化学动力学基础(二)课件
化学动力学 2
N 表示具有能量E ~ E E 范围内 NE 单位能量区间的分子数 N与分子 总数N的比值(分子分数)
E 分子平均能量 k
阴影面积代表活化分子百分比
Ek
Ec
E
气体分子的能量分布
其次, 仅具有足够能量尚不充分, 分子有构型, 所以碰撞方向还会有所不同, 如反应: NO2 + CO = NO + CO2 的碰撞方式有:
1. 活化络合物
当反应物分子接近到一定程度时, 分子的键
连关系将发生变化, 形成一中间过渡状态
H H3N: + H C H 反应物 Br H H3N C H 活化配合物(过渡态) H Br
+ H3N H H + Br
C H 生成物
反应速率决定于活化络合物的浓度, 活化络合 物分解成产物的几率和分解成产物的速率
8.4
温度对化学反应速率的影响 反应速率方程 kcA cB
8.4.1 Arrhenius方程
影响反应速率的因素有两个: k和c
k与温度有关,T增大,一般k也增大, 但k~T不是线性关系。
2N2O5 (CCl4 ) N2O4 (CCl4 ) O2 (g)不同温度下的 值 k
T/K 293.15 298.15 303.15 308.15 313.15 318.15
一组碰撞的反应物的分子的能量必须具备一个最低 的能量值, 这种能量分布符合从前所讲的分布原则. 用 Ea表示这种能量限制, 则具备 Ea和 Ea 以上的 分子的分数为:
有效碰撞频率 f e 总的碰撞频率
E RT
f 称为能量因子 ,反应速率r与f成正比,即 r∝f
f 表示一定温度下活化分子在分子总数中所占的百分数
物理化学12章_化学动力学基础(二)
Eb。Eb。是活化络合物与反应物最 低势能之差,E0是两者零点能
之间的差值。
这个势能垒的存在说明了实验活化能的实质。
上一内容 下一内容 回主目录
返回
2021/1/16
势能面剖面图
上一内容 下一内容 回主目录
返回
2021/1/16
三原子系统振动方式
式中r0是分子中双原子分子间的平衡核间 距,De是势能曲线的井深,a为与分子结构有 关的常数.
上一内容 下一内容 回主目录
返回
2021/1/16
双原子分子的莫尔斯势能曲线
AB双原子分子根据该公式 画出的势能曲线如图所示。
当r>r0时,有引力,即化学键力。 当r<r0时,有斥力。 0时的能级为振动基态能级,E0为零点能。
物理化学12章_化学动力学基础(二 )
上一内容 下一内容 回主目录
返回
物理化学电子教案—第十二章
上一内容 下一内容 回主目录
返回
2021/1/16
第十二章 化学动力学基础(二)
§12.1 碰撞理论 *§12.2 过渡态理论
§12.3 单分子反应理论 * §12.4 分子反应动态学简介
§12.5 在溶液中进行的反应 * §12.6 快速反应的几种测试手段
Ea≈ E
上一内容 下一内容 回主目录
返回
2021/1/16
概率因子(probability factor)
由于简单碰撞理论所采用的模型过于简单, 没有考虑分子的结构与性质,所以用概率因子 来校正理论计算值与实验值的偏差。
P=k(实验)/k(理论)
概率因子又称为空间因子或方位因子。
上一内容 下一内容 回主目录
第十一章_化学动力学基础(二)
第十一章化学动力学基础(二)通过本章学习理解碰撞、过渡态和单分子反应理论,了解一些特殊反应的动力学规律。
(一)基本要求和基本内容:基本要求1.了解化学反应动力学的碰撞、过渡态和单分子反应理论的基本内容,弄清几个能量的不同物理意义及相互关系。
2.了解溶液中反应的特点和溶剂对反应的影响。
3.了解快速反应所常用的测定方法及弛豫时间4.了解光化学反应和催化反应的特点。
