人口指数增长模型和Logistic模型
数学建模在人口增长中的应用

数学建模在人口增长中的应用人口增长一直是全球面临的重要问题之一。
面对人口的迅速增加,我们需要寻找有效的方法来预测和控制人口的增长趋势。
数学建模作为一种重要的工具,可以帮助我们分析和理解人口增长的规律,并提供科学的解决方案。
1. 人口增长模型人口增长可以使用不同的数学模型来描述和预测。
其中,最常用的人口增长模型之一是指数增长模型。
指数增长模型假设人口增长的速度与当前人口数量成正比。
简单来说,人口数量每过一段时间就会翻倍。
这种模型可以用以下公式表示:N(t) = N(0) * e^(rt)其中,N(t)是时间t时刻的人口数量,N(0)是初始人口数量,r是人口增长率,e是自然对数的底数。
2. 人口增长趋势预测利用指数增长模型,我们可以根据过去的人口数据来预测未来的人口增长趋势。
通过对已有数据进行拟合和分析,可以确定合适的增长率,并利用该增长率来预测未来的人口数量。
除了指数增长模型,还有其他一些常用的人口增长模型,如Logistic模型和Gompertz模型。
这些模型考虑了人口增长的上限和减缓因素,更符合实际情况。
3. 人口政策制定数学建模不仅可以帮助我们预测人口增长趋势,还可以为人口政策的制定提供支持。
通过建立人口增长模型,我们可以模拟不同的政策措施对人口增长的影响。
例如,我们可以模拟采取计划生育政策后的人口增长情况,评估政策的有效性和可行性。
此外,数学建模还可以用于评估不同人口政策的长期影响。
通过引入更多因素,如医疗水平、经济发展和教育水平等,我们可以建立更为复杂的人口增长模型,从而更全面地评估政策的效果和潜在风险。
4. 人口分布和迁移模型除了人口增长模型,数学建模还可以用于研究人口分布和迁移的模型。
通过建立人口分布模型,我们可以分析不同地区人口的分布规律和变化趋势。
这些模型可以为城市规划、资源配置和社会发展提供重要参考。
在人口迁移方面,数学建模可以帮助我们研究人口的流动和迁移规律。
例如,我们可以建立迁移网络模型来描述不同地区之间的人口流动情况,从而预测人口迁移的趋势和影响因素。
人口预测的数学模型与预测方法分析

人口预测的数学模型与预测方法分析人口预测是对未来一定时期内人口数量和结构的变动进行估计和预测的过程。
人口预测在社会经济发展规划、城市规划、教育医疗资源配置等方面具有重要的参考价值。
为了准确预测人口的变动趋势,需要建立合理的数学模型和选择适当的预测方法。
人口预测的数学模型主要包括线性回归模型、指数模型、Logistic模型等。
线性回归模型是一种用来描述两个变量之间线性关系的统计模型,可以用来预测人口随时间的变化。
指数模型假设人口数量按照指数规律增长或减少,适用于人口增长较快的情况。
Logistic模型则适用于人口增长速度放缓后的情况,它是一种描述增长速度逐渐趋近于饱和的模型。
在选择数学模型时,需要综合考虑以下几个因素:人口历史变动趋势、人口自然增长率、人口迁移和流动情况、政策调控等因素。
同时,还需根据实际情况对模型的参数进行合理的设定和修正,以提高预测的准确性。
在预测方法上,常用的有趋势线法、复合增长率法、比较推理法、时间序列分析法和系统动力学方法等。
趋势线法是基于历史数据的发展趋势来进行预测,适用于人口变动趋势比较稳定的情况。
复合增长率法是将历史数据中的增长率按一定规则进行加权平均,再用来推算未来人口的增长率。
比较推理法通过对不同因素的比较和推理,来估计未来人口的变化。
时间序列分析法是根据时间序列数据的历史模式来预测未来的变化趋势。
系统动力学方法则是通过对不同因素的动态关系建立模型,用来探索人口变动的内在机制和规律。
在具体应用时,可以结合不同的数学模型和预测方法,进行多角度的分析和预测。
同时,还需要不断对模型进行修正和优化,以适应不断变化的人口变动趋势和社会经济背景。
此外,还应该注意对预测结果的不确定性进行评估和把握,提供多种可能性的预测结果,为决策者提供科学的参考依据。
中国人口增长预测数学建模 (2)

中国人口增长预测数学建模引言中国作为世界上人口最多的国家之一,人口增长一直是一个备受关注的问题。
人口数量的增长对于国家的经济、社会、环境等方面都有着重要的影响。
因此,预测中国人口的增长趋势对于未来的发展规划具有重要意义。
本文将介绍一种基于数学建模的方法,用于预测中国人口的增长情况。
方法数据收集为了进行人口增长预测的数学建模,我们需要收集一系列历史人口数据。
这些数据可以从各种统计年鉴、人口普查、政府发布的数据等渠道获取。
通常,我们需要收集的数据包括中国的总人口数量、出生率、死亡率、迁入率和迁出率等。
建立数学模型基于收集到的数据,我们可以建立一个数学模型来描述中国人口的增长情况。
常用的数学模型包括指数增长模型、Logistic增长模型等。
在本文中,我们以Logistic增长模型为例。
Logistic增长模型基于以下假设: 1. 人口增长率与当前人口数量成正比; 2. 当人口数量接近一定的上限时,人口增长率会逐渐减小。
Logistic增长模型的公式可以表示为:dP/dt = r*P*(1-P/K)其中,P表示人口数量,t表示时间,r表示人口增长率,K表示人口的上限。
参数估计为了应用Logistic增长模型进行人口预测,我们需要估计模型中的参数。
参数估计可以通过拟合历史数据来完成。
常用的参数估计方法包括最小二乘法、最大似然估计等。
模型验证一旦完成参数估计,我们可以使用模型预测未来的人口变化情况。
为了验证模型的准确性,我们可以将预测结果与实际观测数据进行比较。
如果预测结果与实际观测数据较为接近,说明模型具有较好的预测能力。
预测未来人口增长利用建立的数学模型和参数估计,我们可以进行未来人口增长的预测。
通过不同的假设和参数值,我们可以探讨不同因素对人口增长的影响。
例如,我们可以考虑不同的出生率和死亡率情况下的人口增长,或者研究不同人口政策下的人口增长趋势。
结论本文介绍了一种基于数学建模的方法,用于预测中国人口的增长情况。
(完整版)数学建模logistic人口增长模型

