触的一侧紧接1000K,与 工质接触一侧温度接近950K;恒温冷源也插入中间 热源,相同处理。因此在两个中间热源之间的循环为 内可逆循环:
1)Th 950K Tl 350K
c
1 Tl Th
63.16%
2)I1
T0S1
2) (c) 放热:S f 0 不可逆:Sg 0 S=S f Sg:可正、可负、也可为0
3) (b) 放热:S f,Q 0 可逆:Sg =0
稳定流动:S 0
S=S f ,Q S f ,m Sg
S f ,m S2 S1 S f ,Q 0
进、出口截面熵变为负
4) (d) 稳定流动:S=0
T0
3)不违背。复合系统从整体上看,低温热源传递
了热量QL-Q2到TH,是以消耗了高温热源传递的
热量Q1为代价,整体上热量的品质降低
3
5-7
c
1 T2 T1
85%
1)
Wnet Q1
90% c
不可能发生
2)
Q1 Q2 Q1
85%
c
能实现,并且是可逆循环
3)
Wnet Q2+Wnet
75% c
5-1
2) ' T1 11.72 Q2
T1 T2
W
W 2.133103 kJ
1) Q1 Q2 W 2.2867 104 kJ
3)
m
W W总
W总
2.2453103 kJ
P= W总 623.7w t
4) P' Q2 6.944(kwgh) t
高温热源 放热Q2 耗功W
热机 机械能
a
Vm1
10
6-3 1) pV mRgT
pV
4106 3
midea
RgT
8.314 32 103
(273 113)
288.68kg
2) Tcr 154K, pcr 5.05MPa
TrΒιβλιοθήκη T Tcr1.03896, Pr
p pcr
0.7921
查表:Z 0.7
pVm
ZRT
Vm
ZRT p