一种数字控制的三相移相触发电路

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一种数字控制的三相移相触发电路

时间:2009-02-03 09:47:45 来源:国外电子元器件作者:冯晖,吴杰,韩志刚

1 概述

目前,我国的可控硅触发电路分为三类:第一类是模拟型。该类型是80年代初出现的专用集成触发电路产品,此类可控硅触发电路易受元件参数分散性、同步电压波形畸变、温度变化等因数影响,电路较为复杂,可靠性低,抗干扰性差,而且输出不稳定,装置功率大等缺点;第二类是可编程数字型。此类型采用单片机、CPLD等设计,采用编程设置同步和移相.但该类型触发电路具有电路规模较大,技术要求高,软件抗干扰能力差等缺点,而且不易实现小型化、小量产,限制了其广泛应用;第三类是采用数字移相的集成电路。该类触发电路克服了以上两类的一些缺点,大大提高了移相精度和对称度,且易于控制,提高电路的稳定性和可靠性。这里给出一款用于可控硅的集成电路数字控制的三相移相触发电路。针对点电网及现场出现的噪声干扰问题,提出一种去抖动电路设计方案.阐述了移相电路的基本设计思路。

2 电路设计

2.1 电路框架

三相正弦输入(ACl~AC3)经比较器,转换成与输入同步的方波信号,再经去抖动电路消除输入信号噪声,生成干净的同步方波信号,进入移相电路。移相控制信号由外部电压输入提供,移相控制电压经9 bit A/D转换器转换,作为移相电路中计数器的初始值,当计数器计数满时,产生一个移相脉冲,该移相脉冲再次触发脉宽发生电路,产生所需的脉宽信号,经调制后输出。该电路框图如图1所示。表l给出了各引脚功能说明。

2.2 噪声消除电路

图2是去抖动电路。三相交流电同步信号经比较器后,通过触发器使其与内部时钟同步,同步信号a.b和c分别对应图3中的/net63./net58和/net43,可见这3个信号的上升沿和下降沿都具有毛刺抖动信号。图2中的电路A部分是边沿检测电路,其功能是利用a,b和c所有上升沿和下降沿产生小脉冲。电路A部分的输出作为时钟信号进入电路B,实现去抖动电路。当第一个脉冲到来时,触发器输出高电平,同时启动电阻电容的充电电路,电容充电,当充电达到使其后面的反相器翻转,触发器复位,触发器输出低电平。电容充电波形如图3中的/net90,触发器输出信号波形为/net52。再利用该输出信号作为时钟信号对同步信号a,b和c采样,滤除信号中的所有毛刺抖动成分,最终输出信号为/out3,/out2和/outl。

2.3 移相电路

移相电路是数字三相移相触发电路的主要部分。其原理如图4所示,同步信号、正弦信号通过过零比较器变为相位与周期一致的同步方波,上升沿和下降沿检验电路检验出同步方波的上升沿和下降沿,产生的两个尖脉冲分别对应同步信号正负半周的的触发信号。采用该触发信号启动计数器进行减法计数,A/D转换器输出置为计数器的初值,当减法计数器为零时则产生移相后的尖脉冲,减法计数器的启动和停止脉冲之间的相位差,即对应于脉冲群与正弦波之间的相位差△φ。

2.3.1 移相范围

计数器的时钟CLK(晶体振荡器)是由晶体振荡器提供的恒定值。假设A/D 转换器的位数为N ,分辨率即为2N 。滞后时间最大值为:时可以选择适当的N 和晶振,晶体振荡器,使2N/f 晶振≥T 工频/2(10 ms)。因此,当直流控制电平Vcon 从5一OV 调节时,脉冲群与正弦波之间的相位差△φ对应于O ~(T 工频/2)。因此,一般情况下,触发电路的相移范围为:△φ∈[0,(T 工频/2)]。但由于集成电路的制作工艺的差异、电网的频率波动和比较器检测过零点的精确度不高.实际移相范围要比以上的范围窄一些,只要移相范围不小于178°即可满足较高的要求。

2.3.2 控制精度

控制精度是指A /D 转换器输出的数字量变化一位时。输出角度的变化值,设A /D 转换器的位数为N 位,那么A/D 转换器输出最大的数字量为2N ,故触发器的控制精度

若A /D 转换器的位数为9位(N=9),那么控制精度为180°/2°=0.35l 6°/

bit 。

2.4 A /D 转换电路

考虑到设计要求,由于处理时钟频率不高,因此采用中速逐次逼近式A /D 转换器,其

工作原理如图5所示,包含比较器、D/A转换器、寄存器、时钟信号源和控制逻辑等5部分。

转换周期从采样所需转换的输入模拟信号开始。数字控制逻辑电路假设MSB为1,其他所有码元为0。将此数字字作为分压电阻网络的输入,产生0.5UREF的模拟信号,如图6所示。比较该模拟信号和采样模拟信号。如果比较器输出高电平,数字控制逻辑电路则令MSB为1;如果输出低电平,则MSB为0。这样实现逐次逼近的第一步.并确定MSB值。然后猜想次高位为1,其余位为0,并和已知数值的MSB位组成数字量,输入分压电阻网络。再比较分压电阻网络输出和采样输入信号,如果比较器输出高电平,则次高位为1;反之则为0。直到所有数字量的位在逐次逼近中确定为止。

2.5 电路布局

移相触发集成电路采用1.2μm N阱双层多晶单层金属CMOS集成电路设计规则设计电路布局.采用全定制的布局设计方法.其特点是针对每个晶体管优化电路参数和布局以获得

最佳性能以及最小面积。布局设计需解决的关键问题是减少衬底耦合噪声的影响,可通过以下途径解决:

(1)阱隔离环低掺杂的衬底中,物理隔离通过增加注入孔和感应孔间的距离来增加两者间的电阻,增强隔离效果。

(2)用P+扩散层形成隔离P+扩散层通过吸收数字器件注入衬底的噪声电流达到隔离效果,隔离环用于包围数字电路或者是模拟电路。从另一个角度看,引入了P+隔离环后,减少环内的那部分衬底区域到地的电阻,也相应减小该区域受到的耦合噪声干扰。

(3)数字电路地与衬底分离将数字电路的N管的源极通过Metal接地,而不与衬底相连。衬底为模拟地,因此通过这种措施将模拟电路和数字电路地分开.模拟和数字电路通过地线耦合抑制噪声。

2.6 仿真结果

仿真结果如图7所示,输入为三相正弦信号,输出为6路移相触发脉冲。

3 测试结果

图8给出该系统测试结果。其中,其基本电参数测试结果如下:静态电源电流IDO<8 mA,输入端漏电流IIL25 mA,输出驱动电流IOH1(VOH=4 V)<一25 mA,输出吸收电流IOL2(VOL=0.5 V)>3 mA,高阻态漏电流IOZ

相关文档
最新文档