放射防护屏蔽计算

合集下载

14 屏蔽计算

14 屏蔽计算




X
: 有屏蔽材料的照射率 X
照射量积累因子
0
:没有屏蔽材料的照射量率
B :

d :所加屏蔽材料的厚度的射线平均自路程个数
7/20

0降低到拟达到的水平 X 用k代表为把原有的照射量 X
所需要的减弱倍数.则:

X0 1 k d X B e

根据上式可计算出所需要屏蔽层的厚度d
2.5 E 20兆电子伏
β射线在各种材料中的射程
5/20
γ射线屏蔽

γ射线在物质中被吸收的特点,是服从于指数 减弱规律的。 γ射线屏蔽体厚度的计算方法,常用的有三种, 即减弱倍数法、减弱因子法和半值层厚度法。
6/20
1、减弱倍数法

若用照射量率来描述γ辐射场的强弱:
X B X 0 e d
12/20
[例]某医院放射性同位素室分装碘-13l样品, 瓶内放射性活度约2Ci(7.4×1010Bq),操作者 在离样品1米处采用远距离操作。要使人所在 位置的照射量率小于2.5毫伦/时,问对样品 需加多厚的铅防护屏蔽套? 解:不加屏蔽套时1米处的照射量率为:

因此,所需的减弱倍数为:
K
11/20
各种放射性核素的γ射线穿过 密度为18.9克/厘米3的铀所 引起的宽束透射
3、半值层法


用半值层法求所需屏蔽材料的厚度,也是辐射 防护惯用的一种方法。这种方法所得结果的精 确程度不如上述二种方法的高。 半值层数目n与减弱倍数K的关系为:K=2n。 查表知n从l到l0的K-n关系。知道了半值层数目 和半值层厚度,就可以用它的乘积求出所需屏 蔽的总厚度。
辐射防护方法

放射防护屏蔽计算精品名师资料

放射防护屏蔽计算精品名师资料

L混凝土=TVL混凝土×NTVL = TVL混凝土 ×lg(1/BX)=35.6mm×lg(1/(3.8×10-3)) =86.2mm L铅=TVL铅×NTVL = TVL铅×lg(1/BX)=0.58 mm×lg(1/(3.8×10-3))=1.4 mm 因为,此处Xpre=0.3mm铅当量, Xbarrier=1.4-0.3=1.1mm铅当量,针对初级辐 射1-2墙需要1.1mm铅当量的屏蔽。
区),T=1(为安全),所以P/T=0.1mGy/周;dp=3m,U=1, Kp1=5.9mGy/患者,N=40

利用公式得出:
K
(0) p

K p UN dp2
1
5.9 *1* 40 26.22mGy / 周 2 3
将这个值降低到P/T=0.1mGy/周
B( X barrier
P /T 0.1 3 X pre ) 3 . 8 * 10 ( 0) 26.22 Kp
1
将这个值降低到P/T=0.1mGy/周
P/T 0 .1 Bsec (X barrier) (0) 1.9 *10 -1 0.516 K sec
在次级辐射的透射曲线上可查,相当于0.2mm铅当量, 所以墙(1-1)需要0.2mm铅当量的屏蔽。

4、墙(1-2):

需要考虑初级辐射和次级辐射;其后方为加速器辅助机房(控制
外照射屏蔽计算示例
吉林大学公共卫生学院
辐射防护教研室
贺 强
Jilin University
一、公式回顾
Jilin University
1、距离平方反比公式 人员受到的外照射剂量与其离开放射源的距 离平方成反比. D1/D2=r22/r12 2、辐射源外照射剂量率的估算 γ 点源外照射剂量率的估算 方法一 (快速估算法)距点源1m D = 0.123AE A单位 MBq D单位 μ Gy/h E单位 MeV

