正渗透的应用和技术优势---窦蒙蒙

合集下载

浅谈水处理中的正渗透技术

浅谈水处理中的正渗透技术

浅谈水处理中的正渗透技术正渗透技术是一种用于水处理的高效技术,它能够去除水中的有机物、无机盐和微生物等有害物质,从而得到高纯度的水。

正渗透技术已经在工业生产、饮用水处理、海水淡化等领域得到了广泛的应用。

本文将从正渗透技术的原理、应用和发展趋势等方面进行探讨。

正渗透技术是一种通过半透膜对水进行过滤的技术。

正渗透膜是一种特殊的薄膜,能够让水分子通过,但是能够阻止大部分溶质(比如盐、有机物等)通过。

当水在一侧施加一定的压力时,水分子能够通过半透膜,而溶质则被阻止在另一侧,从而实现了对水的净化。

正渗透技术相比传统的过滤技术,具有更高的效率和更低的能耗,因此得到了广泛的应用。

正渗透技术在水处理领域有着广泛的应用。

它被广泛用于工业生产中的水处理。

在许多工业过程中,需要用到高纯度的水,而正渗透技术能够提供这样的水源。

正渗透技术也被广泛应用于饮用水处理。

在一些地区,地下水或者自来水中含有大量的盐分或者有机物,通过正渗透技术可以将这些有害物质去除,得到可以直接饮用的水。

正渗透技术还被用于海水淡化。

由于海水中含有大量的盐分,直接饮用是不可取的,而正渗透技术能够将海水中的盐分去除,得到淡水,从而解决了一些地区的淡水资源短缺问题。

随着科学技术的不断进步,正渗透技术也在不断发展。

一方面,正渗透膜的材料和技术不断得到改进,使得正渗透技术能够处理更加复杂的水质,提高了净化水的效率和纯度。

正渗透技术与其他技术的结合也越来越多,比如与超滤、电渗析等技术结合,能够更好地解决一些特殊水质的处理问题。

未来,正渗透技术还有望在污水处理、废水回收等领域发挥更大的作用。

关于正渗透膜的研究与应用范围的探讨

关于正渗透膜的研究与应用范围的探讨

关于正渗透膜的研究与应用范围的探讨摘要:正渗透是近年来新兴的一种膜处理技术,由于其能耗低、污染低、易于操作、不需要外加压力,在海水淡化、污水处理、食品加工、医药以及绿色能源方面已经显出巨大的潜在的利用价值。

正渗透膜尤为突出的优势是其采用特殊的溶质配制汲取驱动液,可以人为控制配制高浓度的汲取液从而得到更高的渗透驱动压力,进而达到更高的水回收率。

但是在实际应用中,正渗透膜处理技术仍然处在实验探索的阶段。

正渗透亟待解决的关键问题是寻找合适的膜材料和驱动液,以及减少浓度极化对水通量的影响。

理想正渗透膜应具有高的水通量、低的盐通量和良好的机械强度从而能够保证膜长期稳定的运行。

众多研究者正在不断的探究,对此项技术进行不断的完善。

关键词:正渗透膜;污水处理;海水淡化1.正渗透膜的研究背景及研究现状1.1研究背景在20世纪中后期,正渗透的概念被正式提出的。

最重要的正向渗透过程是膜的选择性渗透。

正向渗透膜一面是高渗透压萃取溶液,水分子从低渗透压一侧扩散到另一侧,从而实现水与杂质的分离,其他分子或离子被截住,该过程不需外界提供压力,所以增大驱动力在这项技术中显得十分重要,可以增加驱动力的方法就是选择合适的汲取液。

1.2国内外研究现状目前国际上关于正渗透膜技术的研究,主要集中在膜材料和提取液解决方案上。

正渗透膜材料主要有以HTI为代表的和其他公司材料这两类。

常用的制膜材料是聚醚砜,聚酰胺,二醋酸纤维素(CA)和三醋酸纤维素(CTA)。

HTI公司生产的三醋酸纤维素膜具有高抗氯性,对热、化学、生物降解不敏感成为应用最广泛的正渗透膜。

汲取液的选择是否合适也是当前国内外研究的一个重要问题,近年来研究者们还不断推出新型汲取液,如水凝胶型汲取液和离子液体型汲取液等。

磁性或亲水性纳米颗粒的优势在于其再生成本较低,不存在反向扩散现象。

为了解决在较低能量下易与纯水分离的问题,可以让水凝胶做提取液。

正渗透过程结束后,在汲取液中添加辅助物质、沉淀剂从而得到纯净水。

《2024年正渗透膜技术及其应用》范文

《2024年正渗透膜技术及其应用》范文

《正渗透膜技术及其应用》篇一一、引言正渗透膜技术(Forward Osmosis, FO)作为一种新型的膜分离技术,在过去的十年中得到了广泛的研究和应用。

其独特的工作原理和优点使得它在水处理、生物医药、食品工业和能源等多个领域都有广泛的应用前景。

本文旨在全面地阐述正渗透膜技术的原理、特点以及在不同领域的应用。

二、正渗透膜技术概述正渗透膜技术是一种基于自然渗透压力差的膜分离技术。

它的基本原理是通过选择性的半透膜在膜两侧产生压力差,从而推动溶质和水分的净流。

该过程中不需要像传统的膜技术那样通过加压驱动水流,而是通过自然的浓度梯度或者由低渗透压溶液或渗析溶液的快速稀释产生的动力推动。

正渗透膜的材质主要是生物相容性好的高分子材料,具有高通量、高选择性和抗污染等特性。

同时,由于它可以在常温常压下工作,因此在操作过程中具有节能、环保的优点。

三、正渗透膜技术的特点正渗透膜技术具有以下特点:1. 节能环保:由于正渗透过程不需要额外的压力驱动,因此可以大大降低能耗。

同时,由于它可以在常温下进行操作,因此对环境的影响较小。

2. 高效分离:正渗透膜具有高选择性和高通量,可以有效地进行物质分离和纯化。

3. 抗污染能力强:正渗透膜材料通常具有良好的生物相容性,对生物污染有较好的抗性。

4. 应用范围广:正渗透膜技术可以应用于水处理、生物医药、食品工业和能源等多个领域。

四、正渗透膜技术的应用1. 水处理领域:正渗透膜技术在水处理领域的应用主要是海水淡化、苦咸水淡化、污水处理和饮用水处理等。

由于其不需要额外的压力驱动,因此在处理低浓度的水源时具有很高的经济效益和环保优势。

2. 生物医药领域:在生物医药领域,正渗透膜技术可以用于药物的纯化、浓缩和分离。

其高效、低能耗的优点使得其在生物医药领域有广阔的应用前景。

3. 食品工业:在食品工业中,正渗透膜技术可以用于食品的脱水、果汁浓缩、低盐调味品制备等。

此外,由于它具有良好的生物相容性,因此在食品包装中也得到了应用。

正渗透膜的应用原理

正渗透膜的应用原理

正渗透膜的应用原理1. 什么是正渗透膜正渗透膜(forward osmosis membrane)是一种半透膜,具有较高的通透性和选择性,可应用于各种领域,如海水淡化、废水处理、食品加工等。

