静息电位与动作电位的高中解读完整版
“静息电位”与“动作电位”的高中解读
![“静息电位”与“动作电位”的高中解读](https://img.taocdn.com/s3/m/8e1abf2e5a8102d276a22f9c.png)
“静息电位”与“动作电位”的高中解读这部分知识较难掌握,这里是高中知识的衍生,同学们可以了解。
一、静息电位1、概念表述静息电位是指组织细胞静止状态下存在于膜内外两侧的电位差,呈外正内负的极化状态。
2、产生条件(1)细胞膜内外离子分布不平衡。
就正离子来说,膜内K+浓度较高,约为膜外的30倍。
膜外Na+浓度较高约为膜内的10倍。
从负离子来看,膜外以Cl-为主,膜内则以大分子有机负离子(A-)为主。
(2)膜对离子通透性的选择。
在静息状态下,膜对K+的通透性大,对Na+的通透性则很小(Na+通道关闭),对膜内大分子A-则无通透性。
3、产生过程K+顺浓度差向膜外扩散,膜内A-因不能透过细胞膜被阻止在膜内。
致使膜外正电荷增多,电位变正,膜内负电荷相对增多,电位变负,这样膜内外便形成一个电位差。
当促使K+外流的浓度差和阻止K+外流的电位差这两种拮抗力量达到平衡时,使膜内外的电位差保持一个稳定状态,即静息电位。
这就是说,细胞内外K+的不均匀分布和安静状态下细胞膜主要对K+有通透性,是使细胞能保持内负外正的极化状态的基础,所以静息电位又称为K+的平衡电位。
二、动作电位1、概念表述动作电位是指可兴奋细胞受到刺激时,在静息电位的基础上发生的一次快速扩布性电位变化。
2、产生条件(1)细胞膜内外离子分布不平衡。
细胞内外存在着Na+浓度差,Na+在细胞外的浓度是细胞内的13倍之多。
(2)膜对离子通透性的选择。
细胞受到一定刺激时,膜对Na+的通透性增加3、产生过程(1)去极化:细胞受到阀上刺激→细胞外Na+顺浓度梯度流人细胞内→当膜内负电位减小到阈电位时Na+通道全部开放→Na+顺浓度梯度瞬间大量内流(正反馈倍增)→细胞内正电荷增加→膜内负电位从减小到消失,进而出现膜内正电位→膜内正电位增大到足以对抗由浓度差所致的Na+内流→膜两侧电位达到一个新的平衡点。
该过程主要是Na+内流形成的平衡电位,可表示为动作电位模式图的上升支。
转静息电位和动作电位
![转静息电位和动作电位](https://img.taocdn.com/s3/m/e5c7a371f4335a8102d276a20029bd64783e62ae.png)
转静息电位和动作电位要点归纳:一静息电位:电位:外正内负形成原因:①细胞内外离子分布和浓度不同。
就正离子来说,膜内K+浓度较高,约为膜外的30倍。
膜外Na+浓度较高约为膜内的10倍。
从负离子来看,膜外以Cl-为主,膜内则以大分子有机负离子(A-)为主。
②细胞在静息状态下,膜对K+的通透性大,对Na+的通透性则很小。
对膜内大分子A-则无通透性。
二动作电位电位:外负内正形成原因:当细胞受刺激而兴奋时,膜对Na+通透性增大,对K+通透性减小,于是细胞外的Na+便会顺其波度梯度和电梯度向胞内扩散,导致膜内负电位减小,直至膜内电位比膜外高。
三兴奋的传导细胞膜某一点受刺激产生兴奋时,其兴奋部位膜电位内负外正变为内正外负,于是兴奋部位和静息部位之间出现了电位差,导致局部的电荷移动,即产生局部电流。
四兴奋传导的方向此电流的方向是膜外电流由静息部位流向兴奋部位,膜内电流由兴奋部位流向静息部位五注意静息电位的形成是K+逆浓度梯度转运的结果,需消耗能量动作电位的形成不耗能细胞的生物电现象伴随生命活动的电现象,称为生物电。
关于生物电在生命活动中所起的作用,目前还不十分清楚。
一、静息电位及其产生机制(一)静息电位静息电位是指细胞在安静状态下,存在于细胞膜的电位差。
这个差值在不同的细胞是不一样的,就神经纤维而言为膜外电位比膜内电位高70~90mv。
如规定膜外电位为0,则膜内电位当为负值(-70~-90mv)。
细胞在安静状态时,保持比较稳定的外正内负的状态,称为极化。
极化状态是细胞处于生理静息状态的标志。
以静息电位为准,膜内负电位增大,称为超极化。
膜内负电位减小,称为去或除极化。
细胞兴奋后,膜电位又恢复到极化状态,称为复极化。
(二)静息电位产生的机制"离子学说"认为,细胞水平生物电产生的前提有二:①细胞内外离子分布和浓度不同。
就正离子来说,膜内K+浓度较高,约为膜外的30倍。
膜外Na+浓度较高约为膜内的10倍。
静息电位和动作电位的概念及形成机制
![静息电位和动作电位的概念及形成机制](https://img.taocdn.com/s3/m/6d5a0a307ed5360cba1aa8114431b90d6d85896c.png)
静息电位和动作电位的概念及形成机制静息电位和动作电位的概念及形成机制一、静息电位的概念及形成机制1. 静息电位的概念静息电位是指神经细胞在未被刺激时的电位状态。
在静息状态下,细胞内外存在电化学梯度,使神经元内外细胞膜的电位差保持在负数水平,为-70mV左右。
2. 静息电位的形成机制静息电位的形成主要与离子的通透性和Na+/K+泵有关。