Logistic 人口发展模型一、题目描述建立Logistic 人口阻滞增长模型 ,利用表1中的数据分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测我国未来50年的人口情况.并把预测结果与《国家人口发展战略研究报告》中提供的预测值进行分析比较。
分析那个时间段数据预测的效果好?并结合中国实情分析原因。
表1 各年份全国总人口数(单位:千万)二、建立模型阻滞增长模型(Logistic 模型)阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。
阻滞作用体现在对人口增长率r 的影响上,使得r 随着人口数量x 的增加而下降。
若将r 表示为x 的函数)(x r 。
则它应是减函数。
于是有:0)0(,)(x x x x r dt dx== (1)对)(x r 的一个最简单的假定是,设)(x r 为x 的线性函数,即 )0,0()(>>-=s r sxr x r (2) 设自然资源和环境条件所能容纳的最大人口数量mx ,当mx x =时人口不再增长,即增长率)(=m x r ,代入(2)式得m x rs =,于是(2)式为)1()(mx x r x r -= (3)将(3)代入方程(1)得:⎪⎩⎪⎨⎧=-=0)0()1(x x x x rx dtdxm (4)解得:rt mme x x x t x --+=)1(1)(0(5)三、模型求解用Matlab 求解,程序如下: t=1954:1:2005;x=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756];x1=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988];x2=[61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756];dx=(x2-x1)./x2; a=polyfit(x2,dx,1);r=a(2),xm=-r/a(1)%求出xm 和rx0=61.5;f=inline('xm./(1+(xm/x0-1)*exp(-r*(t-1954)))','t','xm','r','x0');%定义函数 plot(t,f(t,xm,r,x0),'-r',t,x,'+b');title('1954-2005年实际人口与理论值的比较') x2010=f(2010,xm,r,x0) x2020=f(2020,xm,r,x0) x2033=f(2033,xm,r,x0)解得:x(m)= 180.9516(千万),r= 0.0327/(年),x(0)=61.5得到1954-2005实际人口与理论值的结果:根据《国家人口发展战略研究报告》我国人口在未来30年还将净增2亿人左右。
最新人口指数增长模型和logistic模型教学文案

根据美国人口从1790年到1990年间的人口数据(如下表),确定人口指数增长模型和Logistic 模型中的待定参数,估计出美国2010年的人口,同时画出拟合效果的图形。
表1 美国人口统计数据指数增长模型:rt e x t x 0)(=Logistic 模型:()011mrtm x x t x e x -=⎛⎫+- ⎪⎝⎭解:模型一:指数增长模型。
Malthus 模型的基本假设下,人口的增长率为常数,记为r ,记时刻t 的人口为 )(t x ,(即)(t x 为模型的状态变量)且初始时刻的人口为0x ,因为⎪⎩⎪⎨⎧==0)0(x x rxdt dx由假设可知0()rt x t x e = 经拟合得到:}2120010120()ln ()ln ,ln (),,ln rt a y a t a x t x e x t x rt r a x ey x t a r a x =+=⇒=+⇒=====程序:t=1790:10:1980;x(t)=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76.0 92.0 106.5123.2 131.7 150.7 179.3 204.0 226.5 ];y=log(x(t));a=polyfit(t,y,1) r=a(1),x0=exp(a(2)) x1=x0.*exp(r.*t); plot(t,x(t),'r',t,x1,'b') 结果:a = 0.0214 -36.6198r= 0.0214 x0= 1.2480e-016所以得到人口关于时间的函数为:0.02140()t x t x e =,其中x0 = 1.2480e-016, 输入:t=2010;x0 = 1.2480e-016; x(t)=x0*exp(0.0214*t)得到x(t)= 598.3529。
即在此模型下到2010年人口大约为598.3529 610⨯。
多种人口预测方法汇总

人口预测模型的适用性,是决定预测结果的科学性和是否符合人口发展的趋势的先决条件。
人口预测作为人口研究中的重要方面,近年来其预测方法的发展很快,主要的预测方法分为用微分方程方法预测的 Logistic 模型,用数理统计方法预测的线性回归模型,用矩阵方法预测的 Leslie 模型,具体又包括了人口增长率法、 Logistic 模型、 Leslie 模型、一元线性回归预测、多元回归预测、自回归法、指数函数法、幂函数法、系统动力学以及适用更为广泛的灰色系统 GM(1,1)模型预测等主要方法。
(1) 人口增长率法人口增长率法是利用所选定的人口增长数学公式,根据基数人口总数,按照一定的人口增长速度推算未来时期人口总数的方法。
该法要求人口增长符合算数增长规律,还要求未来人口净增长量或增长速度大小方向均不变(至少相对稳定) ,其常用的推算公式为:p n = p0 (1+ r0n) 或p n = p0 + mn 。
(2) Logistic 模型Logistic 模型增长公式为:p t = p m (1+ e a+bt ) ,其中p t 为时刻的人口总数,p m 为人口极限规模, e 为自然对数的底,t 为时刻长度,a 、b 为待定参数。
Logistic 模型考虑到人口总数增长的有限性,提出了人口总数增长的规律即随着人口总数的增长,人口增长率逐渐下降,但对于在短期内如 30-50 年内人口增长可能呈上升趋势如人口生育率上升、死亡率下降等原因而导致人口呈上升趋势。
Logistic 模型在应用中对时间长,人口数据变化大,因此误差较大且不稳定。
而小城镇人口的变化就存在人口数据变化较大的特点,所以 Logistic 模型对小城镇人口的预测并不适合。
(3) Leslie 模型Leslie 模型不受短期外界因素的影响,对于中长期预测中具有很大的优势,尤其对人口转折时期的预测具有较高的精度,其模型为: P (k ) = LP (k 1) 。
人口指数增长模型和Logistic模型

