信号与系统课件(郑君里版)第二章
郑君里信号与系统PPT
则系统 H 是线性系统,否则是非线性系统. 注意:外加激励与系统非零状态单独处理
X
第
二.时变系统与时不变系统
1.定义
一个系统,在零初始条件下,其输出响应与输入信号 施加于系统的时间起点无关,称为非时变系统,否则 称为时变系统。
22 页
认识:
•电路分析上看:元件的参数值是否随时间而变 • 从方程看:系数是否随时间而变 •从输入输出关系看:
第 9 页
X
六.利用分形(fractal)理论描述信号
• • • •
第
10 页
分形几何理论简称分形理论或分数维理论; 示例 创始人为B.B.Mabdelbrot; 分形是“其部分与整体有形似性的体系”; 在信号传输与处理领域应用分形技术的实例表现在 以下几个方面:图像数据压缩、语音合成、地震信 号或石油探井信号分析、声纳或雷达信号检测、通 信网业务流量描述等。这些信号的共同特点都是具 有一定的自相似性,借助分性理论可提取信号特征, 并利用一定的数学迭代方法大大简化信号的描述, 或自动生成某些具有自相似特征的信号。
3.标量乘法器(数乘器,比例器)
et
A
r t
A
r ( t ) Ae( t )
X
第
基本元件2
4.微分器 5.积分器 6.延时器
e t
d
14 页
r t
dt
de ( t ) r t dt
et
T
r t
r ( t ) e( t )dt
t
et
dt
பைடு நூலகம்
f ( ) ( t ) d
《信号与系统》第二版 (郑君里) 高等教育出版社课件
第二章连续时间系统的时域分析系统的微分方程及其响应◆系统的微分方程⏹描述LTI 系统的输入-输出特性⏹时域分析法⏹从微分方程出发,在时域中研究输入信号通过系统后响应变化规律的方法⏹建立微分方程的基本依据⏹基尔霍夫定律☐KCL :☐KVL :⏹电压-电流关系-VCR :∑=0)(t i ∑=0)(t u )()(d )(1)(d )(d )(t Ri t u i C t u tt i Lt u L R tC C L L===⎰∞-ττ)()()('21)2....(..........).........()()(')()(d )(d b t g t ay t y t i LRt i L R t i t i t i t t i R L S L L S L L =+=+=+⨯程的一般形式)可以得到一阶微分方)(由(即)有对于图(输入信号的强迫函数系统响应变量(输出)+-)(t u s R )(t u c C+-图(a)+-)(t i s R )(t i L L图(b))1.....().........(1)(1)(')()(d )(d a t u RCt u RC t u t u t u tt u RC S C C S C C =+=+即以列微分方程)为一个一阶系统,可图(tt u C t i t i LCt i LC t i L R t i t t i t i C t u t Ri t u t t i L t Ri t u i C t u t t i Lt u t u t u t u t i t i t i C C S L L L tL s C L C L L R tC C L L R C L L S d )(d )(4)3).....((1)(1)()(12)2........(..........d )]()([1)()1.....(..........).........()(d )(d )()()4........(....................d )(1)(d )(d )(VCR )()()(KVL )5.(..........).........()()(KCL '''C ==++-=-====-=-=⎰⎰∞-∞-)式两边求导得到对()并求导一次,整理得)带入(将(联立上式得:::以列微分方程图为一个二阶系统,可ττ系统激励信号(电压源或电流源)系统响应变量(输出)+-)(t u R R)(t u L+-+-)(t i s )(t i L L )(t u c C+-)(t i C )()(...)()()()(...)()(LTI n )()(1)(1)()(3d )(d )()(50'1)1(1)(0'1)1(1)(''''t f b t f b t f b t f b t y a t y a t y a t y a t i LCR t i C t u LC t u L R t u tt u C t i t i m m m m n n n n S S C C C C S L ++++=+++++=++-=----的形式可以写为系统,其微分方程阶因此对于一般的)式得代入()式得带入(经典法求解微分方程◆设激励信号为e(t),系统响应为r(t),则可以用一高阶的微分方程表示◆全解=齐次解+特解⏹齐次解:满足右端激励e(t)及其各阶导数都为零的齐次方程,即⏹齐次解的形式是形如函数的线性组合,令,代入上式得:)()(...)