在静息状态下,细胞膜上的Na+和K+离子通道处于闭合状态,但是Na+/K+泵仍在起作用,将细胞内的Na+排出,K+输进,维持细胞内外的离子平衡,保持负电位。
3. 静息电位的重要性静息电位是神经细胞正常功能的基础,它保证了细胞对外部刺激的敏感性,使神经元能够正常传递和处理信息。
二、动作电位的概念及形成机制1. 动作电位的概念动作电位是神经元在受到刺激时产生的短暂的电位变化。
它是神经元传递信息的基本单位,具有快速传导和全或无的特点。
2. 动作电位的形成机制动作电位的形成包括兴奋、去极化和复极化三个阶段。
当神经元受到足够的刺激时,细胞膜上的Na+通道打开,Na+大量流入细胞内,使细胞内外电位逆转,形成去极化;随后Na+通道关闭,K+通道打开,K+大量流出,使细胞内外电位恢复,形成复极化。
3. 动作电位的重要性动作电位是神经元传递信息的方式,它能够在神经元内外迅速传递信息,使神经元之间能够进行有效的通讯,实现信息的处理和传递。
总结与回顾:静息电位和动作电位是神经元活动的重要基础。
静息电位维持着神经元的正常状态,使其对外部刺激保持敏感;而动作电位则实现了神经元信息的传递,是神经元活动中最基本的过程之一。
在细胞水平上,静息电位的形成主要与离子的通透性和Na+/K+泵有关,通过保持细胞内外的离子平衡来维持静息状态;而动作电位的形成则依赖于离子通道的开闭和离子内外的流动,通过电压门控离子通道的开合来实现电位的变化。
个人观点和理解:静息电位和动作电位是神经元活动的核心过程,对于理解神经元的功能和信息传递具有重要意义。
静息电位、动作电位
![静息电位、动作电位](https://img.taocdn.com/s3/m/3d5897292af90242a895e55e.png)
一、静息电位(RP)的产生机制: 静息电位( )的产生机制:
在静息状态下,细胞膜对 具有较高的通透性是形成 在静息状态下,细胞膜对K+具有较高的通透性是形成 静息电位的最主要因素。细胞膜内K+浓度约相当于细胞外 静息电位的最主要因素。细胞膜内 浓度约相当于细胞外 液的30倍 将顺浓度梯度跨膜扩散, 液的 倍,K+将顺浓度梯度跨膜扩散,但扩散的同时也在 将顺浓度梯度跨膜扩散 细胞膜的两侧形成逐渐增大的电位差, 细胞膜的两侧形成逐渐增大的电位差,且该电位差造成的 驱动力与浓度差的驱动力的方向相反,阻止K+进一步跨膜 驱动力与浓度差的驱动力的方向相反,阻止 进一步跨膜 扩散。当逐渐增大的电位差驱动力与逐渐减小的浓度差驱 扩散。 动力相等时,便达到了稳态。 动力相等时,便达到了稳态。
ห้องสมุดไป่ตู้
• 二、动作电位(AP)的产生机制: 动作电位( )的产生机制: • 在静息状态下,细胞膜外Na+浓度约为细胞内液的 倍余,Na+ 在静息状态下,细胞膜外 浓度约为细胞内液的10倍余, 浓度约为细胞内液的 倍余 有向膜内扩散的趋势;并且静息时膜内存在着相当数量的负电位, 有向膜内扩散的趋势;并且静息时膜内存在着相当数量的负电位,吸 引着Na+向膜内移动。但由于静息时细胞膜对 向膜内移动。 相对不通透, 引着 向膜内移动 但由于静息时细胞膜对Na+相对不通透,因此, 相对不通透 因此, Na+不能大量内流。 不能大量内流。 不能大量内流 • 当刺激引起去极化达到阈电位,细胞膜上的电压门控 当刺激引起去极化达到阈电位,细胞膜上的电压门控Na+通道大量被 通道大量被 激活,细胞膜对Na+的通透性突然增大,Na+大量内流,造成细胞膜 的通透性突然增大, 大量内流, 激活,细胞膜对 的通透性突然增大 大量内流 的进一步去极化;而膜的进一步去极化,又将导致更多的Na+通道开 的进一步去极化;而膜的进一步去极化,又将导致更多的 通道开 有更多的Na+内流,引起细胞膜迅速、自动地去极化。 内流, 放,有更多的 内流 引起细胞膜迅速、自动地去极化。 • Na+的大量内流,以至膜内负电位因正电荷的增加而迅速消失。又因 的大量内流, 的大量内流 以至膜内负电位因正电荷的增加而迅速消失。 为细胞膜外Na+浓度约为细胞内液的 倍余,使得Na+内流在膜内负 浓度约为细胞内液的10倍余 为细胞膜外Na+浓度约为细胞内液的10倍余,使得Na+内流在膜内负 电位绝对值减小到零时仍可以继续,进而出现正电位, 电位绝对值减小到零时仍可以继续,进而出现正电位,直至膜内正电 位增大到足以对抗浓度差所引起的Na+内流,便达到了平衡电位(顶 内流, 位增大到足以对抗浓度差所引起的 内流 便达到了平衡电位( 点). • 此时膜对Na+的净通量为零。但是膜内电位并不停留在正电位状态, 此时膜对 的净通量为零。但是膜内电位并不停留在正电位状态, 的净通量为零 很快Na+通道失活,膜对 通道失活, 变为相对不通透, 的通透性增加。 很快 通道失活 膜对Na+变为相对不通透,而对 的通透性增加。 变为相对不通透 而对K+的通透性增加 于是膜内K+在浓度差和电位差的驱动力下外流 在浓度差和电位差的驱动力下外流, 于是膜内 在浓度差和电位差的驱动力下外流,使膜内电位由正电 位又向负电位发展,以后再逐渐恢复到静息电位水平. 位又向负电位发展,以后再逐渐恢复到静息电位水平