表1 美国人口统计数据指数增长模型:rt e x t x 0)(=Logistic 模型:()011mrtm x x t x e x -=⎛⎫+- ⎪⎝⎭解:模型一:指数增长模型。
Malthus 模型的基本假设下,人口的增长率为常数,记为r ,记时刻t 的人口为 )(t x ,(即)(t x 为模型的状态变量)且初始时刻的人口为0x ,因为⎪⎩⎪⎨⎧==0)0(x x rxdt dx由假设可知0()rt x t x e = 经拟合得到:}2120010120()ln ()ln ,ln (),,ln rt a y a t a x t x e x t x rt r a x ey x t a r a x =+=⇒=+⇒=====程序:t=1790:10:1980;x(t)=[ ]; y=log(x(t));a=polyfit(t,y,1) r=a(1),x0=exp(a(2)) x1=x0.*exp(r.*t);plot(t,x(t),'r',t,x1,'b') 结果:a =r= x0=所以得到人口关于时间的函数为:0.02140()t x t x e =,其中x0 = , 输入:t=2010;x0 = ;x(t)=x0*exp*t)得到x(t)= 。
即在此模型下到2010年人口大约为 610⨯。
模型二:阻滞增长模型(或 Logistic 模型) 由于资源、环境等因素对人口增长的阻滞作用,人口增长到一定数量后,增长率会下降,假设人口的增长率为 x 的减函数,如设)/1()(m x x r x r -=,其中 r 为固有增长率 (x 很小时 ) ,m x 为人口容量(资源、环境能容纳的最大数量), 于是得到如下微分方程:⎪⎩⎪⎨⎧=-=0)0()1(xx x x rx dt dxm 建立函数文件function f=curvefit_fun2 (a,t)f=a(1)./(1+(a(1)/*exp(-a(2)*(t-1790))); 在命令文件中调用函数文件 % 定义向量(数组) x=1790:10:1990; y=[ 76 ... 92 204 ];plot(x,y,'*',x,y); % 画点,并且画一直线把各点连起来 hold on;a0=[,1]; % 初值% 最重要的函数,第1个参数是函数名(一个同名的m 文件定义),第2个参数是初值,第3、4个参数是已知数据点 a=lsqcurvefit('curvefit_fun2',a0,x,y); disp(['a=' num2str(a)]); % 显示结果 % 画图检验结果 xi=1790:5:2020; yi=curvefit_fun2(a,xi); plot(xi,yi,'r'); % 预测2010年的数据 x1=2010;y1=curvefit_fun2(a,x1) hold off 运行结果: a= y1 =其中a(1)、a(2)分别表示()011mrtm x x t x e x -=⎛⎫+- ⎪⎝⎭中的m x 和r ,y1则是对美国美国2010年的人口的估计。
人口增长的微分方程模型

人口增长的微分方程模型通常基于Malthusian或Logistic增长模型。
以下是这两种常见的人口增长模型:
1. **Malthusian模型**:
Malthusian模型是人口增长的最简单模型之一,它基于以下假设:
- 人口的增长率与当前人口数量成正比。
- 增长率是恒定的,不受其他因素的影响。
用数学符号表示,Malthusian模型可以写成如下的微分方程:
\(\frac{dP}{dt} = rP\)
其中,\(P\) 表示人口数量,\(t\) 表示时间,\(r\) 表示增长率。
这个方程的解是指数函数,人口数量会随时间指数增长。
2. **Logistic模型**:
Logistic模型更贴近实际情况,考虑了人口增长的有限性。
它基于以下假设:- 人口的增长率与当前人口数量成正比,但随着人口接近一个上限,增长率会减小。
- 人口增长率的减小是受到资源限制或竞争的影响。
Logistic模型的微分方程如下:
\(\frac{dP}{dt} = rP(1 - \frac{P}{K})\)
其中,\(P\) 表示人口数量,\(t\) 表示时间,\(r\) 表示初始增长率,\(K\) 表示人口的上限或最大承载能力。
这个方程的解是S形曲线,人口数量会在接近\(K\) 时趋于稳定。
需要注意的是,实际的人口增长受到多种复杂因素的影响,包括出生率、死亡率、移民等。
因此,上述模型是简化的描述,用于理论分析和初步估算。
实际人口增长的模拟需要更复杂的模型和更多的参数考虑。
此外,这些模型还可以扩展,以包括更多的因素,如年龄结构、性别比例和社会因素等。
中国人口增长预测模型

中国人口增长预测模型中国是全球人口最多的国家之一,人口增长对社会经济发展和资源分配产生重大影响。
因此,准确预测中国的人口增长对于政府决策和社会规划至关重要。
本文将介绍一个基于趋势分析和数学模型的中国人口增长预测模型。
首先,分析历史数据是了解人口增长趋势的关键。
我们可以通过查阅官方统计数据来获得中国过去几十年的人口数量。
这些数据可以反映出不同年代的人口变化情况。
通过对这些数据进行趋势分析,我们可以更好地了解人口增长的规律。
其次,我们可以使用数学模型来预测未来的人口增长。
常用的人口增长模型包括线性增长模型、指数增长模型和Logistic增长模型。
线性增长模型假设人口每年以相同的速度增长,而指数增长模型则假设人口增长的速度与当前的人口数量成正比。
Logistic增长模型则考虑到了环境容量的限制,即人口增长速度会随着人口密度的增大而减缓。
在选择模型时,我们需要考虑人口增长的影响因素。
例如,出生率、死亡率和迁徙率等因素都会对人口增长产生影响。
因此,在构建预测模型时,我们需要综合考虑这些因素,并基于历史数据进行参数估计。
在模型构建完成后,我们可以利用计算机软件进行模拟和预测。
这些软件可以根据历史数据和模型参数,预测未来的人口数量和变化趋势。
通过不断调整模型参数,我们可以提高预测准确度,从而使我们的预测结果更具有可信度。
然而,人口增长预测也存在一定的不确定性。
例如,社会政策的改变、科技进步和自然灾害等都可能对人口增长产生重大影响。
因此,我们在使用预测模型时应该意识到这些不确定性,并将其考虑在内。
此外,随着社会的发展和科技的进步,我们可以探索更加精细化的人口增长预测模型。
例如,可以考虑区域差异和人口组成的变化,利用更多的经济、社会和环境因素来对人口增长进行建模。
这样的模型可以更好地适应中国复杂多变的人口情况。
综上所述,中国人口增长预测模型是一种重要工具,可以帮助我们了解和预测中国人口的发展趋势。
通过分析历史数据、构建数学模型并利用计算机软件进行模拟和预测,我们可以提高预测的准确性,并为政府决策和社会规划提供有力的支持。
中国人口增长的分析与预测模型(最新)