放射防护屏蔽计算

放射防护屏蔽计算

放射防护屏蔽计算放射防护屏蔽计算是在进行放射性物质使用、储存、处理和运输等工作时,为保护工作人员和周围环境的安全而进行的一项重要工作。

通过计算辐射源的辐射强度、辐射类型和工作场所的防护要求,确定必要的屏蔽材料和厚度,以达到合理的防护效果。

第一步:确定辐射源的辐射强度和辐射类型。

不同的放射性物质产生的辐射类型不同,常见的辐射类型有α射线、β射线和γ射线。

根据辐射源的性质和辐射强度,确定屏蔽计算的基本参数。

第二步:确定工作场所的防护要求。

根据放射源的特性和工作场所的需求,确定防护目标,包括辐射剂量限值、剂量当量和辐射源与人员之间的距离等。

第三步:选择合适的屏蔽材料和厚度。

根据辐射类型和防护要求,选择适合的屏蔽材料和屏蔽厚度。

不同的辐射类型对应不同的屏蔽材料,比如α射线可以通过纸张或衣物屏蔽,而γ射线则需要使用厚重的铅或混凝土等材料进行屏蔽。

第四步:进行屏蔽计算。

根据所选的屏蔽材料和厚度,计算屏蔽材料对辐射的吸收率和透射率。

吸收率表示屏蔽材料吸收辐射的能力,透射率表示辐射穿过屏蔽材料的能力。

根据屏蔽计算公式,计算出所需的屏蔽厚度。

第五步:验证屏蔽效果。

通过实际测量和监测,验证所选择的屏蔽材料和厚度的有效性,保证工作场所的辐射水平符合防护要求。

放射防护屏蔽计算是一项复杂的工作,需要具备辐射防护的专业知识和技能。

同时,也需要考虑到工作场所的实际情况、操作方式和工作时间等因素,综合考虑屏蔽材料和厚度的选择。

定期的屏蔽效果评估和设备保养也是放射防护屏蔽计算的重要内容。

总之,放射防护屏蔽计算是为了保障工作人员和周围环境的安全而进行的一项重要工作。

通过科学合理地选择屏蔽材料和厚度,确保工作场所辐射水平符合防护要求,从而有效降低辐射对人体的危害。

放射性γ源的屏蔽计算程序毕业设计展示

放射性γ源的屏蔽计算程序毕业设计展示

设计流程图
开始 输入参数
参数是 否完整 输入

是 计算
结果输出 (存盘)
结束程序
运行状况(程序截图)——程序整 体的界面、外观
运行状况(程序截图)——用户 误输入了字母,程序发出提示
运行状况(程序截图)——用户正 确输入各项数据后,可以得出结果
运行状况(程序截图)——本程 序的存盘功能
运行状况(程序截图)——打开 C盘下的“数据存储.txt”文件
是计算机编程技术与辐射防护的结合。
2. 本工作设计一个简单的程序,方便用户在
外照射防护活动中快速得出所需要的屏蔽材料
的厚度,可提高防护设计的效率,具有一定的
实用意义 。
外照射防护的基本知识
剂量限值与剂量约束 1. 剂量限值定义为正常控制条件下 不应超过的剂量水平。 2. 剂量约束可以理解为对每个可能
理论简介——屏障厚度的确定用到的参数
1. 居留因子:从受照位置和受照时间来表征人
员受照情况的一个系数。
2. 衰减倍数:指设置屏蔽之前某关心点处的周
围剂量当量与设置屏蔽之后该点周围剂量当量
的比值。
3. 透射比 :为衰减倍数的倒数。表征关心点
处穿透屏蔽的射线占初始射线的份额。
理论简介——屏蔽计算的方程
1.基本方程 数学表达式为:H(d)≤ HL
2.曲线的拟合: 由于查图表获得的厚度值不 方便,而且也无法写进程序代码。 综合方便性与可行性,采用李士
俊教授的相关文献中的曲线拟合
方程。
理论简介——本项目涉及的常数
本项目涉及到了四个γ源,即Cs-137、Co-60、Ir-192、 Ra-226。下表为空气比4Bq
1m
1
0.1mSv/h

放射屏蔽防护方案

放射屏蔽防护方案

放射屏蔽防护方案放射屏蔽是一项关系到人们生活安全的重要技术,它主要用于防护高能射线、放射性物质和电磁辐射对人体健康造成的损害。

本文将介绍几种常见的放射屏蔽防护方案,包括屏蔽材料的选择、防护层厚度的计算等内容,并探讨其应用场景和效果。

1. 屏蔽材料的选择选择合适的屏蔽材料是放射屏蔽防护方案中的关键一步。

常见的屏蔽材料包括铅、钨、混凝土和铜等。

铅是最常用的屏蔽材料,它具有较高的密度和辐射吸收率,能够有效阻挡大部分的射线。

钨是一种高密度金属,其辐射吸收性能很好,适用于一些射线能量较高的场景。

混凝土是一种常见的廉价屏蔽材料,其密度较大,能够在一定程度上吸收射线。

铜虽然密度较低,但在高能电磁辐射防护中会发挥其优势,因其能有效屏蔽电磁波。

2. 防护层厚度的计算根据不同的射线类型和能量,选择合适的防护层厚度是确保防护效果的重要一环。

防护层厚度的计算需要考虑射线的能量、射线的衰减系数以及屏蔽材料的衰减能力等因素。

具体的计算方法请参考相关的屏蔽材料手册或射线防护标准,以确保所设计的防护方案符合要求。

3. 放射屏蔽防护的应用场景放射屏蔽防护方案广泛应用于核能、医疗和工业领域。

在核电站中,核反应堆及其周围区域的放射屏蔽是确保工作人员和公众安全的关键。

医疗领域中,放射屏蔽被用于X射线诊断设备、放射治疗设备以及放射性药物贮存等场景,以保护医务人员和患者的健康。

工业领域内,一些特定的工艺过程可能产生有害的辐射,放射屏蔽防护方案可用于降低工人接触到的辐射剂量。

4. 放射屏蔽防护方案的效果评估放射屏蔽防护方案的效果可以通过剂量测量和计算模拟等手段进行评估。

剂量测量可以直接测量环境中的辐射剂量,评估方案的有效性。

计算模拟则是通过建立数学模型,模拟射线在材料中传输和衰减的过程,得出预计的辐射剂量。

这些评估手段可以帮助优化和改进放射屏蔽防护方案。

5. 制定合理的放射屏蔽防护方案的重要性制定合理的放射屏蔽防护方案对于保护人体健康和环境安全至关重要。

射线屏蔽防护计算

射线屏蔽防护计算

射线屏蔽防护屏蔽防护的原理是:射线包括穿透物质时强度会减弱,一定厚度的屏蔽物质能减弱射线的强度,在辐射源与人体之间设置足够厚的屏蔽物(屏蔽材料),便可降低辐射水平,使人们在工作所受到的剂量降低最高允许剂量以下,确保人身安全,达到防护目的。

屏蔽防护的要点是在射线源与人体之间放置一种能有效吸收射线的屏蔽材料。

对于X射线常用的屏蔽材料是铅板和混凝土墙,或者是钡水泥(添加有硫酸钡-也称重晶石粉末的水泥)墙。

屏蔽材料的厚度估算通常利用了半值层(半价层)的概念。

在X射线检测中利用的是宽束X射线,下表给出了宽束X射线在铅和混凝土中的近似半价层厚度T1/2和1/10价层厚度T1/10。

注意:由于铅板的纯度及纯净度、混凝土的配方以及组织结构上必然存在的差异,因此表中给出的半价层厚度只能作为参考值,在实际应用中必须考虑增加保险量。

超过5rem,一年365天共52周,按国家法定工作时间(即扣除周六、日和法定节假日)应为250天约36周,但为了从严考虑(例如加班),取50周计算得到0.1rem/周的限值,公众人员个人受到的年剂量当量应低于0.5rem,即为0.1rem/周的限值。