正渗透膜工作原理基于溶质浓度差异的驱动力,通过渗透过程将溶质从低浓度的溶液自然地通过膜透过至高浓度的溶液。

2. 正渗透膜的主要应用领域正渗透膜的应用范围广泛,以下列举几个主要的应用领域:•海水淡化:正渗透膜可以有效地将海水中的盐分和杂质过滤掉,获得高纯度的淡水。

这对于水资源短缺的地区和海洋岛屿来说,是一种可行的海水淡化技术。

•废水处理:正渗透膜可以在废水处理过程中去除水中的溶质和微粒,将无污染的水分离出来,达到净化水质的目的。

这种技术广泛应用于工业废水处理和城市污水处理等领域。

•食品加工:正渗透膜在食品加工中起到浓缩和分离的作用,例如浓缩果汁、乳制品和饮料等。

由于正渗透膜的高通透性和选择性,可以有效地去除水分和溶质,保留食品中有用的成分。

3. 正渗透膜的工作原理正渗透膜的工作原理基于渗透过程和扩散过程。

在正渗透过程中,溶质从低浓度的溶液通过膜自然地透过到高浓度的溶液中。

这是因为高浓度溶液侧的渗透压较大,驱使溶质通过膜从低浓度溶液侧向高浓度溶液侧移动。

正渗透膜相比于传统的逆渗透膜有着更高的渗透通量和更低的操作压力。

这是因为正渗透膜利用了自然的浓度差异驱动力,不需要额外的能量供应。

4. 正渗透膜的优势和局限性正渗透膜具有以下优势:•较高的通透性和选择性:正渗透膜具有较大的通透通量和较好的溶质分离效果。

•低操作压力:相对于逆渗透膜,正渗透膜所需的操作压力较低,减少能源消耗。

•多功能应用:通过适当的调节工艺条件和膜材料的选择,正渗透膜可以应用于不同的领域,满足各种需求。

然而,正渗透膜也存在一些局限性:•溶液浓度限制:正渗透膜对溶质和溶液的最大浓度有限制,超过一定浓度时会影响膜的通透性。

•膜表面污染:正渗透膜容易受到溶液中的污染物质和杂质的附着,容易导致膜的阻塞和通透性下降。

正渗透膜分离技术及应用研究进展

正渗透膜分离技术及应用研究进展

正渗透膜分离技术及应用研究进展
正渗透膜分离技术(Reverse Osmosis,RO)是一种利用压力差驱动溶质逆向渗透的分离技术。

该技术可以通过压力使溶液中的溶质逆向渗透通过半透膜而从溶液中分离出来。

正渗透膜由多层聚酯薄膜和纳米孔膜组成,孔径范围通常在纳米级别,能够有效阻隔
大部分分子和离子,从而实现溶质的分离。

与传统的膜分离技术相比,正渗透膜具有较高
的截留率和通量,能够广泛应用于水处理、海水淡化、化工、食品饮料等领域。

近年来,正渗透膜分离技术在水处理领域得到了广泛应用。

由于其高效、能源消耗低
的特点,正渗透膜广泛应用于城市供水、工业废水处理和海水淡化等领域。

通过正渗透膜
分离技术处理的水具有高纯度、低残留盐分等优点,可以满足不同领域的需求。

正渗透膜分离技术还在化工、食品饮料等领域得到了应用。

在制药工业中,正渗透膜
可以用于分离和提纯药物原料、制备高纯度药物等;在食品饮料领域,正渗透膜可以用于
果汁浓缩、乳品分离等过程中。

近年来,正渗透膜分离技术在性能和应用方面也取得了一些研究进展。

一方面,研究
人员通过改变膜材料、孔径和结构等方面的设计优化,提高了正渗透膜的分离效率和通量。

研究人员还探索了正渗透膜与其他分离技术的结合应用,如正渗透膜与电渗析、气体吸收
等技术的结合应用,进一步拓宽了正渗透膜在分离领域的应用范围。

浅谈水处理中的正渗透技术

浅谈水处理中的正渗透技术

浅谈水处理中的正渗透技术正渗透技术是利用高压将水通过半透膜,而溶质无法通过半透膜,从而实现水和溶质的分离。

在正渗透过程中,水分子经过半透膜的筛选,溶质被截留在半透膜的一侧,而纯净的水则通过半透膜被输送到另一侧。

这种方法可以有效去除水中的大部分离子、有机物和微生物,使得水质得到提高。

在水处理中,正渗透技术有着广泛的应用。

在海水淡化中,正渗透技术能够将海水中的盐分和杂质去除,生产出符合饮用水标准的淡化水。

正渗透技术也可以应用于工业废水处理,将废水中的有害物质去除,净化废水,保护环境。

正渗透技术还可以应用于饮用水处理、制药工业水处理、电子工业水处理等领域,为各行各业提供清洁的水资源。

正渗透技术在实际应用中有着许多优势。

正渗透技术能够高效去除水中的溶质,提高水质。

正渗透技术的操作简单、自动化程度高,能够降低人工成本。

正渗透技术对环境友好,不产生二次污染。

正渗透技术具有高度的可靠性和稳定性,能够长期稳定运行。

正渗透技术被广泛应用于水处理领域,得到了较为广泛的认可和推广。

正渗透技术也存在一些局限性。

正渗透技术的能耗较高,生产成本较高,需要较大的资金投入。

正渗透技术对水的净化程度较高,会让水失去一些对人体有益的矿物质,需要通过其他方式进行补充。

正渗透技术的半透膜容易受到污染和结垢,需要定期清洗和更换半透膜,增加了运维成本。

在应用正渗透技术时,需要充分考虑这些局限性,并进行合理的控制和调整。

在未来,随着科技的不断进步和正渗透技术的不断优化,相信正渗透技术在水处理领域的应用将会更加广泛。

未来,人们对水质要求的提高和环境保护意识的增强,将会推动正渗透技术的进一步发展。

随着正渗透技术的成本不断降低和技术的不断成熟,相信正渗透技术将会成为水处理领域的主流技术,为人们提供更加清洁的水资源。

浅谈水处理中的正渗透技术

浅谈水处理中的正渗透技术

浅谈水处理中的正渗透技术正渗透技术是一种透过半透膜,将水中溶解的盐类,重金属离子、细菌和病毒等杂质物质过滤掉,使水质得到改善的技术。

正渗透技术不同于传统的过滤、沉淀和氧化等技术,它能更全面、更有效地去除水中的污染物,具有高效精密、能耗低、操作简单等特点,因此被广泛应用于水处理领域。

正渗透技术的原理是利用半透膜,将水中的杂质物质隔离开来,只让水分子通过半透膜,从而达到净化水质的目的。

半透膜是一种特殊的薄膜,它的孔径只有纳米级,比病毒和细菌都小,因此可以有效隔离微小的杂质物质。

根据杂质物质分子的大小、极性等不同特征,可以选择不同的半透膜和过滤条件,以达到定制化的净化效果。

正渗透技术的优点首先是高效净化。

通过正渗透技术处理后的水质能够达到高达99%以上的净化效果,对水中的重金属、细菌、病毒、溶解性有机物、无机盐等多种污染物质净化效果显著,不仅能够保持水源的纯度,还有助于改善水源的味道和气味。