中国人口增长的分析与预测模型摘要:本文主要以所给两个附表的数据为依据,结合国家统计局公布的人口抽样数据,根据Leslie人口模型思想,同时在假设城镇化水平的增长曲线大致表现为一条拉伸的“S”型Logistic曲线的情况下,建立了分性别、按年龄、分地区(城、镇、乡)、农村人口迁往城镇的动态差分方程组模型及其矩阵形式,通过参数拟合和模型求解,按照高、中、低三种总和生育率,分别预测了未来我国总人口增长、城镇化水平、生育率、性别比例、老龄化进程等人口指标,预测结果表明我国在2030年城镇化水平将达到60.74%,高、中、低三种方案下的总人口数将分别为14.85亿、14.48亿和14.11亿,男女性别比将为120:100,2005年至2020年我国将出现婴儿出生的高峰期。
在高、中、低三种方案下,我国人口的最大值将分别在2040年、2030年和2025年出现。
2050年城镇化水平达到61.22%,在未来的50年内将迎来总人口高峰、劳动年龄人口高峰和老年人口高峰,模型分析说明了影响我国人口增长的主要因素是生育率不断降低、老龄化进程加速,出生人口性别比例持续升高,以及乡村人口城镇化加快等。
最后,给出了我国人口增长的中短期、长期增长预测结果。
关键词:人口增长;Leslie模型;城镇化;老龄化;人口高峰1. 问题的提出人类文明发展到今天,人们越来越意识到地球资源的有限性,我们感到"地球在变小",人口资源之间的矛盾日渐突出。
人口问题成为当今世界上最令人关注的问题之一,一些发展中国家的人口出生率过高,越来越严重地威胁着人类的正常生活,有些发达国家的自然增长率趋近于零,甚至变为负数,造成劳动力短缺,也是不容忽视的问题。
中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。
近年来,中国的人口发展出现了一些新的特点,例如:老年化进程加速,出生人口性别比持续升高,以及乡村人口城镇化等因素,随着我国经济的发展、国家人口政策的实施,这些都影响着中国人口的增长。
《人口增长模型》课件

周期性
人口增长呈现一定的周期 性,受经济、社会和政策 等因素影响。
人口增长的影响因素
自然增长率
出生率和死亡率的变化对 人口增长有直接影响。
迁入率和迁出率
迁入和迁出人口的数量对 地区人口增长有重要影响 。
政策因素
政府政策对生育、移民和 人口控制等方面具有重要 影响。
人口增长模型的分类
指数增长模型
01
通过模型模拟不同的人口政策效果, 为政府制定计划生育、移民政策等提 供科学依据。
分析人口变化原因
模型可以帮助我们了解影响人口增长 的各种因素,如生育率、死亡率、移 民等。
02
人口增长模型的基本概念
人口增长的特性
01
02
03
连续性
人口增长是连续的过程, 随着时间的推移不断变化 。
不确定性
人口增长受到多种因素的 影响,具有不确定性。
假设人口数量与时间 呈线性关系,即人口 数量随时间增长而呈 等比增加。
假设人口增长率是常 数,即不受时间、环 境等因素的影响。
模型建立
指数增长模型的一般形式为 (N(t) = N_0 e^{rt}),其中 (N(t)) 表示在时 间 (t) 的人口数量,(N_0) 表示初始人口数量,(r) 表示人口增长率。
05
阻滞增长模型(Logistic模型 )
模型假设
假设种群增长存在环境最大容 量,即当种群数量达到环境最 大容量时,种群增长速度将减 缓。
假设种群增长受环境阻力影响 ,种群增长率随种群数量增加 而降低。
假设种群增长是连续的过程, 不受时间步长限制。
模型建立
01
(N)((t)):种群数量
02
(K):环境最大容量
Logistic模型的参数估计及人口预测

Logistic模型的参数估计及人口预测一、本文概述本文旨在探讨Logistic模型的参数估计及其在人口预测中的应用。
Logistic模型是一种广泛应用于生物学、生态学、社会科学等领域的统计模型,尤其在人口增长预测中发挥着重要作用。
本文将首先介绍Logistic模型的基本原理和参数估计方法,包括模型的构建、参数求解以及模型的检验与评估。
随后,本文将重点分析Logistic模型在人口预测中的应用。
通过收集相关人口数据,运用Logistic模型进行参数估计,并对未来人口增长趋势进行预测。
本文还将探讨不同参数设置对预测结果的影响,以提高预测的准确性和可靠性。
本文将对Logistic模型在人口预测中的优势和局限性进行分析,并提出相应的改进建议。
通过本文的研究,旨在为人口预测提供更为科学、有效的方法,为政府决策、人口规划和社会经济发展提供有力支持。
二、Logistic模型的基本原理Logistic模型,也称为逻辑增长模型,是一种广泛应用于生态学和人口学等领域的数学模型。
该模型基于生物种群增长规律,尤其是当种群增长受到环境资源限制时的情况。
Logistic模型的基本原理在于它假设种群的增长速度在开始时由于资源充足而迅速增加,但随着种群密度的增加,资源限制和种内竞争导致增长速度逐渐减慢,直到最终种群达到其最大可能规模,即环境容纳量。
\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right) ]其中,(N) 是种群数量,(t) 是时间,(r) 是种群的内禀增长率(即在没有环境限制时的最大增长率),而 (K) 是环境容纳量,即种群数量的最大可能值。
这个模型的核心在于其非线性项 (1 - \frac{N}{K}),它反映了种群增长速度随种群密度的变化。
当种群数量 (N) 远小于环境容纳量 (K) 时,(1 - \frac{N}{K}) 接近1,种群增长迅速。
随着 (N) 接近 (K),这个项趋于0,种群增长速度减慢,最终停止增长。
人口增长的Logistic模型分析及其应用资料讲解