()()()(...)()()1(1)1(1)(0)1(1)1(1)(0t e E t e E t eE t eE t r C t r C t r C t r C m m m m n n n n ++++=++++----0)()(...)()()1(1)1(1)(0=++++--t r C t r C t r C t r C n n n n atAe at Ae t r =)(0...1110=++++--atn at n at n at n Ae C Aae C e Aa C e Aa C 由初始条件决定,,,其中常数的重根部分的齐次解为阶重根则相对于为如果,则齐次解为称为微分方程的特征根,,,个根对应的特征方程化简得:n i ta ik i ni ta i ta n ta ta h n n n n A A A e tA a a eA eA eA e A t r a a a C a C a C a C i n 21k111121n 211110,)(k )(n 0...121∑∑=-=--=+++==++++)()()(t r t r t r p h +=特解的函数形式与激励函数形式有关,见表2-2,将激励代入微分方程右端,比较系数定出特解。
信号与系统_郑君里_第三版_课件
2016/5/9
6
积分器:
R
C vo ( t )
微分器: C
vi(t)
vi(t)
R
vo ( t )
电视系统:
黑灰白 消息 变换器 发射机 信道 (空间) 接收机 变换器
黑灰 白 消息
(图像) (摄像机)
(显像管) (图像)
2016/5/9
7
1.2 信号分类和典型信号
1.2.1 信号的分类
对于各种信号,可以从不同角度进行分类。
2016/5/9
5
系统:一组相互有联系的事物并具有特定功能的整体。
系统可分为物理系统和非物理系统。如:电路系统、 通信系统、自动控制系统、机械系统、光学系统等属于 物理系统;而生物系统、政治体制系统、经济结构系统、 交通系统、气象系统等属于非物理系统 。 每个系统都有各自的数学模型。两个不同的系统可 能有相同的数学模型,甚至物理系统与非物理系统也可 能有相同的数学模型。将数学模型相同的系统称为相似 系统。
(t )
t
( t0 )d u (t t0 )
(1)
0 u(t) 1 0
25
u(t)与 (t ) 的关系:
t
2016/5/9
t
( )d u(t )
d u (t ) (t ) dt
t
( t0 )d u(t t0 )
t
d u (t t0 ) (t t0 ) dt
f (t ) (t ) f (0) (t )
f (t )
f (0)
(1)
(t )
(1)
f (0) (t )
郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解-第2章 连续时间系统的时域分析【圣才
Ri(t) v1(t) e(t)
Ri(t)
1 C
t
i(
)d
v1 (t )
e(t)
vo (t) v1(t)
消元可得微分方程:
6 / 59
圣才电子书
十万种考研考证电子书、题库视频学习平
1
台
C
d
dt
vo (t)
1 R
vo (t)
R
e(t)
2-2 图 2-2-2 所示为理想火箭推动器模型。火箭质量为 m1,荷载舱质量为 m2,两 者中间用刚度系数为 k 的弹簧相连接。火箭和荷载舱各自受到摩擦力的作用,摩擦系数分 别为 f1 和 f2。求火箭推进力 e(t)与荷载舱运动速度 v2(t)之间的微分方程表示。
M
di1 (t ) dt
Ri2 (t)
0
化简方程组可得微分方程:
(L2
M
2
)
d4 dt 4
vo
(t)
2RL
d3 dt 3
vo
(t)
2L C
R2
d2 dt 2
vo
(t)
2R C
d dt
vo
(t)
1 C2
vo
(t)
MR
d2 dt 2
e(t)
(3)由图 2-2-1(c)所示列写电路方程,得:
C
dv1 (t ) dt
b.自由响应由两部分组成,其中,一部分由起始状态决定,另一部分由激励信号决 定,二者都与系统的自身参数有关;当系统 0-状态为零,则零输入响应为零,但自由响应 可以不为零。
c.零输入响应在 0-时刻到 0+时刻不跳变,此时刻若发生跳变,可能为零状态响应分 量。
信号与系统引论 课件 郑君里 第2章 连续时间系统的时域分析
网络拓扑约束:由网络结构决定的电压电流约束关系,
KCL,KVL。
例2-1
电阻 电感 电容
求并联电路的端电压v(t)与激励is(t)间的关系。
1 iR iR t v t R i s t R L 1 t i L t v d L d v t iC t C 元件特性约束 dt