其次,正渗透技术具有能耗低。

由于正渗透技术不需要使用化学试剂,并且其过程中没有产生污染物质,因此它的能耗较低,成本相对也比较低。

此外,它具有操作简单、体积小、占地面积小等优点,可以灵活地应用于不同的场合。

正渗透技术的发展还面临一些挑战。

首先,正渗透技术的成本相对较高,虽然能颠覆传统的水处理方法,但是对于一些地区的水处理厂,望而却步。

其次,正渗透技术对于水压力要求较高,需要一定的能量驱动水分子穿越半透膜,这也是正渗透技术使用更加广泛的一项挑战。

总之,正渗透技术是一种效果显著、操作简单、体积小、能耗低的水处理方法,其应用前景广阔。

通过不断优化技术、降低成本和提高效率,相信正渗透技术必将在未来的水处理行业中发挥更大的作用。

《2024年正渗透膜技术及其应用》范文

《2024年正渗透膜技术及其应用》范文

《正渗透膜技术及其应用》篇一一、引言正渗透膜技术是一种新型的膜分离技术,其利用压力差和化学势能差共同驱动溶质和溶剂的传递过程。

正渗透膜技术因其高效、节能、环保等优点,在许多领域得到了广泛的应用。

本文将详细介绍正渗透膜技术的原理、特点及其在各领域的应用。

二、正渗透膜技术原理正渗透膜技术主要基于渗透压原理,通过在膜两侧施加压力差和化学势能差,使水分子从低浓度溶液侧自发地通过半透膜向高浓度溶液侧扩散,从而实现溶质和溶剂的分离。

