一致连续性及其应用论文
函数一致连续性的判定及性质
函数一致连续性的判定及性质摘要: 在函数的众多性质中,函数的一致连续性是非常重要的一个,它刻划出了函数在一个区间上的全局性,是理解数学中其它知识的基础,对这一性质的深刻理解与掌握能够很好的促进数学分析的学习,研究函数一致连续性必然要研究一致连续性的判定定理及性质,这有利于描绘函数的图像和进一步了解函数的性质。
本文简要概括了一元函数的一致连续性概念及连续与一致连续的联系与差别,并深入分析了函数一致连续的判定、性质及应用。
关键词: 一致连续性连续函数非一致连续极限可导The Judgemental Theorems and Properties of UniformContinuity for FunctionsAbstract The uniform continuity of function is a very important concept in the mathematical analysis course,it skins out the overall importance of function on an interval and it is a foundation in understanding other knowledge associated with mathematics . Deep understanding and mastering of this nature can promote us learning about mthematical analysis. Studying the judgemental theorems and properties of uniform continuity for function are useful for researching the uniform continuity of function ,and this helps us to depict the images of function and further understand the nature of the function. The paper summarizes the uniform continuity concept of the unary function and the difference between continuous function and uniformly continuous function, at the same time,it analysizes the determination, properties and application of uniformly continuous function in depth.Keywords consistent continuity continuous function non-uniform limit differentiable1 引言一致连续是数学分析上册第四章第2节所学到的一个概念,它能够帮助我们理解和解决很多问题。
函数的一致连续性及其应用
函数的一致连续性及其应用本文以函数的连续性为基础,一致连续性的定义为出发点,重点深入分析函数的一致连续性.教材一般只给出定义来判断函数是否一致连续,这对一些函数来说是比较复杂且难以解决的.因此本文主要对一元函数在各种区间上讨论函数的一致连续性的判断条件和方法,以及一些性质和应用,能够在教材的基础上更加全面地了解函数的一致连续性.1.2预备知识为了便于理解,现将本文涉及的一些相关定义和定理罗列如下.定义1.2.1[1]设函数在某上有定义,若,(1-1)则称函数在点连续,若函数在区间上的每一点都连续,则称在上连续.定义1.2.2[2]若函数在区间上有定义,称(1-2)为在区间上的连续模.定义1.3.1[1]设为定义在区间上的函数.若对任给的,存在,使得对任何,只要,就有,(1-3)则称函数在区间上一致连续.注:函数在区间上一致连续表明无论两点,在中处于什么位置,只要它们的距离小于,而这只与有关,就可以使.这个定义是教材中最常用的定义,根据定义还能扩展推理得到更多判断函数一致连续的条件和方法,这些本文后面会逐渐说明.由此,还可以得到函数在区间不一致连续的定义:,对,存在,使得当时,有.(1-4)引理1.2.1[3]有限区间上的一致连续函数必有界.引理1.2.2[1]设区间的右端点为,区间的左端点也为,若分别在和上一致连续,则在上也一致连续.2函数一致连续性的判断条件(1)引理2.1[1]函数在上一致连续的充要条件为:对任何数列,若,(2-1)则.(2-2)类似用归结原则来判断函数的连续性,这里通过数列来判断函数的一致连续性,但是直接用来证明函数的一致连续可能会很麻烦,因为这要验证任意的数列,因此一般用来证明函数的不一致连续比较方便,而这又与数列有关,可适用于含有三角函数和幂函数的函数.例2.1证明函数在上不一致连续.证:令,(2-3)则.(2-4)但是,(2-5)在上不一致连续.例2.2判断函数在上的一致连续性.解:令,(2-6)则.(2-7)而,(2-8)在上的不一致连续.从这两个简单的例子可以知道应用(1)中的结论是非常方便快捷的,如果用定义来判断函数的一致连续性还需要进行推理化简得到定义的形式,甚至有时候根本无法化简.由此可知定义无法满足解决函数一致连续性的需求,还需总结更多的判断函数一致连续性的条件和方法.(2)函数在上一致连续的充要条件为【2】:.证:若在上一致连续,则对当时,有,所以,(2-9)从而当时,有,(2-10)所以.(2-11)若,则对,有,(2-12)所以,(2-13)因此当时,有,(2-14)在上一致连续.这里可以通过连续模的极限来判断函数的一致连续性,其实也是从定义出发,观察函数的图像的陡峭程度来进行描述,但是这个往往用得比较少.(1)和(2)适用于函数所在定义域的所有区间,而在一些特殊区间还要进行如下讨论.(3)一致连续性定理:若函数在闭区间上连续,则在上一致连续【1】.这个定理也叫康托尔定理,其实从函数一致连续的定义可以知道如果一个函数在区间上一致连续,那么它肯定在上连续.这个定理直接就将闭区间上的函数的连续性和一致连续性联系起来,说明了只有在闭区间上的连续函数才必定一致连续.但是如果不在闭区间上时,那么通过分析这个定理可以知道要判断在有限开区间上的函数是否一致连续,还需要分析函数在区间端点连续性.所以可以得到以下结论:(4)函数在上一致连续的充要条件为:在上连续,存在且有限.证:在上一致连续,在上连续,且对,当时,有.当时,由柯西收敛准则知存在且有限.同理当时,知存在且有限.构造函数(2-15)则在上连续,根据(3)中一致连续定理知在上一致连续,在上也一致连续,在上一致连续.例2.3证明在上一致连续.证:由在上连续,知,(2-16)在上一致连续.这些只是在函数一致连续性有限区间上的讨论,还可以类似进一步在无限区间中展开讨论.(5)若函数在上连续,,存在且有限,则函数在上一致连续.但是反之是不成立的,比如在上是一致连续的,但是是不存在的.所以在无限区间上的时候要注意这个问题.通过以上讨论,也可以用类似方法判断连续函数在,,,,,上的一致连续性,具体内容不再一一重复.总之,(3)-(5)判断函数一致连续性的条件是函数在区间上连续并且在区间端点的极限要存在,都应用到了函数的连续性,这也说明了一致连续和连续有着非常密切的关系.从而根据(3)-(5)还能得到以下结论:(6)若函数在区间上单调有界且连续,则在上一致连续.证明:由在区间上单调有界,则对,存在,而且连续,根据(3)-(5)的结论可知在上一致连续.2.4判断是否一致,是否连续?解:对,有,(2-17)在上连续,又因为,(2-18)在上一致连续.3函数一致连续性的判断方法3.1函数一致连续性在一般区间的判断方法(1)定义法.一般根据函数一致连续性的定义都能判断一个函数是否一致连续,很多证明方法都是从定义出发的,这也是最常用的方法,而根据函数一致连续性的定义,还能将其扩展得到以下结论:若函数在区间上满足利普希茨条件:.(3-1)其中是是常数,则在上一致连续.证:对则当时,有,(3-2)所以在上一致连续.由证明过程可知函数化成利普希茨条件的形式其实是对函数一致连续性定义的直接应用,这将定义具体化,提供了解题思路.例3.1设,证明在上一致连续.证:对,有.取,那么根据(1)就知在上一致连续.(2)导函数有界法.根据导函数有界,可以间接地得到(1)中的结论.有时候一个函数太复杂,有时候无法将题目直接化简成(1)中利普希茨条件的形式,也就是说用定义无法简单地证明这个函数一致连续.这时可以从导函数入手.当导函数比较简单时,只要知道这个函数的导函数有界,就能判断这个函数是否一致连续.也就得到以下结论:若函数在区间上可导,且在上有界,则在上一致连续.证明:因为在上有界,所以,使,(3-3)又因为在可导,由拉格朗日中值定理,知对,有,(3-4)所以.(3-5)所以根据(1)可知在一致连续.3.2函数一致连续性的比较判别法(1)定理3.2.1【4】函数,若,其中是常数,且,则函数具有相同的一致连续性.这个方法是通过构造一个函数,通过两个函数的比较以及所构造的函数是否一致连续来判断原函数是否一致连续.它比较灵活,表面看好像大多函数都能通过这个方法判断一致连续性,特别是一些复杂的函数,但是前提是要知道所构造函数的一致连续性并且两个函数比较之后的极限要存在,而通常基本初等函数的一致连续性是比较好判断的.因此如果题目中的函数含有基本初等函数,则可以考虑这种方法.函数在不同的区间上时,还可以类似得到以下的结论:(2)函数,若,其中是常数,且,则函数具有相同的一致连续性.(3)函数,若,其中是常数,且,则函数具有相同的一致连续性.(4)函数,若,,其中是常数,且,则函数具有相同的一致连续性.例3.2.1证明函数在上一致连续.证明:令,(3-6)则,(3-7)取,则有.(3-8)在上一致连续,在上一致连续.3.3函数一致连续性的比值判别法(1)设函数,且函数满足1);2)可导,且;3),其中是常数,且,则函数具有相同的一致连续性.证明:根据洛必达法则,知,(3-9)设在上一致连续,则对当时,有,(3-10)因为,(3-11)所以对,使,(3-12)由柯西微分中值定理知,,使,(3-12)所以,(3-13)所以对,有,(3-14)从而有,(3-15)所以,(3-16),有,(3-17)因此,在上一致连续.在上连续,在上一致连续.在上一致连续.同理还可证明若在上一致连续,则在上一致连续.如果一个函数是无穷大量并且可导,那么可以通过构造一个已知一致连续性的无穷大量的可导的函数,通过两个导函数的比值关系,其实也是这两个函数的比值,将两者的一致连续性联系起来,这样就能判断了,这与比较判别法类似,都是构造函数,只是条件不一样.由(1)知函数在不同的区间上时,还可以类似得到以下的结论:(2)设函数,且函数满足1);2)可导,且;3),其中是常数,且,则函数具有相同的一致连续性.(3)设函数,且函数满足1);2)可导,且;3),其中常数,且,则函数具有相同的一致连续性.(4)设函数,且函数满足1);2)可导,且;3),其中是常数,且,则函数具有相同的一致连续性.(5)设函数,且函数满足1);2)可导,且;3),其中是常数,且,则函数具有相同的一致连续性.(6)设函数,且函数满足1),;2)可导,且;3),其中是非零常数,则函数具有相同的一致连续性.3.3确定上的函数是否一致和连续?解:在上不一致连续.令,(3-18)则.(3-19)又因为在上连续,且,(3-20)而在上不一致连续,在上不一致连续.无论是在有限区间还是无限区间,比较判别法和比值判别方法都可以适用.4函数一致连续性的性质函数的连续性满足四则运算,一致连续性也如此.(1)若函数在上一致连续,则在上一致连续.证明:在上一致连续,对,当时,有,(4-1)又在上一致连续,当时,有,(4-2)故对,取,则对,当时,有,在上一致连续.(2)若函数在上一致连续,则,在上一致连续.(3)若函数在上一致连续且有界,则在上一致连续.(4)若函数在上一致连续,函数在上一致连续且,则在上一致连续.例4.1设函数在上一致连续,证明在上也一致连续.证:在上一致连续,令,则在上连续,在上一致连续.又在上有界,在上一致连续,在上一致连续.因此在上一致连续.5两种函数的一致连续性5.1周期函数的一致连续性如果函数的周期为,在上有定义且连续,则函数在上一致连续.证:在上连续,在上连续.根据一致连续性定理知在上一致连续,对,当时,有.令,当时,存在正整数,使,(5-1),(5-2)所以.(5-3)故在上一致连续.这个针对周期函数的一致连续性,将连续和一致连续的关系连在一起.有些函数是周期函数,如三角函数等,但是如果直接用定义或者其他方法来证明它是一致连续的,有时候很难化简得到结果或是无从下手,此时就可以通过连续性来判断一致连续性,从而得到结论.例5.1.1证明函数在上一致连续.证:是以为周期的周期函数,并且在上连续,根据周期性知在上连续,因此在上一致连续.例5.1.2证明在上一致连续.证:因为,(5-4)的周期为,即是周期函数.由上题知,(5-5)在上连续,所以在上连续,故在上一致连续.5.2幂函数的一致连续性(1)函数在上是一致连续的.证:当时,根据例4.1的证明过程知在上一致连续;当时,知,(5-6)根据一致连续性的定义,对当时,有,(5-7)所以在上一致连续.(2)对任意的,函数在上一致连续,在上不一致连续,也就是在上不一致连续.证明:在上连续,在上一致连续.,当时,根据拉格朗日中值定理知,存在介于之间,使,(5-8),使,(5-9)所以,(5-10)则有.(5-11)在上不一致连续,在上不一致连续.例2.2中可以直接用(2)的结论来说明在上是不一致连续的.。
【免费下载】函数fx一致连续的条件及应用
f (x' ) f (x'' ) 0 ,则 f (x) 一致连续. 例 1 f (x) 1 在 (0, c)(c 0) 上是非一致连续的,但在[c, )(c 0) 上一致连续. x 分析: f (x) 1 (x 0) ,在 x 0 处,图形无限变陡. x 0, f ( ) . 0 时 f ( ) 0 .
f (x法 3:无穷区间上一致连续的判别法
若 f (x) 在 (, ) 上连续,且 lim f (x) A 及 lim f (x) B 极限存在,则 f (x) 在
(, ) 上一致连续.