E (常数)
B(常数)
B1t p B2 t p1 B p t B p1
tp e t
cos t sin t
Be t
B1 cos t B2 sin t
t p e t sin t B1t p B2 t p 1 B p t B p 1 e t cos t
2.2 系统数学模型(微分方程)的建立
对于电路系统,主要是根据元件特性约束和网络拓扑
约束列写系统的微分方程。
对于其他物理系统,根据实际系统的物理特性列写系 统的微分方程。 元件特性约束:表征元件特性的关系式。例如二端元
件电阻、电容、电感各自的电压与电流的关系以及
四端元件互感的初、次级电压与电流的关系等等。
等式两端各对应幂次的系数应相等,于是有
3 B1 1 4 B1 3 B2 2 2 B 2 B 3 B 0 2 3 1
联解得到
1 2 10 B1 , B2 , B3 3 9 27
所以,特解为
1 2 2 10 rp t t t 3 9 27
i L (0 ) i L (0 )
例2-6 如图示出RC一阶电路,电路中无储能,起始电
压和电流都为零,激励信号e(t)=u(t),求t >0系统的响
应——电阻两端电压vR(t)。
信号与系统课件(郑君里版)第二章
e ,t≥0;y(0)=2,y’(0)= 2 t ,t≥0;y(0)= 1, e
t
-1
y’(0)=0时的全解。
解: (1) 特征方程为
2 + 5λ+ 6 = 0
其特征根λ1= – 2,λ2= – 3。 齐次解为
yh (t ) C1e2t C2e2t
由表2-2可知,当f(t) = 2 e t
y fh (t ) C f 1e
2t
C f 2e
t
其特解为常数 3 , 于是有
y f (t ) C f 1e2t C f 2et 3
C1 1 C 2 4
根据初始值求得:
y f (t ) e2t 4et 3,t 0
四.系统响应划分
自由响应+强迫响应 (Natural+forced) 暂态响应+稳态响应 (Transient+Steady-state) 零输入响应+零状态响应 (Zero-input+Zero-state)
零输入响应
2.2 冲激响应和阶跃响应
一.冲激响应 1.定义 系统在单位冲激信号δ(t) 作用下产生的零状态响 应,称为单位冲激响应,简称冲激响应,一般用h(t)表 示。
t
ht
H
[例2.2.1] 描述某系统的微分方程为y”(t)+5y’(t)+6y(t)=f(t)求其 冲激响应h(t)。
相互关系
零输入响应是自由响应的一部分,零状态响应有自由响 应的一部分和强迫响应构成 。
y (t ) e 2t 3 y x (t ) y f (t ) (2e 2t 4e t ) (e 2t 4e t 3),t 0
信号与系统课件(郑君里版)
1.2 信号的描述和分类 一、信号的描述
1、数学描述:使用具体的数学表达式,把信号描述为 一个或若干个自变量的函数或序列的形式。
2、波形描述:按照函数自变量的变化关系,把信号的 波形画出来。 “信号”与“函数”两词常相互通用。
二、信号的分类 1. 确定信号和随机信号 确定信号或规则信号 :可以用确定时间函数表示的信号 随机信号:若信号不能用确切的函数描述,它在任意时刻 的取值都具有不确定性,只可能知道它的统计特性
至原来的1/a
f (t)
1
0
12 t
压缩
f (2t)
1
0 0.5 1 2 t
(2)0<a <1 则 f (at)将 f (t)的波形沿时间轴扩
展至原来的1/a。
f (t)
1
扩展
f
(
1 2
t)
1
0
12 t
0
2
4t
对于离散信号,由于f (a k) 仅在为a k 为 整数时才有意义, 进行尺度变换时可能会使部 分信号丢失。因此一般不作波形的尺度变换。
信号是信息的表现形式,信息是信号的具体内容。 信号是信息的载体,通过信号传递信息。
自然和物理信号:语音、图像、地震信号、生理信号等 人工产生的信号:人类为了达到某种目的人为产生的信 号。雷达信号、通讯信号、医用超声信号、机械探伤信 号等。
二、系统的概念 系统(system)是指若干相互关联的事物组合而
eg: f(t) = 2u(t)- 3u(t-1) +u(t-2)
(2)用阶跃函数表示信号的作用区间
(3)积分
t
u( )d tu(t)
三、单位冲激函数 (t) 单位冲激函数是个奇异函数,它是对强度极大,作
信号与系统-课件-郑君里-homework
Solution :
h1 (t )
u(t)
H1(s)
1 s
h(t) (2 t)u(t 1) (t 1)u(t 1) u(t 1)
H (s) (
1 s2
1 ) e s s
(
s1 s2
)
e
s
H ( s ) [ H 1 ( s ) H 2 ( s )] H 3 ( s )