重点和难点:过渡态理论中E c、E b、E0、ϑmrH#∆、ϑmrS#∆与Ea之间的关系:基本内容一、碰撞理论1.双分子的互碰频率2.硬球碰撞模型3.微观反应和宏观反应之间的关系4.反应阈能与实际活化能的关系5.概率因子二、过渡态理论1.势能面2.由过渡态理论计算反应速率3.E c、E b、E0、θmrH∆、θmrS∆与Ea和指前因子A之间的关系三、单分子反应理论四、在溶液中进行的反应1.溶剂对反应速率的影响2.原盐效应3.扩散控制反应五、快速反应的测试1.弛豫法2.闪光光解六、光化学反应1.光化学基本定律2.量子产率3.分子的能态4.光化反应动力学5.光化平衡和温度对光化学反应的影响6.感光反应、化学发光七、催化反应动力学1.催化剂与催化作用2.均相酸碱催化3.络合催化(配位催化)4.酶催化反应(二) 基本理论及公式1. 碰撞理论 ⑴ 要点① 反应物分子必须经过碰撞过程才有可能变成产物 ② 只有能量较大的活化分子的碰撞才能发生化学反映⑵ 计算公式① 不同种物质分子间的碰撞次数 [][]B A RTLdB dA Z ABπμπ222⎪⎭⎫ ⎝⎛+=② 同种物质分子间的碰撞次数 []2222A RTLd Z AA AA πμπ=③ 有效碰撞分数)e x p (RTE q C -= E C 为临界能,是基元反应所必需的能量。
④ 不同种分子间碰撞反应的速率常数⎪⎭⎫⎝⎛-=RT E M RTLd k C AB exp 82ππ ⑤ 同种分子间碰撞反应的速率常数⎪⎭⎫⎝⎛-=RT E M RTLd k C AA exp 22ππ ⑶ 解决的问题① 揭示了反应究竟是如何进行的一个简明﹑清晰的物理现象 ② 解释了简单反应速率公式及阿累尼乌斯公式成立的依据③ 解决了反应速率常数的求算问题 ④ 说明了Ea 与T 间的关系RT E E C a 21+=2. 过渡状态理论 ⑴ 要点反应物先形成不稳定的活化络合物,活化络合物与反应物之间迅速达成化学平衡,另一方面活化络合物转化为产物[]C B A C B A C B A +-→⋅⋅⋅⋅⋅⋅⇔-+≠⑵ 计算公式① 用统计热力学方法计算速率常数⎪⎭⎫ ⎝⎛-⋅⋅=∏≠RT E f f hT k k BBB 0'exp② 用热力学方法计算速率常数 (ⅰ) ()()⎪⎪⎭⎫ ⎝⎛∆-⋅⋅=≠-ΘRT G Ch T k k l nB exp 1 或,≠⋅=C B K h Tk k 或,()⎪⎪⎭⎫⎝⎛∆-⋅⎪⎪⎭⎫⎝⎛∆-⋅⋅=Θ≠-ΘRT H R S ChT k k m r mr nB exp exp 1 (ⅱ) ⎪⎪⎭⎫⎝⎛∆-⋅⎪⎭⎫⎝⎛⋅=≠-RTG RT P h T k k PnB exp 1 或 ⎪⎪⎭⎫⎝⎛∆-⋅⎪⎪⎭⎫⎝⎛∆-⋅⎪⎭⎫⎝⎛⋅=Θ≠-RT H RS RT P h T k k P r Pr nB exp exp 1 ③ 几个能量及其关系 (ⅰ) RT E EC a 21+=Ea 活化能,Ec 分子发生有效反应所必须超过的临界能 (ⅱ)mRT E E a +=0E 0 活化络合物的零点能与反应物零点能之差式中m 包括了普适常数项中及配分函数项中所有与T 有关的因子,对一定的反应体系,m 有定值。
第十二章-化学动力学基础(二)
第十二章 化学动力学基础〔二〕1.在K 300时,将)(0.12g gO 和)(1.02g gH 在30.1gdm 的容器内混合,试计算每秒钟、每单位体积内分子碰撞的总数?设)(2g O 和)(2g H 为硬球分子,其直径分别为nm 339.0和nm 247.0。
解:)(1093.2102247.0339.0210922m d d d H O AB --⨯=⨯+=+=)(10896.110016.200.32016.200.321332222---⋅⨯=⨯+⨯=+⋅=mol kg M M M M H O H O μ)(10881.110111002.600.320.13253232--⨯=⨯⨯⨯⨯==m n n O A )(10968.210111002.6016.21.03253232--⨯=⨯⨯⨯⨯==m n n H B 25253210210986.210881.110896.114.3300314.88)1093.2(14.38⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯==--B A ABAB n n RTd Z πμπ )(1077.21335--⋅⨯=s m Z AB2.