类似的还有:
x
若 f (x) 在[a, ) (或 (,b] )上连续,且 lim f (x) (或 lim f (x) )极限存在,则 f (x) 在
x
2
x
x
x
xa
x
lim f (x) )极限存在,则 f (x) 在 (a, ) (或 (,b) )上一致连续.
xb
3. 方法的归纳和应用 3.1 方法的归纳及方法的应用
方法 1:用连续模数来刻画一致连续性
若 f (x) 在区间 I 上有定义,则称 f ( ) sup f (x' ) f (x'' ) 为函数 f (x) 的连续 x' ,x''I x'x''
1.引言 函数的一致连续性是数学分析课程的重要理论,弄清函数的一致连续性的概念和熟练掌握
判断函数一致连续的方法是学好这一理论的关键.一般的数学分析教材中只给出一致连续的概
函数的一致连续及应用
函数的一致连续及应用函数的一致性定义为两个或更多函数之间的性质,当它们的自变量变化时,其输出结果也会随之变化。
函数的一致性通过离散变量和连续变量来定义,其应用有许多种,如在统计领域,多元线性回归,函数的估计和精确的拟合,以及在计算机领域中的信号处理和图像处理。
一致性是一种比较数学性质的重要概念,它指的是当函数的自变量改变时,函数的行为也会随之改变,也就是说,函数的一致性是基于变量的连续性和非离散性来定义的。
函数的一致性可以用多种方式来表示,比如可以从图形上表示,也可以用数学公式表达。
一般地,如果函数的自变量改变了一小部分,函数的值也会随之改变。
而无论函数的改变有多小,都只要函数的输出结果保持不变,函数就满足一致性。
在数学上,函数的一致性可以通过向量和矩阵分析来证明,即可以通过一个矩阵来表示一组函数和变量,以及它们之间的关系。
由于函数的一致性定义中也涉及到求导和积分,因此需要利用微积分的技巧来证明函数的一致性。
函数的一致性在统计学中具有重要意义,例如,在多元线性回归分析中,需要构建一个自变量和因变量之间是一致性关系的函数,以便对数据进行分析和预测。
另外,函数的一致性也被广泛应用在计算机领域,如信号处理和图像处理中,用于精确拟合函数曲线,实现准确的信号分析、建模和图像处理。
函数的一致性也有许多应用场景,如在建筑设计、飞机结构设计中,函数的一致性可以用来模拟和分析不同环境下的结构性能,从而更好地设计出更加稳健的结构。
此外,在进行气象研究时,也需要从不同气象要素中分析和模拟出合理的函数,以便对地表和海洋的热力态势进行准确预测。
总之,函数的一致性是一种重要的数学性质,它被广泛应用于统计学、计算机领域、工程设计和气象研究等领域,是许多方面的重要指标,也是不断探索和实现函数性能的重要工具。
函数一致连续性的定义与性质文献综述
毕业论文文献综述数学与应用数学函数一致连续性的定义与性质一、前言部分函数一致连续是从函数连续的概念派生出来的,函数的一致连续性是函数的重要特征,它标志着一个连续函数的变化速度有无“突变”。
对于函数一致连续来说,不仅要求函数在区间上的每一点保持连续,还进一步要求它在区间上所有点邻近有大体上均匀的变化趋势。
是指存在一个微小变化的界限,如果函数定义域内的任意两点间的距离不超过这个界限,则这两点对应的函数值之差就能达到任意小.连续与一致连续是建立在函数极限概念的基础之上,用以刻划函数的变化情况和研究函数性质的两个基本的数学分析概念.通常人们说的连续是指不间断,其对立面就是间断.而数学上函数连续与间断的概念,也正是函数在变化过程中渐变与突变的一种反映.因此从几何直观来看,连续函数的特点就在于它的图象是一条连续不斯的曲线;而从分析的角度来看,函数()f x 在一点0x 处连续,包含着以下三层意思:(1)()f x 在0x 处有定义,即()0f x 是一个确定的常数;(2)()f x 在0x 处有极限,即()0lim x x f x →存在; (3)()f x 在0x 处的函数值与极限值相等,即()()00lim x x f x f x →=. 如果以上任何一个条件被破坏,()f x 在点0x 处就不连续了,这时0x 叫做()f x 的间断点.这就是说:如果函数()f x 在点0x 及其附近有定义,而且()()00lim x x f x f x →=,就说()f x 在点0x 处连续.其实函数在变化过程中,并没有仅仅在一点连续的情形,较常见的是函数在区间上连续的概念.定义1 若函数f 在区间I 上的每一点都连续,则称f 为I 上的连续函数(见文献[1][2][3]).根据定义1可知,如果函数()f x 在区间I 上连续,则对于事先任意给定的正数ε,就I上的每一点0x 来说,都可以分别找到相应的正数δ,使得对于I 上的点,只要0x x δ-p ,就有()()0f x f x ε-p .其中δ的大小不仅与给定的ε有关,而且与点0x 的位置有关.对于同一个ε,当0x 在I 上变动时,一般来说δ的大小也将随着改变,即δ是依赖于0x 的.如果δ的大小只与给定的ε有关,而与点0x 在I 上的位置无关,也即是说,对于给定的正数ε,存在这样一个正数δ,它适用于区间I 上所有的点0x ,那么这时()f x 就在I 上一致连续.定义2 函数()f x 定义在区间I 上,如果对于事先任意给定的正数ε,总可以找到这样一个正数δ,对I 上任意两点1x ,2x ,只要12x x δ-p ,就有()()12f x f x ε-p ,那么就说函数()f x 在区间I 上一致连续(见文献[2][3][4]).一致连续的特点在于,只要I 上的两点接近到同一个程度,就可以使这两点对应的函数值达到所需要的接近程度.因此,它从整体上反映出()f x 在I 上各点“连续”程度是否步调“一致”这样一个重要性质.历史上关于函数一致连续性的研究从未间断,中外大多学者在一元函数一致连续性的判定方面都取得了喜人的理论成果,本篇文献综述将对前人在函数一致连续性定义、性质、判定理论方面的研究作总结性陈述. 二、主题部分关于函数一致连续性的研究已经取得了较为丰富的结果,现将已有文献的理论成果综述如下:文献[5-6]研究函数一致连续的判别方法.其中文献[5]中,作者讨论了一致连续函数的判别及分布.作者指出,关于一致连续函数在平面上的分布,可归纳为以下情况:a 、对于有限区间上的一致连续函数,由于有界性,所以它必包含在一个矩形之内,矩形的边平行坐标轴;b 、对于无限区间来说,凡有垂直渐近线的连续函数都不是一致连续函数,因此,它的“无限部分”应限制在个角形之内,而角形的边不与坐标轴垂直;对于无渐近线的有界或无界的连续函数,如果当x 趋于无穷大时,其切线斜率趋于有限数,则其必为一致连续函数,因此,它应限制在某个角形之内.总之,一致连续函数是分布在平面上的一个“槽形”区域之内,当x 趋于无穷大时,其切线斜率为有界的一类连续函数.文献[6]中,作者给出了用导数判别函数在一般区间上一致连续的方法.并举例说明不可以建立关于一致连续的比较判别法. 文献[6]的主要结论可总结如下:定理1 若函数()f x 在区间I (I 可开、半开、有限或无限.下同)可导,且()f x '在I 有界.则函数()f x 在I 一致连续.定理2 若函数()f x 在区闻[,)a +∞(或(,]b -∞)可导.且()lim x f x →+∞'=∞(或 ()lim x f x →-∞'=∞),则()f x 在[,)a +∞(或(,]b -∞)非一致连续.定理3 若函数()f x 与()g x 在区间I 可导,且()()0f x g x ''≥f ,则(1) 当()f x 在I 一致连续时,()g x 在I 一致连续;(2) 当()g x 在I 非一致连续时,()f x 在I 非一致连续.上面这个定理指出可以根据两个导数间的关系判断函数的一致连续性,进一步的是否能直接利用两个函数(绝对值)的大小关系建立一致连续的“比较判别法”,作者举出了一个例子对这个问题予以否定回答.文献[7]讨论函数一致连续的条件,作者讨论了定义在区间和有界实数集上函数一致连续的充要条件,主要结论总结如下:定理4(Cantor 定理)函数()f x 在区间[],a b 一致连续当且仅当()f x 在区间[],a b 连续.(充分性也可参考文献[8])定理5 在有界实数集E 上定义的函数()f x 在E 上一致连续的充要条件是E 内任意 的收敛数列{}n x 其对应的函数值数列()n f x 也是收敛的.定理6 函数()f x 在区间I 上一致连续的充要条件是对任给的正数ε,及x ',x I ''∈, 总存在正整数N ,使得当()()f x f x N x x '''-'''-f 时,有()()f x f x ε'''-p . 定理7 函数()f x 在区间I 上一致连续的充要条件是区间I 上满足()lim 0n n n x y →∞-=的任意两数列{}n x ,{}n y 总有()()()lim 0n n n f x f y →∞-=. 文献[9]中,作者给出了一元函数在区间上一致连续的一个等价条件,并运用它证明了一些函数的一致连续性.定理8 设f 是区间I 上的函数,那么f 在区间I 上一致连续的充分必要条件是:存在0r f 及定义在[]0,r 上满足()0lim 0h g h →+=的函数g ,使得对任意的[]0,h r ∈和x I ∈,只要x h I +∈,就有()()()f x h f x g h +-≤.由上面定理的证明,作者得出了一个推论,结论是:f 是区间I 上的函数,若()()0,lim sup 0h x x h I f x h f x →++∈+-≠,则f 在区间I 上不一致连续.事实上,同样容易证明:如果f 在区间I 上不一致连续,则()()0,lim sup 0h x x h I f x h f x →++∈+-≠.这个推论是证明函数非一致连续的一种有效方法.文献[10]中,作者给出了函数()f x 在某集上不一致连续的一种规范证明方法. 证明1 ()2f x x =在()r -∞∞p p 上不一致连续. 证明2 ()1f x x=在()0,∞上不一致连续. 证明3 ()21f x x=在()0,∞上不一致连续. 证明4 ()1sin f x x =在2(0,]π上不一致连续. 文献[11]中,作者研究了函数的一致连续性问题,提出判定函数一致连续的比较判别法和比值判别法判定定理:定理9 函数()f x ,()()g x C I ∈,[,)I a =+∞,若满足()()()lim x f x Ag x B →+∞-=成立(其中A 为非零定值,B 为定值).则()f x ,()g x 有相同的一致连续性.文章给出证明,随后作者又给出了四个相关的命题定理,并对这些定理一一证明其正确性.定理10 设函数()f x ,()()g x C I ∈,[,)I a =+∞,()f x ,()g x 满足:(1)()()lim lim x x f x g x →+∞→+∞==∞, (2)()f x ,()g x 在I 上可导,且()0g x '≠,(3)()()lim x f x g x →∞''存在,若()()lim x f x A g x →∞=,(A 为非零定值),则()f x ,()g x 有相同的一致连续性.在这个定理的引申下,文章再次给出了五个相关的结论,都为判定函数一致连续提供了理论依据,更方便的函数一致连续的判定.对于函数的一致连续性问题,作者提出并证明了判定函数一致连续的比较判别法和比值判别法,从而大大简化并拓宽了函数一致连续性的可判别范围.文献[12]中,作者研究得到了函数一致连续的几个充分条件. 文献[12]的主要结论可总结如下:定理11 若函数()f x 在区间I (有限或无穷)上单调,且()Df x 在I 内处处存在、有界,则函数()f x 在开区间I 上一致连续.在此基础上作者给出两个推论,一个是:若函数()f x 是开区间I (有限或无穷)上的凸函数,且拟导数存在,有界,则函数()f x 在开区间I 上一致连续.另一个是:若函数()f x 在区间I (有限或无穷)上,满足一定的条件,就可以得到函数是一致连续的.文章对得出的定理给出了详细证明.文献[13]中,作者给出函数在无限区间上一致连续的三个判别条件,并对文献[14]的两个判别定理进行了改进. 文献[13]的主要结论可总结如下:定理12 若函数()f x 是可微函数,且()f x '在区间I (I 可开、半开、有限或无限)上有界,则()f x 在I 上一致连续.定理13 若函数()f x 在[,)a +∞上一致连续,()x φ在[,)a +∞上连续,且()()lim 0x f x x φ→+∞-=⎡⎤⎣⎦则函数()x φ在[,)a +∞上一致连续(以上两个定理的证明参考文献[15]).定理14 实函数()f x 在[0,)+∞上连续,在[0,)+∞内处处可导,且()lim x f x A →+∞'=存在,则当且仅当A +∞p 时,()f x 在[0,)+∞上一致连续.定理15 设存在0L f ,使对任意x ',x I ''∈,都有:()()()()f x f x L g x g x ''''''-≤-成立,而()g x 在区间I 上一致连续,则()f x 在I 上一致连续.定理16 设函数()f x 在[,)a +∞上连续,且x →+∞时,()f x 有渐近线y ax b =+.则()f x 在[,)a +∞上一致连续.定理17 设函数()f x 在[,)a +∞上连续,且()lim 0x bx f x →+∞-=⎡⎤⎣⎦,其中b 是非零常数,则()f x 在[,)a +∞上一致连续.三、总结部分数学是一门基础学科,我们生活的方方面面无不有数学的影子在里面,,它不仅指导我们进行生产和学习,同时对我们认识自然,了解事物的本质都有着积极的作用.函数一致连续性近几年在自然界和生活中有着广泛的应用背景,因此近几年关于函数一致连续性的各方面研究都取得了突破性的进展,这些研究成果渗透到了社会的方方面面,为社会的发展做出了重要的贡献,各国的专家学者对函数一致连续性做了深入的研究,并且已经取得很多重要的有益的结论,并且这些结论在函数一致连续性的研究上经常被采用.根据所总结的文献来看,许多学者已对函数一致连续性的性质、定义以及定理、应用进行了研究,然而以上有关函数一致连续性的定义与性质的文献总结都是在一元函数的框架下,而二元函数的研究显得很微弱,所以将一元函数的相关定理推广到二元函数中是很有必要的.这就是说函数一致连续性还尚存在很多不明确的问题,多元函数一致连续性还有很多需要解决的问题.所以随着科学技术的发展,时间的推移,我相信多元函数一致连续性的研究应用,会越来越占有重要的位置.四、参考文献[1] 华东师范大学数学系·数学分析(上册第三版)[M]·北京:高等教育出版社,2001[2] T.M ·Apostol.Mathematical Analysis[M]·Addison-Welsey Publishing Compony,inc.,1974[3] 菲赫金哥尔茨·微积分学教程[M]·北京:人民教育出版社,1959[4] 王孚和·连续与一致连续[J]·江西教育学院,教学参考资料:41─43[5] 袁南桥·一致连续的判别及分布[J]·四川文理学院学报,2007,17(2):6─7[6] 鞠正云·用导数判别函数的一致连续性[J]·工科数学,1999, 15(1):127─129[7] 赵向会·函数一致连续性的几个充要条件[J]·张家口职业技术学院学报,2007, 20(4):75─77[8] 裴礼文·数学分析中的典型问题与方法[M] 北京:高等教育出版社,1993[9] 成波,李延兴·函数一致连续的一种新证法[J]·安康师专学报,2006,18(4):71─72f x在某集上的一致连续性[J]·内江师范高等专科学校学[10] 黄崇智·关于()报,2000,15(2):14─17[11] 杨小远·关于函数一致连续的判别方法研究[J]·北京航空航天大学[12] 邱德华,李水田·函数一致连续的几个充分条件[J]·大学数学,2006,22(3):136─138[13] 陈惠汝,何春羚·再探函数在无穷远处的一致连续性[J]·宜春学院学报,2006,28(2) :45 ─46[14] 杨中南·函数在无穷远处的一致连续性[J]·集美大学报,1997,2(1):70─75[15] 陈慧汝·函数一致连续判别法的再研究[J]·数学教学研究,2005,(1):57─58。
