(完整版)高等数学第三章微分中值定理与导数的应用题库(附带答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 微分中值定理与导数的应用

一、选择题

1、则,且存在,,设 ,1)x (f )x (f )x (f 0)x (f 0)x (f 00000-=+''''='>( )

是否为极值点不能断定的极值点 不是 的极小值点是的极大值点 是0000x )D ()x (f x )C ( )x (f x )B ()x (f x )A (

2、处必有在则处连续且取得极大值,在点函数 x )x (f x x )x (f y 00==( )

0)x (f )B ( 0)x ('f )A (00<''= 或不存在 且 0)x (f )D (0)x (f 0)x (f )C (0'00=<''=

3、的凸区间是 x e y x -=( )

) , 2( (D) ) , (2 (C) 2) , ( (B) 2) , ( (A)∞+-∞+--∞-∞

4、在区间 [-1,1] 上满足罗尔定理条件的函数是 ( )

(A)x

x sin )x (f = (B)2)1x ()x (f += (C) 3 2

x )x (f = (D)1x )x (f 2+=

5、设f (x) 和g (x) 都在x=a 处取得极大值,F (x)=f (x)g (x),则F(x)在x=a 处( ) (A) 必取得极大值 (B)必取得极小值 (C)不取极值 (D)不能确定是否取得极值

6、满足罗尔定理的区间是使函数 )x 1(x y 322-=( )

(A) [-1,1] (B) [0,1] (C) [-2,2] (D) ]

5 4, 5 3[- 7、x 2 e x y -=的凹区间是( )

(A))2,(-∞ (B) )2,(--∞ (C) ) 1(∞+, (D) ) 1(∞+-,

8、函数)x (f 在0x x = 处连续,若0x 为)x (f 的极值点,则必有( ) . (A)0)(0='x f (B)0)(0≠'x f (C)0)(0='x f 或)(0x f '不存在 (D))(0x f '不存在 9、当a= ( ) 时,处取到极值在 3

x 3sin3x asinx f(x)π=+

=( ) (A) 1 (B) 2 (C)

3 π

(D) 0

10、间是适合罗尔定理条件的区使函数 )x 1(x )x (f 322-=( )

]

5 4

, 5 3[)D ( ]2,2[)C ( ]1,1[)B ( ]1,0[)A (-

-- 11、(),则上的凹弧与凸弧分界点为连续曲线,若 )x (f y )x (f x 00=( )

的极值必定不是的极值点为必定为曲线的驻点

, 必为曲线的拐点, )x (f x )D ( )x (f x )C ( ))x (f x ( )B ( ))x (f x ( )A (000000

二、填空题 1、__________________e

y 82

x

的凸区间是曲线-=.

2、______________ 2 x y x 的极小值点是函数=.

3、的凸区间为曲线

x 3 e y x

+=

_____________________ . 4、函数f (x )=x x 3-在[0,3]上满足罗尔定理的条件,由罗尔定理确定的罗尔中值点ξ= . 5、设曲线y =a 23bx x +以点(1,3)为拐点,则数组(a ,b )= . 6、函数1x 3x y 3+-=在区间 [-2,0] 上的最大值为 ,最小值为 . 7、函数 x sin ln y =在 [

6

5

, 6 ππ] 上的罗尔中值点ξ= . 8、1 x y +=在区间 [ 1,3 ] 的拉格朗日中值点ξ = _______________. 9、______________ 2 x y x 的极小值点是函数=. 10、______________ 2x y x 的极小值点是函数⋅=。 11、y =x + x 1 - ,-51x ≤≤ 的最小值为 . 12、x x y -= 的单调减区间是 . 13、x arctan x y -= 在且仅在区间______________上单调増. 14、函数f(x)=x +2cosx 在区间 [ 0 ,

2 π

] 上的最大值为 . 15、函数y =3x 4x x 223+-+ 的单调减少区间是 .

16、已知点(1,3)是曲线 23bx ax y += 的拐点,则a= ,b= . 17、的单调递减区间为 e e 2)x (f x x -+= . 三、计算题

1、的极值和单调区间求函数 4x 9x 6x y 23-+-=。

2、求极限 )

1x x

x ln 1(

lim 1

x --→. 3、求函数y =23x 4x x 23+-+的单调区间、凹凸区间、拐点. 4、设常数0k >,试判别函数()ln x

f x x k e

=-+在()0,+∞内零点的个数. 5、求函数 10x 6x 2

3x y 2

3+--= 的单调区间和极值.

。 6.)

1 - e 1

x 1

(lim x 0

x -→. 7.[]上的最大值与最小值在求函数 1 , 1 x 45 y --=. 8.求曲线x

x

y ln =

的单调区间和凹凸区间.. 9. 求曲线34223+-+=x x x y 的单调区间和凹凸区间. 10.求函数 x x e y -= 图形的凹凸区间及拐点.

11、的拐点求曲线 3

{ 3

2t

t y t x +==. 12、求函数 4x 9x 6x y 23-+-= 的单调区间、极值、凹凸区间和拐点.

相关文档
最新文档