请计算恒容下,温度每增加K 10时, 〔1〕碰撞频率增加的百分数;〔2〕碰撞时在分子连心线上的对平动能超过180-⋅=mol kJ E c 的活化分子对的增加百分数;〔3〕由上述计算结果可得出什么结论?解:〔1〕B A ABAB n n RTd Z πμπ82=T n n Rd Z B A ABAB ln 21)8ln(ln 2+=∴πμπ TdT Z d AB 21ln =或T dT Z dZ AB AB 2= 当温度变化范围不太大时,有TTZ Z AB AB 2∆=∆ 如K T 298=,K T 10=∆时,有%68.1298210=⨯=∆ABAB Z Z〔2〕)exp(RTE q c-= RTE q q d c=∴ln dT RTE q dqc 2= 当K T 298=,180-⋅=mol kJ E c ,K T 10=∆时%10810)298(314.81080232=⨯⨯⨯=∆=∆T RT E q q c 〔3〕通过计算结果可以看出,温度升高时,碰撞频率的增加并不明显,而活化分子数成倍增加。
化学动力学基础_PPT课件
---differential rate equation of first order reaction)
反应:
A P
t0 cA ,0a 0
t t c A a xx
r
dcA dt
k1cA
或
r
dx dt
k1(ax)
上一内容 下一内容 回主目录
返回
一级反应的积分速率方程
--integral rate equation of first order reaction 不定积分式
上一内容 下一内容 回主目录
返回
质量作用定律(law of mass action)
对于基元反应,反应速率与反应物浓度的幂
乘积成正比。幂指数就是基元反应方程中各反应
物的系数。这就是质量作用定律,它只适用于基
元反应。
例如: 基元反应
反应速率r
(1)C2lM2ClM k1[C2l][M]
(2)ClH2 HClH (3)HC2lHClCl (4)2ClMC2lM
t 2. 半衰期(half-life time) 1 / 2是一个与反应物起始
浓度无关的常数 ,t1/2 ln2/k1 。
3. ln cA 与 t 呈线性关系。
引 (1)
伸 的
(2)
特 (3)
点
所有分数衰期都是与起始物浓度无关的常数。
t1/2:t3/4:t7/81:2:3
c/c0exp k1t)(
反应间隔 t 相同, c / c0有定值。
例如,下列反
应为总包反应: H 2 Cl 2 2HCl
H 2 I2 2HI
H 2 Br2 2HBr
上一内容 下一内容 回主目录
返回
化学动力学基础二 (2)精品课件
由于所采用模型的局限性,使计算值与实验 值不能完全吻合,还必须引入一些校正因子,使 理论的应用受到一定的限制。
两个分子的一次碰撞过程
两个分子在相互的作用力下,先是互相接 近,接近到一定距离,分子间的斥力随着距离 的减小而很快增大,分子就改变原来的方向而 相互远离,完成了一次碰撞过程。
NB V
(8RT )1/ 2
或ZABdA 2BL2(8R T)1/2[A][B]
式中 MAMB
MA MB
NA[A]L NB[B]L
V
V
两个A分子的互碰频率
当体系中只有一种A分子,两个A分子互碰的
相对速度为:ur (28M RAT)1/2
每次碰撞需要两个A分子,为防止重复计算, 在碰撞频率中除以2,所以两个A分子互碰频率为:
粒子在质心 体系中的碰撞轨 线可用示意图表 示为:
两个分子的一次碰撞过程
有效碰撞直径和碰撞截面
运动着的A分子和B分子,两者质心的投影落在
直径为 d AB 的圆截面之内,都有可能发生碰撞。
d A B 称为有效碰
撞直径,数值上等
于A分子和B分子的 半径之和。
虚线圆的面积称为碰
d AB
A
B
撞截面(collision
在硬球碰撞示意图上,A
和B两个球的连心线 d AB 等于
两个球的半径之和,它与相对
u 速度 之r 间的夹角为 。 u 的平通行过线A球,质两心平,行画线平间行的于距离r 就是碰撞参数b 。数值上:bdABsinbmax dAB
b值越小,碰撞越激烈。b 0 迎头碰撞,最激烈.