函数一致连续性论文
一致连续函数的证明与性质周青(081114132)(孝感学院数学与统计学院)摘要本文综述了连续函数的一致连续性条件以及一致连续函数所具有的性质。
在研究连续函数在区间内一致连续条件时,通过改变函数的定义域,讨论一致连续性问题;并且讨论了数列函数,周期函数的一致连续性。
关键词函数; 连续; 一致连续;函数性质Consistent continuation function demonstrated with natureAbstract This article reviews the continuous uniform continuity of functions and the properties of uniformly continuous function. In the study of continuous function on the interval uniform continuity conditions, by changing the definition of the function domain, discuss the uniformly continuity problems; and discusses the sequence function, periodic uniform continuity of functions.Key words function; continuous; uniformly continuous function1引言函数的一致连续性是研究函数的重要内容,关于函数一致连续问题的理解与应用是理解其他知识的基础。
为了使函数一致连续性的判定条件更加系统,本文总结了函数一致连续的一些条件。
本文主要探讨连续函数到一致连续函数所需的条件。
函数在区间上连续是指函数在该区间的每一点都连续,而一致连续性概念反映了函数在区间更强的连续性。
连续函数与一致连续性的研究分析
连续函数与一致连续性的研究分析在数学领域中,连续函数是一种重要的概念,它在分析学、微积分和实变函数等学科中都有广泛的应用。
连续函数的研究对于理解数学的发展和应用具有重要的意义。
而一致连续性是连续函数的一个重要性质,它在实际问题的建模和解决中也起到了关键的作用。
首先,我们来探讨连续函数的定义和性质。
在数学中,连续函数是指在定义域上的任意一点,函数值都能无限接近于其函数极限。
具体来说,对于一个定义在区间[a, b]上的函数f(x),如果对于任意给定的ε>0,存在一个δ>0,使得当|x-x0|<δ时,总有|f(x)-f(x0)|<ε成立,那么我们称函数f(x)在点x0处连续。
连续函数具有一些重要的性质。
首先,连续函数的和、差、积仍然是连续函数。
其次,连续函数的复合函数也是连续函数。
这些性质使得连续函数在数学分析中有着广泛的应用。
例如,在微积分中,我们需要对函数进行求导和积分,而连续函数的这些性质保证了这些运算的合法性。
然而,仅仅满足上述定义的连续函数并不能满足一些特殊情况下的需求。
例如,考虑函数f(x) = 1/x,它在定义域上是连续函数。
但是,当x趋近于0时,f(x)的变化速度变得非常快,这导致了在一些问题中的数值计算的不稳定性。
为了解决这个问题,我们引入了一致连续性的概念。
一致连续性是连续函数的一种更强的性质。
对于一个定义在区间[a, b]上的函数f(x),如果对于任意给定的ε>0,存在一个δ>0,使得当|x-x0|<δ时,对于区间[a, b]上的任意两个点x和y,总有|f(x)-f(y)|<ε成立,那么我们称函数f(x)在区间[a, b]上一致连续。
一致连续性的引入解决了连续函数在局部变化剧烈的情况下的数值计算问题。
它保证了函数在整个定义域上的变化是平缓的,从而提高了数值计算的稳定性。
例如,在数学建模中,我们经常需要对连续函数进行数值逼近,而一致连续性保证了逼近的精度和稳定性。
函数一致连续性的判断及应用大学本科毕业论文
题 目:函数一致连续性的判断及应用目:函数一致连续性的判断及应用目:函数一致连续性的判断及应用毕业论文(设计)作者声明本人郑重声明:所呈交的毕业论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,除了文中特别加以标注引用的内容外,本本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
本人完全了解有关保障、使用毕业论文的规定,同意学校保留并向有关毕业论文管理机构送交论文的复印件和电子版。
同意省级优秀毕业论文评选机构将本毕业论文通过影印、毕业论文评选机构将本毕业论文通过影印、缩印、缩印、扫描等方式进行保存、摘编或汇编;同意本论文被编入有关数据库进行检索和查阅。
本毕业论文内容不涉及国家机密。
论文题目:函数一致连续性的判断及应用作者单位:数学与统计学院作者签名:2014年 5月17日目 录摘 要要 (4)引言 (5)1. 1. 函数连续与函数一致连续的关系函数连续与函数一致连续的关系 (6)1.1函数连续性与函数一致连续性的区别函数连续性与函数一致连续性的区别............................. .............................6 1.2 1.2 函数连续性与函数一致连续性的联系函数连续性与函数一致连续性的联系............................ 8 2. 2. 一元函数一致连续的判断和应用一元函数一致连续的判断和应用 .. (9)2.1 2.1 一元函数在有限区间上的一致连续性一元函数在有限区间上的一致连续性........................... 9 2.2 2.2 一元函数在无限区间上的一致连续性一元函数在无限区间上的一致连续性......................... 11 2.3 2.3 一元函数在任意区间上的一致连续性一元函数在任意区间上的一致连续性......................... 13 3. 3. 二元函数一致连续性二元函数一致连续性 ................................................18 3.1 3.1 二元函数一致连续的概念二元函数一致连续的概念.................................... 18 3.2 3.2 二元函数的一致连续性的判断及应用二元函数的一致连续性的判断及应用.......................... 18 结束语.. (19)参考文献 (19)致谢 (21)函数一致连续性的判断与应用摘 要:本文从函数连续和一致连续的概念和关系出发,对函数的一致连续的定义进行了深入的分析,之后主要对一元函数在不同类型的区间进行了探讨、总结和应用,还将部分一元函数的一致连续的判定方法推广到二元函数,使大家对函数一致连续的内涵有更全面的理解和认识对函数一致连续的内涵有更全面的理解和认识. .关键词:连续;一致连续;连续函数连续;一致连续;连续函数The judgment and Application of Uniformly ContinuousFunctionAbstract: This article from the concept of uniformly continuousfunction is continuous and relation. the definition of uniformlycontinuous of function carried on the thorough analysis, then we researchthe methods of decisions of uniformly continuous function in differentkinds of intervals. Moreover, we extend some of the results to functionof two variables in different region.Key words : Continuity; Uniformly Continuity; Continuity Function引言函数一致连续性是数学分析的一个重要概念,理解函数的一致连续性的概念和熟练掌握判断函数一致连续的方法是学好这一理论的关键.函数一致连续不仅仅是闭区间上连续函数黎曼可积的基础,而且与以后的含参量积分、函数项积分等概念有着密切的联系.所以,找出函数一致连续性的条件是数学分析中的一个重要内容重要内容..因此,本文探讨了函数一致连续性的判定方法,基本性质及其应用,并且对函数一致连续性的判定方法,基本性质及各个应用进行了深入研究,目的是使读者能更好的掌握函数的一致连续性.使大家对函数一致连续的内涵有更全面的理解和认识面的理解和认识. .数学概念对数学的发展是不可估量的,函数的概念对于数学发展的影响,可以说是贯穿古今.函数概念的发展历史,不仅有助于我们提高对函数概念来龙去脉认识的清晰度,而且能帮助我们领悟数学概念及数学的学习有很大帮助.脉认识的清晰度,而且能帮助我们领悟数学概念及数学的学习有很大帮助.1717世纪中叶,世纪中叶,笛卡尔引入变数的概念,笛卡尔引入变数的概念,笛卡尔引入变数的概念,制定了解析几何学,制定了解析几何学,制定了解析几何学,从而打破了局限于方程从而打破了局限于方程的未知数的理解;的未知数的理解;1919世纪中期,法国数学家黎曼吸收了莱布尼茨,达郎贝尔和欧拉的成果,第一次提出了函数的定义;随后,牛顿,莱布尼茨分别独立的建立了微分学说.这期间,随着数学的发展,各种函数大量出现,但函数还没有给出一个一般的定义.国内的主要理论成书于十九世纪.它逐步形成一门逻辑严密,系统完整的学科,而且在各个方面获得了十分广泛的应用,成为处理有关连续量基础的强有力的工具.文献1,2,5作为论文的基础,主要是参考了函数一致连续的概念和几个基本的判别方法。
浅析函数的一致连续的判定及应用
届学生毕业论文(设计)题目:浅析函数的一致连续的判定及应用系别:专业:班级:姓名:学号:指导教师:完成时间: 年月日浅析函数的一致连续的判定及应用摘要连续性是函数的一个重要分析性质,如何判定函数的连续性及一致连续性是数学分析的主要内容.本文首先介绍了函数的连续性及一致连续性的概念与性质及其之间的关系;其次给出了若干种判定函数一致连续的方法,并给出相应的例题.关键词:极限;连续;一致连续STUDY ON DETERMINATION OF UNIFORMLY CONTINUOUS OF FUNCTION AND ITS APPLICATIONSABSTRACTContinuity is an important analysis property of function, and how to determine the function of continuity and uniform continuity is the main content of mathematical analysis. The concept of continuity and uniform continuity and properties of function and relations between them is introduced firstly in this paper; Some kind of decision methods for uniformly continuous of function and the relevant examples are given secondly.Keywords:limit; continuity; uniformly continuous目录1. 前言 (1)2. 函数的连续性与一致连续性 (2)2.1函数的连续性概念及其性质 (2)2.2函数一致连续性的概念及其性质 (8)2.3函数的连续性与一致连续性的关系 (13)3. 函数一致连续的判定及应用 (15)3.1函数一致连续的判定方法 (15)3.2函数一致连续性的简单应用 (26)4. 结论 (28)致谢 (29)参考文献 (30)。
函数一致连续性的判定及应用论文
数学建模论文(设计)题目函数一致连续性的判定及应用学院专业年级学号姓名xx指导教师xx成绩2007 年4 月19 日函数一致连续性的判定及应用摘要:本文从函数连续与一致连续的概念和关系出发,主要对一元函数在不同类型区间上函数一致连续的判定方法进行了讨论,总结和应用,并且将部分判定一元函数一致连续的方法推广到了多元函数,使大家对函数一致连续的内涵有更全面的理解和认识。
关键词:函数;连续;一致连续函数Decisions of uniformly continuous function and applicationTANG YongThe School of Mathmatics and Statistics, Southwest University, Chongqing 400715, ChinaAbstract: From the concept and the relation of continuity and uniformly continuity of the function, we research the methods of decisions of uniformly continuous function in different kinds of intervals. Moreover, we extend some of the results to function with many variables in different region.Key words: function; continuity; uniformly continuity1. 引言我们知道,函数的一致连续性是数学分析课程中的一个重要内容。