人口增长的L o g i s t i c模型分析及其应用人口增长的Logistic模型分析及其应用作者:熊波来源:《商业时代》2008年第27期◆中图分类号:C923 文献标识码:A内容摘要:本文运用迭代的方法计算出人口极限值xm和人口增长率r,用 Logistic模型预测了我国人口未来的发展趋势,并根据预测的结果提出了相应的对策与建议。
关键词:人口 Logistic模型迭代人口增长问题相关研究最早注意人口问题的是英国经济学家马尔萨斯,他在1798 年提出了人口指数增长模型。
这个模型的基本假设是:人口的增长率是一个常数。
记t时刻的人口总数为x(t)。
初始时刻t=0时的人口为x0。
人口增长率为r,r表示单位时间内x(t)的增量与x(t)的比例系数。
那么,时刻t到时刻t+Δt内人口的增量为x(t+Δt)-x(t)=rx(t)Δt。
于是x(t)满足下列微分方程的初值问题,他的解为x(t)=x0ert。
在r>0时,人口将按指数规律增长。
但是不管生物是按算术级数、几何级数还是按指数曲线变化,随着时间增长生物数量将趋于无穷大。
然而,实际情况却不然,实验指出在有限的空间内,一开始生物以较快速度增长,到一定时期生物增长量就会减缓,生物数量趋于稳定。
历史上的人口统计数据也表明,当一个国家的社会稳定时,一定时期内马尔萨斯模型是符合实际的,但是如果时间比较长或社会发生动荡时,马尔萨斯模型就不能令人满意了。
原因是随着人口的增加,自然资源、环境条件等因素对人口增长开始起阻滞作用,因而人口增长率不断下降。
基于以上考虑荷兰生物学家Verhaust对原人口发展模型进行了改造,于1838 年提出了以昆虫数量为基础的Logistic 人口增长模型。
这个模型假设增长率r是人口的函数,它随着x的增加而减少。
最简单的假定是r是x的线性函数,其中r称为固有增长率,表示x→0时的增长率。
由r(x)的表达式可知,x=xm时r=0。
xm表示自然资源条件能容纳的最大人口数。
人口统计学中的人口增长与衰退模型

人口统计学中的人口增长与衰退模型人口统计学是研究人口变化规律、数量结构和特征的学科。
人口增长与衰退是其中的一个重要方面。
人口增长模型和衰退模型针对的是不同的人口现象,在研究时需要有相应的数据支撑,下面将介绍其基本定义以及一些常见的模型。
一、人口增长模型人口增长是指人口数量随时间的增加,包括自然增长和外部因素的影响。
自然增长是指出生率与死亡率的差异,外部因素则包括移民、战争和疾病等。
人口增长模型主要用来描述人口数量的变化规律,下文将介绍两种常见的模型。
1.1 指数增长模型指数增长模型认为,人口数量增长的速度与当前人口数量成正比,若人口数量为N,增长速度为r,则有:dN/dt = rN其中,dN/dt是人口数量随时间的变化率。
该模型的特点是,随着人口数量的增加,增长速度越来越快,最终可能会造成人口过剩和资源匮乏的问题。
1.2 Logistic增长模型Logistic增长模型是为了避免人口增长过快而提出的模型。
它假设人口数量增长的速度不仅与当前人口数量有关,还与最大承载能力K有关,若人口数量为N,增长速度为r,则有:dN/dt = rN(1-N/K)其中,1-N/K表示剩余生育空间的比例。
随着人口数量的增加,增长速度逐渐减缓,最终趋向于一个稳定的数量。
二、人口衰退模型人口衰退是指人口数量相对稳定或减少的过程,它涉及到出生率、死亡率、迁移率等因素。
人口衰退模型主要用来描述人口数量在长期内的变化趋势,下文将介绍两种常见的模型。
2.1 指数衰退模型指数衰退模型认为,人口数量随时间的减少速度与当前人口数量成正比,若人口数量为N,衰退速度为r,则有:dN/dt = -rN其中,符号“-”表示人口数量减少。
该模型的特点是,随着时间的推移,人口数量减少的速度越来越快,最终可能导致人口不足的问题。
2.2 Logistic衰退模型Logistic衰退模型则是为了避免人口数量减少过快而提出的模型。
它和Logistic增长模型类似,假设人口数量减少的速度不仅与当前人口数量有关,还与最低承载能力K有关,若人口数量为N,衰退速度为r,则有:dN/dt = -rN(N/K-1)其中,N/K-1表示剩余存活空间的比例。
人口指数增长模型