School of Computer Science and Information
Solution :
pole p 2 ; zero q 0 H ( s ) B s s 2
H ( ) 1 B 1 H (s) s s 2
Define s j then H ( j ) j j 2
3 y2(t)
df 2 ( t ) dt
f2(t)
s 2Y 2 ( s ) 4 sY 2 ( s ) 3Y 2 ( s ) sF 2 ( s ) F 2 ( s )
H 2(s)
Y2(s) F2(s)
s1 s2 4s 3
School of Computer Science and Information
differentai lequation:
y(t)5y(t)6y(t) x(t) 3x(t) 2x(t)
Whenx(t) (et 1)u(t), theentireresponse
y(t) (4e2t 4 e3t 1)u(t). Todeterminethe
3
3
zero- inputresponseandzero- stateresponse.
信号与系统-课件-郑君里
1.1 Signals
Signals are functions of independent variables that carry information. The independent variables can be continuous or discrete. The independent variables can be 1-D, 2-D, ••• , n-D. For this course: Focus on a single (1-D) independent variable which we call “time”. Continuous-Time signals: x(t), t-continuous values. Discrete-Time signals: x(n), n-integer values only.
School of Computer Science and Information
Examples
Electrical signals — voltages and currents in a circuit. Acoustic signals — audio or speech signals. Video signals — intensity variations in an image. Biological signals — sequence of bases in a gene.
School of Computer Science and Information
1.3 Types of Signals
1. Certain Signal and Random Signal
信号与系统-课件-(第三版)郑君里-PPT课件
Example
f( t) f( t)
A … … 2 4 6 k
- T
T 2
o
T 2 - A
T
t
- 4 - 2 0
Periodic Signal
School of Computer Science and Information
3. Continuous-time Signal and Discrete-time Signal
Example
Noise Signal and Interfere Signal
School of Computer Science and Information
2. Periodic Signal and Aperiodic Signal
Periodic Signal — Has the property that it is
Random Signal — Can’t be represented mathematically as a function of certain time. We only know the probability of certain value.
School of Computer Science and Information
Vertical Wind Profile
School of Computer Science and Information
1.2 Systems
For the most part, our view of systems will be from an input-output perspective. A system responds to applied input signals, and its response is described in terms of one or more output signals.