函数()f x在某区间内连续,是指函数()f x在该区间上一点f x在该区间内每一点都连续,它反映函数()附近的局部性质,但函数的一致连续性则反映的是函数()f x在给定区间上的整体性质,它有助于研究函数()f x的变化趋势及性质。
高等数学函数一致性连续性问题研究
科 教 研 究
高 等数 学 函数 一致 性 连 续性 问题 研究
郭 丽 娜 ( 西北 民族大 学 甘肃 兰州 7 3 0 0 3 0)
摘 要: 本文首 先对 函数的一致性和连 续性进行 了 理论 分析 同时举 例应用, 然 后理论 分析 函数连 续一致性 的条件 , 和几个函数一致性 等价 的命题 。 使 得我 们 能够 全 面理解和 认 识函数 的 一致性 与连 续 性 。 关键 词 : 一致 性 高教 函数 连续性 中图分 类号 : 01 文献 标识 码 : A 文章编号 : 1 6 7 3 — 9 7 9 5 ( 2 0 1 3 ) 0 9 ( b ) 一 0 0 5 2 - 0 1 证明 : ( 必要 性 ) 若 f ( x ) 在 ( , b ) 内一 致 连 续 , 则对 v £ > 0, 函数 的 一 致 连 续 性 体 现 了 一个 连 续 函数 的 变 化 速 度 有 无 “ 突 3 5 >0, V . , X z ∈( a , b ) , 且l 一X 2 l <6 时, 何l / ( t ) 一 f ( x ! ) f < £ , 此 时 变” 。 它 要 求 函 数连 续性 不 仅 仅 只体 现 在 区 间上 的 每 一 点上 , 还要 对端 点 a , 当, Xi , X2 , 满 足 0<x 1 一a<6/ 2, 0<x 2一n<6/ 2 时 , 就 求 在 区 间 上所 有 点 邻 近 的 函数 有 大 致 变 化 趋 势 要 均 匀 , 这就 是 函 有 X t — X 2 l < I , 一 a I +l X 2 一 l < 6, 于 是 l i f x , ) 一厂 ( x 2 ) } <£, 由扣 I 西 数的一致连续 。 / ( ) 存在 , 同理 可知 l i m , ( ) 也存在 定义1 : ( 函数 f ( x ) 区 间 ,上 连续 ) 区 间为 ,上 的 l 厂 ( ) 函数, 若 对 准 则知 , 从而/ ( ) 在 £ > 0, 对 于 每一 点 ∈ I, 都 存 在 相 应 5= 5 ( e , X ) > 0, 只要 ’ ∈,, 且 ( , 6 ) 连续, l i m , ( ) 与 , ( ) 都存 往 l x — ’ I < 5, 就有 , ( )f ( x ) I < £, 则称 函数 f ( x ) 在 区 间 ,上 连 续 。
函数一致连续性及其应用
1 函数一致连续性[1]设()x f 在定义在区间I 上的函数,若对任给0>ε,存在()0>=εδδ,使得对任意的1x 、I x ∈2,只要δ<-21x x ,就有()()ε<-21x f x f ,则称函数()x f 在区间I 上一致连续.1.1 函数一致连续的相关定理与证明定理1.1[2] 若()x f 在区间I 上有定义,则()x f 在I 上一致连续的充要条件是()()0lim 21,02121=-<-+∈→x f x f SUP x x Ix x δδ.证明 ①必要性因为()x f 在区间I 上一致连续,所以由定义知 0,00>∃>∀δε,对任意的1x ,I x ∈2,只要 021δ<-x x ,就有()()221ε<-x f x f ,故可得出()()221,02121εδ≤-<-∈x f x f SUP x x Ix x .因为当00δδ<<时,有()()()()εεδδ<≤-≤-<-<-∈∈221,21,021212121x f x f SUP x f x f SUP x x x x Ix x Ix x .故可得()()0lim 21,02121=-<-+∈→x f x f SUP x x Ix x δδ.②充分性由于()()0lim 21,02121=-<-+∈→x f x f SUP x x Ix x δδ,所以0,00>∃>∀δε,对任意的1x ,I x ∈2只要021δ<-x x ,就有()()εδ<-<-∈21,02121x f x f SUP x x Ix x .故取00δδ≤<,当1x ,I x ∈2,021δ<-x x 时,可以得到()()()()()()εδδ<-≤-≤-<-<-∈∈21,21,21021212121x f x f SUP x f x f SUP x f x f x x x x Ix x Ix x ,所以()x f 在区间I 上一致连续.定理1.2[2] 函数()x f 在区间I 上一致连续的充要条件是在I 上任意两个数列nx ',n x '',只要使0lim =''-'∞→n nn x x ,就有()()0lim =''-'∞→n n n x f x f 证明 ①必要性因为()x f 在区间I 上一致连续,所以由定义知 0,0>∃>∀δε,对任意的x ',I x ∈''只要δ<''-'x x ,就有 ()()ε<''-'x f x f .对于任意数列n x ',n x '',因为0lim =''-'∞→n n n x x ,故对上述N n N N >∀>∈∃+,0,δ有δ<''-'n nx x . 故可得()()ε<''-'x f x f ,即()()0lim =''-'∞→n n n x f x f .②充分性(反证法)假设()x f 在区间I 上不一致连续,则存在某00>ε,对任意0>δ,都存在相应的两点I x x ∈''',,尽管δ<''-'x x ,但有()()0ε≥''-'x f x f .令n1=δ(n 为正整数),相应的两点记为I x x n n∈''',,尽管n x x 1<''-',但有()()0ε≥''-'n nx f x f . 当n 取遍所有正整数时,得数列{}nx '与{}n x '',且有0lim =''-'∞→n n n x x 但是 ()()0lim ≠''-'∞→n n n x f x f ,这与条件矛盾,所以假设不成立.因此可得()x f 在区间I 上一致连续.定理1.3[3] 设函数()x f 在区间I 上可导,其导函数()x f '在区间I 上有界,则()x f 在I 上一致连续.证明 因为()x f '在区间I 上有界,则I x M ∈∀>∃,0有()M x f ≤'.对0>∀ε,=∃δδε<''-'∈'''∀x x I x x M ,,,,就有()()()εεξ=⋅<''-''=''-'MM x x f x f x f ,所以()x f 在I 上一致连续.定理1.4[3] 函数()x f 在区间I 上一致连续的充要条件是对任意给出的0>ε,,0,,>∃∈'''∀M I x x 使得当()()M x x x f x f >''-'''-'时恒有有()()ε<''-'x f x f .证明 ①必要性(反证法)函数()x f 在区间I 上一致连续,所以0,0>∃>∀δε,对任意的x ',I x ∈''只要δ<''-'x x ,就有()()ε<''-'x f x f 即()()ε≥''-'x f x f 必有δ≥''-'x x .取δε2=M ,当()()M x x x f x f >''-'''-'时有()()ε≥''-'x f x f . 令()()x f x f ''-'=α,则存在1>K 使得()εαεK K <<-1. 令1-=K αβ,则αβε≤≤.不妨设()()()x x x f x f ''<'''<',因为()()()()x f x f x f x f ''=+''≤+'<'αβ,且由连续函数的介值性知(]x x x '''∈∃,1使得()()β+'=x f x f 1同理:(]x x x ''∈∃,12使得()()β+=12x f x f .如此可得k k x x x x <<<<-110Λ,规定x x x x k ''='=,0且对每一个i ,()()εβ≥=--1i i x f x f .因为由一致连续的定义知δ≥--1i i x x ,所以()()M K K x x x f x f =≤=≤''-'''-'δεδβδβ2与条件矛盾,假设不成立.即,0,,0>∃∈'''∀>∀M I x x ,ε使得当()()M x x x f x f >''-'''-'时恒有 ()()ε<''-'x f x f .②充分性,0,,0>∃∈'''∀>∀M I x x ,ε使得当()()M x x x f x f >''-'''-'时恒有 ()()ε<''-'x f x f .取Mεδ=,若设()()ε≥''-'x f x f 必有()()M x x x f x f ≤''-'''-'即()()Mx f x f x x 1≥''-'''-' .故()()()()δε=≥''-'''-'''-'=''-'Mx f x f x f x f x x x x 1.故有只要δ<''-'x x ,就有 ()()ε<''-'x f x f 即()x f 在I 上一致连续.1.2有限区间上的函数一致连续性定理1.5[1] 函数()x f 在[]b a ,上连续,则函数()x f 在[]b a ,上一致连续.证明(应用有限覆盖定理)由f 在[]b a ,上的连续性,任给0>ε,对[]b a x ,∈∀, 都存在0>x δ,使得当()x x U x δ;∈'时有()()2ε<-'x f x f .考虑开区间集合[]⎭⎬⎫⎩⎨⎧∈⎪⎭⎫ ⎝⎛=b a x x U H x ,2,δ,显然H 是[]b a ,的一个开覆盖。
大学数学毕业论文:关于函数的一致连续问题
关于函数的一致连续问题摘要:从函数的一致连续概念出发,总结了一致连续的条件及运算性质.关键词:函数;一致连续;连续在数学分析中,关于函数一致连续问题的理解与应用是理解数学中其他知识的基础,但目前各种教材对这类问题提出和总结得不够,广大数学爱好者很难对其有全面清晰的认识.为了加深对一致连续问题的认识,本文从一致连续的概念出发,总结了一致连续的条件、运算性质.1 一致连续及其相关概念定义1设f(x)在区间I上有定义,称函数f(x)在区间I上连续是指, x0∈I, ε> 0, δ> 0,当x∈I且x-x0 <δ时,有f(x) -f(x0) <ε.定义2 设f(x)在区间I上有定义,称函数f(x)在区间I上一致连续是指,对ε> 0, δ> 0(其中δ与ε对应而与x,y无关),使得对区间I上任意两点x,y,只要x-y <δ,就有f(x) -f(y) <ε.定义3 设f(x)在区间I上有定义,称函数f(x)在区间I上不一致连续是指,至少一个ε0>0,对δ>0,都可以找到x′,x″∈I,满足︱x′-x″︱<δ,但︱f(x′)-f(x″)︱≥ε0.评注1 比较函数在区间上的连续性与一致连续性的定义知,连续性的δ不仅与ε有关而且与x0有关,即对于不同的x0,一般说来δ是不同的.这表明只要函数在区间上的每一点处都连续,函数就在这一区间上连续.而一致连续的δ仅与ε有关,与x0无关,即对于不同的x0,δ是相同的,这表明函数在区间上的一致连续性,不仅要求函数在这一区间上的每一点处都连续,而且要求函数在这一区间上的连续是处处一致的.在区间I上一致连续的函数在该区间I上一定是连续的,反之,在I上连续的函数在该I上不一定是一致连续的.评注2 一致连续的实质,就是当这个区间的任意两个彼此充分靠近的点上的值之差(就绝对值来说)可以任意小.用定义证明f(x)在I上一致连续,通常的方法是设法证明f(x)在I上满足Lipschitz条件︱f(x′)-f(x″)︱≤L︱x′-x″︱, ∀x′,x″∈I,其中L为某一常数,此条件必成立.特别地,若f′(x)在I上是有界函数,则f(x)在I上Lipschitz条件成立.2 一致连续的条件及有关结论2.1 一致连续的条件定理1(G·康托定理) 若函数f(x)在区间[a,b]上连续,则它在这个区间上也是一致连续的.证明要证的是对于任意给定了的ε> 0,可以分区间[a,b]成有限多个小段,使得f(x)在每一小段上任意两点的函数值之差都小于ε,以下用反证法证之,若上述事实不成立,则至少对于某一个∈0> 0而言,区间[a,b]不能按上述要求分成有限多个小段.将[a,b]二等分为[a,c0]、[c0,b],则二者之中至少有一个不能按上述要求分为有限多个小段,把它记为[a1,b1].再将[a1,b1]二等分为[a1,c1]、[c1,b1],依同样的方法取定其一,记为[a2,b2].如此继续下去,就得到一个闭区间套[an,bn],n= 1,2,…,由区间套定理知, 唯一的点c属于所有这些闭区间.因c∈[a,b],所以f(x)在点x=c连续,于是可找到δ> 0,使︱x-c︱<δ(x∈[a,b])时,︱f(x) -f(c)︱<ε0/2.注意到c= lim lim n n n n a b →∞→∞=我们可取充分大的k,使 ︱ak-c ︱<δ, ︱bk-c ︱<δ,从而 对于[ak,bk]上任意点x,都有 ︱x-c ︱<δ,因此,对于[ak,bk]上的任意两点x1,x2都有 ︱f(x1) -f(x2)︱ ≤ ︱f(x1) -f(c) + f(c) -f(x2)︱ <0122∈∈+ =0∈ 这表明[ak,bk]能按要求那样分为有限多个小段(其实在整个[ak,bk]上任意两点的 函数值之差已小于0∈了),这是和区间[ak,bk]的定义矛盾的,这个矛盾表明我们在开始时 所作的反证假设是不正确的,从而定理的结论正确.评注3 定理1对开区间不成立.例如函数f(x) =1x在(0,1)的每一个点都连续, 但在该区间并不一致连续.事实上,对于任意小的δ>0,令x1=δ,x2=2δ,则 ︱x1-x2 ︱ =δ,而 ︱f(x1) -f(x2)︱ =111_22δδδ=,这时︱ x1-x 2︱ 可以任意小,但︱ f(x1) - f(x2) ︱可以任意大.函数f(x) = tanx 在(-2π,2π)也有类似的情形.以上两例讨论的 都是无界函数,而sin 1x在(0,1)内的每一点都连续,且显然在这个区间内有界,然而它也 没有一致连续性,因为有任意小(因而也就彼此任意接近)的数x1与x2存在,使sin 1x =1,sin 21x =- 1. 定理2 f(x)在区间I 上一致连续的充要条件是在区间I 上满足lim n →∞(xn-yn) = 0的任意两数列{xn}、{yn},必有lim n →∞[f(xn) -f(yn)] = 0. 