静息电位和动作电位的概念
![静息电位和动作电位的概念](https://img.taocdn.com/s3/m/a2ec95e5fc0a79563c1ec5da50e2524de518d0dc.png)
静息电位和动作电位的概念1. 引言在我们这条生动的生命之河中,神经细胞就像是一群忙碌的小邮差,负责把信息快速送到每个角落。
今天,我们就来聊聊这其中的两个重要角色:静息电位和动作电位。
这两个概念虽然听起来有些复杂,但其实它们就像是我们日常生活中的调皮小伙伴,各自扮演着重要的角色,让我们的身体能够正常运转。
2. 静息电位的概念2.1 静息电位是什么?静息电位就像是一个放松的状态,当神经细胞没有在发送信号时,它们就处于这种状态。
这就好比你在沙发上舒舒服服地看电视,没什么大事发生。
此时,细胞内部的负电荷与外部的正电荷形成了一种微妙的平衡,像是在进行一场无声的“电荷对抗赛”。
其实,静息电位一般是70毫伏,这个数字可能听起来有点无聊,但它却是神经信号传递的基础。
2.2 静息电位的形成那么,静息电位是怎么形成的呢?这就得提到细胞膜上那些可爱的离子通道了。
钠离子(Na+)和钾离子(K+)就像是我们的“家里蹲”,平时待在各自的“房间”里。
钠离子在外面,钾离子在里面,但静息状态下,钾离子偏爱留在细胞内部,所以内部是负电的。
简单来说,静息电位就像是一个随时准备出门的朋友,虽然现在在家,但只要有需要,它就能立刻出发。
3. 动作电位的概念3.1 动作电位是什么?一旦有信号传来,静息电位就会转变为动作电位,简直就像是开关被打开了一样!动作电位可以理解为一场狂欢派对,细胞膜的离子通道们开始“狂欢”,大量钠离子涌入,细胞内瞬间变得超级正电。
这一过程就像是火箭发射,短短几毫秒内,细胞就会从70毫伏飙升到+30毫伏,让你惊叹不已。
3.2 动作电位的传播动作电位就像是波浪一样,一旦形成,就会沿着神经纤维不断传播。
这就像在海边玩水,第一波涌来,第二波接踵而至,没完没了!这种波动确保了信息能够快速到达大脑,让我们反应灵敏。
这就是为什么我们能在看到热汤时迅速抽回手来,哦,那可是真刺激啊!4. 总结静息电位和动作电位就像是生活中的两种状态:放松和激动。
静息电位和动作电位的定义和形成机制
![静息电位和动作电位的定义和形成机制](https://img.taocdn.com/s3/m/815c763edcccda38376baf1ffc4ffe473368fd8f.png)
静息电位和动作电位的定义和形成机制在我们日常生活中,神经系统起着至关重要的作用。
而在神经系统中,有两种非常重要的电位:静息电位和动作电位。
这两种电位在神经元之间的传递过程中起着关键作用,使我们能够感知到外界的各种刺激,并做出相应的反应。
那么,这两种电位究竟是如何产生的呢?本文将从理论和实践的角度,对静息电位和动作电位的定义和形成机制进行详细的阐述。
我们来了解一下静息电位。
静息电位是指神经元在未受到任何刺激时,细胞内外的电势差。
简单来说,就是当神经元处于安静状态时,它的内部电压是稳定的。
这种稳定的电压是由细胞膜上的离子泵负责维持的。
离子泵通过主动运输的方式,将钾离子从细胞内向外运输,同时将钠离子从细胞外向内运输,从而使得细胞内外的电势差保持在一个相对稳定的状态。
这个稳定的电压差就是静息电位。
接下来,我们再来探讨一下动作电位。
动作电位是指神经元在受到某种刺激(如光、声、化学物质等)后,细胞内外的电势差发生快速变化的现象。
这种快速变化的电势差是由细胞膜上的离子通道负责调控的。
当刺激传达到神经元时,离子通道会迅速打开或关闭,使得离子在细胞内大量流动,从而产生一个快速上升或下降的电势差。
这个快速上升或下降的电势差就是动作电位。
那么,静息电位和动作电位是如何形成的呢?这要从神经元的结构说起。
神经元由胞体、树突、轴突和突触四部分组成。
其中,胞体是神经元的代谢中心,负责合成和分解蛋白质;树突是神经元接受信息的部位;轴突是神经元传递信息的部位;突触是连接两个神经元的结构。
在正常情况下,静息状态下的神经元,其细胞膜上的离子泵会维持一定的离子浓度梯度,使得细胞内外的电势差保持在一个稳定的状态。
当神经元受到刺激时,刺激信号会传递到胞体,引起一系列生化反应。
这些反应会导致胞体释放出一种叫做乙酰胆碱的神经递质。
乙酰胆碱会与轴突上的乙酰胆碱受体结合,从而引发一系列的生理过程。
在这个过程中,离子通道会发生开关性的变化。
具体来说,当刺激信号传达到胞体时,离子通道会迅速打开,使得钠离子大量流入轴突;钾离子大量流出胞体。
第3章 电磁生物物理4 静息电位和动作电位
![第3章 电磁生物物理4 静息电位和动作电位](https://img.taocdn.com/s3/m/14582962011ca300a6c39071.png)
• 3.4.1 Nernst平衡电位
• i室和o室 • 浓度:P(X+)i> P(X+)o • 通透性:X+可通透
X
F扩散