正渗透膜具有高选择性、高渗透性、低逆渗性等特点,使得其在分离过程中具有较高的效率和较低的能耗。

三、正渗透膜技术特点正渗透膜技术具有以下特点:1. 高效性:正渗透膜技术能够高效地实现溶质和溶剂的分离,具有较高的通量和分离性能。

2. 节能性:正渗透膜技术利用压力差和化学势能差共同驱动分离过程,无需外部加压,具有较低的能耗。

3. 环保性:正渗透膜技术过程中无相变,无二次污染,符合绿色环保要求。

4. 广泛应用性:正渗透膜技术可应用于水处理、食品加工、生物医药、化工等领域。

四、正渗透膜技术应用1. 水处理领域:正渗透膜技术在水处理领域的应用主要包括海水淡化、苦咸水淡化、污水处理等。

通过正渗透膜技术,可以有效去除水中的盐分、重金属、有机物等污染物,提高水质。

2. 食品加工领域:正渗透膜技术可用于果汁浓缩、蛋白质提取、乳品加工等。

通过正渗透膜技术,可以实现食品组分的有效分离和浓缩,提高产品质量。

3. 生物医药领域:正渗透膜技术可用于药物分离纯化、生物大分子制备等。

通过正渗透膜技术,可以有效地实现药物成分的分离和纯化,提高药物质量和纯度。

4. 化工领域:正渗透膜技术可用于有机溶剂的回收、废水处理等。

通过正渗透膜技术,可以实现对有机溶剂的回收和废水的处理,降低生产成本和减少环境污染。

五、结论总之,正渗透膜技术因其高效、节能、环保等特点,在各领域得到了广泛的应用。

未来随着科技的进步和工艺的优化,正渗透膜技术的应用领域将会更加广泛,对于促进社会可持续发展具有重要意义。

正渗透膜技术及其应用

正渗透膜技术及其应用

正渗透膜技术及其应用正渗透膜技术及其应用引言:正渗透膜技术是一种重要的膜分离技术,通过压力差或浓度差使溶质在膜上转移到高浓度一侧,实现物质的分离与浓缩。

该技术已广泛应用于水处理、化学工程、食品加工等领域,并取得了显著的成效。

本文将详细介绍正渗透膜技术的原理、分类以及主要应用。

一、正渗透膜技术的原理正渗透膜技术是利用膜的微孔或多孔结构,使溶质在膜上不同侧的浓度差推动下传递,从而实现溶质的分离与浓缩的过程。

其主要原理是渗透压差的作用。

渗透压差是正渗透膜技术实现分离与浓缩的关键。

在正渗透膜技术中,渗透压差通过溶液浓度差和膜的选择性控制。

当溶液浓度差增大或膜对特定的溶质具有较高的选择性时,渗透压差相应增大,从而促进溶质在膜上的转移和分离。

不同溶质的渗透速率与其分子量、形状、电荷性质等密切相关。

二、正渗透膜技术的分类根据膜的结构和渗透机理的不同,正渗透膜技术可以分为以下几种类型。

1. 微孔膜微孔膜是一种具有孔径不小于0.1微米的膜,通过物理屏障作用实现分离。

常见的微孔膜有滤纸、滤膜、陶瓷膜等。

微孔膜适用于粒径较大的悬浊液的分离与浓缩。

2. 超滤膜超滤膜是一种具有孔径在0.001-0.1微米之间的膜,通过物理筛分效应实现分离。

超滤膜广泛应用于水处理、饮料生产等行业,可以有效去除水中的颗粒、胶体、细菌等悬浮物质。

3. 纳滤膜纳滤膜是一种具有孔径在1-100纳米之间的膜,通过溶质的尺寸排除效应实现分离。

纳滤膜适用于去除分子量较大的有机物质、重金属离子等。

4. 反渗透膜反渗透膜是一种具有非常小的孔径的膜,通过溶质的溶解和扩散作用实现分离。

反渗透膜在水处理领域得到广泛应用,可以高效去除水中的离子、微生物、有机物质等。

三、正渗透膜技术的应用正渗透膜技术已广泛应用于水处理、化学工程、食品加工等领域,以下将重点介绍其中的几个应用。

1. 水处理正渗透膜技术在水处理中的应用是其中最重要的应用之一。

通过正渗透膜技术,可以高效去除水中的溶解物质、胶体、微生物等,得到高纯度的水。

正渗透膜技术及其应用

正渗透膜技术及其应用

正渗透膜技术及其应用在当今社会,膜技术已经成为了许多工业和环境领域中的一项重要技术。

正渗透膜技术便是其中之一。

正渗透膜技术是一种基于渗透作用的分离技术,通过能量输入来实现物质之间的分离和纯化。

它已经广泛应用于水处理、药物分离、食品加工、废物处理和能源领域等。

正渗透膜技术的基本原理是利用膜的选择性通透性,通过液体中的溶质在膜中的扩散来实现物质的分离。

其中,正渗透膜是指溶剂可以通过膜而溶质留在膜的一侧,从而实现对溶质的分离。

这一技术区别于逆渗透膜技术,后者是溶质在膜中的扩散,而溶剂留在膜的一侧。

正渗透膜技术在水处理中有着广泛的应用。

例如,通过正渗透膜技术可以将海水中的盐分去除,实现淡化海水,从而解决了淡水资源短缺的问题。

此外,正渗透膜技术还可以用于水中微量有机物质的去除,如水中的重金属离子、农药、药物残留等。

因为正渗透膜可以实现非常高的分离效率和选择性,所以它在制备高纯水和饮用水中的应用也越来越广泛。

在药物分离领域,正渗透膜技术被用于制备高纯度的药物和生物制剂。

通过正渗透膜技术可以将溶液中的杂质和离子去除,从而得到纯净的药物溶液。

正渗透膜技术在这一领域有着高效、环保和节能的特点,因此被广泛应用于制药工业。

食品加工中,正渗透膜技术可以用于浓缩果汁和脱水过程。

通过正渗透膜技术,可以去除果汁中的水分,从而实现果汁的浓缩。

同时,正渗透膜技术还可以去除果汁中的颜色素和异味物质,从而提高果汁的品质。

在脱水过程中,正渗透膜技术可以实现从食品中去除水分,从而延长食品的保质期。

废物处理领域是正渗透膜技术的另一个应用领域。

通过正渗透膜技术可以对废水中的有机物质和无机盐进行分离和去除。

这种技术对于废水处理工艺的改进具有重要意义,可以降低处理成本和能耗。

同时,正渗透膜技术还可以用于处理含有有机物质和无机盐的工业废水,如纺织废水和化工废水。

能源领域也是正渗透膜技术的应用领域之一。

通过正渗透膜技术可以实现煤炭气化和天然气净化过程中的气体分离和纯化,提高能源利用效率。

正渗透膜分离技术及应用研究进展

正渗透膜分离技术及应用研究进展

正渗透膜分离技术及应用研究进展
正渗透膜分离技术是一种重要的物质分离技术,在生物医学、制药、食品等领域得到
广泛应用。

该技术基于溶剂和非溶剂之间的选择性透过性差异,利用半透膜(通常是聚合
物膜)将水和其他溶液中的物质分离开来。

在正渗透膜分离技术中,水是选择性透过膜的
溶剂,而其他溶质则是非溶剂。

随着科学技术的不断发展,正渗透膜分离技术得到不断改进和完善。

在物质分离、净
化和浓缩方面,正渗透膜分离技术具有很大的优势。

它可以大幅度提高分离效率,并且可
以适用于多种不同的物质。

目前,正渗透膜分离技术主要应用于以下几个领域:
1. 生物医学领域:正渗透膜分离技术是分离和纯化生物材料的重要方法,如分离和
纯化蛋白质、DNA和RNA等。

同时,正渗透膜分离技术还可以用于纳米级别的细胞分离,
对提高细胞分离效率具有重要意义。

2. 制药领域:正渗透膜分离技术在制药领域的应用非常广泛,可以用于药物的纯化、浓缩和分离等。

目前,正渗透膜分离技术已经成为制药工业的主要技术之一,具有非常重
要的经济意义。

3. 食品领域:正渗透膜分离技术在食品加工中也有广泛应用,可以用于提取和浓缩
不同的食物成分和添加剂,如果汁、乳制品和调味品等。

总的来说,正渗透膜分离技术具有非常广泛的应用前景,可以在生物、医学、制药和
食品等领域发挥重要作用。

随着科学技术的不断进步,正渗透膜分离技术也将不断地得到
改进和完善,为人们的生产和生活带来更多便利。

浅谈水处理中的正渗透技术

浅谈水处理中的正渗透技术

浅谈水处理中的正渗透技术水处理是指将自然界中的水经过净化、消毒等工艺处理后,变成符合特定用途要求的水。

正渗透技术是水处理领域中的一种重要技术,其应用非常广泛,可以用于饮用水净化、工业废水处理等领域。

本文将就正渗透技术在水处理中的应用进行详细介绍和讨论。

正渗透技术是一种通过半透膜将水中的溶质和溶剂分离的技术。