证明 必要性.若f(x)在I 上一致连续,由一致连续性的定义, ∀ε>0, ∃δ>0,当︱xn-y n ︱ <δ时,︱ f(xn)-f(yn) ︱<ε,即任两数列{xn}、{yn},当n →∞时, ︱xn-y n ︱ → 0,则必有 ︱f(x0) -f(yn) ︱→0.充分性.用反证法,若两数列{xn}、{yn},当n →∞时, ︱xn-y n ︱ →0,︱ f(xn)-f(yn )︱ →0而f(x)在I 上不一致连续,那么一定∃ε0> 0,对∀δn> 0,存在xn,yn,当 ︱xn-y n ︱ <δn 时,︱ f(xn) -f(yn) ︱≥ε0,取δn →0,我们得到两数列{xn}、{yn},当n →∞时,xn- yn →0,但 ︱f(xn) -f(yn) ︱≥ε0,这与假设lim n →∞[f(xn) -f(yn)] = 0矛盾. 评注4 定理2所述的必要性常被用来判定一个函数是不是一致连续的.例如,函数f(x) = sin xπ,在区间(0,1)上是连续的且有界,但在此区间上并非一致 连续.事实上,当x ≠0时,由基本初等函数在其有定义的区间上连续知,f(x)是连续的, 同时,由于 ︱f(x) ︱≤1,因而它也是有界的.现考虑(0,1)上的两串数列xn=2n ,xn ′=21n + ,则当0<ε0<1时,不论δ>0取得多么小,只要n 充分大,总可以使 ︱xn-xn ′︱ =2(1)n n + <δ,但是 ︱f(xn) -f(xn’)︱ = 1 >ε0,因而f(x)在(0,1)上并非一致连续.定理3 设f(x)在有限区间I 上有定义,那么f(x)在I 上一致连续的充要条件是对任意柯西(Cauchy)列{xn} I,{f(xn)} R ′也是Cauchy 列.证明 必要性.因f(x)一致连续,即对 ε> 0, δ> 0,对 x ′,x ″∈I,只要 ︱x ′-x ″︱ <δ,就有 ︱f(x ′) -f(x ″)︱ <ε.设{xn} I 为Cauchy 列,于是对上面的δ> 0,必 N> 0,使当n,m>N 时,有 ︱f(xn) -f(xm )︱ <ε,即{f(xn)}是Cauchy 列.充分性.若不然,必 ε0> 0,x ′n,x ″n ∈I,虽然 xn ′-xn ″ <1n,但是︱ f(xn ′) - f(xn ″) ︱≥ε0,由{xn ′}有界知,存在收剑子列{xnk ′},从而{xnk ″}也收剑于同一点,显然xn1′,xn1″,xn2′,xn1″,…,是Cauchy 列,但是f(xn1′),f(xn1″),f(xn2′),f(xn2″),…,不是Cauchy 列,此为矛盾,故f(x)在I 上一致连续.定理4 设f(x)在有限区间(a,b)上连续,则f(x)在(a,b)上一致连续的充要条件是f(a+ 0)、f(b- 0)存在且有限.证明 充分性.令F(x) =f(a+ 0) (x=a),f(x) (x ∈(a,b)),f(b- 0) (x=b),则F(x)∈C[a,b],因此F(x)在[a,b]上一致连续,从而f(x)在(a,b)上一致连续.必要性.已知f(x)在(a,b)上一致连续,所以对于 ε> 0, δ> 0,当x ′,x ″∈(a,b)且︱x ′-x ″︱<δ时, ︱f(x ′) -f(x ″)︱<ε成立.对端点a,当x ′,x ″满足0 <x ′-a<2δ,0<x ″-a<2δ时,就有 ︱x ′-x ″︱ ≤ ︱x ′-a ︱+︱ x ″-a ︱<δ,于是︱ f(x ′)-f(x ″) ︱<ε.由Cauchy 收敛准则,f(a+ 0)存在且有限,同理可证f(b- 0)存在且有限.评注5 (1)当(a,b)为无穷区间,本例中的条件是f(x)在(a,b)上一致连续的条件充分但不必要.例如f(x)=x,φ(x)=sinx,x ∈(-∞,+∞)及g(x)= ∈(0,+∞)均为所给区间上的一致连续函数,但f(-∞) =-∞,f(+∞) =g(+∞) =+∞,φ(+∞)和φ(-∞)不存在.(2)定理提供了一个判断函数一致连续性简单而有效的方法.例如,研究下列函数 在所示区间上的一致连续性.i)f(x) =sin x x (0 <x<π);ii)f(x) = x e cos 1x(0 <x< 1). 解 i)因0sin lim x x x →= 1, sin lim x x x π→= 0,所以f(x)在(0,π)内一致连续.ii)因 limx →0+0excos1x 不存在,所以f(x)在(0,1)内不一致连续.(3)由定理知,若f(x)∈C(a,b),则f(x)可连续延拓到[a,b]上的充要条件是f(x)在(a,b)上一致连续.定理5 函数f(x)在区间I 上一致连续的充要条件是,对 ε>0及x,y ∈I,总正数N,使正︱ f(x) -f(y) ︱>N ︱ x-y ︱. (1)恒有︱ f(x) -f(y) ︱<ε. (2)证明 因为f(x)在I 上一致连续的定义等价于:对∀ε>0, ∃δ>0,使得对于∀x,y︱f(x) -f(y )︱ ≥ε, (3)就有 ︱x-y ︱≥δ.而题设条件为对 ε>0, N>0,对x,y ∈I,当不等式(3)成立时,︱f(x) -f(y )︱ ≤N ︱x-y ︱. (4)充分性.若题设中条件成立,则由(4)式得 ︱x-y ︱ ≥1N ︱f(x) -f(y) ︱,再由(3)式 得 ︱x-y ︱≥N ε,所以对给定的ε> 0,只要取δ=Nε,当x,y ∈I,且满足(3)时,就有 ︱x -y ︱≥δ成立.必要性.若f(x)在I 上一致连续,则对任给的ε> 0,存在δ> 0,使当x,y ∈I,且满足不等式(3)时,就有不等式 ︱x-y ︱≥δ成立,故 整数k,使得k δ≤ ︱x-y ︱ ≤(k+ 1)δ. (5)不妨设x<y,将[x,y]分成k+1等分,记xi-1(i=1,…,k+1)为其分点,由(5)式知 ︱xi-xi-1 ︱= ︱1x y k -+︱<δ,故︱ f(xi) -f(xi-1)︱ <ε,i= 1,2,…,k+ 1, ︱()()f x f y x y--︱≤{11k i +=∑︱()(1)f xi f xi --︱}/(1)2k k k δδδ+∈∈<< 令N= [2δ∈] + 1,则当I 中的点x,y使(3)式成立时,必有(4)式成立,从而(1)式成立时,有(2)式成立.评注6 本定理的证明是灵活运用一致连续定义的典范,它在理论研究上具有一定 的意义.2.2 一致连续函数的运算性质一致连续函数有一系列的运算性质,归结如下几个命题.命题1 设φ(x)与ψ(x)在区间I 上一致连续,则αφ(x) +βψ(x)在I 上一致连续 (α,β为任意常数).命题2 设φ(x),ψ(x)在有限区间I 上一致连续,那么ψ(x)ψ(x)在I 上也一致连续. 命题3 设φ(x),ψ(x)在无限区间I 上一致连续且有界,那么φ(x)ψ(x)在I 上也一 致连续.其中“有界”的条件不可少,例如f(x) =x 在(-∞, +∞)上一致连续,但无界,而f(x)·f(x) =2x 在(-∞, +∞)上不一致连续.命题4 设φ(x)在区间I 上一致连续且inf ()F x > 0,那么1f 在I 上也一致连续.最后应指出,一致连续函数的反函数,一般说来,不再一致连续,例如f(x)=(0, +∞)上一致连续而它的反函数1f- (x)= 2x 在(0,+∞)内不一致连续,但可以证明在有限区间上,结论仍真.[1] 斐礼文.数学分析中的典型问题与方法[M].北京:高等教育出版社,1993.93—103.[2] 王向东.数学分析中的概念与方法[M].上海:科学技术文献出版社,1989.278—299.[3] 周家云,刘一鸣.数学分析的方法[M].济南:山东教育出版社,1991.48—62..。
一致连续函数的判定数学毕业论文
一致连续函数的判定摘要:函数在区间I 上的一致连续性与连续是两个不同的概念,后者是一个局部性概念,前者具有整体性质,它刻画了函数f(x)在区间I 上变化的相对均匀性.给出了几个判别函数一致连续性的方法,本文是通过连续函数的性质寻求一致连续函数的判定十五种判别方法. 关键词:函数;连续 ;一致连续 ;收敛引言: 函数的一致连续是数学分析中的一个重要概念.连续是考察函数在一个点的性质而一致连续是考察函数在一个区间的性质.以一致连续比连续的条件要严格,在区间上一致连续的函数则一定连续,但连续的函数不一定一致连续。
因此我去总结了通过函数的连续性寻找一些函数一致连续的判别法.一、基本概念与定理定义(一致连续):设函数()f x 在区间I 上有定义,若0,0,εδ∀>∃>I x x ∈∀21,,当12x x δ-<时,有12()()f x f x ε-<,则称函数()f x 在I 上一致连续。
注:设函数()f x 在区间I 上有定义,若I x x ∈∃>∀>∃210,,0,0δε,当12x x δ-<时,有021)()(ε≥-x f x f ,则称函数()f x 在区间I 上不一致连续。
(Cantor 定理):若函数()f x 在区间[]b a ,连续,则()f x 在区间[]b a ,上一致连续。
二、有限区间上一致连续函数的判定定理1: 函数()f x 在[],a b 上一致连续的充要条件是函数()f x 在[],a b 上连续。
定理2: 函数()f x 在(),a b 上一致连续的充要条件是函数()f x 在(),a b 上连续且lim ()x a f x +→,lim ()x bf x -→都存在。
证明: 必要性,因为函数()f x 在(),a b 上一致连续,即:对0,0,εδ∀>∃>对(),,x y a b ∀∈,且x y δ-<,有()()f x f y ε-<,显然函数()f x 在(),a b 上连续,且对0,0,εδ∀>∃>对()12,,x x a b ∀∈,当()12,,x x a a δ∈+时,当然12x x δ-<,有12()()f x f x ε-<。
一致连续性的判定定理及性质
一致连续性的判定定理及性质作者:朱肖红 指导老师:张海摘 要 函数的一致连续性是数学分析课程中的一个重要概念,在分析问题中起着十分重要的作用.它不仅是闭区间上连续函数黎曼可积的理论基础,而且与随后的含参量积分,函数项级数等概念都有着密切的联系.因此,判定函数的一致连续性是数学分析的一项重要内容.本文对函数的一致连续性的概念进行了深入分析,对判定函数一致连续性的充分条件,充要条件作了简要概括,并给出了闭区间和开区间上函数一致连续性的判别方法.包括无穷区间上函数一致连续性的判定,并分别给出了这些定理的证明.同时,本文也总结了一致连续性的几个性质及它的应用.关键词 连续函数 极限 有界函数 一致连续 非一致连续1引言弄清函数一致连续性的概念和掌握判断函数一致连续性的方法无疑是学好函数一致连续性理论的关键.数学分析教材中只给出了一致连续的概念和判断函数在闭区间上一致连续的Cator 定理,内容篇幅少,但实际运用时,这些远远不够.本文将给出函数在区间上一致连续性的几个充分条件,充要条件及性质与运用.这几种方法为教科书所忽视,但比较实用且应用面广泛,有必要加以详细讨论.2一致连续性的概念定义 2.1 设函数()x f 在区间I 上有定义.若,,,0,021I x x ∈∀>∃>∀δε只要,21δ<-x x 都有()()ε<-21x f x f ,称函数()x f 在I 上一致连续.对函数一致连续性概念的掌握,应注意以下三个方面的问题:(1)要注意函数在区间的连续性与一致连续性的区别和联系比较函数在区间的连续性和一致连续性可知:前者的δ不仅和ε有关,而且还和点0x 有关,即对于不同的0x ,一般来说δ是不同的,这表明只要函数在区间内每一点都连续,函数就在区间连续;后者的δ仅与ε有关,与0x 无关,即对不同的0x ,δ是相同的.这表明函数在区间的一致连续性,不仅要求函数在这个区间的每一点都连续,而且要求函数在区间上的连续是“一致”的.(即连续可对一点来讲,而且对于某一点0x ,δ取决于0x 和ε ,而一致连续必须以区间为对象, 只取决于ε ,与点0x 的值无关.)在区间I 上一致连续的函数在这个区间一定是一致连续的,事实上,由一致连续性定义将1x 固定,令2x 变化,即知函数()x f 在1x 连续,又1x 是I 的任意一点,从而函数()x f 在I 连续,但在区间I 连续的函数在这区间上不一定一致连续,例如()xx f 1= 在区间 ()1,0 就是如此.(2)函数一致连续性的实质,就是当这个区间的任意两个彼此充分靠近的点上的值的差,就绝对值来说,可以任意小,即任意的21,x x ,当δ<-21x x 时,就有()()ε<-21x f x f .(3)要注意函数一致连续的否定叙述一致连续的否定就是非一致连续,即设函数()x f 在区间I 上有定义,若 δδε<-∈∃>∀>∃21210:,,0,0x x I x x 有()()021ε≥-x f x f ,则称)(x f 在I 上非一致连续.总的来说,函数的连续性反映了函数的局部性质,而函数的一致连续性则反映了在整个区间上的整体性质.二者之间既有区别又有联系.3一致连续性的判定定理判定函数一致连续性的几个充要条件定理3.1 ()x f 在 []b a ,上一致连续的充要条件是()x f 在[]b a , 上连续.证明 [必要性]由定义直接可得.[充分性]采用反证法,假设()x f 在 []b a ,上非一致连续,即,00>∃ε对0>∀η,在区间[]b a , 内至少存在两点1x 及2x , 虽然η<-21x x ,但()()021ε≥-x f x f . 现取() 3,2,11==n nη ,那么在[]b a , 内存在两点()n x 1 及 ()n x 2 . 虽然 ()()nx x n n 121<-,但()()()()021ε≥-n n x f x f . 应用魏尔斯特拉斯定理,在有界数列(){}n x 1中存在一个收敛的子列()()∞→→k x x k n 01,这里 []b a x ,0∈,再由于()()nx x n n 121<- , 所以 ()()kk k n x x 121<-, 亦即()()∞→→-k x x k k n n 021 .因为()()∞→→k x x k n 01 ,所以()()∞→→k x x k n 02 , 并且()()()()021ε≥-k k n n x f x f 对一切 k 成立.另一方面,由于()x f 在 0x 连续,亦即()()00lim x f x f x x =→.由函数极限与数列极限的关系,有()()()()()()0201lim ,lim x f x f x f x f k k n k n k ==∞→∞→.而 ()()()()()0lim 21=-∞→k k n n k x f x f .这同()()()()021ε≥-k k n n x f x f 对一切 k 成立相矛盾.即假设不成立.