X X X X X X X Y Y Y Y Y Y Y Y Y
i
o
1
3.4静息电位与Goldman方程
• 3.4.1 Nernst平衡电位
d = dx
X
F扩散
XXXX
Y Y Y Y Y Y Y Y Y X X X
i
+ + + +
o
7
F =F扩散 电场
3.4静息电位与Goldman方程
• 3.4.1 Nernst平衡电位
RT D= u zF
R=8.314J(k mol)
F =96487C/mol
F 电场
X
F扩散
X X X X • i室和o室 • 浓度:P(X+)i> P(X+)o i o • 通透性:X+可通透 F =F 作用:i->o (浓度扩散) 58 [C ]0 结果:浓度:i->o Vm lg z [C ]i 电场:o->i • Nernst用离子跨越膜的迁移率定量 描述这一平衡电位。
Vm不断变化
33
RT C o Vm = ln F C i
RT C o Vm = ln zF C i
13
• 同一离子在细胞内外液中浓度相差很大
细胞内 K+ 人红细胞 136 Na+ 13 Cl83 K+ 5
细胞外 Na+ 164 Cl154
静息电位和动作电位
![静息电位和动作电位](https://img.taocdn.com/s3/m/f0e941685bcfa1c7aa00b52acfc789eb172d9eee.png)
简介静息电位(Resting Potential , RP )是指细胞未受刺激时,存在于细胞膜内外两侧的外正内负的电位差。
由于这一电位差存在于安静细胞膜的两侧,故亦称跨膜静息电位,简称静息电位或膜电位。
形成机理静息电位产生的基本原因是离子的跨膜扩散,和钠- 钾泵的特点也有关系。
细胞膜内K+浓度高于细胞外。
安静状态下膜对K+通透性大,K+顺浓度差向膜外扩散,膜内的蛋白质负离子不能通过膜而被阻止在膜内,结果引起膜外正电荷增多,电位变正;膜内负电荷相对增多,电位变负,产生膜内外电位差。
这个电位差阻止K+进一步外流,当促使K+外流浓度差和阻止K+外流的电位差这两种相互对抗的力量相等时,K+外流停止。
膜内外电位差便维持在一个稳定的状态,即静息电位。
测定静息电位的方法插入膜内的是尖端直径<1μm的玻璃管微电极,管内充以KCl溶液,膜外为参考电极,两电极连接到电位仪测定极间电位差。
静息电位都表现为膜内比膜外电位低,即膜内带负电而膜外带正电。
这种内负外正的状态,称为极化状态。
静息电位是一种稳定的直流电位,但各种细胞的数值不同。
哺乳动物的神经细胞的静息电位为-70mV(即膜内比膜外电位低70mV),骨骼肌细胞为-90mV,人的红细胞为-10mV。
静息电位的产生与细胞膜内外离子的分布和运动有关。
正常时细胞内的K+浓度和有机负离子A-浓度比膜外高,而细胞外的Na+浓度和Cl-浓度比膜内高。
在这种情况下,K+和A-有向膜外扩散的趋势,而Na+和Cl-有向膜内扩散的趋势。
但细胞膜在安静时,对K+的通透性较大,对Na+和Cl-的通透性很小,而对A-几乎不通透。
因此,K+顺着浓度梯度经膜扩散到膜外使膜外具有较多的正电荷,有机负离子A-由於不能透过膜而留在膜内使膜内具有较多的负电荷。
这就造成了膜外变正、膜内变负的极化状态。
由K+扩散到膜外造成的外正内负的电位差,将成为阻止K+外移的力量,而随着K+外移的增加,阻止K+外移的电位差也增大。
动作电位静息电位
![动作电位静息电位](https://img.taocdn.com/s3/m/d4c860ff27fff705cc1755270722192e44365849.png)
动作电位静息电位1. 什么是动作电位和静息电位?动作电位和静息电位是神经元细胞膜的两种电位状态。
动作电位是指神经元细胞膜在受到足够强度的刺激后,发生短暂的电压变化的过程。
而静息电位则是指神经元细胞膜在没有受到任何刺激时的电压状态。
2. 动作电位的过程当神经元受到足够强度的刺激时,细胞膜内外的离子浓度发生瞬间变化,导致细胞膜内外电位的反转。
这种电位反转的过程被称为动作电位。
动作电位的过程可以分为四个阶段:- 静息状态:细胞膜内外的离子浓度分布保持不变,细胞膜内外电位差为-70mV左右。
- 起始阶段:细胞膜受到刺激后,细胞膜内外的离子浓度发生瞬间变化,导致细胞膜内外电位差快速反转到+30mV左右。
- 上升阶段:细胞膜内外电位差继续上升到峰值,此时细胞膜内外电位差为+30mV左右。
- 下降阶段:细胞膜内外电位差开始迅速下降,恢复到静息状态。
3. 静息电位的维持静息电位的维持与神经元细胞膜内外的离子浓度分布有关。
在静息状态下,神经元细胞膜内外的离子浓度分布如下:- 细胞内钾离子(K+)浓度高,细胞外钠离子(Na+)浓度高。
- 细胞内氯离子(Cl-)浓度低,细胞外氯离子(Cl-)浓度高。
这种离子分布的差异导致了细胞膜内外的电位差,使得细胞膜内电位为负电荷,外电位为正电荷。
这种静息状态的电位差通常为-70mV左右。
维持这种静息状态需要通过细胞膜上的离子通道和离子泵来实现。
4. 总结动作电位和静息电位是神经元细胞膜的两种电位状态。