郑君里信号与系统第二章
■ 第 14 页
全解为: y(t) = yh(t) + yp(t) = C1e – 2t + C2e – 3t + e – t 其中 待定常数C1,C2由初始条件确定。
k
yh(t) Cit kieit
n
C jejt
i 1
jk 1
λi是k阶重根,λj是单根。Ci、Cj(常数)由系统初始状态决定。
(3)所有λj为一对共轭复根 j, 则微分方程的齐次解为:
yh (t ) et [C cos t D sin t]
▲
■
第 7页
uC
uS
uC (0 ),uC(0 )
L
uS(t)
R
uC(t)
C
二阶常系数线性微分方程。
抽去具有的物理含义,微分方程写成
a2
d
2
d
y(t) t2
a1
d
y(t) dt
a0
y(t)
f (t)
▲
■
第 2页
2. 离散系统的解析描述
例:某人每月初在银行存入一定数量的款,月息为β元/
月,求第k个月初存折上的款数。
■ 第 20 页
aδ"(t)+bδ'(t)+cδ(t)+r1(t) + 3aδ'(t)+3bδ(t)+3r2(t) + 2aδ(t)+2r3(t)= 2δ"(t) + δ'(t)
《信号与系统》郑君里教学课件讲义
(4)19世纪末,人们研究用电磁波传送无线电信号。 赫兹(H.Hertz)波波夫、马可尼等作出贡献。1901年 马可尼成功地实现了横渡大西洋的无线电通信。
(5)光纤通信 从此,传输电信号的通信方式得到广泛应用和迅速发展。 如今:(1)卫星通信技术为基础“全球定位系统(Global Positioning System, 缩写为GPS)用无线电信号的传输, 测定地球表面和周围空间任意目标的位置,其精度可达 数十米之内。 (2)个人通信技术:无论任何人在任何时候和任何地方 都能够和世界上其他人进行通信。 (3)“全球通信网”是信息网络技术的发展必然趋势。 目前的综合业务数字网(Integrated Services Digital Network,缩写为ISDN),Internet或称因特网,以及其他各 种信息网络技术为全球通信网奠定了基础。
信号与系统
郑君里
教学课件
1、教材:信号与系统 郑君里 杨为理 应启珩编 2、信号与系统 Signals & Systems ALAN V.OPPENHEIM ALANS. WILLSKY 清华大学出版社(英文影印版) (中译本)刘树棠 西安交通大学出版社 3、信号与系统例题分析及习题 乐正友 杨为理 应启珩编 4、信号与系统习题集 西北工业大学
5. 系统的分类
系统可分为物理系统与非物理系统,人工系统以及自 然系统。 物理系统:包括通信系统、电力系统、机械系统等; 非物理系统:政治结构、经济组织、生产管理等; 人工系统:计算机网、交通运输网、水利灌溉网以及 交响乐队等; 自然系统:小至原子核,大如太阳系,可以是无生命 的,也可是有生命的(如动物的神经网络)。
4.信号、电路(网络)与系统的关系
离开了信号,电路与系统将失去意义。
信号与系统(郑君里)第二版 讲义 第二章
第二章 连续时间系统的时域分析第一讲 微分方程的建立与求解一、微分方程的建立与求解对电路系统建立微分方程,其各支路的电流、电压将为两种约束所支配: 1.来自连接方式的约束:KVL 和KIL ,与元件的性质无关。
2.来自元件伏安关系的约束:与元件的连接方式无关。
例2-1 如图2-1所示电路,激励信号为,求输出信号。
电路起始电压为零。
图2-1解以输出电压为响应变量,列回路电压方程:所以齐次解为:。
因激励信号为,若,则,将其代入微分方程:所以,从而求得完全解:由于电路起始电压为零并且输入不是冲激信号,所以电容两端电压不会发生跳变,,从而若,则特解为,将其代入微分方程,并利用起始条件求出系数,从而得到:二、起始条件的跳变——从到1.系统的状态(起始与初始状态)(1)系统的状态:系统在某一时刻的状态是一组必须知道的最少量的数据,利用这组数据和系统的模型以及该时刻接入的激励信号,就能够完全确定系统任何时刻的响应。
由于激励信号的接入,系统响应及其各阶导数可能在t=0时刻发生跳变,所以以表示激励接入之前的瞬时,而以表示激励接入以后的瞬时。
(2)起始状态:,它决定了零输入响应,在激励接入之前的瞬时t=系统的状态,它总结了计算未来响应所需要的过去的全部信息。
(3)初始状态:跳变量,它决定了零状态响应,在激励接入之后的瞬时系统的状态。
(4)初始条件:它决定了完全响应。
这三个量的关系是:。
2.初始条件的确定(换路定律)电容电压和电感电流在换路(电路接通、断开、接线突变、电路参数突变、电源突变)瞬间前后不能发生突变,即是连续的。
时不变:时变:例电路如图2-2所示,t=0以前开关位于"1"已进入稳态,t=0时刻,开关自"1"转至"2"。
(1)试从物理概念判断、和、。
(2)写出t>0时间内描述系统的微分方程式,求的完全响应。
图2-2解(1)换路前电路处于稳态电感相当于短路,电感电流,电容相当于开路= 0,= = 0。
《信号与系统》第二版_(郑君里)_高等教育出版社课件
10
2021/4/2
零输入响应与零状态响应(cont.)