《数学模型》实验报告实验名称:如何预报人口的增长成绩:___________实验日期:2009 年 4 月22 日实验报告日期:2009 年 4 月 26 日人类文明发展到今天,人们越来越意识到地球资源的有限性,我们感受到"地球在变小",人口与资源之间的矛盾日渐突出,人口问题已成为当前世界上被最普遍关注的问题之一,当然人口增长规律的发现以及人口增长的预测对一个国家制定比较长远的发展规划有着非常重要的意义.本节介绍几个经典的人口模型.模型I:人口指数增长模型(马尔萨斯Malthus,1766--1834)1) 模型假设时刻t人口增长的速率,即单位时间人口的增长量,与当时人口数成正比,即人口增长率为常数r.以P(t)表示时刻t某地区(或国家)的人口数,设人口数P(t)足够大,可以视做连续函数处理,且P(t)关于t连续可微.2) 模型建立及求解据模型假设,在t到时间内人口数的增长量为,两端除以,得到,即,单位时间人口的增长量与当时的人口数成正比.令,就可以写出下面的微分方程:,如果设时刻的人口数为,则满足初值问题:(1)下面进行求解,重新整理模型方程(1)的第一个表达式,可得,两端积分,并结合初值条件得.显然,当时,此时人口数随时间指数地增长,故模型称为指数增长模型(或Malthus模型).如下图3-2所示.3) 模型检验19世纪以前欧洲一些地区的人口统计数据可以很好的吻合.19世纪以后的许多国家,模型遇到了很大的挑战.注意到,而我们的地球是有限的,故指数增长模型(Malthus模型)对未来人口总数预测非常荒谬,不合常理,应该予以修正.图3-24) 模型讨论为了做进一步的讨论,阐明此模型组建过程中所做的假设和限制是非常必要的.我们把人口数仅仅看成是时间的函数,忽略了个体间的差异(如年龄,性别,大小等)对人口增长的影响.假定是连续可微的.这对于人口数量足够大,而生育和死亡现象的发生在整个时间段内是随机的,可认为是近似成立的.人口增长率是常数,意味着人处于一种不随时间改变的定常的环境当中.模型所描述的人群应该是在一定的空间范围内封闭的,即在所研究的时间范围内不存在有迁移(迁入或迁出)现象的发生.不难看出,这些假设是苛刻的,不现实的,所以模型只符合人口的过去结果而不能用于预测未来人口.模型II:阻滞增长模型(Logistic)一个模型的缺陷,通常可以在模型假设当中找到其症结所在——或者说,模型假设在数学建模过程中起着至关重要的作用,它决定了一个模型究竟可以走多远.在指数增长模型中,我们只考虑了人口数本身一个因素影响人口的增长速率,事实上影响人口增长的另外一个因素就是资源(包括自然资源,环境条件等因素).随着人口的增长,资源量对人口开始起阻滞作用,因而人口增长率会逐渐下降.许多国家的实际情况都是如此.定性的分析,人口数与资源量对人口增长的贡献均应当是正向的.1) 模型假设地球上的资源有限,不妨设为1;而一个人的正常生存需要占用资源(这里事实上也内在的假定了地球的极限承载人口数为);在时刻t,人口增长的速率与当时人口数成正比,为简单起见也假设与当时剩余资源成正比;比例系数表示人口的固有增长率;设人口数P(t)足够大,可以视做连续变量处理,且P(t)关于t连续可微.2) 模型建立及求解由模型假设,可将人口数的净增长率视为人口数P(t)的函数,由于资源对人口增长的限制,应是P(t) 的减函数,特别是当P(t) 达到极限承载人口数时,应有净增长率,当人口数P(t)超过时,应当发生负增长.基于如上想法,可令.用代替指数增长模型中的导出如下微分方程模型:(2)这是一个Bernoulli方程的初值问题,其解为.在这个模型中,我们考虑了资源量对人口增长率的阻滞作用,因而称为阻滞增长模型(或Logistic模型).其图形如图3-3所示.图3-33) 模型检验从图3-3可以看出,人口总数具有如下规律:当人口数的初始值时,人口曲线(虚线)单调递减,而当人口数的初始值时,人口曲线(实线)单调递增;无论人口初值如何,当,它们皆趋于极限值.4) 模型讨论阻滞增长模型从一定程度上克服了指数增长模型的不足,可以被用来做相对较长时期的人口预测,而指数增长模型在做人口的短期预测时因为其形式的相对简单性也常被采用.不论是指数增长模型曲线,还是阻滞增长模型曲线,它们有一个共同的特点,即均为单调曲线.但我们可以从一些有关我国人口预测的资料发现这样的预测结果:在直到2030年这一段时期内,我国的人口一直将保持增加的势头,到2030年前后我国人口将达到最大峰值16亿,之后,将进入缓慢减少的过程——这是一条非单调的曲线,即说明其预测方法不是本节提到的两种方法的任何一种.还有比指数增长模型,阻滞增长模型更好的人口预测方法吗[FS:PAGE]事实上,人口的预测是一个相当复杂的问题,影响人口增长的因素除了人口基数与可利用资源量外,还和医药卫生条件的改善,人们生育观念的变化等因素有关,特别在做中短期预测时,我们希望得到满足一定预测精度的结果,比如在刚刚经历过战争或是由于在特定的历史条件下采纳了特殊的人口政策等,这些因素本身以及由此而引起的人口年龄结构的变动就会变的相当重要,进而需要必须予以考虑.一、实验目的预报人口的增长变化规律,作出较准确的预报,为以后有效的控制人口增长提供依据,为设计型实验。
中国人口增长预测数学模型

中国人口增长预测数学模型
中国人口增长可以用人口增长率来描述。
人口增长率是指一个国家的出生率、死亡率和移民率产生的净人口变化的比率。
一般来说,一个国家的人口增长率越高,其人口增长速度越快,反之亦然。
由于中国的出生率和死亡率一直在变化,因此需要建立一个数学模型来预测中国的人口增长。
常见的模型有以下几种:
1. 指数模型
指数模型假设人口增长率是一个恒定值,因此未来的人口数量可以通过不断累乘现有人口数量和人口增长率来预测。
这种模型适用于人口增长迅速的情况,但并不适用于中国的情况,因为中国的人口增长率不是恒定的。
2. Logistic 模型
Logistic 模型假设人口增长率随着人口数量的变化而变化,即当人口数量增加到某一点时,人口增长率会逐渐降低。
这种模型适用于人口数量增长迅速的情况,适用于中国的情况。
3. 随机游走模型
随机游走模型假设人口增长率是一个随机变量,可以根据历史发展趋势来预测未来的变化。
这种模型适用于人口数量变化不规律的情况,但对于中国这样的大国而言,其复杂性较高,难以建立准确的模型。
总之,预测中国的人口增长需要考虑许多因素,例如出生率、死亡率、移民率等等,而且这些因素也会受到其它因素的干扰,例如经济、社会政治等因素。
因此,建立准确的模型需要大量的数据和正确的假设。
中国人口增长模型的建模仿真

