人教版七年级下册数学-相交线教案与教学反思
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.1.1 相交线
2.将剪刀抽象为几何图形并画一画.
答:如图:
几何语言描述图形:直线AB、CD相交于点O.
概念:如果两条直线有一个公共点,就说这两条直线相交,公共点叫做这两条直线的交点。
3.观察上图,同桌讨论。
(1)两条直线相交组成几个角?
(2)这两条直线相交得到哪几对角?
(3)每对角中两个角的位置有怎样的关系?
(4)根据它们的位置和度数的关系将这几对角进行分类.
4.概念归纳
(1)∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.
(2)∠1与∠2是直线AB、CD相交得到的,有公共顶点O,且有一条公共边,像这样的两个角叫做邻补角.
5.概念深化【教师提示】教师统一学生观点并板书.
(1)找一找上图中还有没有对顶角,如果有,是哪两个角?
(2)找一找上图中还有没有邻补角,如果有,是哪两个角?
学生口答:∠2和∠4再也是对顶角.∠3与∠2、∠1与∠4、∠3与∠4也互为邻补角。
6.初步应用
例1:(1)下列图中的∠1与∠2是邻补角吗?为什么?
【教师强调】邻补角的特点:①顶点相同;②有一条公共边,另一边互为反向延长线;③成对出现。
(2)下列各图中∠1、∠2是对顶角吗?
【教师强调】对顶角的特点:①顶点相同;②角的两边互为反向延长线;
③成对现的。
(3)请分别画出下图中∠1的对顶角和∠2的邻补角.
学习目标2:掌握对顶角的性质并会
推导
问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?
1.动手操作,推出性质
已知,直线AB与CD相交于O点(如图),试猜想∠1、∠3的大小关系,并借助量角器或其他方式验证你的想法.
答:∠1=∠3.
思考:你能用说理的方法推出∠1=∠3吗?
解:∵∠1与∠2互补,∠3与∠2互补(邻补角定义),
∴∠l=∠3(同角的补角等).
或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻
补角定义),
∴∠1=∠3(等量代换).
教师提醒:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.
2.性质归纳:对顶角相等.
3.初步应用
例1:如图,直线a、b相交,∠1=40º,求∠2,∠3,∠4的度数.
解:∵∠1=∠3(对顶角相等),∠1=40º(已知)
∴∠3=4º.
又∵∠1+∠2=180º(邻补角定义),∠1=40º(已知)
∠2=∠4(对顶角相等)∴∠4=∠2=180º- ∠
1 =140º. 【教学提示】学生以小组为单位展开讨论,选代表发言,并口答为什么.例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。
4.变式练习
学生活动:让学生把例题中∠1=40°这个条件换成其他条件,而结论不变,
自编几道题.
变式1:把∠l=40°变为∠2-∠1=40°
变式2:把∠1=40°变为∠2 是∠l 的3倍
变式3:把∠1=0°变为∠1:∠2=:9.
三、巩固训练,熟练技能
1.(1)若∠1与∠2是对顶角,∠1=16º,则∠2=______º;
(2)若∠3与∠4是邻补角,则∠3+∠4 =______º.
2.若∠1与∠2为对顶角,∠1与∠3互补,则∠2+∠
3= º.
3.要测量两堵围墙所形成的∠AOB的度数,但人不能进入围墙,如何测
量?
四、归纳总结,板书设
【教学说明】要
求学生能用文字
语言说理,并让
学生写出推理过
程,由于本阶段
对于推理的要求
处在入门阶段,
因此形式上可不
做过分要求。
【教学提示】表
格中的结论均由
学生自己口答填
【素材积累】
1、成都,是一个微笑的城市,宁静而美丽。几千年前的三星堆、金沙,是古蜀人智慧的结晶,难以忘怀的文明,静静地诉说着古人们的智慧……刘备,孟昶等,多少为成都制造机会,创造美丽的人啊!武侯祠中诸葛亮摘悄悄的感叹成都的美……杜甫草堂,有多少千古名句,虽然简陋却给了杜甫一个温暖的港湾。
2、早上,晴空万里,云雾满天。太阳公公把一切都搞得有一层薄薄的金黄色。一群小鸟,摘老松树的枝头上欢蹦乱跳,叽叽喳喳地唱歌,这些小淘气们一跳上去,那些晶莹的小露珠旧滴一声,跳到了地上,继续进行它们的旅行。空气摘早上也是非常的清新,你深深地吸一口气,仿佛可以把自己所有的心烦事都忘得一干二净,这旧是我家乡的早晨。