空调房间气流组织模拟及优化.doc

合集下载

某数据机房气流组织模拟及运行优化

某数据机房气流组织模拟及运行优化

图 8 3# 空 调 机 组 停 机 时 机 房 温 度 场
7 4
暖通空调 HV&AC 2015年第45卷第3期
图 6 3# 空 调 机 组 压 缩 机 出 现 故 障 而 风 机 正 常 运 行 时 机 房 温 度 场
图 7 3# 空 调 机 组 压 缩 机 出 现 故 障 而 风 机 正常运行时送风气流组织
2)3# 空 调 机 组 停 机 图8是3#空 调 机 组 停 机 时 机 房 的 温 度 场 分
布模拟图,图9是其送风气流 组 织 模 拟 图。 从 图 8 可 以 看 出 ,3# 空 调 机 组 停 机 的 情 况 下 ,机 房 的 整 体 温度有所上 升,大 部 分 区 域 在 距 地 面 1.8 m 高 度 处的温度超过了 25 ℃,温 度 场 分 布 比 压 缩 机 出 现 故障而风机继续运行的情况均匀一些。由于风量 和冷量 的 下 降,对 设 备 发 热 量 较 大 的 A 列 机 柜 会 造成不 良 影 响,部 分 机 柜 在 1.0 m 和 1.8 m 高 度 上的排风温度达到30 ℃。从图9可以看出,3#空 调 机 组 停 机 后 ,与 压 缩 机 出 现 故 障 而 风 机 正 常 运 转 相比,风道的出风 温 度 变 化 不 大,相 对 来 说 运 行 较 为安全。
下 ,机 房 整 体 温 度 上 升 ,大 部 分 区 域 温 度 在24~ 28 ℃ 之 间 ,D 列 远 端 机 柜 附 近 的 温 度 可 达 28 ℃ 。 从 图 7 可 以 看 出 ,3# 空 调 机 组 压 缩 机 出 现 故 障 后 出 风 温 度 明 显 上 升 ,与 进 风 温 度 基 本 相 同 ,在 23~26 ℃ 之 间 。 回 风 气 流 组 织 与 现 有 机 房 基 本 相同。

空调房间的气流组织(PPT54页)

空调房间的气流组织(PPT54页)

Air Conditioning-Chapter 5 置换通风空调效果模拟图
Air Conditioning-Chapter 5 实际气流分布形式
三种典型的送风形式: 混合通风、置换通风、 个性化送风
Air Conditioning-Chapter 5
(四)中送
可采用上下回风或下回(不管上部空间) 适用于高大空间,如高大中庭、高大厂房
(六)风口选择、布置的要点
(1)考虑工作区的温度衰减、速度衰减,贴附长度,送风可到达 的区域
( 2 ) 风口选择的方法
1、由室内负荷确定送风量、送风温差 2、根据建筑空间的特点选择流型和风口类型 3、确定每个风口的流程或服务范围 4、由工作区最大允许风速、流程求送风速度 5、求工作区最大温度波动。若超标准 , 需要 调整设计 , 再重新核算 6、由每个送风口的服务范围求送风口个数和每个送风口的送风量 7、由每个送风口的送风量和送风速度求送风口规格 8 、对于贴附射流需要校核贴附长度 。若不满足要求 , 加大 Vo 或
Air Conditioning-Chapter 5
(a) (a)侧送侧回
(b) (b)散流器送风
(c) (c)孔板送风
上送下回气流分布
Air Conditioning-Chapter 5
(二)上送上回
(a)单侧上送上回 (b)异侧上送上回 (c)散流器上送上回
Air Conditioning-Chapter 5
• 适用:吊顶送风 • 根据顶棚形状和定型产品样本建议的流程、间距,面
积不超过1:1.5 • 盘式:平送 • 送吸式:上送上回 • 直片式:上送或平送 • 流线型:下送
• 方矩形散流器:气流形式为贴附(平送)型
圆形散流器