在正渗透技术中,水分子通过半透膜的微孔滤除,同时其它溶质则被半透膜阻隔,从而达到了水的净化目的。

正渗透技术是一种物理性质的分离技术,相比传统的化学处理方法,其优点在于不需要添加化学药剂,净化后的水质较好,有着较高的水质纯度。

正渗透技术在水处理中的应用非常广泛,例如在城市饮用水净化、海水淡化和工业废水处理等领域都有着重要的应用价值。

下面将分别介绍这几个领域中正渗透技术的应用。

首先是在城市饮用水净化中,正渗透技术可以有效地将水中的杂质、有机物和微生物滤除,得到高纯净度的饮用水。

在水资源稀缺的地区,正渗透技术尤其重要,它可以将地表水、地下水等含盐及含污染物的水资源转化为可饮用的纯净水。

这对于解决城市饮用水资源紧缺的问题有着重要的意义。

其次是在海水淡化领域,正渗透技术同样有着广泛的应用。

海水中的盐分含量较高,无法直接饮用或用于农业灌溉等用途。

而通过正渗透技术,可以将海水中的盐分和杂质滤除,得到淡化后的水资源,可以解决一些海水淡化地区的饮水问题。

通过结合太阳能、生物质能等可再生能源,通过正渗透技术淡化海水,也有望在未来成为一种有效的可持续发展的水资源解决方案。

最后是在工业废水处理中,正渗透技术由于其高效的净化效果和对水质纯度要求的符合,也得到了广泛的应用。

工业废水中含有各种有机物、重金属离子和微生物等废物,采用传统的化学处理方法难以有效清除这些物质,而正渗透技术可以彻底滤除这些废物,使废水得到有效的处理和净化。

值得一提的是,虽然正渗透技术在水处理中有着诸多优势,但同时也存在着一些挑战和问题。

首先是正渗透设备和技术的成本较高,需要经过较长时间的投资回报期。

正渗透膜的原理及应用

正渗透膜的原理及应用

正渗透膜的原理及应用
正渗透膜是一种将溶剂从浓度较低的溶液转移到浓度较高溶液的膜。

正渗透膜由互相交织的高分子链构成,这些链具有多个孔隙,允许溶剂进行透过。

在正渗透膜中,溶质不能通过膜的孔隙,只有溶剂能够通过膜进行透过。

该技术被广泛应用于海水淡化、废水处理、饮用水处理、药物输送及其他工业过程。

1. 海水淡化:正渗透膜技术已成为世界上许多海水淡化厂的常用技术。

通过将海水压力驱动透过正渗透膜,膜过滤出淡水,将盐分和其他离子留在海水中。

2. 废水处理:正渗透膜被广泛应用于废水处理,可以去除水中的重金属、微生物、溶解的化学物质等。

该技术可以减少对环境的负面影响,并使水资源得到充分利用。

3. 饮用水处理:正渗透膜可以减少饮用水中的杂质和污染物,使水变得更加清洁纯净。

该技术被广泛应用于市政供水和饮用水处理厂。

4. 药物输送:正渗透膜可以在药物输送中起到关键作用。

通过正渗透膜输送药物,可以实现精确控制药物的输送速率,并减少药物的浪费。

总之,正渗透膜是一项非常有用的技术,在许多领域中都有广泛的应用。

它可以帮助我们寻找更加环保和可持续的解决方案,从而保护我们的家园和人类健康。

正渗透用于海水淡化的研究综述

正渗透用于海水淡化的研究综述

正渗透用于海水淡化的研究综述摘要:正渗透(F0)是一种新兴的节能型的淡水生产技术。

它利用膜两侧的渗透压差使水分子穿越半透膜。

尽管已经有了许多关于正渗透的研究成果,这门技术仍存在许多的限制与挑战。

近年来随着环境与能源问题愈演愈烈,正渗透受到了世界范围的广泛关注。

与传统膜技术相比,正渗透有许多显著的优点,如低压与低温的操作环境、可逆的膜污染以及较低的耗能。

本文的目的是提供关于正渗透物理原理、研究进展和实际应用的综述。

此外, 文中也对正渗透用于海水淡化中的优势和缺陷,以及未来的发展进行了讨论。

1.引言随着人口的增长、工业化的推进、农业活动的扩展、水资源的供需不平衡以及不合理利用,水资源短缺已经成为一个全球化的危机并且受到科学界的广泛关注[1-8]。

最近的数据显示世界上大约15%的人存在饮用水危机,36%的人每年至少一个月内水资源短缺[9]。

在上个世纪,水资源需求量的增长速度达到了人口增长速度的两倍[10]。

实际上,统计预测显示到2025年全球将有三分之二的人面临用水压力。

这不仅会影响到社会经济的发展,也会对我们的生态健康造成威胁[1,11]。

为了满足全球的淡水需求,人们将焦点集中在了海水淡化上。

然而,由于水处理过程与能量的相互关联,传统的海水淡化工艺诸如多级闪蒸和反渗透等往往存在着能耗高和成本昂贵的问题[12-15]。

因此,科学家们始终在寻找节能和低价的海水淡化技术。

在前十年里,很多研究者认为正渗透(F0)的开发利用可以解决传统淡化技术所存在的上述问题[18-21]。

除了海水淡化,F0还可用于废水处理[21-22],食品加工[39-40]和发电过程[45-46]。

这篇文章概述了FO的物理原理以及提取液和正渗透膜的研究进展。

另外,FO 应用于海水淡化中的优越性、缺陷、挑战以及未来的发展方向也在讨论的范围之内。

2.正渗透概述2.1物理概念和现象渗透的概念很早已被人类社会认识到,而正渗透可以被看作在渗透压差驱动下水分子穿过一张半透膜的现象。

正渗透技术简析20130827

正渗透技术简析20130827

技术
反渗透 (RO, Reverse Osmosis) 正渗透 (FO, Forward Osmosis)
驱动力
需外加高 压,耗能 高 仅依靠两 相间自然 渗透压, 无需外压
水回收率
30-50%
环境影响
浓盐水直 接排放, 危害环境 高的水回 收率使盐 析出,无 浓盐水排 放,环境 友好
膜寿命
长期高压下 运行,膜表 面易结垢或 有机物污染 非压力驱动 膜过程,几 乎无膜污染 问题困扰
技术核心之二:正渗透膜材料
目前最好的商业化正渗透膜材料是美国HTI公司的支撑型高强度膜,膜为3层结构: 致密皮层,多孔支撑层和网格支撑结构。膜皮层和多孔支撑层亲水,呈电中性, 厚度约为50μm,据报道,该材料是由醋酸纤维素类高分子制备而来。 以挪威Statkraft公司为核心的研究团队,开发了与反渗透膜材料具有类似结构的复 合正渗透膜材料,用于P R O过程,利用淡水和海水混合自由能获得能源。研 究团队另一个小组的Peinemann等人使用强度较高的聚醚酰亚胺中空纤维膜作 为支撑层,通过界面聚合成膜,形成中空纤维式的复合正渗透膜。与反渗透膜 材料相比,复合正渗透膜支撑层具有较高的开孔率,能够有效降低内浓差极化。 新加坡国立大学开发的聚苯并咪唑(Polybenzimidazole,PBI)中空纤维纳滤膜 材料,所得到的膜表面带正电荷,对二价阳离子有较高的截留率,在实验室中 证明具有较好的正渗透性能。 综合起来,正渗透膜应具备以下几个特征: (1)致密的、低孔隙率的皮层,高截留率; (2)膜的皮层具有较好的亲水性、较高的水通量; (3)膜支撑层尽量薄,高孔隙率; (4)较高的机械强度; (5)具有耐酸碱的抗化学腐蚀能力,可以在较宽的p H范围以及各种不同组成的 溶液条件下正常运行。

浅谈水处理中的正渗透技术

浅谈水处理中的正渗透技术

浅谈水处理中的正渗透技术【摘要】正渗透技术在水处理中扮演着重要的角色。

本文首先介绍了正渗透技术的原理,即通过半透膜将水中的溶解物质和微生物分离,从而提高水质。

其次探讨了正渗透技术在水处理中的应用,包括海水淡化、废水处理等方面的实践经验。

分析了正渗透技术的发展趋势,包括新型膜材料的研发和工艺的改进。

正渗透技术在水处理领域具有广阔的应用前景,对提高饮用水质量,解决水资源短缺等问题具有重要意义。

通过不断的技术创新和实践应用,正渗透技术将为改善人类生活环境,保护水资源做出更大的贡献。

【关键词】- 正渗透技术- 水处理- 原理- 应用- 发展趋势- 意义1. 引言1.1 浅谈水处理中的正渗透技术的重要性浅谈水处理中的正渗透技术是一种非常重要的技术,它在水处理领域发挥着关键的作用。