如果射线照射工作场地邻近非职业射线照射工作人员的工作现场时,应考虑屏蔽的最大容许剂量当量按公众人员标准计算。

)R—X射线源到操作者的距离,米T—居留因子:全居留T=1(这是表示工作人员在工作场所停留情况的因子,分为全居留、部分居留、偶然居留三种情况。

全居留T=1是指经常有人员停留的地方所考虑的因子,适用于控制区,包括控制室、邻近的暗室、工作室、实验室、走廊、休息室和职业性照射人员常规使用的办公室,以及例如位于射线机房邻近建筑物中用于居留和商店、办公室、居住区、运动场、其他生产工作场所等;部分居留T=1/4是指有部分时间里有人员停留时考虑的因子,适用于非控制区,例如日常非职业性照射人员所用的公共走廊、公共房间、休息室、娱乐室、电梯、无人管理的停车场等;偶然居留T=1/16是指偶然有人员经过情况下考虑的因子,适用于非控制区,例如公共浴室、楼梯、自动电梯、行人、车辆通道等)U—使用因子:充分使用U=1(这是表示射线利用程度的一个因素,分为充分使用、部分使用、不常使用三种情况。

射线屏蔽防护计算

射线屏蔽防护计算

射线屏蔽防护计算Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998射线屏蔽防护屏蔽防护的原理是:射线包括穿透物质时强度会减弱,一定厚度的屏蔽物质能减弱射线的强度,在辐射源与人体之间设置足够厚的屏蔽物(屏蔽材料),便可降低辐射水平,使人们在工作所受到的剂量降低最高允许剂量以下,确保人身安全,达到防护目的。

屏蔽防护的要点是在射线源与人体之间放置一种能有效吸收射线的屏蔽材料。

对于X射线常用的屏蔽材料是铅板和混凝土墙,或者是钡水泥(添加有硫酸钡-也称重晶石粉末的水泥)墙。

屏蔽材料的厚度估算通常利用了半值层(半价层)的概念。

在X射线检测中利用的是宽束X 射线,下表给出了宽束X射线在铅和混凝土中的近似半价层厚度T1/2和1/10价层厚度T1/10。

注意:由于铅板的纯度及纯净度、混凝土的配方以及组织结构上必然存在的差异,因此表中给出在屏蔽防护计算中,需要考虑两个方面的因素,即由射线源直接穿过屏蔽物的初级辐射屏蔽,还有射线在屏蔽物上引起的散射辐射也是需要考虑屏蔽的。

下面结合具体例题予以说明:[1]初级X射线屏蔽:首先确定屏蔽透射量,然后根据由实验测量得到的射线减弱曲线求出所需要的屏蔽层厚度。

屏蔽透射量B=PR2/WUT式中:B—X射线的屏蔽透射量 R/(mAmin) (在1米处) 数值上:1R≈1remP—每周最大容许剂量当量:职业性照射为P=周;放射性工作场所邻近人员P=周(注:根据GB4792-1984《放射卫生防护基本标准》规定放射性工作人员受到全身均匀照射时的年剂量当量不应超过5rem,一年365天共52周,按国家法定工作时间(即扣除周六、日和法定节假日)应为250天约36周,但为了从严考虑(例如加班),取50周计算得到 rem/周的限值,公众人员个人受到的年剂量当量应低于0. 5rem,即为 rem/周的限值。

如果射线照射工作场地邻近非职业射线照射工作人员的工作现场时,应考虑屏蔽的最大容许剂量当量按公众人员标准计算。

fluka辐射屏蔽计算

fluka辐射屏蔽计算

fluka辐射屏蔽计算一、fluka辐射屏蔽计算的基本原理fluka是一种广泛应用于核物理、高能物理和辐射物理研究领域的计算软件。

它可以模拟粒子在物质中的相互作用和传输过程,包括电离辐射、散射、衰变等。

fluka辐射屏蔽计算基于蒙特卡洛方法,通过模拟粒子在目标材料中传输的过程,计算出辐射场的分布和能量沉积。

fluka辐射屏蔽计算广泛应用于核能工程、核医学、核辐射安全等领域。

在核能工程中,fluka可以用于评估核反应堆中的辐射场分布,指导反应堆的设计和运行。

在核医学中,fluka可以用于计算放射性药物在人体内的剂量分布,帮助医生进行放射治疗和诊断。

在核辐射安全领域,fluka可以用于评估核事故情况下的辐射泄漏和辐射防护措施的有效性。

三、fluka辐射屏蔽计算的方法fluka辐射屏蔽计算的方法包括几个基本步骤:几何建模、粒子源设置、物理过程设置和结果分析。

在几何建模中,通过定义目标材料的几何形状和尺寸,建立辐射屏蔽的几何模型。

在粒子源设置中,定义粒子的种类、能量和方向,以模拟真实的辐射源。

在物理过程设置中,选择需要考虑的物理过程,如电离辐射、散射、衰变等。

最后,通过对模拟结果的分析,得出辐射场的分布和能量沉积情况。

四、fluka辐射屏蔽计算的优势fluka辐射屏蔽计算具有以下优势:1.全面的物理过程模拟:fluka可以模拟各种粒子与物质的相互作用和传输过程,包括电离辐射、散射、衰变等,能够更准确地计算辐射场。