动作电位指细胞膜在受到足够强度的刺激后,发生短暂的电压变化的过程。
静息电位指细胞膜在没有受到任何刺激时的电压状态。
神经元细胞膜内外离子浓度分布的差异是维持静息电位的主要原因。
通过细胞膜上的离子通道和离子泵来调节离子浓度分布,从而维持静息状态。
动作电位和静息电位的研究有助于人们更好地理解神经元的工作原理,为治疗神经系统相关疾病提供参考。
静息电位与动作电位ppt课件
![静息电位与动作电位ppt课件](https://img.taocdn.com/s3/m/265e2e67581b6bd97e19ea26.png)
兴奋的引起和传导
阈电位 能够造成膜对Na+通透性突然增大,
诱发动作电位产生的临界膜电位的数值,称为 阈电位(threshold membrane potential)。 阈强度与阈下刺激
兴奋在神经纤维上的传导,称为神经冲动。
有髓纤维上的兴奋传导比较特殊,因为在有髓纤维的 轴突外面包裹着一层很厚的髓鞘,髓鞘的主要成分是 脂质,而脂质是不导电或不允许带电离子通过的。只 有在髓鞘暂时中断的朗飞结处,轴突膜才能和细胞外 液接触,使跨膜离子移动得以进行。因此,当有髓纤 维受到外来刺激时,动作电位只能在邻近刺激点的朗 飞结处产生,而局部电流也就在相邻的朗飞结之间形 成(图2-12)。这一局部电流对邻近的朗飞结起着刺激 作用,使之兴奋;然后又以同样的方式使下一个朗飞 结兴奋。这样,兴奋就以跳跃的方式 ,从一个朗飞结 传至另一个朗飞结而不断向前传导。这种传导方式称 为跳跃式传导(saltatory conduction)。跳跃式传导 使冲动的传导速度大为加快,因此,有髓纤维的传导 速度远比无髓纤维为快。另外,跳跃式传导时,单位 长度内每传导一次兴奋所涉及的跨膜离子运动的总数 要少得多,因此它还是一种更“节能”的传导方式。
动作电位的产生机制
电压钳和膜片钳
电压钳 I=VG 用电压钳技术可记录细胞兴奋过程中的跨膜离
子电流曲线,进而计算出膜电导的变化曲线。实验证明,在细胞 兴奋时Na+电导和K+电导的变化过程与动作电位的变化过程是一致 的。电压钳技术的应用,进一步证明了动作电位产生机制的正确 性。
膜片钳 20世纪70年代建立起来的膜片钳实验技术,可以用直接
静息电位动作电位
![静息电位动作电位](https://img.taocdn.com/s3/m/3aa022f877eeaeaad1f34693daef5ef7ba0d12d8.png)
静息电位动作电位
静息电位动作电位(Resting Membrane Potential Action Potential,简称RMP-AP)是指由一个细胞的内外电位差引发的生物电位过程。
在此过程中,当外界环境中的电位变化时,会引起细胞内外电位差,从而产生电位上升或降低。
RMP-AP是由三个不同的周期组成的,即静息电位、动作电位和恢复期。
首先,当细胞的外界环境中的电位变化时,会导致细胞内外电位差的变化,从而使细胞内外电位差发生变化,这就是静息电位(RMP)。
此时,细胞内外电位差处于一个稳定的水平,这样细胞就可以保持正常的功能。
接下来是动作电位(AP),当细胞内外电位差超过一定的阈值时,会产生一个动作电位,它具有较快的上升速度和较高的电压水平,从而使细胞内外电位差急剧上升,这样细胞便会发出电位信号,从而改变细胞的生理功能。
最后是恢复期。
当动作电位(AP)发生后,细胞内外电位差会再次降低,直到恢复到原先的静息电位(RMP),此时会有一个恢复期,即当细胞内外电位差回到正常水平时,细胞便会恢复到正常的功能状态。
总之,静息电位动作电位(RMP-AP)是由一个细胞的内外电位差引发的生物电位过程,其主要由静息电位、动作电位和恢复期三个不同的周期组成,它能够使细胞内外电位差发生变化,从而使细胞发出的电位信号改变细胞的生理功能,从而使细胞获得正常的功能状态。
动作电位
![动作电位](https://img.taocdn.com/s3/m/ca296d7a1711cc7931b71647.png)
静息电位和动作电位一、静息电位及其产生机制(一)静息电位静息电位是指细胞在安静状态下,存在于细胞膜的电位差。
这个差值在不同的细胞是不一样的,就神经纤维而言为膜外电位比膜内电位高70~90mv。
如规定膜外电位为0,则膜内电位当为负值(-70~-90mv)。
细胞在安静状态时,保持比较稳定的外正内负的状态,称为极化。
极化状态是细胞处于生理静息状态的标志。
以静息电位为准,膜内负电位增大,称为超极化。
膜内负电位减小,称为去或除极化。
细胞兴奋后,膜电位又恢复到极化状态,称为复极化。
(二)静息电位产生的机制“离子学说”认为,细胞水平生物电产生的前提有二:①细胞内外离子分布和浓度不同。
就正离子来说,膜内K+浓度较高,约为膜外的30倍。
膜外Na+浓度较高约为膜内的10倍。
从负离子来看,膜外以Cl-为主,膜内则以大分子有机负离子(A-)为主。
②细胞膜在不同的情况下,对不同离子的通透性并不一样,如在静息状态下,膜对K+的通透性大,对Na+的通透性则很小。