客房空调气流组织的实验研究及优化

客房空调气流组织的实验研究及优化

( h i i ri f cec dTc n lg 2 2 0 ) An u v syo S i ea eh oo y Un e t n n 3 0 1 [ src] A a z e p rtr e dv lcy f l fg et o m y maigleo F tcnq ea d ep r n Abtat n l etm eauef l a e i e o u s ro b kn l fC D eh iu x ei t y i dn oti d S n me
客房作为酒店和宾馆产业的代表性房间, 其空 调的效果应成为一个关注 的问题 。自从 2 实际 7 0 0 年代出现 能源危机, 空调的能耗不仅成为暖通工程 师 关注 的 问题 ,也 成 为建筑 师关 心 的话题 。为 了降 低空调能耗, 建筑师们提高建筑物的气密性和热绝 缘性, 空调师们又降低 了室 内最小新风量标准 。 有
as caiemo e Acor igtep a t o g et o m, rn pi z d pe e t da miitr h i uaina da ay i. so it v d . c dn h rci e c f u s o b igo t r mie rc p a d nse t es lt n n m o n lss
[ y rs C D t h iu ; a f w ognzt n tm eauef l; vlct ed o t zt n Ke d ] F c nq e i o rai i ; e p rtr e wo e r l ao id eoi f l; pi ai yi mi o
1 引言 、
时 由于二者 共 同 的作用 而导 致新 风量 不足 , 人们 给
式做 出分 析 , 出优化 的方案 并 用 C D 给 予模拟 , 提 F 从而给 设 计和 使用 带 来一 定 的指 导作 用 。

室内气流组织数值模拟与舒适度分析

室内气流组织数值模拟与舒适度分析

室内气流组织数值模拟与舒适度分析摘要:分别对采用百叶侧送侧回、喷口侧送侧回、散流器顶送下回、分层空调、置换通风方式的室内空调室内气流的速度场和温度场进行了数值模拟,并对其结果进行了实验验证。

根据ADPI指标对这几种送回风方式进行了热舒适性评价。

结果表明,分层空调和置换通风是室内中较好的气流组织方式。

关键词:室内;气流组织;速度场;温度场;数值模拟;热舒适引言传统空调系统的气流组织是以送风射流为基础的,通过反复迭代检查温度和速度。

最后,找到合理的回风方案和参数。

空调房间内的供气射流大多是多个非等温湍流射流,一般设计方法是基于单股等温紊流射流的规律,射流约束修正系数、射流重合度和非等温射流的修正系数。

介绍。

这种方法忽略了很多其他因素,如排风口的尺寸和位置、热源的性质和位置等,因此必然有一定的误差,在某些情况下甚至有很大的误差。

若简单地将这种方法用于空间空调系统的气流组织设计,是不合适的。

空间空调系统的气流设计没有成熟的理论和实验结论。

主要研究方法是将气流的数值分析与模型相结合。

由于气流的数值分析涉及到各种可能的内部扰动、边界条件和初始条件,所以可以完全反映房间内的气流分布,从而确定气流的最佳方案。

1室内空气流动的有限元数值模拟机械通风房间内的空气流动多属于非稳态湍流流动,直接模拟尚不现实。

在解决实际问题时,需要对物理模型进行一定的假设和简化处理。

笔者作了以下假设:1)室内空气为低速不可压缩气体,且符合 Boussinesq 假设;2)室内空气流动为准稳态湍流流动;3)忽略能量方程中粘性效应引起的能量耗散。

2各种送风方式下大空间室内气流组织数值模拟2.1研宄对象本文的研宄对象为有内热源、尺寸为12 mX &4 mX5.0 m(长X宽X高)的长方体建筑模型(如图1所示),风口设在外墙侧。