2.高精度的几何建模:fluka支持复杂的几何模型,可以准确地描述目标材料的几何形状和尺寸,提高计算结果的准确性。

3.灵活的输入设置:fluka提供了丰富的输入设置选项,可以根据实际需求选择不同的物理过程和模拟参数,灵活地进行计算。

4.强大的结果分析功能:fluka可以生成详细的计算结果报告,包括辐射场的分布、能量沉积等信息,方便用户进行结果分析和评估。

fluka辐射屏蔽计算是一种应用广泛的辐射计算方法,可以用于评估辐射场的分布和能量沉积情况。

屏蔽计算资料

屏蔽计算资料

屏蔽计算资料屏蔽计算资料: 一、X射线探伤机房4.4屏蔽设计的核实与评价4.4.1评价方法4.4.1.1屏蔽评价原则(1)根据国家标准规定,对源的设计、建造和运行中留有足够的安全裕量,以确保可靠的正常运行。

(2)在对四周墙体、天花板的屏蔽厚度计算时,对泄漏X射线的能量,按原初辐射能量计算;对散射X射线,四周墙体(包括防护门)按有用线束90°散射计算,对天花板取90°散射X射线计算。

(3)同一屏蔽体按泄漏辐射和散射辐射分别计算屏蔽厚度,若两者的厚度相差不到一个1/10值衰减层厚度时,则在其中较厚的一个厚度上再加一个半值层厚度。

4.4.1.2辐射屏蔽的计算方法(1)原初X射线屏蔽计算(主防护体的屏蔽厚度计算)按下式计算最大允许透射量B pp 2B=H×dW×T×U(1)式中:B p——屏蔽墙最大允许透射量,mSv·m*m·mA-1·min-1;H——周剂量约束值,mSv·wk-1;d——焦点至计算点的距离,m;W——周工作负荷,mA·min·wk-1;U——使用因子;T——居留因子。

计算出B p后,取负对数(-logB p),得出相应1/10值(TVT)层厚度个数N TVT,查相应能量的X射线在混凝土和铅的1/10值层厚度,可计算原初X射线屏蔽厚度。

《放射物理与防护》(2)散射X射线屏蔽计算(副防护体屏蔽厚度计算)散射X 射线的透射量B s 按下式计算:B s =H ·(d 1d 2)2/(αWAT) (2)式中 :B s ——屏蔽墙最大允许透射量,mSv ·mA -1·min -1; H ——周剂量约束值,mSv ·wk -1;d 1——电子靶到散射表面的最近距离,m ; d 2——散射点至计算点的距离,m ;α——反散射因子, 90°散射角可取0.07%; A ——散射表面面积,m 2;W 、T 、H 的含义与公式(1)相同。

医用电子直线加速器的屏蔽计算

医用电子直线加速器的屏蔽计算

医用电子直线加速器的屏蔽计算医用电子直线加速器(linac)是放射治疗中常用的设备之一,它能够产生高能电子束用于治疗恶性肿瘤。

由于其辐射风险,医用linac需要进行屏蔽以保护患者、操作人员和周围环境的安全。

在进行linac屏蔽计算时需要考虑的因素包括辐射类型、辐射功率、辐射能量、屏蔽材料等多个方面,下面将详细介绍医用linac的屏蔽计算。

首先,计算医用linac的屏蔽需要确定所需的剂量限制。

根据国际电离辐射防护委员会(ICRP)的建议,医用linac的屏蔽目标是使超过50 mGy/年的剂量限制不会在患者和操作人员或公众中超过。

然后,需要进行剂量建模和计算,以确定屏蔽材料的厚度和配置。

对于医用linac的屏蔽计算,需要先计算出患者所接受的剂量,然后再进行屏蔽厚度计算。

医用linac可以发出两种不同能量的电子束,其中较低能量电子束通常用于表面肿瘤和浅度肿瘤的治疗,而较高能量电子束则用于深度肿瘤的治疗。

因此,需要分别计算这两种不同能量的电子束的剂量分布。

常用的剂量计算方法是通过使用一种称为Monte Carlo模拟的技术来模拟电子束的传输和相互作用。

Monte Carlo方法通过在精确模型中跟踪大量粒子的传输路径和相互作用来计算剂量分布。

通过模拟粒子的输运,可以确定剂量在患者身体内的分布情况。

得到患者剂量分布后,就可以进行屏蔽厚度计算。

屏蔽材料的厚度取决于剂量负荷和所选材料的辐射防护特性。

对于医用linac的屏蔽,常用的材料包括铅、混凝土和钢等。

这些材料的屏蔽能力取决于其密度、厚度和辐射力学特性。

在屏蔽材料的选择和配置方面,需要考虑到对电磁场干扰的控制。

因为linac在治疗过程中会发出强烈的电磁辐射,如果没有进行适当的屏蔽,可能会对周围的电子设备和通信系统造成干扰。

因此,在屏蔽设计中需要考虑到电磁波的衰减问题,并选择适当的电磁波屏蔽材料。

除了屏蔽材料的选择和配置,还需要考虑到辐射监测问题。

在医用linac操作区域内应安装辐射监测设备,用于实时监测辐射水平,以确保在操作过程中辐射剂量不会超出所需的限制。

屏蔽计算资料

屏蔽计算资料

屏蔽计算资料: 一、X射线探伤机房4.4屏蔽设计的核实与评价4.4.1评价方法4.4.1.1屏蔽评价原则(1)根据国家标准规定,对源的设计、建造和运行中留有足够的安全裕量,以确保可靠的正常运行。

(2)在对四周墙体、天花板的屏蔽厚度计算时,对泄漏X射线的能量,按原初辐射能量计算;对散射X射线,四周墙体(包括防护门)按有用线束90°散射计算,对天花板取90°散射X射线计算。