中国人口增长模型的建模仿真人口增长是一个重要的全球问题,对经济、社会和环境产生深远影响。
为了更好地了解和预测人口增长的趋势,建立人口增长模型并进行仿真是非常必要的。
本文旨在介绍人口增长的重要性以及建立人口增长模型并进行仿真的目的。
人口增长的重要性可以从多个方面来看。
首先,人口数量的变化直接关系到国家的经济发展。
随着人口的增长,国家可以拥有更多的劳动力,从而为经济增长提供动力。
其次,人口的增长也会对社会产生影响,如教育、医疗等社会服务的供需平衡。
此外,人口增长还会对环境产生影响,包括资源消耗、能源需求以及环境污染等方面。
建立人口增长模型并进行仿真可以帮助我们更好地理解人口增长的规律和趋势。
通过模拟不同的人口增长情景,我们可以预测未来的人口数量变化,从而为政府和决策者提供科学的依据。
此外,人口增长模型还可以用于评估政策措施的效果,比如计划生育政策的实施对人口增长的影响。
本文将针对中国的人口增长情况,建立相应的人口增长模型,并进行仿真分析。
通过该模型,我们可以探讨不同的人口增长策略对未来人口数量的影响,为制定人口政策提供参考。
建立中国人口增长模型并进行仿真分析是非常必要的。
通过了解人口增长的规律和趋势,我们可以为政府和决策者提供科学的依据,以制定合适的人口政策。
此外,人口增长模型的建立还可以帮助我们评估不同策略的效果,为未来的人口发展做出合理的预测。
人口增长模型的建模仿真建立中国人口增长模型并进行仿真分析是非常必要的。
通过了解人口增长的规律和趋势,我们可以为政府和决策者提供科学的依据,以制定合适的人口政策。
此外,人口增长模型的建立还可以帮助我们评估不同策略的效果,为未来的人口发展做出合理的预测。
人口增长模型的建模仿真本文旨在讨论选择合适的人口增长模型的标准和可用的模型选项。
选择标准在选择人口增长模型时,我们应考虑以下标准:可靠性:选择具有良好可靠性的模型,即该模型应能够准确地预测不同时间段内的人口增长情况。
非线性成长模型中增长曲线的变化特征

非线性成长模型中增长曲线的变化特征非线性成长模型是一种描述经济、社会或自然系统增长的数学模型。
在这种模型中,增长曲线通常不是直线,而是呈现出曲线的形状。
根据具体的非线性成长模型,增长曲线的变化特征可能会有所不同。
下面,我将介绍几个常见的非线性成长模型,并分析它们在增长曲线上的变化特征。
1. 指数增长模型:指数增长模型描述的是一种迅速的、指数级的增长过程。
在这种模型中,增长曲线呈现出逐渐上升的形态,起初增长速度较慢,但随着时间的推移,增长速度逐渐加快。
这种曲线通常会在某一点达到饱和,之后增长速度会逐渐减缓,最终趋于稳定。
2. Logistic增长模型:Logistic增长模型是一种将指数增长模型与饱和增长模型结合的模型。
在这种模型中,增长曲线一开始呈现出指数型的上升,但随着时间的推移,增长速度逐渐减缓,并最终趋于稳定。
与指数增长模型不同的是,Logistic增长模型会在饱和点附近形成S形曲线。
3. Gompertz增长模型:Gompertz增长模型是一种用于描述人口或生物增长的模型。
在这种模型中,增长曲线呈现出逐渐上升、逐渐减速的特征。
起初,增长速度较快,但随着时间的推移,增长速度逐渐减缓。
这种模型通常会在某一点达到峰值,之后增长速度会逐渐下降。
4. Sigmoid增长模型:Sigmoid增长模型描述的是一种逐渐加速然后逐渐减速的增长过程。
在这种模型中,增长曲线呈现出类似于S形的形态,起初增长缓慢,但随着时间的推移,增长速度逐渐增加,达到一个峰值,之后增长速度又逐渐减缓,最终趋于稳定。
需要注意的是,非线性成长模型中的增长曲线变化特征受到多个因素的影响,包括初始条件、系统稳定性、外部干扰等。
此外,不同的非线性成长模型可能适用于不同的领域和情境,我们需要根据具体问题选择合适的模型进行分析。
总结起来,非线性成长模型中的增长曲线通常不是直线,而是具有一定形态的曲线。
常见的非线性成长模型包括指数增长模型、Logistic增长模型、Gompertz增长模型和Sigmoid增长模型。
人口模型