即原命题成立.定理 3.2 函数 ()x f 在有限开区间()b a , 内一致连续的充要条件是()x f 在()b a , 内连续且极限()x f a x +→lim 和()x f bx -→lim 存在. 证明 [充分性]令⎝⎛=-∈=+=b x b f b a x x f a x a f x g ),0(),(),(),0()(则)(x g 在[]b a ,上连续,从而)(x g 在[]b a ,上一致连续.[必要性] 因为()x f 在()b a , 内一致连续.∴()x f 在()b a , 内连续,并且∈>∃>∀21,,0,0x x δε()b a , ,当δ<-21x x 时, 有()()ε<-21x f x f于是当()δ+∈a a x x ,,21 时,有()()ε<-21x f x f .根据柯西准则,极限()x f a x +→lim 存在.同理可证()x f bx -→lim 也存在. 定理3.3设函数()x f 在区间 I 上有定义, 在I 上一致连续的充要条件是对区间I 上的任意两数列}{n x 与}{n y ,当0)(lim =-∞→n n n y x 时, 有()()0)(lim =-∞→n n n y f x f . 证明 [必要性]因为()x f 在I 上一致连续,所以I y x ∈∀>∃>∀,,0,0δε, 当δ<-y x 时有ε<-)()(y f x f .任取I 上的两数列}{n x 与}{n y 并且满足0)(lim =-∞→n n n y x . 则对N ∃>,00δ ,当N n >时有0δ<-n n y x .于是ε<-)()(n n y f x f ,即0)]()([lim =-∞→n n n y f x f . [充分性]假设()x f 在I 上不一致连续, 则δδε<-∈∃>∀>∃21210:,,0,0x x I x x ,但()()021ε≥-x f x f .特别,取)(1N n n ∈=δ ,则ny x I y x n n n n 1,,<-∈,但 0)]()([lim )()(,0≠-∴≥-∞→n n n n n y f x f y f x f ε, 这与已知条件矛盾.所以原命题成立.判定函数一致连续性的几个充分条件定理 3.4 若()x f 在),(+∞-∞ 内连续,且)(lim ),(lim x f x f x x +∞→-∞→ 都存在,则()x f 在),(+∞-∞ 上一致连续.证明 0,)(lim ,0,01>∃∴=>∃>∀+∞→b A x f x δε ,当b x > 时, 有 2)(ε<-A x f , 从而当12121,,δ<->x x b x x 时, 有 ε<-+-≤-A x f A x f x f x f )()()()(2121 .所以()x f 在),[+∞b 上一致连续. 同理可证当221δ<-x x 时,有()()ε<-21x f x f ,即知()x f 在],(a -∞ 上一致连续.又()x f 在[]b a ,上连续,03>∃∴δ当 321δ<-x x 时,有()()ε<-21x f x f ,故()x f 在[]b a , 上一致连续. 取},,min{321δδδδ= ,当 δ<-21x x 时便有()()ε<-21x f x f即()x f 在),(+∞-∞上一致连续.定理3.5 若函数)(x f 在区间I 上的导数有界,则)(x f 在I 上一致连续.推论 若函数)(x f 在),[+∞a 上单调增加,可导且其图形是上凸的,则 )(x f 在区间),[+∞a 上一致连续.证明:由 )(x f 可导且单增,从而0)('≥x f ,又曲线)(x f y = 向上凸,从而 )('x f 在),[+∞a 上单减.所以)()(0''a f x f +≤≤ ,于是)('x f 在 ),[+∞a 上有界,由上定理知,)(x f 在 ),[+∞a 上一致连续 . 定义 3.1 设函数 )(x f 是区间 I 上的实值函数,如果任取 10,,≤≤∈λI y x ,有())])}()1()())1(([){()1()(]1[y f x f y x f y f x f y x f λλλλλλλλ-+≥-+-+≤-+ 称是区间 上凸(下凸)函数.定义 3.2 若)(x f 在 )(00x U 有定义,且hh x f h x f h )2()2(lim 000--+← 的极限存在,则称)(x f 在0x 拟可导,记为hh x f h x f x Df h )2()2(lim )(0000--+=→. 引理3.1凸函数在任意开区间(有限或无穷)I 上连续.引理3.2 若函数)(x f 在I 上连续,且对I x x ∈∀21,,有)2(2)()(2121x x f x f x f +≥+ , 则)(x f 为下凸函数.定理3.6 若函数)(x f 在区间I (有限或无穷)上单调,且)(x Df 在I 内处处存在且有界,则函数)(x f 在开区间 I 上一致连续.证明 不妨设)(x f 在开区间 I 上单调增加.因为)(x Df 在I 内处处存在,有界,即 I x M ∈∀>∃,0,有 M x Df <)(.下面证明:对I x x x x ∈<2121,, ,有)(2)()(1212x x M x f x f -<- .若不然,1111,,b a I b a <∈∃ ,使)(2)()(1111a b M a f b f -≥- . 令)(2111b a c += ,则区间 ],[1c a 和 ],[1b c 中至少一个,记为],[22b a , 满足 )(2)()(2222a b M a f b f -≥-由此,利用归纳法可得到区间套 ⊃⊃⊃⊃],[],[],[2211n n b a b a b a .)(21)2()(2)()()1(111a b a b a b M a f b f n n n n n n n -=--≥--根据区间套定理,这些区间有惟一的公共点,记为ξ .由条件知,M Df <)(ξ .所以,0>∃δ ,使当δ<h ,且I h h ∈+-2,2ξξ时,有M h f h f h <--+)]2()2([1ξξ . (3) 因为 ],[1n n n b a ∞=⋂∈ξ,且0→-n n a b ,故存在正整数 N,使22δξξδξ+<≤<-N a .不妨设ξξ-<-N N b a .令 )(20ξ-=N b h ,则 δ<0h ,且222200δξξξδξ+<=+<<-<-N N b h a h . 故000)(2)()()2()2(Mh a b M a f b f h f h f N N N N ≥-≥-=--+ξξ 此与(3)矛盾,从而(1)试对I 内任意两点都成立,因而可得 )(x f 在区间 I 上一致连续.推论1 若函数)(x f 是开区间I (有限或无穷)上的凸函数,且拟导数存在,有界,则)(x f 在区间 I 上一致连续.证明 不妨设)(x f 为区间I 上的下凸函数, .因为)(x f 为凸函数,所以)(x f 在I 上连续.若)(x f 在I 上单调,由定理3知结论成立.若)(x f 在 I 上不单调,由 )(x f 为区间I 上的下凸函数可知,在I 上至少存在三点321x x x << ,有)()(21x f x f > ,且 )()(32x f x f <.因为)(x f 在],[31x x 上连续,故存在),(310x x x ∈,使)(min )(],[031x f x f x x x ∈= .下证)(m i n )(0x f x f Ix ∈= .否则,若存在][314x x I x --∈ ,且)()(04x f x f < .若04x x < ,则λ∃ ,使 10,)1(401<<-+=λλλx x x ,从而)())()1()()(0401x f x f x f x f <-+≤λλ,矛盾.同理04x x >不成立.于是,由)(x f 为区间I 上的下凸函数定义可证, )(x f 在 ],(0x a 上递减,在[),0b x 上递增.故)(x f 在],(0x a 与0[,)x b 上一致连续.而)(x f 在I 上连续,故)(x f 在I 上一致连续.推论2 若函数)(x f 在开区间 I (有限或无穷)满足条件:I x x ∈∀21,)1(,有);2(2)()(2121x x f x f x f +≥+ )(,)2(x f I x -∈∀. 和)(x f + 都存在)3(在I 上处处拟可导,且拟导数有界.则函数)(x f 在区间I 上一致连续.证明 先证)(x f 在I 上连续.对I x ∈∀0,下证)()(00x f x f +-= .因为)()(00x f x f +-≠ ,则不妨设)()(00x f x f +-< ,取0,0))()((41100>∃>-=-+δεx f x f , 100:δ<-<∈∀x x I x ,有ε<--)()(0x f x f ,100:δ<-<∈∀x x I x ,有ε<-+)()(0x f x f .}2,,2)()(min{,0,0100δδδM x f x f h M -+-=∃>∀>∀有hx f x f h x f x f h x f h h x f h x f )()()2()()2()2()2(0000000-++-+---+=--+ M M x f x f x f x f h x f x f h x f x f =--≥-=-->-+-+-+-+2))()((2)()(2)()(2)()(00000000ε.与已知条件矛盾,所以)()(00x f x f +-= .又由 )2(2)()(00x x f x f x f +≥+,两边对x 取极限,得 )()(00x f x f -≥.因为 I 为开区间,取0>h ,使I h x h x ∈-+00, , 则2)()()2()(00000h x f h x f h x h x f x f -++≤-++=,两边对 h 取极限, 得)(2)()()(0000x f x f x f x f --+=+≤ ,从而)(x f 在0x 点连续, 即)(x f 在区间I 上连续,由引理2得)(x f 为凸函数.由推论1得)(x f 在区间I 上一致连续定理 3.7 若函数 )(x f 在区间I 上满Lipschitz 条件,即存在常数0>L ,使对任何I x x ∈21, ,都有2121)()(x x L x f x f -≤- ,则函数 )(x f 在区间 I 上一致连续.依定义可立即证得推论 若函数)(x f 在区间I 上可导,且 )('x f 在区间I 上有界,则函数)(x f 在区间I 上一致连续.证明 )('x f 在区间I 上有界,即 I x L ∈∀>∃,0,有L x f ≤)(' .因为)(x f 在区间I 上可导,据拉格朗日定理I x x ∈∀21,,有))(()()(21'21x x f x f x f -=-ξ .从而2121'21)()()(x x L x x f x f x f -≤-=-ξ ,即)(x f 在区间I 上满足Lipschitz 条件,故)(x f 在区间I 上一致连续.定理 3.8 若函数)(x f 在),[+∞a 可导,且λ=+∞→)(lim 'x f x (常数或∞+),则)(x f 在 ),[+∞a 一致连续的充要条件是λ为常数.证明 [充分性] 若λ为常数,由局部有界性,,a A >∃可使)('x f 在),[+∞A 有界,再由定理4推论,)(x f 在 ),[+∞A 上一致连续,再由Cantor 定理知)(x f 在],[A a 一致连续 .故)(x f 在),[+∞a 一致连续.[必要性](反证法) 设+∞=+∞→)(lim 'x f x .则0,210>∀=∃δε ,取δ1=G ,故,,A x a A >∀>∃有.)('G x f >.取A x x >21, ,且使δδ<=-221x x ,据拉格朗日定理有212)()()(21'21=>-=-δξG x x f x f x f . 故)(x f 在),[+∞A 非一致连续,这与)(x f 在),[+∞a 一致连续矛盾.上定理的结论相当完美,它使得许多初等函数在无限区间上一致连续与非一致连续的判别,都变得简便易行.4一致连续的性质性质 4.1若)(x f 和)(x g 都是区间I 上的有界的一致连续函数,则)()()(x g x f x F =也在I 上一致连续.证明 由题设)(x f ,)(x g 有界,从而存在0>M ,使.,)(,)(I x M x g M x f ∈∀<< . 再由 )(x f ,)(x g 都一致连续,则0,01>∃>∀δε 和02>δ ,使I x x x x ∈∀4321,,, ,且243121,δδ<-<-x x x x ,时有M x g x g M x f x f 2)()(,2)()(4321εε<-<- ,令},min{21δδδ=,则I x x ∈∀65,,且δ<-65x x 时)()()()()()()()()()()()(656655665565x f x f x g x g x g x f x g x f x g x f x F x F -+-≤-=-εεε=+<M M M M 22.所以)(x f )(x g 在I 上一致连续.性质 4.2函数)(x f 在 ],[b a 上一致连续,又在],[c b 上一致连续,c b a << .用定义证明:)(x f 在],[c a 上一致连续.证明 由)(x f 在],[b a 一致连续,故0,01>∃>∀δε,使当],[,21b a x x ∈,且121δ<-x x 时,有2)()(21ε<-x f x f (i)同理,)(x f 在],[c b 上一致连续,对上述0>ε,存在02>δ,使当],[,43c b x x ∈ ,且 243δ<-x x 时,有2)()(43ε<-x f x f (ii)令},min{21δδδ= ,则对 0>ε,当],[,65c a x x ∈ 且 δ<-65x x 时,(1)若],,[,65b a x x ∈由(i )式有εε<<-2)()(65x f x f(2)若],[,65c b x x ∈,由(ii )式也有ε<-)()(65x f x f(3)若],[],,[65c b x b a x ∈∈时,则δδ<-<-b x b x 65,所以 εεε=+<-+-≤-22)()()()()()(6565x f b f b f x f x f x f .从而得证 )(x f 在 ],[c a 上一致连续. 性质 4.3设函数)(x f 在),[+∞a 连续,函数)(x g 在),[+∞a 一致连续,且0)()(lim =-+∞→x g x f x ,则)(x f 在 ),[+∞a 一致连续.证明 0)()(lim =-+∞→x g x f x ,故 A x x a A ≥∀>∃>∀21,,,0ε,有 3)()(,3)()(2211εε<-<-x g x f x g x f .