(3)同一屏蔽体按泄漏辐射和散射辐射分别计算屏蔽厚度,若两者的厚度相差不到一个1/10值衰减层厚度时,则在其中较厚的一个厚度上再加一个半值层厚度。

4.4.1.2辐射屏蔽的计算方法(1)原初X射线屏蔽计算(主防护体的屏蔽厚度计算)按下式计算最大允许透射量B pp 2B=H×dW×T×U(1)式中:B p——屏蔽墙最大允许透射量,mSv·m*m·mA-1·min-1;H——周剂量约束值,mSv·wk-1;d——焦点至计算点的距离,m;W——周工作负荷,mA·min·wk-1;U——使用因子;T——居留因子。

计算出B p后,取负对数(-logB p),得出相应1/10值(TVT)层厚度个数N TVT,查相应能量的X射线在混凝土和铅的1/10值层厚度,可计算原初X射线屏蔽厚度。

《放射物理与防护》(2)散射X射线屏蔽计算(副防护体屏蔽厚度计算)散射X 射线的透射量B s 按下式计算: B s =H ·(d 1d 2)2/(αWAT) (2)式中 :B s ——屏蔽墙最大允许透射量,mSv ·mA -1·min -1; H ——周剂量约束值,mSv ·wk -1;d 1——电子靶到散射表面的最近距离,m ; d 2——散射点至计算点的距离,m ; α——反散射因子, 90°散射角可取0.07%; A ——散射表面面积,m 2;W 、T 、H 的含义与公式(1)相同。

辐射防护计算公式精选[1].

辐射防护计算公式精选[1].

輻防執照計算題公式精選分類:Radiopharmaceuticals轉換常數1.光速c:3×108 m s-1 (光子頻率ν與波長λ的轉換:ν = c/λ2.Planck’s constant (蒲郎克常數:6.63×10-34 J s (光子能量與頻率的轉換:E = hν3.1 amu = 1.66×10-27 kg ≡ 931.5 MeV (質能互換:E = mc24.1 b = 10-24 cm25.1 Ci = 3.7×1010 Bq6.1 R = 2.58×10-4 C kg-17.1 R ≡ 8.7 mGy (暴露與空氣克馬的轉換8.STP(0°C、1 atm下,空氣密度為0.001293 g cm-39.1 atm = 760 mmHg = 760 tor (托≡ 101.3 kPa (千帕 (壓力修正因子與密度的轉換10.0°C = 273°K (溫度修正因子與密度的轉換11.1個電子的電量1.6×10-19 C (電子數目與電量的轉換12.1 eV = 1.6×10-19 J13.1 mole(莫耳 = 6.02×1023個原子(莫耳數目與原子數目的轉換。

14.原子量:1莫耳原子重 (莫耳數目與質量的轉換。

15.原子密度:單位質量或體積物質所含原子數目。

例如若單位體積物質所含莫耳數目為ρ/A (ρ為密度,A為質量數或原子量,單位為g mole-1,單位體積物質所含原子數目為(ρ/A×6.02×1023 (6.02×1023的單位為mole-1。

16.電子密度:單位質量或體積的物質所含電子數目,例如單位體積物質所含電子數目為(ρ/A×6.02×1023×Z (Z為原子序。

17.機率效應中,輻射工作人員危險度=有效劑量×5.6×10-2Sv-1。

某公司工业X射线探伤室辐射防护屏蔽计算

某公司工业X射线探伤室辐射防护屏蔽计算

创新管理DOI:10.16660/ki.1674-098X.2018.21.200某公司工业X射线探伤室辐射防护屏蔽计算①相正志1 战景明2 薛向明2 杨雪2(1.辽宁红沿河核电有限公司 辽宁瓦房店 116300;2.中国辐射防护研究院 山西太原 030006)摘 要:以某工业X射线探伤室为例,论述了探伤室屏蔽墙外、屋顶剂量率控制水平和探伤室屏蔽计算方法,验证该探伤室辐射屏蔽设计的有效性。

依据《工业X射线探伤室辐射屏蔽规范》(GBZ/T250-2014),在探伤室屏蔽墙、屋顶及防护门外30cm处选取关注点,估算各关注点辐射剂量率水平,关注点剂量率应满足相应的剂量率控制水平要求。

屏蔽计算结果显示,该探伤室屏蔽墙、入口处、屋顶剂量率均满足剂量率控制值要求,该探伤屏蔽设计能够满足要求。

关键词:工业X射线探伤室 屏蔽计算中图分类号:R144 文献标识码:A 文章编号:1674-098X(2018)07(c)-0200-05①作者简介:相正志(1979—),男,汉族,江苏连云港人,助理研究员,硕士,主要从事安全管理工作。

工业射线探伤是利用X射线、γ射线和中子等在穿透被检物各部分时强度衰减的不同,进行摄片或成像,以检测被检物体内部几何缺陷的一种无损检测手段和方法。

射线探伤技术中,应用最广泛的是X射线探伤技术。

X射线探伤作业会产生X射线,应高度重视探伤室辐射安全和防护问题。

本文以某工业X射线探伤室为例,依据《工业X 射线探伤室辐射屏蔽规范》(GBZ/T250-2014),对探伤室屏蔽墙、屋顶及防护门外剂量率进行了估算,评估探伤室屏蔽设计的有效性。

1 对象与方法1.1 对象某企业拟新建工业X射线探伤室,该探伤室设东、西两个探伤间,每个探伤间分别安装一台X射线探伤机。

探伤机技术参数见表1。

1.2 方法1.2.1 辐射源项该探伤机开机运行会产生X射线,包括:X射线机输出窗输出的有用线束,射线管发出的透过X射线机屏蔽壳体的泄露辐射,有用线束和泄漏辐射入射到工件等散射体后形成的散射辐射。