随着人口增长和工业化进程的加快,水资源日益紧缺,水污染也日益严重,如何高效地进行水处理成为了一个亟待解决的问题。

而正渗透技术正是应运而生的,它通过膜技术实现对水中溶质的除去,可以有效去除水中的杂质、细菌和病毒,使水质得到提升。

正渗透技术具有高效、可靠、环保等优点,被广泛应用于饮用水处理、工业废水处理、海水淡化等领域。

在饮用水处理中,正渗透技术可以有效去除水中的重金属、有机物和微生物,提高饮用水的安全性和口感;在工业废水处理中,正渗透技术可以实现资源化利用,减少排放,保护环境。

正渗透技术已经成为现代水处理领域不可或缺的一部分。

深入研究和推广正渗透技术对于改善水质、保障人类健康和可持续发展具有重要意义。

只有不断创新和提升技术水平,才能更好地应对日益严峻的水资源挑战。

2. 正文2.1 正渗透技术的原理正渗透技术的原理主要是基于半透膜的特性。

在正渗透过程中,水分子会沿着浓度梯度从低浓度的溶液穿透到高浓度的溶液中。

这是因为半透膜上的微孔只允许水分子通过,而阻止其他溶质的传递,从而实现了对水的高效过滤。

正渗透技术的原理基于物质的渗透和扩散规律,利用半透膜对水和溶质的选择性透过性,实现了水的净化和分离。

正渗透技术的应用现状及前景

正渗透技术的应用现状及前景

正渗透技术的应用现状及前景摘要正渗透技术作为一种新兴的膜技术以其低能耗、耐污染的特点在国际上受到越来越多的关注,并且在海水淡化、绿色能源、航空航天、食品浓缩等多个行业得到了迅速发展。

本文从正渗透技术概述、特点、影响因素和工业应用等方面进行了论述,并展望了该领域未来的发展方向。

关键词:正渗透膜;汲取液;海水淡化目录第1章前言 (1)第1.1节正渗透技术概述 (1)1.1.1正渗透技术原理 (1)第2章正渗透过程 (3)第2.1节正渗透膜的选择 (3)2.1.1正渗透膜的结构 (3)2.1.2正渗透膜的特点 (3)第2.2节浓差极化现象 (4)2.2.1浓差极化的分类 (4)2.2.2浓差极化的影响 (4)第2.3节汲取液的选择 (5)2.3.1汲取液的特点 (5)2.3.2汲取液的分类 (5)第3章正渗透过程的影响因素 (7)第3.1节正渗透过程实现的条件 (7)第3.2节正渗透过程的影响因素 (7)3.2.1 膜进水方向的影响 (7)3.2.2 原料液与汲取液浓度的影响 (7)3.2.3 温度的影响 (7)3.2.4 流速的影响 (8)第3.3节正渗透膜污染 (8)第4章正渗透技术的应用 (9)第4.1节正渗透过程的特点 (9)第4.2节正渗透过程的工业应用 (9)4.2.1 海水淡化和软化 (9)4.2.2 废水和垃圾渗出液的处理 (10)4.2.3 正渗透膜生物反应器 (11)4.2.4药物控制释放过程 (12)第5章结论 (13)参考文献 (14)第1章前言第1.1节正渗透技术概述随着人口膨胀和环境污染等全球性问题的出现,水危机以及能源紧张已经成为目前阻碍全球发展的一大难题[1]。

众所周知,水与能源是相互依存的关系,清洁水是产生能源必不可少的来源之一,而清洁水的生产又需要消耗能源。

各个国家都在不断的探索新的技术以缓解水危机和能源紧张带来的发展问题,其中正渗透技术就是当前研究的热点。

现阶段在水处理、能源开发、生命科学等方面,该技术都得到了广泛的关注与研究。

正渗透膜分离技术及应用研究进展

正渗透膜分离技术及应用研究进展

正渗透膜分离技术及应用研究进展正渗透膜分离技术(Forward Osmosis,FO)近年来成为膜分离技术的研究热点,具有低能耗、高选择性、易操作等优点,适用于逆渗透膜处理技术难以处理的高浓度混合有机物、高盐度废水等高浓度有机废水的处理。

本文针对FO技术研究现状、应用领域和进展进行了综述。

一、FO技术的研究现状FO技术是利用正向渗透作用实现物质分离的一种膜分离技术,其操作原理与逆向渗透类似。

但与逆向渗透不同的是,FO过程中,水自由通过半透膜,向低浓度的溶液自然溶解而渗透到高浓度溶液中,形成稀溶液和浓溶液两部分。

通过这种方式,溶质只能在浓溶液一侧被捕获,而不会被半透膜拦截,实现了溶质的有效分离。

FO技术存在一些优点,如低能耗、高选择性、易操作等。

FO技术的研究进展主要集中在膜的材料、分离机理、操作参数和应用领域等方面。

自1985年Kesting等提出该技术以来,FO膜材料一直是研究的热点。

传统的FO膜材料为纤维素醋酸纤维(Cellulose Acetate,CA)和亲水性改性聚酰胺(Polyamide,PA),这些膜材料有良好的生物相容性和分离性能,但存在膜层厚度不一、过滤通量小、易受热和化学腐蚀等缺点。

近年来,研究人员提出了新型FO膜材料,如硬质聚合物(Polysulfone,PS)、聚苯乙烯(Polystyrene,PS)、聚酯(Polyester,PE)、待反应化学物(功能化离子液体),这些新型材料能够有效提高膜的抗污染性、排泄性和去除能力。

FO技术的操作参数研究同样是FO技术的关键研究领域。

影响FO膜分离性能的主要因素包括供料浓度、过滤速度、压力差、膜面积、温度和PH等。

对FO操作参数的研究可以为FO技术的规模化应用提供指导。

例如,研究表明,FO技术在高浓度混合有机物、高盐度废水等高浓度有机废水的处理中能够更加有效地去除有机溶质,同时膜通量和水通量也随着过滤时间的增加而提高,这为FO技术的应用提供了实际意义。