及函数)(x g 在),[+∞a 一致连续,故对上述A x x ≥∀>∃>21,,0,0δε ,且 δ<-21x x ,有3)()(21ε<-x g x g .综上A x x ≥∀21,,且 δ<-21x x ,有 )()()()()()()()(22211121x g x f x g x g x g x f x f x f -+-+-≤- .εεεε=++<333即 )(x f 在),[+∞A 一致连续,再由Cantor 定理知)(x f 在 ],[A a 上一致连续,故 )(x f ),[+∞a 在 一致连续.定理5表明:若连续函数可在无穷远处充分接近一个一致连续函数,则其必一致连续.考虑到线性函数必一致连续,如果某连续函数在无穷远处充分接近一个线性函数,即此函数存在斜渐近线,则它必一致连续.即是如下推论.推论 设函数)(x f 在),[+∞a 连续,且有斜渐近线,即有数b 与 c ,使0])([lim =--+∞→c bx x f x ,则)(x f 在),[+∞a 一致连续.5一致连续性的应用利用一致连续性定义或判断函数一致连续性的定理来判断某函数的一致连续性.例1 判断),0(,11)(2+∞∈+=x xx f 的一致连续性. 解:因为 011lim2=++∞→x x ,111lim 20=+→x x 又 )(x f 在),0(+∞ 上连续,所以 )(x f 在),0(+∞ 上一致连续.本题利用定理3.4,)(x f 在无限区间上连续且在端点极限存在,则)(x f 在此无限区间上一直连续.例2 证明)(x f =x e 在R 上非一致连续.证明1 :ln ),1ln(),11(0,21210R n x n x e n ∈=+=∀->∃>∀=∃δδε,ln )11ln(ln )1ln(21δδ=<+=-+=-e n n n x x 有021211)1()()(ε=>=-+=-n n x f x f .所以)(x f =x e 在R 上非一致连续.根据一直连续性定义证得.证明2 取R n y n x n n ∈=+=ln ),1ln( , 且0)11ln(lim ]ln )1[ln(lim )(lim =+=-+=-∞→∞→∞→n n n y x n n n n n .但01)1(lim ][lim )]()([lim ln )1ln(≠=-+=-=-∞→+∞→∞→n n e e y f x f n nn n n n n .所以)(x f =x e 在 R 上非一致连续.此题根据判定函数一直连续性的充要条件即定理3.3.例3 判断)1,0(,1cos )(∈=x x e x f x 的一致连续性.解:因为x e x x 1cos lim 0+→ 不存在,所以)(x f =x e 在)1,0( 内不一致连续.此题根据判定连续函数在有限开区间一致连续性的方法即定理3.2例4 证明: x e x f =)(在),(a -∞ 上一致连续,而在 ),(+∞a 上非一致连续.证明 0lim =-∞→xx e 且a x a x e e =-→lim .所以 x e 在 ),(a -∞上一致连续.+∞==+∞→x x x x e Lim e e ,)(' .所以)(x f =x e 在 ),(+∞a 上非一致连续. 此题根据连续函数导数的有界性来判定函数的一致连续性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一致连续性及其应用 作者:XXX 指导老师:XXX摘 要 函数的一致连续性是数学分析中最重要,且高度抽象的概念之一,在数学分析和相关专业课的后继学习与研究中起着十分重要的作用.一致连续性刻画了函数在区间上的整体性质.准确理解函数一致连续概念以及掌握证明函数一致连续的方法是数学分析的一个重要内容.本文从函数一致连续性的定义出发,对一致连续性的性质、定理进行讨论,并介绍其应用.关键词 函数 一致连续性 应用1 引言弄清函数一致连续性的概念和掌握判断函数一致连续性的方法无疑是学好函数一致连续性理论的关键.因此本文对函数一致连续性的概念、性质以及判定条件进行了深入的分析和总结,目的是帮助大家掌握运用不同的方法证明函数一致连续,使大家对函数一致连续性的内涵有更全面的理解和认识.2 一次函数的连续性与一致连续性 2.1 定义定义2.1.1 函数()f x 在某()0x 内有定义,若对 0ε∀>,0δ∃>,使得当0x x δ-<时,有0()()f x f x ε-<.那么,函数()f x 在点0x 处连续.定义2.1.2 函数()f x 在区间I 上有定义,若对0ε∀>,()0δδε∃=>,,x x I '''∀∈,只要x x δ'''-<,就有()()f x f x ε'''-<,则称函数()f x 在区间I 上一致连续.2.2 函数在区间的连续性与一致连续性的区别和联系(1)函数()f x 在区间I 上连续与一致连续是两个不同的概念,但它们之间也有联系.函数连续性的δ不仅和ε有关,而且还和点0x 有关,即对于不同的0x ,一般来说δ是不同的,这表明只要函数在区间内每一点都连续,函数就在区间连续;而函数的一致连续性的δ仅与ε有关,与0x 无关,即对不同的0x ,δ都是是相同的.这表明函数在区间的一致连续性,不仅要求函数在这个区间的每一点都连续,而且要求函数在区间上的连续是“一致”的.(2)函数)(x f 在区间I 上一致连续,则)(x f 在I 上连续.这个命题的证明是显然的,我们只须将其中的一个点(x '或x '')固定即可,但这个命题的逆命题:在区间I 连续的函数在这区间上不一定一致连续,却不一定成立.例2.1 证明函数1y x=在(0,1)内不一致连续(尽管它在(0,1)内每一点都连续). 证明 取 01ε=,对0δ∀>(δ充分小且不妨设12δ<),取,2x x δδ'''==,则虽然有2x x δδ'''-=<,但1111x x δ-=>'''. 所以函数1y x=在(0,1)内不一致连续. (3)在闭区间[],a b 上连续的函数()f x 在[],a b 上一致连续.这是著名的G.康托定理。
(我们将在函数的一致连续性的判定定理进行介绍.)注 对函数的一致连续性概念的掌握,应注意以下三个方面: (1)函数在区间的连续性与一致连续性的区别和联系.(2)函数一致连续的实质,是区间上任意两个彼此充分靠近的点的函数值的差的绝对值可以任意小,即对,x x I '''∀∈,当x x δ'''-<时,就有()()f x f x ε'''-<.(3)函数一致连续的否定叙述:设函数()f x 在区间I 上有定义,若00ε∃>,使0δ∀>, 总,x x I '''∃∈,虽然有x x δ'''-<, 但是0()()f x f x ε'''-≥,则称函数()f x 在区间I 上非一致连续.总的来说,我们可以在一点处讨论函数的连续性,却不能在一点处讨论函数的一致连续性.函数的连续性反映的是函数的局部性质,而函数的一致连续性则反映的是在整个区间上的整体性质.3 一致连续的性质性质 3.1 设)(x f 与)(x g 都区在间I 上一致连续,则)()(x g x f +在区间I 上一致连续.证明 由于函数)(),(x g x f 在区间I 一致连续,所以21,,0,0x x ∀>∃>∀δε, 当δ<-21x x 时,有()()()()εε<-<-2121,x g x g x f x f()()[]()()[]()()()()()()()().212121212211x g x g x f x f x g x g x f x f x g x f x g x f -+-≤-+-=+-+ 所以()()[]()()[]ε22211<+-+x g x f x g x f .所以()()x g x f +一致连续.性质 3.2 设)(x f 与()x g 都在区间I 上一致连续,则()()x g x f -在区间I 上一致连续.性质3.3 若)(x f 和)(x g 都是区间I 上的有界的一致连续函数,则)()()(x g x f x F = 也在I 上一致连续.证明 由题设)(x f ,)(x g 有界,从而存在0>M ,使I x M x g M x f ∈∀<<,,)()(.再由 )(x f ,)(x g 都一致连续,则0,01>∃>∀δε和02>δ ,使I x x x x ∈∀4321,,,,且243121,δδ<-<-x x x x 时有Mx g x g Mx f x f 2)()(,2)()(4321εε<-<- ,令},m in{21δδδ=,则I x x ∈∀65,,且δ<-65x x 时565566556656()()()()()()()()()()()().22F x F x f x g x f x g x f x g x g x g x f x f x MMMMεεε-=-≤-+-<+=所以)(x f )(x g 在I 上一致连续.性质3.4 设)(x f 与()x g 都在区间I 上一致连续,且)(x f 区间I 上有界,且存在0>α,使得对任意的I ∈x 有()()0>≥ααx g ,则()()x g x f 在区间I 一致连续. 证明 由()x g 在区间I 的一致连续性得 I ∈∀21,x x 有()()ε<-21x g x g 所以()()2111x f x f -=()()()()2121x f x f x f x f - ()()21x f x f ε<.由于()()0>≥ααx f ,所以()()a x g x g 21121≤,即()()211x g x g 有界,函数()x g 1在其定义域上一致连续.再由性质3.3知,()())(1)(x g x f x g x f ⋅=在其定义域上一致连续. 性质3.5 函数)(x f 在 ],[b a 上一致连续,又在],[c b 上一致连续,c b a << ,则)(x f 在],[c a 上一致连续.证明 由)(x f 在],[b a 一致连续,故0,01>∃>∀δε,使当],[,21b a x x ∈,且121δ<-x x 时,有2)()(21ε<-x f x f ①同理,)(x f 在],[c b 上一致连续,对上述0>ε,存在02>δ,使当],[,43c b x x ∈,且243δ<-x x 时,有2)()(43ε<-x f x f ②令},m in{21δδδ= ,则对 0>ε,当],[,65c a x x ∈ 且 δ<-65x x 时,(1)若],[,65b a x x ∈,由①式有εε<<-2)()(65x f x f .(2)若],[,65c b x x ∈,由②式也有ε<-)()(65x f x f .(3)若],[],,[65c b x b a x ∈∈时,则δδ<-<-b x b x 65,. 所以εεε=+<-+-≤-22)()()()()()(6565x f b f b f x f x f x f .从而得证)(x f 在],[c a 上一致连续.性质3.6 函数)(x f 在),[+∞a 连续,函数)(x g 在),[+∞a 一致续,且0)()(lim =-+∞→x g x f x ,则)(x f 在 ),[+∞a 一致连续.证明 0)()(lim =-+∞→x g x f x ,故 A x x a A ≥∀>∃>∀21,,,0ε,有3)()(,3)()(2211εε<-<-x g x f x g x f .又函数)(x g 在),[+∞a 一致连续,故对上述A x x ≥∀>∃>21,,0,0δε , 且 δ<-21x x ,有3)()(21ε<-x g x g .综上A x x ≥∀21,,且 δ<-21x x ,有)()()()()()()()(22211121x g x f x g x g x g x f x f x f -+-+-≤-εεεε=++<333,即)(x f 在),[+∞A 一致连续,再由Cantor 定理知)(x f 在],[A a 上一致连续,故)(x f ),[+∞a 在一致连续.性质3.6表明:若连续函数可在无穷远处充分接近一个一致连续函数,则其必一致连续.考虑到线性函数必一致连续,如果某连续函数在无穷远处充分接近一个线性函数,即此函数存在斜渐近线,则它必一致连续.即是如下推论.推论 3.1设函数)(x f 在),[+∞a 连续,且有斜渐近线,即有数b 与c ,使0])([lim =--+∞→c bx x f x ,则)(x f 在),[+∞a 一致连续.4.一致连续性的判定定理由于用函数一致连续的定义判定函数()f x 是否一致连续,往往比较困难.于是产生了一些以G ·康托定理为基础的较简单的判别法.定理4.1(Contor 定理) 若函数()f x 在[],a b 上连续⇔()f x 在[],a b 上一致连续.证明1(有限覆盖定理)∀0x ],[b a ∈,因为)(x f 在0x 点连续,所以0>∀ε, 0),(0>=∃x εδδ,使得],[,21b a x x ∈∀,若||01x x -<2δ,<-||02x x 2δ,则 <-|)()(|01x f x f 2ε<-|)()(|02x f x f 2ε就有||21x x -≤|02x x -|||01x x -+<2δ+2δ=δ, |)()(|12x f x f -≤|)()(|01x f x f -<-+|)()(|02x f x f 2ε+2ε=ε,也就是说,在],[b a 任何0x 邻域)4,(0δx O 内21,x x ∀,都有<-|)()(|12x f x f ε.现在考虑)4,(0δx O ,当0x 取遍],[b a 上一切点时,)4,(0δx O 构成一个开区间集E ,它 覆盖着],[b a ,由有限覆盖定理,],[b a 就由从E 中所取的有限个开区间)4,(kk x O δ),3,2,1(m k =所覆盖,现取η=)44,4,4min(321kδδδδ,对],[,21b a x x ∈∀且||21x x -≤η,1x 必属于)4,(kk x O δ中的一个,设)4,(001ii x x δ∈即||01i x x -<4iδ,又||02i x x -≤+-||21x x ||01i x x -<η+4iδ,表明)4,(,0021ii x O x x δ∈,所以有<-|)()(|12x f x f ε,即)(x f 在],[b a 上一致连续.这个证明方法是华东师大版数学分析上册中,运用有限覆盖定理理来证明,还可以用闭区间套定理来证明.证明2(闭区间套定理)若上述事实不成立,则至少存在一个00ε>,使得区间[],a b 不能按上述要求分成有限多个小区间.将[],a b 二等分为 []0,a c 、[]0,c b 则二者之中至少有一个不能按上述要求分为有限多个小区间,记为[]11,a b ;再将[]11,a b 二等分为 []11,a c 、[]11,c b 依同样的方法取定其一,记为[]22,a b ;......