外照射屏蔽计算方法

外照射屏蔽计算方法
物质中所穿行的平均厚度。

宽束(broad beam) 辐射的衰减
•B:累积因子(build-up factor)
•描述散射光子影响的物理量。
•表示某一点散射光子数所占份额
•B取决于:光子能量,屏蔽材料的原子数,

屏蔽层厚度,屏蔽层几何条件
•B值可以查表求得

屏蔽计算中常用的几个参数
• 减弱倍数K : 辐射场中某点处没有设置屏蔽层时的当量剂 量率H(0),与设置厚度为d的屏蔽层后的当量 剂量率H(d)的比值。 K = H(0)/H(d) = eμd/B(Eγ,μd) 表示屏蔽材料对辐射的屏蔽能力。 无量纲。
(1)时间防护(Time) 累积剂量与受照时间成正比 措施:充分准备,减少受照时间
•(2)距离防护(Distance) • 剂量率与距离的平方成反比 • 措施:远距离操作 • 任何源不能直接用手操作; • 注意β射线防护

外照射防护基本原则:
(3)屏蔽防护(Shielding) 设置屏蔽体 屏蔽材料和厚度的选择: 辐射源的类型、射线能量、活度等
• 直接用公式计算
•利用减弱倍数法计算
•利用半减弱厚度计算

令K=2n,则n=logK/log2

屏蔽厚度d=n △1/2

例题1
将Co-60所产生的剂量减弱2000倍,所需铅防 护层厚度是多少?
解:已知K=2×103, 查表得Co-60的△1/2 =1.2cm 则:n=(log 2×103)/log2=11 R=n×△1/2 =11 ×1.2=13.2cm
• 射程(Range;R): 带电粒子在物质中沿其入射方向所穿过的最大 直线距离。
• 屏蔽材料的厚度等于β粒子在该材料中的最大 射程时,即可屏蔽所有β粒子。

辐射防护(屏蔽计算)

辐射防护(屏蔽计算)

第二节 X、 γ射线的外照射防护
(一)、窄束X或γ射线的减弱规律
(1)窄束(narrow beam): 不包含散射成分的射线束
(2)窄束单能γ射线在物质中的减弱规律
N N0 e d
μ—线衰减系数,cm-1。
22
• 所谓窄束射线是指不包括散射成份的射线 束,通过吸收片后的γ光子,仅由未经相互 作用或称为未经碰撞的光子所组成。“窄 束”一词是实验上通过准直器得到细小的 束而取名。这里所说的“窄束”并不是指 几何学上的细小,而是指物理意义上的 “窄束”,即使射线束有一定宽度,只要 其中没有散射光子,就可称之为“窄束”。
第6章 外照射的防护
1
第一节 外照射防护的一般方法 第二节 X、γ射线的外照射防护 第三节 带电粒子外照射的防护
第四节 中子外照射的防护
2
第一节 外照射防护的一般方法
第一节 外照射防护的一般方法
一、 外照射防护的基本原则
二、 外照射防护的基本方法
三、 屏蔽材料的选择原则
四、 确定屏蔽厚度所需用的参数和资料
3
第一节 外照射防护的一般方法
一、外照射防护的基本原则
内外照射的特点
照射方式
内照射
辐射源类型
多见开放源
危害方式
电离、化 学毒性
常见致电离 粒子 α、β
照射 特点 持续
外照射
多见封闭源
电离
高能β、质子、 间断 、X、n
基本原则:
尽量减少或避免射线从外部对人体的照射,使 之所受照射不超过国家规定的剂量限值。
T= 1/4 T= 1/16
第二节 X、 γ射线的外照射防护
第二节 X、 γ射线的外照射防护
一、X、γ 辐射源及辐射场 二、X、γ 射线在物质中的减弱规律 三、X、γ 射线的屏蔽计算

14 屏蔽计算

14 屏蔽计算

A 1.5 103 3.3 x0 2 49.5mSv / 小时 2 R 100
9/20
要求降到25μSv /时,即 注意到铯-137的γ射线能量为0.662兆电子伏,这样可 以在表5-3和表5-5中查到所需的屏蔽层厚度为:混凝 土65.5匣米,或铅7.08厘米。
49.5 K 2 103 倍。再 0.025
6/20
1、减弱倍数法

若用照射量率来描述γ辐射场的强弱:
X B X 0 e d




X
: 有屏蔽材料的照射率 X
照射量积累因子
0
:没有屏蔽材料的照射量率
B :

d :所加屏蔽材料的厚度的射线平均自路程个数
7/20

0降低到拟达到的水平 X 用k代表为把原有的照射量 X

[例]一个210Po-Be中子源,210Po的放射性活度为2Ci (7.4×1010Bq),为了使离源50厘米处剂量当量率 降至0.025mSV/时以下,须用多厚的石蜡屏蔽? 解:查表知,中子源强为: A=2×2.5×106=5×106中子/秒 容许剂量当量率为:H=0.025mSv/时=6.94×10-9Sv/ 秒。查表,中子平均能量En=4.3兆电子伏,用插入 法求得单位中子通量产生的剂量当量为:
19/20

不加屏蔽时,R=50厘米处中子通量率为:
1 1 2 0 5 10 167 中子 秒 厘米 4 (50) 2
6

查得半值层d=6.68厘米,取B=l,则:
K 2
x 6.68
167 9.8 17

20/20
由此得出x=20厘米。
(1.265- 0.09541n E )

屏蔽计算资料知识讲解

屏蔽计算资料知识讲解

屏蔽计算资料: 一、X射线探伤机房4.4屏蔽设计的核实与评价4.4.1评价方法4.4.1.1屏蔽评价原则(1)根据国家标准规定,对源的设计、建造和运行中留有足够的安全裕量,以确保可靠的正常运行。