化学动力学
RT
1
k2dA 2BLRT Me
2
eEa
RT
1
A2dA2BLRTMe 2
1
A2dA2BLRM T 2
kkB hTcθ1nexp R Sm θ exp R H Tm θ
适用范围:凝聚相反应
kkB h T R pT 1nexp R Sm θ exp R H Tm θ
Carbon Dioxide Fixation into Chemicals Methyl Formate at High Yields by Surface Coupling over a Pd/Cu/ZnO Nanocatalyst
Gm θRTlnKcθ
G m θRTlnKc
cθ
n1
Gm θ RT
lnKc
cθ
n1
cθ
K n1 c
expRG Tm θ
Kc cθ 1nexpRG Tm θ
k
kBT h
K
c
kkBT h
cθ
1nexpR G Tm θ
G
m
标准摩尔反应活化Gibbs自由能变
G m θ H m θT Sm θ
kkB h Tcθ1nexp R Sm θ exp E aR T R T
kkB hTcθ1nexp R Sm θ exp R T R TE a
kkBTcθ h
1nexp R Sm θexp1R E T a
kkBTecθ h
1nexp R Sm θexp R E Ta
rk2KccAcBC
根据过渡状态理论的假设活化络合物只 进行一次非对称伸缩振动就能断裂发生 反应因此反应速率为
k2
rr K cccAcBC
第十一章化学动力学基础(二) 本章内容:介绍碰撞理论,过渡状态理论
第十一章化学动力学基础(二)本章内容:介绍碰撞理论,过渡状态理论和单分子反应理论。
了解分子反应动力学的常用实验方法,快速反应所常用的测试方法,说明溶液中反应的特点和溶剂对反应的影响;了解光化学反应的特点及量子产率的计算;介绍催化反应的特点和常见的催化反应的类型。
第一节碰撞理论(simple collision theory)一、碰撞理论基本论点分子碰撞理论是在接受了阿仑尼乌斯活化态、活化能概念的基础上,利用分子运动论于1918 年由路易斯建立起来的。
其基本论点是:1.反应物分子要发生反应必须碰撞,反应物分子间的接触碰撞是发生反应的前提;2.不是任何反应物分子间的碰撞均能发生反应,只有那些能量较高的活化分子、并满足一定的空间配布几何条件的碰撞反应才能发生;3.活化分子的能量较普通能量高,它们碰撞时,松动并部分破坏了反应物分子中的旧键,并可能形成新键,从而发生反应,这样的碰撞称为有效碰撞或非弹性碰撞,活化分子愈多,发生化学反应的可能性就愈大;4.若从Z A,B表示单位时间、单位体积内A,B分子碰撞总数,以q代表有效碰撞在总碰撞数Z A,B中所占的百分数,则反应速率可表示为二、双分子的互碰频率设A、B两种分子都是完全弹性的、无压缩性的刚球,二者半径各为1/2d A, 1/2d B, 单位体积中A的分子数为nN A/V, A分子运动的平均速率为〈U A〉。
假定B分子是静止的,那么一个A 分子与静止B 分子的碰撞次数为,A、B 分子的碰撞直径为d AB = 1/2(d A +d B),碰撞截面为πd2AB,,在时间t内,A分子走过的路程为〈U A〉t,碰撞截面所掠过的体积为〈U A〉tπd2AB, 凡是质心落在这个体积内的静态B分子都可能与A碰撞。