例2 7 设有如图所示的RC电路,电容两端有起始电压u( C 0),激 励源为e(t),求t 0时系统响应 电容两端电压u( C t)。 解:列写系统的微分方程为
d dt
uc (t)
1 RC
uc (t)
1 RC
e(t )
根
据微分方
程
的
一般表达式可
t
e RCuc (t) uc (0 )
1 RC
t
e RCe( )d
0-
R
+
+ e(t) uc (0 ) C
-
整
理
得:uc
(t
)=e
t RC
uc
(0
)
1 RC
t
e
t RC
e(
)d
0-
零输入响应
零状态响应
+
uc (t)
-
smilegs2001@
11
2021/4/2
零输入响应与零状态响应(cont.)
uR (t) RiL (t) 联立上式得
+
is (t)
-
R
iC (t) +
C
uc (t)
-
iL (t)
+
L uL (t)
-
带入(5)式得iL
(t )
iS
(t )
C
duC (t) dt
代入(3)式得
L
diL (t) dt
uC (t)
RiL (t)........................(1)
KVL:
uL
信号与系统考研电子讲义郑君里
12§1.2信号的描述,分类和典型示例(续)•指数信号和正弦信号•奇异信号–斜变信号–单位阶跃信号和符号函数–单位冲激和冲激偶信号正交信号•11(k 实指数信号1—(k 和s 都是实数)•若中的为0 , k 为实数βαj k +=β同时•0 , s ωσs +=ω若中的为,为实数j k则为实指数函数stke t x =)(正弦信号1—取周期复指数的实部•欧拉公式sin(cos()(0ωωφω+++=+t t et j •取实部则为正弦信号)()(00φφj =)cos()(0φω+t A t x 81.3§信号的运算(参考网站绪论的内容)Ee whu edu cn用Flash演示的动态过程§1.4阶跃信号与冲激信号一.奇异信号即本身、其导数或其积分有不连续点的函数。
1.斜变信号2.单位阶跃信号3.符号函数4.单位冲激5.冲激偶信号13信号加窗或取单边t t u t u e t t−−=−)]()([)(0f f(t)f()t(1)突然接入的直流电压()2)突然接通又马上断开电源K负载r(t)r(t 3)r(t 1)r(t 2)r(t-3)-r(t-1)-r(t-2)f(t)1)]2()2()[1()(.101.38−−+−=−t u t u tt f a p 题2....)2()1()()(.+−+−+=t u t u t u t f b )]()([(sin )(.T t u t u t E t f c −−=πT二.单位冲激函数)(t dr )(t du δ=)(t u dt =)(t dt 1.定义:(p17—21))]()([1)(.lim ττδ−−+=t u t u t a 220ττ→)()(t t =δ1=∞dt t limfnn ∞→)(∫∞−fn0=t )(lim ∞→fnn 0≠t 用规则函数脉冲序列的极限来定义)(t Rt ut )(t)(tδtb.Dirac 定义:=)(t δ∫∞=1)(dt t δ00≠t 0=∞t c.利用冲激函数的抽样性∞)()()(00t f dt t t t f =−∫∞δ∞−∫∞−=)0()()(f dt t t f δ∞−)()()(.00t f dt t t t f a =−∫∞−δ1∞)()]([.00t t t t b −=−−δδ)()(.t aat c δδ=)()()()(.000t t t f t t t f d −=−δδt)()(.t dtt u e δ=)()(t u d =∫∞−ττδ+−)(t i c 由于冲激电流的出现,电容两端的电压可以突变;电感电流也可以突变。
信号与系统(郑君里)ppt
3 页
X
§ 1.1 信号与系统
•信号(signal) •系统(system) •信号理论与系统理论
青岛大学信息工程学院
信号(Signal)
第 5 页