(2)在对四周墙体、天花板的屏蔽厚度计算时,对泄漏X射线的能量,按原初辐射能量计算;对散射X射线,四周墙体(包括防护门)按有用线束90°散射计算,对天花板取90°散射X射线计算。

(3)同一屏蔽体按泄漏辐射和散射辐射分别计算屏蔽厚度,若两者的厚度相差不到一个1/10值衰减层厚度时,则在其中较厚的一个厚度上再加一个半值层厚度。

4.4.1.2辐射屏蔽的计算方法(1)原初X射线屏蔽计算(主防护体的屏蔽厚度计算)按下式计算最大允许透射量B pp 2B=H×dW×T×U(1)式中:B p——屏蔽墙最大允许透射量,mSv·m*m·mA-1·min-1;H——周剂量约束值,mSv·wk-1;d——焦点至计算点的距离,m;W——周工作负荷,mA·min·wk-1;U——使用因子;T——居留因子。

计算出B p后,取负对数(-logB p),得出相应1/10值(TVT)层厚度个数N TVT,查相应能量的X射线在混凝土和铅的1/10值层厚度,可计算原初X射线屏蔽厚度。

《放射物理与防护》(2)散射X射线屏蔽计算(副防护体屏蔽厚度计算)散射X 射线的透射量B s 按下式计算: B s =H ·(d 1d 2)2/(αWAT) (2) 式中 :B s ——屏蔽墙最大允许透射量,mSv ·mA -1·min -1; H ——周剂量约束值,mSv ·wk -1;d 1——电子靶到散射表面的最近距离,m ; d 2——散射点至计算点的距离,m ; α——反散射因子, 90°散射角可取0.07%; A ——散射表面面积,m 2;W 、T 、H 的含义与公式(1)相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4、墙(1-2):
需要考虑初级辐射和次级辐射;其后方为加速器辅助机房(控制
区),T=1(为安全),所以P/T=0.1mGy/周;dp=3m,U=1, Kp1=5.9mGy/患者,N=40
利用公式得出:
K p(0)
K p1UN dp2
5.9 *1* 40 32
26 .22 mGy
/周
将这个值降低到P/T=0.1mGy/周
利用公式得出:
K
(0)
se c
K
se
1 c
N
d
2 se c
2.9 *10 -2 * 40 (1.3)2
0.686 mGy
/周
将这个值降低到P/T=0.32mGy/周
Bse(c Xbarrier)
P/T
K
(0) sec
0.32 0.686
4.66 *10-1
在次级辐射的透射曲线上可查,相当于0.1mm铅当量,所以墙(1-3)需 要0.1mm铅当量的屏蔽。
方法三 IAEA 估算法
❖ D = FA/r2 ❖ A单位 GBq ❖ F为γ因子 ❖ r单位 m ❖ D单位 mSv/h
Jilin University
❖ 透射因子B ❖ 衰减倍数K
I0
I1
二、计算实例
Jilin University
例一
控制区职业人员剂量目标值取0.1mGy/周, 非控制区公众剂量目标值取0.02mGy/周。
指定的工作负荷分布
每名患者的Wnorm (mA·min/患者)
1米处每名患者的初 级空气比释动能
(mGy/患者)
X射线摄影机房(胸部bucky)
0.6
2.3
X射线摄影机房(地板或其他屏障)
1.9
5.2
X射线摄影管(摄影和透视共用机房)
1.5
5.9
专用立式胸部bucky摄影机房
0.22
1.2
1、地板
mm×lg(1/(3.8×10-3))=1.4 mm 因为,此处Xpre=0.3mm铅当量,
Xbarrier=1.4-0.3=1.1mm铅当量,针对初级辐 射1-2墙需要1.1mm铅当量的屏蔽。
5、墙(1-3):
只需要考虑次级辐射;其后方为以空旷地(非控制区),T=1/16,则
P/T=0.02*16=0.32mGy/周;dsec=1.3m,Ksec1=2.9*10-2,N=40
利用公式得到:
将该值降到P/T=0.32mGy/周,利用公式 得到1-2墙次级透射为:
由曲线查得铅当量厚度为0.2mm铅当量。
1-1墙屏蔽计算 条件: 1.1-1墙后面为无人区、非控制区,留居因子
T=1/16,P/T=0.32mGy/周。 2.该办公室考虑初级辐射和次级辐射的屏蔽。 3.每周检查患者数目N=150人。 Ⅰ.初级屏蔽的计算: 条件: 1.X射线管垂直通过床射向1-1墙,从表中摄影
2、天花板
需要考虑初级辐射和次级辐射;其上方为一间办公室(非
控K1制p=5区.9)m,GyT/=患1,者所以P/T=0.02mGy/周;dp=3m;U=1;
利用公式得出:
将这个值降低到P/TK=0p(.00) 2mKGdpy1Up/2周N,
5.9
*1* 32
40
26.22
Bp ( X barrier X pre )
穿过床的墙壁
0.09
X线摄影机房(地板或其它屏蔽)
其他墙壁a
0.02
X线摄影机房(地板或其它屏蔽)
胸部bucky的墙壁
1.00
X线摄影机房(胸部bucky)
a其他墙壁指除穿过床的墙壁和胸部bucky的墙壁以外的由初级线束指向的那些墙壁
例2
某透视机机房如图1,位于二层建 筑,已知该机房每周检查患者 N=150人,地板、天花板后面为工 作人员办公室。求各屏蔽墙厚度?
因为,此处Xpre=0.85mm铅当量(见表 4.18),Xbarrier=1.8-0.85=0.95mm铅当量, 针对初级辐射天花板需要0.95mm铅当量的 屏蔽。
3、墙(1-1): 本墙为控制室墙壁,只需要考虑次级辐射;其后方为控制室(控制区), T=1,则P/T=0.1mGy/周;dsec=1.5m;Ksec1=2.9*10-2 利用公式得出:
K
(0)
se c
K
1 se c
N
d sec2
2.9 *10 -2 * 40 (1.5)2
0.516 mGy
/周
将这个值降低到P/T=0.1mGy/周
Bse(c Xbarrier)
P/T K (0)
sec
0.1 0.516
1.9*10-1
在次级辐射的透射曲线上可查,相当于0.2mm铅当量, 所以墙(1-1)需要0.2mm铅当量的屏蔽。
1-3墙屏蔽计算
条件:
1.此墙后面为控制室,控制区,因此居 留因子选取T=1,因而P/T=0.1mGy/周。
2.此墙只考虑次级辐射。
3.设dsec=1.8米 4.从表中透视管(摄影+透视共用机房)
栏 mG中y查/患到者泄。漏+侧向散射总和Ksec1=3.2*10-1
5.每周检查患者数目N=150人。
/周
将这个值降低到0.1mGy/周,
B( X barrier
X pre )
P/T K p(0)
0.08 26.22
3.05*103