对膜内大分子A-则无通透性。
由于膜内外存在着K+浓度梯度,而且在静息状态下,膜对K+又有较大的通透性(K+通道开放),所以一部分K+便会顺着浓度梯度向膜外扩散,即K+外流。
膜内带负电荷的大分子A-,由于电荷异性相吸的作用,也应随K+外流,但因不能透过细胞膜而被阻止在膜的内表面,致使膜外正电荷增多,电位变正,膜内负电荷增多,电位变负。
这样膜内外之间便形成了电位差,它在膜外排斥K+外流,在膜内又牵制K+的外流,于是K+外流逐渐减少。
当促使K+流的浓度梯度和阻止K+外流的电梯度这两种抵抗力量相等时,K+的净外流停止,使膜内外的电位差保持在一个稳定状态。
因此,可以说静息电位主要是K+外流所形成的电一化学平衡电位。
二、动作电位及其产生机制(一)动作电位细胞受刺激时,在静息电位的基础上发生一次短暂的扩布性的电位变化,这种电位变化称为动作电位。
实验观察,动作电位包括一个上升相和一个下降相。
动作电位和静息电位
![动作电位和静息电位](https://img.taocdn.com/s3/m/6582556c68eae009581b6bd97f1922791688beeb.png)
动作电位和静息电位是生理学上描述神经细胞功能状态的重要概念。
动作电位指的是
神经元在收到外界刺激后产生的电位变化,它是一种瞬时的电信号传递,可以用来传递神经信号;静息电位指的是神经元在没有任何刺激的情况下产生的电位变化,它是一种持续的电信号传递,可以用来维持神经元的基础功能。
动作电位的构成主要来自于膜电位的变化,膜电位是由离子通道的选择性渗透决定的,它的变化反映了细胞内外离子的平衡状态的变化;静息电位的构成主要来自于安定电位的变化,它是由膜蛋白电位决定的,它的变化反映了细胞内外离子的偏置态的变化。
动作电位主要由膜电位变化产生,它是一种瞬时的电信号传递,可以用来传递神经信号;静息电位主要由安定电位变化产生,它是一种持续的电信号传递,可以用来维持神经
元的基础功能。
动作电位变化可以使神经元间的电信号传递得以实现,而静息电位则可以维持神经元内部的稳定性。
因此,动作电位和静息电位都是神经元功能的重要指标,为神经元功能的研究提供了重要的参考依据。
静息电位和动作电位的概念及形成机制
![静息电位和动作电位的概念及形成机制](https://img.taocdn.com/s3/m/a719cc4feef9aef8941ea76e58fafab069dc4426.png)
静息电位和动作电位的概念及形成机制一、静息电位的概念静息电位是指在神经元或肌细胞处于静息状态时,细胞内外的电位差。
在细胞膜内外侧产生的电压差异,形成静息电位。
一般情况下,静息电位为-70mV左右。
静息电位的存在,是生物神经元和肌肉细胞能够进行正常信号传导和兴奋性行为的重要基础。
静息电位是由细胞质内、外离子浓度梯度和细胞膜通透性共同作用的结果。
在静息状态下,细胞质内部存在高浓度的钾离子,而细胞外则存在高浓度的钠离子和氯离子。
细胞膜对钠、钾和氯离子的通透性不同,导致了这种电位差的形成。
静息电位的维持对于细胞的正常功能和生理活动至关重要。
它不仅能够维持细胞内外离子平衡,还能够保证细胞的正常兴奋和传导。
二、动作电位的概念动作电位是指在细胞兴奋状态下,细胞膜内外突然出现的短暂电压变化。
动作电位是神经元和肌肉细胞进行信号传导的基本单位,是产生神经冲动和肌肉收缩的物理基础。
动作电位的形成需要经历一系列的复杂过程。
当细胞受到刺激而兴奋时,细胞膜上的离子通道会发生开放和关闭的变化,导致钠离子快速内流和钾离子慢速外流。
这一过程导致了细胞膜内外的电位迅速变化,从而产生了动作电位。
动作电位具有快速传导、一次触发和不衰减的特点,能够保证神经信号和肌肉收缩的快速、准确和有效传导。
三、静息电位和动作电位的形成机制1. 静息电位的形成机制静息电位的形成受到静息时细胞膜的通透性和离子浓度梯度的影响。
细胞膜上的钠-钾泵能够使细胞内钠离子浓度降低,细胞内外存在电学和化学的离子浓度梯度。
细胞膜上的钠和钾通道保持半开状态,使得细胞膜内外的离子保持动态平衡,从而维持了静息电位的稳定状态。
2. 动作电位的形成机制动作电位的形成涉及到离子通道的快速开放和关闭。
当细胞受到刺激而兴奋时,细胞膜上的钠通道会迅速开放,使得钠离子快速内流,细胞膜内外的电位快速升高;随后钠通道关闭,钾通道开放,钾离子慢速外流,使得细胞膜内外的电位迅速下降和恢复。
这一过程形成了动作电位。
(完整)静息电位和动作电位及其产生原理
![(完整)静息电位和动作电位及其产生原理](https://img.taocdn.com/s3/m/8f4efc049e31433238689337.png)
静息电位和动作电位及其产生原理生物电现象是指生物细胞在生命活动过程中所伴随的电现象.它与细胞兴奋的产生和传导有着密切关系。
细胞的生物电现象主要出现在细胞膜两侧,故把这种电位称为跨膜电位,主要表现为细胞在安静时所具有的静息电位和细胞在受到刺激时产生的动作电位。
心电图、脑电图等均是由生物电引导出来的。