•消息(Message):在通信系统中,一般将语言、文字、 图像或数据统称为消息。 •信息(Information):一般指消息中赋予人们的新知 识、新概念,定义方法复杂,将在后续课程中研究。 •信号(Signal):指消息的表现形式与传送载体。 •信号是消息的表现形式与传送载体,消息是信号的传 送内容。例如电信号传送声音、图像、文字等。 •电信号是应用最广泛的物理量,如电压、电流、电荷、 磁通等。
第
11 页
脚压力
汽车
汽车制动
光信号
照相机
像片
X
信号理论与系统理论
信号分析:研究信号的基本性能,如信号 的描述、性质等。 信号理论 信号传输(包含信号交换) 信号处理
系统分析:给定系统,研究系统对于输入 激励所产生的输出响应。 系统理论 系统综合:按照给定的需求设计(综合) 系统。
本课程重点讨论信号的分析、系统的分析,分析是综合的基础。
15 页
X
第
1.确定性信号和随机信号
根据信号随时间的变化规律分为:
•确定性信号
表示为一确定的时间函数,对于指定的某一时刻t,可确定一相 应的函数值f(t)。若干不连续点除外。 •随机信号 无法用明确的数学关系式表达的信号,具有未知预测的不确定 性,只能用概率统计方法由过去估计未来或找出某些统计特征 量。
t
单边衰减指数信号 t0 0 f t t e t0
1
O
f t 1
O
t
通常把 称为指数信号的时间常数,记作,代表信号增长或 衰减速度,越大,指数信号增长或衰减的速度越慢 。
郑君里信号与系统课件
1 e L e e ed t 0 α s α s 0
α t α t st
α s t
σ α
st L t t e d t 1 全s域平面收敛
L t t t t e d t e 0 0
T 1 2 T 1 1 2
注意!
傅立叶级数与傅立叶系数的联系与区别
指数形式傅立叶级数的傅里叶系数
jn1t 称为指数形式 f ( t ) Fne 的傅立叶级数 n
1 F (n 1) Fn T 1
T1 2 T 1 2
f (t )e
jn1t
dt , n (,)
L t t te d
st 0
1 st t de s 0
1 1 st 1 e 2 s s 0 s n 2 2 21 2 2 L t L t 2 3 s ss s n 3 3 2 32 6 3 L t L t 3 4 s ss s n! n 所 以 L t n1 s
Ee
t ( )2
E e
-(
ut
傅立叶变换特性主要内容
对称性质 奇偶虚实性 时移特性
线性性质 尺度变换性质 频移特性
微分性质
时域积分性质
第三章
•时域卷积定理
若 f t F , f t F 1 1 2 2
则 f t f t F F 1 2 1 2
定义:
单边拉氏变换、双边、收敛域、常用函数的拉氏变换
拉氏变换的性质
郑君里信号与系统ppt课件
§1.2 信号的描述和分类
•信号的描述 •信号的分类 •典型确定性信号介绍
青岛大学信息工程学院
一.信号的描述
第 15
页
•描述信号的基本方法:数学表达式,波形。 •其他方法:频谱分析、正交变换等。
X
二.信号的分类
第 16
页
•信号的分类方法很多,可以从不同的角度对信 号进行分类。 •按实际用途划分:
离散时间信号:在时间上是离 散的,只在某些不连续的规定 瞬时给出函数值,其他时间没 有定义。 用n表示离散时间变量。
第 20 页
f(t)
O
t
f(n)
O 12
n
X
4.模拟信号,抽样信号,数字信号
•模拟信号:时间和幅值均为连续 的信号。
抽 样
•抽样信号:时间离散的,幅值
量
连续的信号。
化
•数字信号:时间和幅值均为离散 的信号。
9
页
1、信号必定是由系统产生、发送、传输与接收, 离开系统没有孤立存在的信号;
2、系统的重要功能就是对信号进行加工、变换与 处理,没有信号,系统的存在就没有意义。 系统的基本作用是对输入信号进行加工和处理,将 其转换为所需要的输出信号。
输入信号 系统 输出信号
激励
响应
X
第
信号与系统问题无处不在
10
X
4.一般情况
第 39
页
f t f at b f a t b a 设 a 0
先展缩:a>1,压缩a倍; a<1,扩展1/a倍 后平移: +,左移b/a单位;-,右移b/a单位
加上倒置:f a t b f a t b a
注意!
一切变换都是相对t 而言 最好用先展缩后平移的顺序