r2
f (t ) (t ) h(r , t )k (r , t ) p(r , t )dr.
r1
r2
r1
(4)
从上面可以看出, (t )的直接含义是 t时刻平均每个育龄女性 单位 时间内的生育数 , 也可以理解为平均每个 女性一生的总和生育数 或生育胎次.h(r , t )是年龄为 r为女性的生育加权因子 , 称生育模式.
F (0, t ) 0, F (rm , t ) N (t ).
定义人口密度函数为 p( r , t ) F lim F ( r r , t ) F ( r , t ) .
r
r 0
r
F (r dr, t ) F (r , t ) p(r , t )dr
(2)
( s ) ds p0 ( r t ) e , 0t r p(r , t ) ( s ) ds , tr f (t r )e
r r t r 0
(3)
r
p0 ( r t )e
r t
( s ) ds
r
解释
f (t r )e人口指数 Nhomakorabea通俗的一些人口数据更容易被接受,它们能 够反映人口的一些基本特征.我们来看看.
1.人口总数N(t):
2.平均年龄R(t):
R (t ) rp (r , t )dr / N (t )
0
rm
3.平均寿命S(t): 它表示时刻t出生的人不论活到什么时候, 死亡率都按时刻t的μ(r,t)计算,于是 t
f (t ) b(r , t )k (r , t ) p(r , t )dr,再将b(r , t )定义 为 b(r , t ) (t )h(r , t ),
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据美国人口从1790年到1990年间的人口数据(如下表),确定人口指数增长模型和Logistic 模型中的待定参数,估计出美国2010年的人口,同时画出拟合效果的图形。
表1 美国人口统计数据
指数增长模型:rt e x t x 0)(=
Logistic 模型:()011m
rt
m x x t x e x -=
⎛⎫
+- ⎪⎝⎭
解:模型一:指数增长模型。
Malthus 模型的基本假设下,人口的增长率为常数,记为r ,记时刻t 的人口为 )(t x ,(即)(t x 为模型的状态变量)且初始时刻的人
口为0x ,因为⎪⎩⎪⎨⎧==0
)0(x x rx
dt dx
由假设可知0()rt x t x e = 经拟合得到:
}2
120010120
()ln ()ln ,ln (),,ln rt a y a t a x t x e x t x rt r a x e
y x t a r a x =+=⇒=+⇒
=====
程序:
t=1790:10:1980;
x(t)=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76.0 92.0 106.5
123.2 131.7 150.7 179.3 204.0 226.5 ];
y=log(x(t));a=polyfit(t,y,1) r=a(1),x0=exp(a(2)) x1=x0.*exp(r.*t); plot(t,x(t),'r',t,x1,'b') 结果:a = 0.0214 -36.6198
r= 0.0214 x0= 1.2480e-016
所以得到人口关于时间的函数为:0.02140()t x t x e =,其中x0 = 1.2480e-016, 输入:t=2010;
x0 = 1.2480e-016; x(t)=x0*exp(0.0214*t)
得到x(t)= 598.3529。
即在此模型下到2010年人口大约为598.3529 610⨯。
1780
1800182018401860188019001920194019601980
050
100
150
200
250
300
350
模型二:阻滞增长模型(或 Logistic 模型) 由于资源、环境等因素对人口
增长的阻滞作用,人口增长到一定数量后,增长率会下降,假设人口的增长率为 x 的减函数,如设)/1()(m x x r x r -=,其中 r 为固有增长率 (x 很小时 ) ,m x 为人口容量(资源、环境能容纳的最大数量), 于是得到如下微分方程:
⎪⎩
⎪
⎨⎧=-=0)0()1(x
x x x rx dt
dx
m 建立函数文件curvefit_fun2.m function f=curvefit_fun2 (a,t)
f=a(1)./(1+(a(1)/3.9-1)*exp(-a(2)*(t-1790))); 在命令文件main.m 中调用函数文件curvefit_fun2.m % 定义向量(数组) x=1790:10:1990;
y=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76 ... 92 106.5 123.2 131.7 150.7 179.3 204 226.5 251.4]; plot(x,y,'*',x,y); % 画点,并且画一直线把各点连起来 hold on;
a0=[0.001,1]; % 初值
% 最重要的函数,第1个参数是函数名(一个同名的m 文件定义),第2个参数是初值,第3、4个参数是已知数据点 a=lsqcurvefit('curvefit_fun2',a0,x,y); disp(['a=' num2str(a)]); % 显示结果 % 画图检验结果 xi=1790:5:2020; yi=curvefit_fun2(a,xi); plot(xi,yi,'r'); % 预测2010年的数据 x1=2010;
y1=curvefit_fun2(a,x1)
hold off 运行结果:
a=311.9531 0.02798178 y1 =267.1947
其中a(1)、a(2)分别表示()011m
rt m x x t x e x -=
⎛⎫+- ⎪⎝⎭
中的m x 和r ,y1则是对美国美
国2010年的人口的估计。
1750
180018501900195020002050
50
100
150
200
250
300
第二题: 问题重述:
一垂钓俱乐部鼓励垂钓者将钓上的鱼放生,打算按照放生的鱼的重量给与鼓励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。
假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长):
问题分析:
鲈鱼的体重主要与鱼的身长、胸围有关系。
一般来说,鲈鱼的胸围越大,鱼的体重会越重,身长越长,体重也越重。
但鱼的胸围与身长之间又有些必然的联系,共同影响鱼的体重。
建模的目的是寻求鲈鱼体重与身长、胸围之间的数量规律
模型假设:
1、鲈鱼的身长越长体重越重,体重与身长存在正相关关系;
2、鲈鱼的胸围越大体重也越重,体重与胸围存在正相关的关系;
3、鲈鱼的胸围、身长互相影响,共同作用鲈鱼的体重;
4、鲈鱼的形态近似为与胸围等周长与身长等高的圆柱体。
符号说明:
模型的建立及求解:
(一)、鲈鱼体重与身长模型的确立
为了研究鲈鱼身长与体重的关系,我们利用已测量的数据,取出身长及体重的数据,利用MATLAB软件画出散点图,如下:
30
32
34
36
3840
42
44
46
身长
体重
身长与体重散点图
从图形上看,鲈鱼的体重与身长可能是二次函数关系,我们利用多项式拟合的方法,得到:
21.6247*L -59.3124*L +709.7392W
(1)
根据拟合的函数,我们画出拟合图:
200
400600800100012001400160018002000身长与体重拟合图
从拟合图上看,大部分原始数据在拟合函数附近,说明用二次函数拟合的效果较
好,下面利用得出的函数对鱼的体重进行估计,用相对误差检验拟合度,得到下表:
表一、鲈鱼体重实际值与估计值对比及误差表
从表中的数据,我们可以得出鲈鱼体重的实际值与估计值的相对误差不大,
说明用二次函数拟合鲈鱼身长与体重的关系式可行的。
(二)、鲈鱼体重与胸围的模型确立
仅仅考虑鲈鱼胸围对体重的影响,我们采用与模型一相同的方法,先画出鲈鱼体重与胸围的散点图:
胸围
体重
胸围与体重散点图
从图形上看,鲈鱼体重与胸围可能成线性关系,利用多项式拟合的方法,我们得
到鲈鱼体重与胸围的函数表达式:
W (2)
92*C-1497.5
根据拟合函数(2),画出胸围与体重关系的拟合图:
胸围与体重拟合图
利用拟合函数及实际数据,求出实际值与拟合值得相对误差表:
表二、鲈鱼体重实际值与估计值对比及误差表
从鲈鱼胸围与体重的拟合图,及表二中的数据,我们可以得出用线性函数拟合胸围与体重的关系拟合程度高,鲈鱼体重的实际值与估计值的相对误差不大,说明用线性函数拟合鲈鱼身长与体重的关系式可行的。
(三)、建立体重与身长、胸围相互影响的模型
实际情况下,鲈鱼的体重不可能只由身长、胸围单方面影响,因此考虑建立身长、胸围共同作用体重的模型。
此模型的建立是基于假设⑶,(4),即:鲈鱼的体态用与胸围等周长,与身长等高的圆柱形来近似。
因为圆柱体的体积等于底面积乘高,底面积可以用周长
表示:π
42C
.因此可以分析得出2LC W ∝.又物体质量等于密度与体积的乘积,因
此只需根据数据求出密度即可。
于是身长、胸围与体重的关系可以表示为:
2LC W α=,问题转化为对系数α的求解。
根据已知数据,利用MATLAB 软件求解,得到:
α≈0.0327 (3) 因此,
20327.0LC W =
(4)
利用得出的函数对鱼的体重进行估测并列如下表:
表三、重量估计值及相对误差
根据表三的数据,可以知道模型三的拟合程度也较好,相对于模型一、二,此模型充分考虑到了身长、胸围对体重的相互影响,用此模型估计鲈鱼的体重可能会更符合实际。