1.静息电位及其产生原理静息电位是指细胞在安静时,存在于膜内外的电位差。
生物电产生的原理可用"离子学说”解释.该学说认为:膜电位的产生是由于膜内外各种离子的分布不均衡,以及膜在不同情况下,对各种离子的通透性不同所造成的。
在静息状态下,细胞膜对K+有较高的通透性,而膜内K+又高于膜外,K+顺浓度差向膜外扩散;细胞膜对蛋白质负离子(A—)无通透性,膜内大分子A—被阻止在膜的内侧,从而形成膜内为负、膜外为正的电位差。
这种电位差产生后,可阻止K+的进一步向外扩散,使膜内外电位差达到一个稳定的数值,即静息电位.因此,静息电位主要是K+外流所形成的电—化学平衡电位。
2.动作电位及其产生原理细胞膜受刺激而兴奋时,在静息电位的基础上,发生一次扩布性的电位变化,称为动作电位。
动作电位是一个连续的膜电位变化过程,波形分为上升相和下降相。
细胞膜受刺激而兴奋时,膜上Na+通道迅速开放,由于膜外Na+浓度高于膜内,电位比膜内正,所以,Na+顺浓度差和电位差内流,使膜内的负电位迅速消失,并进而转为正电位。
这种膜内为正、膜外为负的电位梯度,阻止Na+继续内流。
当促使Na+内流的浓度梯度与阻止Na+内流的电位梯度相等时,Na+内流停止.因此,动作电位的上升相的顶点是Na+内流所形成的电-化学平衡电位.在动作电位上升相达到最高值时,膜上Na+通道迅速关闭,膜对Na+的通透性迅速下降,Na+内流停止。
此时,膜对K+的通透性增大,K+外流使膜内电位迅速下降,直到恢复静息时的电位水平,形成动作电位的下降相。
可兴奋细胞每发生一次动作电位,膜内外的Na+、K+比例都会发生变化,于是钠—钾泵加速转运,将进入膜内的Na+泵出,同时将逸出膜外的K+泵入,从而恢复静息时膜内外的离子分布,维持细胞的兴奋性.(二)动作电位及其产生原理1.概念:细胞受刺激时在静息电位基础上产生的可传布的电位变化,细胞兴奋的标志波形:锋电位:上升相:去极化(—70mV→0mV)反极化(超射)(0mV→+30mV)下降相:复极化(+30mV→-70mV附近 )峰电位是动作电位的主要成份2。
静息电位与动作电位
![静息电位与动作电位](https://img.taocdn.com/s3/m/b1ca72b919e8b8f67c1cb99a.png)
当促使K+ 外移的浓度差和阻止K+外移的电位差这两种力 量达到平衡时,经膜的 K+ 净通量为零,即K+外流和内流的 量相等。此电位差称K+的平衡电位,也就是静息电位。
细胞静息电位的形成是由细胞膜对特异离子的 相对通透性不同和离子的跨膜浓度梯度决定的
如在同一点先后给予两个阈下刺激时,其局部兴奋的总和称为 时间性总和;如在相邻两点分别给予阈下刺激时,其局部兴奋的总 和称为空间性总和。如局部兴奋总和后的去极化程度达到阈电位水 平时,即可产生动作电位。
因此,细胞的兴奋可由一次阈刺激或阈上刺激引起,也可由两 次以上的阈下刺激来引起。
安静的无髓鞘神经纤维
内负外正的 极化状态
局部电流
神经纤维的左侧一段受到 阈上刺激产生了动作电位
反极化 状态
未兴奋段的电流是出膜电流,发生去极化动作电位的传导内正外负的 反极化状态
邻近细胞膜 内负外正 极化状态
形成局部电流
局部电流
动作电位沿细胞 膜向周围传导, 可用局部电流学 说来阐明
兴奋能沿细胞膜传导
出膜电流使未兴奋 段的膜发生去极化
跳跃传导的意义 加快传导速度 节约能量
5、动作电位的传导速度
人有了知识,就会具备各种分析能力, 明辨是非的能力。
所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。
”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力;
通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣;
通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
高中生物校本课程-动作电位和静息电位的形成
![高中生物校本课程-动作电位和静息电位的形成](https://img.taocdn.com/s3/m/14ee894bc8d376eeafaa3194.png)
一、细胞膜上的转运蛋白
• 在离子通道打开时,其通透途径是对膜两侧同时开放的; • 通过离子通道运输的底物只能通过电化学浓度梯度运输; • 离子通道的转运速度既可以是快,也可以慢。
离子通道的特征
• (1)离子选择性 • 决定因素:通道内的孔径、电荷 • 阴离子与阳离子: • Na+通道、K+通道、Cl-通道、Ca2+通道 • 特异性与非特异性 • Na+通道:Na +/NH4+/ 少量K+
• 神经细胞约-70 mV Nhomakorabea• 骨骼肌和心肌细胞约- 90 mV • 平滑肌细胞约- 55 mV • 红细胞约-10 mV
神经细胞: - 70 mV -70mV-→-90mV RP增大 -70 mV→- -50 mV RP减小
静息电位的产生机制
2、动作电位
③动作电位发生机制
欢迎大家批评指正!