正渗透

正渗透

废水和垃圾渗出液的处理
正渗透 应用
海水淡化 水袋
浓盐水再浓缩
航天工程应用
食品、医药以及其他
新型的正渗透海水脱盐系统
• 进料溶液0.5mol/LNaCl, 驱动溶液为6mol/L铵盐
• 膜通量 25 L/(m2·h ) • 盐的截留率大于95% • 通过适度加热(约 60℃),
将 铵 盐 分 解 成 氨 和 CO2 并循环使用。
正渗透膜处理技术
汇报人 赵玉 学号 1432830
Contents
1
正渗透的定义及原理
2 正渗透技术的研究热点
3
正渗透技术的优缺点
4 正渗透技术的应用及展望
正渗透的定义
正渗透(Forward Osmosis,简称FO)是以选择性分 离膜两侧的渗透压差为驱动力,溶液中的水分子从 高水化学势区(原料液侧)通过选择性分离膜向低 水化学势区(汲取液侧)传递,而溶质分子或离子被 阻挡的一种膜分离过程。
外部浓差极化
进料液一侧的浓差极化与RO 过程相同,是浓缩型的外部浓差极 化;由于提取液被透过液稀释,造成了膜面的溶质浓度低于提取 液主体浓度,即稀释型的外部浓差极化。
内当活部性浓浓层差朝差向极提化取膜液侧污时染,进水驱中的动溶液质会扩散溶充质满多孔支撑层, 造成溶极质在化活性层上的累积,因而分活离性层两侧有返效混的水化学势差
正渗透的原理
正渗透过程的驱动力是驱动液与原料液的渗透压差,渗透压 π 由van’t Hoff 渗透压模型得:
π=cRT 其中:C是溶液中溶质浓度,R是气体常数,T是热力学温度。 压力驱动膜过程的通量模型为:
Jw=A(ΔP-Δπ) 其中: Jw为水通量,A为膜的水渗透系数,Δ π 为膜两侧的渗透 压差,Δ P为在驱动液铝、KNO3、SO2、MgSO4、葡萄糖、果糖、蔗糖
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正渗透的应用和技术优势*名:***班级:硕士1608班学号:********指导教师:***正渗透的应用和技术优势摘要:作为一种新型膜处理技术,正渗透技术自20世纪50年代建立以来,在环保、能源、海水淡化等领域受到越来越广泛的关注;其经历了从实验室研究,中试实验,到少量的商业化应用,技术日臻完善。

正渗透技术是利用自然渗透压差为驱动力的一种净水技术,为水资源和环境问题提供了低能耗、高效率的解决方法。

该文介绍了正渗透的技术优势,以及正渗透在海水淡化、废水处理、污水回用、能源开发以及食品加工等领域的应用。

关键词:正渗透、技术优势、海水淡化、废水处理1.引言正渗透(Forward osmosis, FO)是近年来发展起来的一种浓度驱动的新型膜分离技术,它是依靠选择性渗透膜两侧的渗透压差为驱动力自发实现水传递的膜分离过程,是目前世界膜分离领域研究的热点之一。

1.1正渗透技术的原理和技术特点1.1.1正渗透技术的原理正渗透是浓度驱动型的膜过程,它依靠选择性渗透膜两侧的渗透压差为驱动力来自发的实现水在膜中的传递。

也就是指水从较高的水化学势(或较低渗透压)一侧区域通过选择透过性膜流向较低水化学势(或较高渗透压)一侧区域的过程。

在具有选择透过性膜的两侧分别放置两种具有不同渗透压的溶液,一种为具有较低渗透压的原料液(feed solution,FS),另一种为具有较高渗透压的汲取液(draw solution,DS)。

正渗透正是依靠正渗透膜两侧的汲取液(draw solution,DS)和原料液(feed solution,FS)间的自然渗透压差,使水分子自发地从低渗透压侧(FS侧)传输到高渗透压侧(DS侧)而污染物被截留的膜分离过程,具体如图1所示。

图1.正渗透过程示意图不同于传统膜分离过程,正渗透利用低水化学势的DS从高水化学势的FS吸取纯水,无需投入额外的驱动压力,因而其能耗低[1]。

1.1.2正渗透技术的技术特点正渗透不同于压力驱动膜分离过程,它不需要额外的水力压力作为驱动力,而依靠汲取液与原料液的渗透压差自发实现膜分离。

这一过程的实现需要几个必要条件:(1)可允许水通过而截留其他溶质分子或离子的选择性渗透膜及膜组件;(2)提供驱动力的汲取液;(3)对稀释后的汲取液再浓缩途径[2]。

早期关于正渗透过程研究均采用反渗透复合膜,发现膜通量普遍较低,主要原因是复合膜材料的多孔支撑层产生了内浓差极化现象,大大降低了渗透过程的效率。

20 世纪90 年代,Osmotek 公司(Hydration Technologies Inc.(HTI)公司前身)开发了一种支撑型高强度正渗透膜,已被应用于多种领域,是目前最好的商业化正渗透膜[2]。

正渗透膜组件形式主要有:板框式、卷式、管式和包式。

各种组件形式各有优缺点,如板框式具有结构简单,易装填的优点,但又存在密封和完整性检查困难的缺点。

因此应根据不同的应用领域选择合适的膜及膜组件。

近年来,许多研究致力于发展高性能的正渗透膜及组件,取得了一定成果。

汲取溶液是具有高渗透压的溶液体系,由溶质和溶剂(一般是水)组成。

如果驱动溶液中的溶质可以通过简单、低能耗的方法分离后循环利用,那么正渗透过程就能够形成一个封闭的循环体系。

文献中报道过的驱动溶质主要有:盐类如NaC1、MgC12、A12(SO4)3、NH4HCO3等,糖类如葡萄糖、果糖等,和气体如SO2等。

其中应用较普遍的溶质是NaCl,因为它溶解度高并且其溶液很容易通过反渗透过程再浓缩。

值得一提的是,McCutcheon 等采用NH4HCO3为溶质,通过简单热挥发冷凝的方法实现产品水的分离和溶质的循环利用。

2.正渗透的技术优势正渗透膜技术是相对于反渗透技术而提出来的,与反渗透技术相比较,正渗透技术具有得天独厚的优势:独有的驱动液体系,不需要外界的压力推动分离过程,能耗低,同时由于正渗透膜材料的亲水性,因此可以有效降低膜污染,可应用于反渗透技术难以实现的废水处理中,例如染色废水、垃圾沥出液以及膜生物反应器等;在降低膜污染的同时,可降低膜清洗费用和化学清洗剂对环境的污染。

正渗透过程的回收率高,避免了浓盐水的排放,环境友好;在脱盐过程中,通过选择合适的汲取液,其水回收率可达到75%,而普通反渗透水回收率为35%~50%,如此高的回收率可实现浓盐水的再浓缩,即回收率高,没有浓盐水的排放,实现零排放,是环境友好型技术;正渗透操作由于具有低温低压的特点,可以广泛应用于液体食品的浓缩和药物释放等方面;另外渗透压本身就是一种绿色能源,可以通过正渗透压技术将渗透压转换为电能[3]。

3.正渗透技术的应用正渗透具有低能耗、低污染、高回收等特点,其运用范围非常广泛,涉及工业生产和日常生活的各方面。

正渗透技术海水脱盐、发电、工业废水处理、食品工业、航空航天、制药工业得到了进一步发展,还凭借抗污染、低能耗的特点不断向传统生产工艺中渗透,与其他技术相互融合,形成创新的工业技术。