如此继续下去,就得到一个闭区间套[],,1,2,n n a b n =,由闭区间套定理知,存在唯一一点c 满足lim lim n n x x c a b →∞→∞==, ③且属于所有这些闭区间,所以[],c a b ∈,从而()f x 在点x c =连续,于是0δ∃>,当x c δ-<[](,)x a b ∈时,就有()()2f x f c ε-<④又由③式,于是我们可取充分大的k ,使,k k a c b c δδ-<-<,从而对于[],k k a b 上任意点x ,都有x c δ-<.因此,对于[],k k a b 上的任意两点,x x ''', 由④都有0()()()()()()22f x f x f x f c f c f x εεε'''-'''≤-+-<+=,这表明[],k k a b 能按要求那样分为有限多个小区间,这和区间[],k k a b 的取法矛盾,从而得证.注 定理4.1对开区间不成立.例如函数1()f x x=在()0,1内每一个点都连续,但在该区间并不一致连续.G.康托定理我们可知,函数()f x 在闭区间[],a b 上一致连续的充要条件是()f x 在[],a b 上连续,所以在闭区间[],a b 上连续的函数必定一致连续,然而对于有限开区间和无限区间,则结论不一定成立.而破坏函数在区间一致连续性的原因有以下两种情况(1)对于有限开区间,这时端点可能成为破坏一致连续性的点. (2)对于无限区间,这时函数在无穷远处可能破坏一致连续性. 虽然如此,我们对于破坏一致连续性的有限开区间的端点或无穷远点附加一定的限制条件,G.康托定理也可以推广到有限开区间和无限区间.定理4.2 ()f x 在(),a b 连续,且lim ()x a f x +→与lim ()x b f x -→都存在⇔函数()f x 在(),a b 内一致连续.证明 ""⇐ 若()f x 在(),a b 内一致连续,则对()120,0,,,x x a b εδ∀>∃>∀∈, 当12x x δ-<时,有12于是当12,(,)x x a a δ∈+时,有12()()f x f x ε-<.根据柯西收敛准则,极限lim ()x a f x +→存在.同理,可证极限lim ()x b f x -→也存在,从而()f x 在(),a b 连续,lim ()x af x +→与lim ()x bf x -→都存在.""⇒若()f x 在(),a b 连续,且lim ()x af x +→和lim ()x bf x -→都存在,则令()(0),()(),,(0),f a x a F x f x x a b f b x b +=⎧⎪=∈⎨⎪-=⎩于是有()F x 在闭区间[],a b 上连续,由Contor 定理,()F x 在[],a b 上一致连续,从而()f x 在(),a b 内一致连续.根据定理4.2容易得以下推论推论4.1 函数()f x 在(],a b 内一致连续⇔()f x 在(],a b 连续且lim ()x a f x +→存在.推论4.2 函数()f x 在[),a b 内一致连续⇔()f x 在[),a b 连续且lim ()x b f x -→存在.注 当(),a b 是无限区间时,条件是充分不必要的.例如()f x x =,()sin g x x =在(),-∞+∞上一致连续,但是lim ()x f x →+∞=+∞,lim ()x g x →+∞不存在,从而得出下面定理.定理4.3 ()f x 在(),-∞+∞内一致连续的充分条件是()f x 在(),-∞+∞内连续,且lim ()lim ()x x f x f x →-∞→+∞和都存在.证明 (1) 先证()f x 在[),a +∞上一致连续.令lim ()x f x A →+∞=,由柯西收敛准则有对0,0M ε∀>∃>使对,x x M '''∀>,有()()f x f x ε'''-<现将[),a +∞分为两个重叠区间[],1a M +和[),M +∞,因为()f x 在[],1a M +上一致连续,从而对上述10,0εδ>∃>,使[],,1x x a M '''∀∈+,且1x x δ'''-<时,有对上述0ε>,取{}1min ,1δδ=,则[),,x x a '''∀∈+∞,且x x δ'''-<,都有()()f x f x ε'''-<.所以函数()f x 在[),a +∞内一致连续.(2) 同理可证函数()f x 在(],a -∞内一致连续. 由(1)、(2)可得()f x 在(),-∞+∞内一致连续.注 若将[),a +∞分为[],a M 和[),M +∞,则当x '与x ''分别在两个区间时,即使有x x δ'''-<,却不能马上得出()()f x f x ε'''-<的结论.由定理4.3可得出以下推论:推论4.3 函数()f x 在[),a +∞内一致连续的充分条件是()f x 在[),a +∞内连续,且lim ()x f x →+∞存在.推论4.4 函数()f x 在(),a +∞内一致连续的充分条件是()f x 在(),a +∞内连续,且lim ()x a f x +→与lim ()x f x →+∞都存在.推论4.5 函数()f x 在(],b -∞内一致连续的充分条件是()f x 在(],b -∞内连续,且lim ()x f x →-∞存在.推论4.6 函数()f x 在(),b -∞内一致连续的充分条件是()f x 在(),b -∞内连续,且lim ()x b f x -→与lim ()x f x →-∞都存在.对于一元函数在任意区间上一致连续性,有下定理定理4.4 函数()f x 在区间I 上一致连续⇔,(1,2,...)n n x y I n ∀∈=,只要()lim 0n n n x y →∞-=,就有[]lim ()()0n n n f x f y →∞-=.证明 ""⇒ 由()f x 在I 上一致连续知,0ε∀>,0δ∃>,使得,x x I '''∀∈,只要x x δ'''-<,就有()()f x f x ε'''-<.又,n n x y I ∀∈,()lim 0n n n x y →∞-=知,对上述0ε>存在*N N ∈,n N ∀>,有n n x y δ-<, 从而对n N ∀>有()()n n f x f y ε-<, 即[]lim ()()0n n n f x f y →∞-=.""⇐ 若不然,则必存在00,,nn x x I ε'''>∈,虽然 1nn x x n'''-<, 但是0()()nn f x f x ε'''-≥, 显然()lim 0nn n x x →∞'''-=, 但是[]lim ()()0nn n f x f x →∞'''-≠. 推出矛盾,故()f x 在I 一致连续.注 此定理主要用来判定函数非一致连续.利用定义证明函数()f x 在I 上非一致连续的关键是确定00ε>,找出,x x I '''∈使得0()()f x f x ε'''-≥,而要做到这一点,对于某些函数而言通常是比较困难的.但是,根据前面判定函数一致连续的充要条件,易得函数在区间I 上非一致连续的两个比较简单的充分条件(1)连续函数()f x 在区间(),a b 内非一致连续的充分条件是(0)f a +和(0)f b -至少有一个不存在.(2)连续函数()f x 在区间I 非一致连续的充分条件是在区间上存在两个数列{}n x ,{}n y ,使得()lim 0n n nx y →∞-=,但[]lim ()()0n n n f x f y →∞-≠. 定理4.5 若函数()f x 在区间I 上满足利普希茨(Lipschitz )条件,即存在常数0L >,使得对,x x I '''∀∈都有()()f x f x L x x ''''''-≤-成立,则()f x 在区间I 上一致连续.证明 因为函数()f x 在区间I 上满足Lipschitz 条件,即,x x I '''∀∈,有()()f x f x L x x ''''''-≤-,于是对0ε∀>,取0L εδ=>,,x x I '''∀∈,只要x x δ'''-<,就有 ()()f x f x L x x ε''''''-≤-<.故函数()f x 在区间I 上一致连续.定理4.5仅仅是函数()f x 在区间I 上一致连续的充分非必要条件.由著名的利普希茨(Lipschitz )条件得到启发,还可得推论4.7 设存在0L >,使对任意,x x I '''∈,有()()()()f x f x L g x g x ''''''-≤- 成立,且()g x 在区间I 上一致连续,则()f x 在区间I 上一致连续.证明 由()g x 在区间I 上一致连续,则0,0,,,x x I x x εδδ''''''∀>∃>∀∈-<只要,就有()()g x g x L ε'''-<.于是,对上述0ε>,0δ>,,x x I '''∀∈,只要x x δ'''-<,就有()()()()f x f x L g x g x LL εε''''''-≤-<=.故()f x 在区间I 上一致连续. 定理4.6 函数()f x 在区间I 上一致连续⇔,,x x I x x δ''''''∀∈-<当时有0lim sup ()()0f x f x δ+→'''-=.证明 ""⇒ 由函数()f x 在I 上一致连续,则0,0εη∀>∃>,使得当,x x I '''∀∈,且x x η'''-<时,有()()2f x f x ε'''-<, 于是,当0δ+→时,令δη≤,只要x x δ'''-<,就有()()2f x f x ε'''-<,从而sup ()()2f x f x εε'''-≤<. 所以0lim sup ()()0f x f x δ+→'''-=.""⇐ 由,x x I '''∀∈,当x x δ'''-<时,有0lim sup ()()0f x f x δ+→'''-=,则0,0εδ∀>∃>,使得当x x δ'''-<时,有sup ()()f x f x ε'''-<,从而有()()sup ()()f x f x f x f x ε''''''-≤-<.所以函数()f x 在I 上一致连续.5一致连续性的应用利用一致连续性定义或判断函数一致连续性的定理来判断某函数的一致连续性.例1 判断),0(,11)(2+∞∈+=x x x f 的一致连续性. 解 因为 011lim2=++∞→x x ,111lim 20=+→x x . 又)(x f 在),0(+∞上连续,所以)(x f 在),0(+∞上一致连续.本题根据推论4.4,)(x f 在无限区间上连续且在端点极限存在,则)(x f 在此无限区间上一致连续.例2 证明)(x f =x e 在R 上非一致连续.证明1 R n x n x e n ∈=+=∀->∃>∀=∃ln ),1ln(),11(0,21210δδε ,ln )11ln(ln )1ln(21δδ=<+=-+=-e nn n x x 有021211)1()()(ε=>=-+=-n n x f x f . 所以)(x f =xe 在R 上非一致连续.此题根据一致连续性定义证得.证明2 取R n y n x n n ∈=+=ln ),1ln(,且0)11ln(lim ]ln )1[ln(lim )(lim =+=-+=-∞→∞→∞→nn n y x n n n n n , 但01)1(lim ][lim )]()([lim ln )1ln(≠=-+=-=-∞→+∞→∞→n n e e y f x f n n n n n n n . 所以)(x f =x e 在R 上非一致连续.此题根据判定函数一直连续性的充要条件即定理4.4.例3 判断)1,0(,1cos )(∈=x x e x f x 的一致连续性.解 因为x e x x 1cos lim 0+→不存在,所以xe xf x 1cos )(=在)1,0(内不一致连续. 此题根据判定连续函数在有限开区间一致连续性的方法即定理4.2.例4 证明xe xf =)(在),(a -∞上一致连续,而在),(+∞a 上非一致连续.证明 因为0lim =-∞→x x e 且a x a x e e =-→lim ,所以x e 在),(a -∞上一致连续.因为'(),lim x x x x e e e →+∞==+∞ ,所以)(x f =x e 在),(+∞a 上非一致连续. 此题根据连续函数导数的有界性来判定函数的一致连续性.此方法快捷方便,实际应用很广泛.结 束 语从以上四个部分,本文对函数的一致连续性的定义、相关性质和判定定理进行了详细的介绍,同时总结和给出具体应用,使大家对函数一致连续性的内涵有更全面的认识和理解.参考文献[1]华东师范大学数学系,数学分析(第四版)[M] ,高等教育出版社,2010.[2]陈纪修、金路、於崇华,数学分析(第二版)[M], 高等教育出版社,2004.[3] 裴礼文,数学分析中的典型问题与方法[M], 高等教育出版社,2006.[4]钱吉林,数学分析题解精粹[M], 崇文书局,2009.[5]彭家贵、陈卿,微分几何[M], 高等教育出版社,2002.[6] 欧阳光中、姚允龙、周源,数学分析[M],复旦大学大学出版社,2002.[7]吉米多维奇, 数学分析习题集题解[M ],山东科学技术出版社,1978.[8]Tom ,Apostol ,Mathematical Analysis [M],机械工业出版社,2004Uniform continuity and its applicationAuthor:XXX Supervisor:XXXAbstract : Uniform continuity of functions is one of the most important mathematical analysis, and one of the highly abstract concept. It plays a very important role in the subsequent study and research of mathematical analysis and related professional courses in. Uniform continuity characterizes the nature of the whole function in the interval. Accurate understanding and grasping the concept of uniformly continuous function method to demonstrate the uniformly continuous function is an important content of mathematical analysis.Keywords:function uniform continuity application。