所以移动着的A分子在单位时间内与静止B分子相碰的次数(即碰撞频率)为,由于B分子也在运动,因此要用相对速率u r来代替平均速率(u),A与B的相对速率有几种情况考虑平均情况,则那么,一个运动着的A 分子与运动着的B 分子互相碰撞频率为那么,单位时间、单位体积内所有运动着的A、B 分子碰撞的总次数为对于浓度为[A]的同种分子,则三、硬球碰撞摸型设A.和B为两个没有结构的硬球分子,质量分别为m A和m B,折合质量为μ,运动速度分别为u A、u B,总能量E为'四、微观反应与宏观反应之间的关系反应截面是微观反应动力学基本参数,而速率常数k和实验活化能E a 等是宏观反应动力学参数。
化学动力学基础二-PPT课件
态使次级反应停止。
光化学最基本定律
1.光化学第一定律 只有被分子吸收的光才能引发光化学反应。 该定律在1818年由Grotthus和Draper提出,故又称 为Grotthus-Draper定律。 2.光化学第二定律 在初级过程中,一个被吸收的光子只活化
一个分子。该定律在1908~1912年由Stark和
光化学反应与与热化学反应的区别 光的波长与能量 UV
150 400
Vis
800
IR 红外
FIR
l
/nm
紫外
可见光
远红外
e =hn =hc/l
u =Lhn
一摩尔光量子能量称为一个“Einstein”。波长
越短,能量越高。紫外、可见光能引发化学反应。 由于吸收光量子而引起的化学反应称为光化学
反应。
光化学反应的初级过程和次级过程
(1) z A z B >0,离子强度增 大,k增大,正原盐效应 (2) z A z B <0,离子强度增 大,k下降,负原盐效应 (3) z A z B =0,离子强度不 影响k值,无原盐效应。
lg (k /k 0 )
0 4 0
0 .2 0 0 .0 0
0.20 0.40
k lg 2z A zBA I k0
ZAZB
Z AZ B
Z AZ B
Z Z A B
0 .1 0 0 .2 0 0 .3 0 0 .4 0
I
§12.7 光化学反应
光化学反应与与热化学反应的区别
光化学反应的初级过程和次级过程
光化学最基本的定律
量子产率 光化学反应动力学 光化学平衡和热化学平衡
感光反应、化学发光
光化学反应是从反应物吸收光子开始的,此过
化学动力学基础(二).ppt
dAB rA rB; [A]、[B]:mol m3;
M:kg mol 1; L 6.022 1023mol 1;
ZAB:m3 s1
2019-10-31
谢谢你的关注
13
ZAB
d
2 AB
NB V
uA2 uB2
若体系中只有一种 A 分子,则单位体积内某 一 A i 分子与其它 A j ( j i ) 分子的碰撞频率:
r br2 = dAB2 (1 c / r )
2019-10-31
= dAB2 [1 2c /( ur2 )]
谢谢你的关注
31
r br2 = dAB2 (1 c / r )
= dAB2 [1 2c /( ur2 )] 由上式:
当 r c 时,r = 0; 当 r c 时,r 随 r 的增加而增加。
1 2
ur2
2019-10-31
谢谢你的关注
22
g
r
1 2
(mA
mB ) ug2
1 2
ur2
mA + mB :质心质量 ug :质心速率 ur :A、B 分子相对速率 = mAmB / (mA+mB) :A、B 分子折合质量
2019-10-31
谢谢你的关注
23
g
r
1 2
(mA
mB ) ug2
1 2
ur2
显然,质心整体运动能 g 对两个分子的 碰撞反应没有贡献;
而相对平动能 r 则能衡量两个分子接近 时的相互作用能的大小。