• (2)门控特性 • 门控:开放状态,关闭状态 • 电压门控、配体门控、光控、温度敏感门控 • 非门控通道(漏通道)
电压门控的K+通道
如:突触后膜上钠离子 通道 允许不同离子进入,但 主要是钠离子。 是不是大量神经递质才 能让大量的离子通道打 开呢?
• 与底物结合,交替开放,不会同时开放。 • 载体蛋白可以介导特异性底物顺浓度梯度转运和逆浓度梯度转运。 • 特异性底物逆浓度梯度转运消耗的能量来自于化学反应(ATP)、光
或电化学势能(协同转运)
载体蛋白的活 动是细胞膜内 外产生离子浓 度差的基础。
二、静息电位和动作电位
• 1、静息电位(RP):
• ①概念:是指细胞在安静状态下(未受刺激时) ,存在于细胞膜两 侧的外正内负的电位差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静息电位与动作电位的
高中解读
Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】
“静息电位”与“动作电位”的高中解读
这部分知识较难掌握,这里是高中知识的衍生,同学们可以了解。
一、静息电位
1、概念表述
静息电位是指组织细胞静止状态下存在于膜内外两侧的电位差,呈外正内负的极化状态。
2、产生条件
(1)细胞膜内外离子分布不平衡。
就正离子来说,膜内K+浓度较高,约为膜外的30倍。
膜外Na+浓度较高约为膜内的10倍。
从负离子来看,膜外以Cl-为主,膜内则以大分子有机负离子(A-)为主。
(2)膜对离子通透性的选择。
在静息状态下,膜对K+的通透性大,对Na+的通透性则很小(Na+通道关闭),对膜内大分子A-则无通透性。
3、产生过程
K+顺浓度差向膜外扩散,膜内A-因不能透过细胞膜被阻止在膜内。
致使膜外正电荷增多,电位变正,膜内负电荷相对增多,电位变负,这样膜内外便形成一个电位差。
当促使K+外流的浓度差和阻止K+外流的电位差这两种拮抗力量达到平衡时,使膜内外的电位差保持一个稳定状态,即静息电位。
这就是说,细胞内外K+的不均匀分布和安静状态下细胞膜主要对K+有通透性,是使细胞能保持内负外正的极化状态的基础,所以静息电位又称为K+的平衡电位。
二、动作电位
1、概念表述
动作电位是指可兴奋细胞受到刺激时,在静息电位的基础上发生的一次快速扩布性电位变化。
2、产生条件
(1)细胞膜内外离子分布不平衡。
细胞内外存在着Na+浓度差,Na+在细胞外的浓度是细胞内的13倍之多。
(2)膜对离子通透性的选择。
细胞受到一定刺激时,膜对Na+的通透性增加3、产生过程
(1)去极化:细胞受到阀上刺激→细胞外Na+顺浓度梯度流人细胞内→当膜内负电位减小到阈电位时Na+通道全部开放→Na+顺浓度梯度瞬间大量内流(正反馈倍增)→细胞内正电荷增加→膜内负电位从减小到消失,进而出现膜内正电位→膜内正电位增大到足以对抗由浓度差所致的Na+内流→膜两侧电位达到一个新的平衡点。
该过程主要是Na+内流形成的平衡电位,可表示为动作电位模式图的上升支。
(2)复极化:达峰值时Na+通道迅速关闭而失活→Na+内流停止→K+通道被激活→膜对K+的通透性增加→K+借助于浓度差和电位差快速外流→膜内电位迅速下降(负值迅速上升)→电位恢复静息值。
该过程是K+外流形成的,可表示为动作电位模式图的下降支。
(3)Na+-K+泵转运:当膜复极化结束后,有一部分Na+在去极化中扩散到细胞内,一部分K+在复极过程中扩散到细胞外。
这样细胞膜上Na+-K+泵就会被激活,并主动将膜内的Na+泵出膜外,同时把流失到膜外的K+泵回膜内,以恢复兴奋前的离子分布的浓度。