本节将对正渗透在主要几个领域的应用进行介绍。

3.1在废水处理中的应用3.1.1工业废水浓缩最早关于应用正渗透技术处理工业废水的可行性研究报道发表于1974 年和1977 年,其目的是使用这种低能耗的过程处理微重金属污染的工业废水。

他们采用序批式系统,以商业化的醋酸纤维反渗透膜为膜单元,以合成海水为汲取液,来浓缩含低浓度铜或铬离子的水,具有一定的可行性。

但由于膜通量非常低(0~4.5L/(m2·h)),盐的截留率也不太理想,没有开展进一步的研究。

3.1.2 垃圾渗滤液浓缩垃圾渗滤液主要来源于垃圾填埋场降水和垃圾本身的内含水,是一种成分复杂的高浓度的有机废水,若不加以处理而直接排入环境,会造成严重的环境污染。

主要的污染物质分 4 种类型:有机物、溶解性重金属离子、有机和无机氮类化合物、以及溶解性固体物质(TDS)。

垃圾渗滤液毒性强、可生化性差,因此生物处理效率不高,而其他的处理方法一般对TDS去除率不高。

1998 年,Osmotek 公司建立了一套中试规模的正渗透系统用于浓缩垃圾渗滤液。

该系统采用Osmotek的CTA 膜,以NaCl 为汲取液,对污染物截留率高,出水产率可以达到94%~96%[4]。

且各污染物去除率高,在连续实验的过程中虽然有一定的水通量减少(30%~50%),但经过膜清洗后,水通量又基本恢复至初始。

并且在处理原垃圾渗滤液时,膜通量没有明显降低。

在此基础上,Osmotek 公司建立了大型装置处理垃圾渗滤液,将该技术应用到年产2万~4万m3垃圾渗滤液的美国CoffinButte垃圾填埋厂的垃圾渗滤液处理,其工艺流程如图2,实际运行中采用75g/L的NaCl作为DS在近一年的运行期中,共处理渗滤液1.85万m3,平均产水率达到91.9%,除pH值降低30%外,诸如COD、CL—、F-、NH3-N、TKN、TDS等污染物的去除率均大于97.5%最终出水平均电导率为35μS/cm。

表明正渗透技术处理垃圾渗滤液是较理想的处理方法[5]。

图2.正渗透垃圾渗滤液处理流程图3.1.3污泥消化液浓缩和污泥脱水废水生物处理厂产生大量的剩余污泥,一般采用厌氧消化来处理剩余污泥,产生的污泥消化液具有氮、磷、重金属和有机污染物高,色度和固体含量高的特点,需要浓缩和进一步的处理。

采用正渗透系统处理这类废水目前已有报道。

Holloway 等设计了正渗透和反渗透组合系统处理污泥消化液。

采用如下流程:污泥消化液先经过150 目格栅预处理,再经过采用三醋酸纤维正渗透膜,以NaCl 为汲取液的正渗透系统,最后稀释的汲取液通过反渗透系统获得出水。

由于系统很高的污泥浓度,在运行过程中,膜通量明显下降,需要进行膜清洗恢复膜通量。

系统对磷酸盐、氨氮和凯氏氮的截留率分别为99%、87%和92%,几乎完全截留色度和恶臭物质,浓缩干化的污泥消化液可用作肥料。

近年来,研究人员开展了采用FO膜对污泥进行脱水的应用研究。

FO膜用于污泥脱水的工艺流程见图3。

剩余污泥中的水透过膜组件进入驱动液(36g/L NaCl溶液),污泥得到浓缩。

被稀释的驱动液通过投加NaCl保持高渗透压,以循环使用。

图3.正渗透膜用于污泥脱水的工艺流程研究结果表明,FO膜对污泥脱水的效果良好,能将MLSS从7g/L增加至39g/L;以MLSS和MLVSS计的减容率分别达到64%和80%;此外FO膜对营养物的截留效果也十分突出,NH3-N去除率达96%,磷酸盐去除率达98%,DOC 去除率达99%;膜污染主要来自于污泥一侧的污泥沉积及浓差极化,经过物理冲洗即可恢复大部分的膜通量。

以上优点使得FO用于污泥脱水具有很大的应用潜力[6-9]。

3.1.4 正渗透膜生物反应器膜生物反应器(MBR)是膜分离技术与生物技术有机结合的新型水处理技术,与传统活性污泥法相比,具有出水水质好、设备占地面积小、活性污泥浓度高、剩余污泥产率低和便于自动控制等优点,是最有前途的废水处理新技术之一。

传统MBR 系统采用的膜均为压力驱动型膜如超滤、微滤膜,目前制约MBR技术广泛应用的瓶颈是膜污染问题。

正渗透由于过程本身具有低压、低能耗和低污染的特点,从理论上讲适合于作为膜生物反应器中的膜过程。

Achilli 等发展了如图4所示的一套正渗透膜生物反应器系统处理高浓度人工配水,对有机物和氨氮的去除率分别为99%和98%。

运行过程中,膜通量较高,膜污染较轻并可通过对膜面反冲洗进行有效控制[10-12]。

Cornelissen 等发展了类似的系统并着重研究膜污染过程,发现可逆的和不可逆的膜污染均没有明显发生。

图4.正渗透膜生物反应器示意图之后许多研究者着眼于用FO替代MBR中的微滤以及超滤的可行性,成为渗透膜生物反应器(OsMBR)。

渗透膜生物反应器(OsMBR)具有诸如低能耗、抗膜污染能力强、对离子及TrOCs截留率高等众多优势。

OsMBR通常使用高浓度盐水或者预处理过的海水作为DS。

在一些研究中,研究者们将反渗透过程与OsMBR组成混合系统,利用反渗透过程来再生稀释后的DS,并生产产品水。

尽管OsMBR具有一些得天独厚的优势,但研究表明其主要不足是溶质及其他可溶解物会在原料液侧的逐步累积。

此外,由于DS溶质反向渗透现象的存在,溶质也会在反应内累积。

这些物质的累积将降低FO膜两侧渗透压差而导致膜通量的降低,并且微生物活性也会受到抑制。

Wan等以及Holloway等提出一种将微滤或者超滤过程与正渗透并联再与MBR整合的混合系统。

该系统中的MF/UF 膜组件能够连续不断地从反应器中去除可溶解成分以及氮、磷等有益营养成分,还能降低生物反应器中的浓度,从而提高微生物的活性,并最终提升活性污泥对总有机碳(TOC)以及NH3-N的去除效果。

UF-OsMBR-RO混合系统长达4个月的长周期实验表明,当开启UF膜组件时,系统的通量可以稳定在4.8L/m2·h 超过80天,并且在124天的操作周期内不需要对膜组件进行清洁。

相关文档
最新文档