L混凝土=TVL混凝土×NTVL = TVL混凝土 ×lg(1/BX)=35.6mm×lg(1/(3.05×10-3))
=89.6mm L铅=TVL铅×NTVL = TVL铅×lg(1/BX)=0.58
和透视公用机房栏中查到Kp1=5.9mGy/患者。 2.选dp=3米
利用公式给出:
K P (0)
K P1UN dP2
5.9 1150 (3) 2
98mGy / 患者
将这个值降到P/T=0.32mGy/周,利用公式
得到地板的初级透射为:
BP ( xbarrie r
x pre )
0.32mGy / 患者 98mGy / 患者
对初级辐射束的不同材料前屏蔽当量厚度(xpre)
应用条件
Pb
摄影床影像接受器或墙上安装的暗盒架(由滤线栅、暗盒和
影像接受器支持构件的衰减造成的)
0.85
侧向投照束穿过摄影床(仅由滤线栅和暗盒衰减造成的)
0.3
xpre(mm) 混凝土
72 30
钢板 7 2
在指定的患者工作负荷(W norm )和d p=1米处的未屏蔽的初级空气比释动能K1P值
下面对机房各面墙体进行计算: (1)地板下面为工作人员办公室,居留因
子T=1,P/T=0.02mGy/周。 (2)该办公室考虑初级辐射的屏蔽。 从表中地板栏得知U=0.89,为安全目的设
U=1。选dp=3.7米 利用公式给出:
将这个值降到P/T=0.02mGy/周,利用公式得 到地板的初级透射为:
例:某模拟机机房屏蔽计算,该机房仅一 台X线模拟机,为了安全N值取忙时的40人/ 周,位于建筑物最底层,求各墙厚度?
d为居留距离;T为居留因子,国内常用1、1/4、1/16这三个值;N为每周检查患者数 目,体现工作负荷;U为使用因子,主要用于初级辐射线束;
Xpre为前屏蔽(摄影床影像接收器或墙上安装的暗盒架相当于0.85mmPb,侧向投射 束穿过摄影床相当于0.3mmPb); B(x)为透射因子,根据B(x)值在透射曲线上确 定屏蔽厚度;K为X射线的空气比释动能,K1p为在距X射线源1米所指定的工作负荷分布情 况下的每名患者未屏蔽的初级空气比释动能,本模拟机K1p取5.9mGy/患者;Kp(0)为在 dp点上未屏蔽的初级比释动能。
L混凝土=TVL混凝土×NTVL = TVL混凝土 ×lg(1/BX)=35.6mm×lg(1/(3.1×10-4))=124.9 mm
L铅=TVL铅×NTVL = TVL铅×lg(1/BX)=0.58 mm×lg(1/(3.1×10-4))=2.0 mm
因为,从图4.11中查得需要铅当量总厚度为 2.0mm,从表4.18摄影床及其附件前衰减 xpre=0.85mm铅当量厚度,影像增强器取 0.5mmPb,所以Xbarrier=2.0-0.5=1.5mm厚度铅当量。
注:对于一面墙同时存在初级辐射和次级辐射时, 只需计算初级辐射所需要的屏蔽厚度即可。
天花板的屏蔽计算
条件:
1.天花板仅考虑次级辐射。
2.其上方为一间办公室,非控制区,留居因 子T=1,因此P/T=0.02mGy/周。
3.设dL=2.7米,dS=3.5米,为防护安全设 dL=dS=dsec=2.7米。
3.2 10 3
L混凝土=TVL混凝土×NTVL = TVL混凝土 ×lg(1/BX)=35.6mm×lg(1/(3.2×10-3))=88.8 mm
mm×lg(1/(3.05×10-3))=1.5 mm 因为,此处Xpre=0.3mm铅当量,
Xbarrier=1.5-0.3=1.2mm铅当量,针对初级辐 射1-4墙需要1.2mm铅当量的屏蔽。
普通X射线摄影机房初级线束的使用因子(U)
屏蔽类型
使用因子(U)
运用于下述工作负荷分布
地板
0.89
X线摄影机房(地板或其它屏蔽)
❖ 方法一 (快速估算法)距点源1m
❖ D = 0.123AE
❖ A单位 MBq
❖ D单位 μGy/h
❖ E单位 MeV
Jilin University
方法二 一般估算法
❖ D = 0.235AГ/r2 ❖ A单位 MBq ❖ Г单位 Rm2/hCi ❖ D单位 μGy/h ❖ r单位 m
Jilin University
相关文档
最新文档