人员和设备由于不断放出热量,对室内气流分布特性有重要影响,将其视作内热源处理。

内热源模型为0.4 mX1.2 mX 1.3 m(长X宽X高)的长方体。

空调房间气流组织模拟及优化模板可修订

空调房间气流组织模拟及优化模板可修订

毕业设计说明书作者:学号:学院:系(专业):热能与动力工程题目:空调房间气流组织数值模拟和优化指导者:讲师(姓名) (专业技术职务)评阅者:(姓名) (专业技术职务)2012 年 6 月 2 日Title Numerical simulation of air-conditioned room air distribution and optimizationAbstractAirflow-organizing in air-conditioned indoor air environment, air quality has an important effect is directly related to the indoor temperature, area, flow rate and air-conditioning energy consumption is an important part of the air-conditioned. Effective ventilation and airflow organization has an important significance for improving indoor air quality, to ensure the realization of healthy buildings, healthy comfort air conditioning.The main factors to affect the flow in room inlet velocity, the location of the air inlet into the return air relative position Firstly, the establishment of a physical model and mesh using Gambit software, and numerical simulations using Fluent software, said in an intuitive way the temperature field and velocity field of airflow under different air distribution program, analyzing the draw for office and other similar air-conditioned room, Side of the send side back, on sending the next time, on to send back, next to send back to the four air distribution are more appropriate. But the better Side of the send side back and on to send back on the air current forms of organization.Keywords:Airflow-organizing;Numerical simulation; Turbulencemodel;Temperature field;Velocity field.目次1引言 (1)1.1 研究的背景及意义 (1)1.2 国内外的研究成果 (1)1.3 本文的主要内容和工作 (2)2空调房间的气流组织形式 (3)2.1气流组织的介绍 (3)2.2常用的气流组织形式 (3)2.2.1侧送侧回 (4)2.2.2上送下回 (4)2.2.3上送上回 (4)2.2.4 下送上回 (5)3 气流组织和室内舒适性的评价指标 (5)3.1 技术指标 (5)3.2 经济性指标 (7)3.3 适性空调室内空气计算参数 (8)4 空调房间的数值模拟过程 (8)4.1 物理模型的建立 (8)4.2网格的划分 (11)4.3数学模型 (11)4.4在Fluent里的参数 (13)4.5解算结果及后处理 (14)5 数值模拟结果分析 (15)5.1侧送侧回的结果及分析 (15)5.2 异侧下送上回的结果及分析 (17)5.3上送上回的结果及分析 (19)5.4上送下回的结果及分析 (20)结论 (22)参考文献 (23)致谢 (25)1 引言1.1 研究的背景及意义随着经济的发展和科技的进步,人们的物质生活水平不断提高,空调的使用越来越普及,人们对居住和工作环境的要求也越来越高,因此对通风空调技术也提出了更高的要求。

空调气流组织课件

空调气流组织课件

04
CATALOGUE
空调气流组织的优化设计
气流组织的模拟分析
数值模拟
利用计算机软件模拟空调气流在 空间内的流动情况,分析气流速 度、温度、湿度等参数,预测气 流组织的分布和效果。
实验验证
通过实验手段对数值模拟结果进 行验证,比较模拟与实际结果的 差异,提高模拟的准确性和可靠 性。
气流组织的优化方法
详细描述
上送风通常采用散流器或孔板等设备,将空调的冷风或热风 均匀地送至整个房间。这种送风方式可以避免直接吹向人体 ,减少不适感,同时使室内温度分布更加均匀。
下送风
总结词
下送风方式是指空调的冷风或热风从房间的下部送入,再通过自然的对流或机 械的辅助方式使空气向上流动。
详细描述
下送风通常采用地面盘管、地暖等方式,将空调的冷风或热风通过地面送至整 个房间。这种送风方式可以更好地控制地面附近的温度,使室内温度分布更加 均匀。
送风口位于房间的地面或吊顶内,通过向 下的送风方式,使冷空气自下而上流动, 实现室内空气的均匀降温。
散流器送风
喷口送风
送风口采用散流器形式,通过散流器的扩 散作用,使冷空气在室内均匀扩散,实现 室内空气的均匀降温。
送风口采用喷口形式,通过喷口的定向送 风,使冷空气直接吹向室内人员活动区域 ,实现快速降温和舒适度调节。
家庭的空调气流组织
家庭的空调气流组织需要考虑家庭成员的生活习惯和需求,以确保舒适的生活环境 。
家庭的空调气流组织需要合理设置温度和湿度的控制,以满足家庭成员的需求。
家庭的空调气流组织需要定期清洗和维护,以保证空气流通和室内空气质量。
公共场所的空调气流组织
公共场所的空调气流组织需要考 虑人流密度和空气质量,以确保

试验一室内气流组织模拟试验试验目的通过室内气流组织模拟

试验一室内气流组织模拟试验试验目的通过室内气流组织模拟

实验一室内气流组织模拟实验一、实验目的通过室内气流组织模拟实验,掌握常用风口、常见室内送回风口布置对室内气流分布、工作区温度速度均匀性的影响;掌握室内工作区温度和速度的测量方法、气流演示实验方法。

二、实验原理室内气流组织的优劣直接影响室内热环境的舒适性和空调设计的实现,同时也直接影响空调系统的能耗量。

通常室内工作区由余热而形成的负荷只占全室总负荷的一部分。

另一部分产生于工作区之上。

良好而经济的气流组织形式,应在保证工作区满足空调参数要求的前提下,使空调送风有效地排出工作区的余热,而不使工作区以外的余热带入工作区,从而达到不增加送风量且提高排风温度的效果,直接排除这部分热量,以提高空调系统的经济性。

为此引入评价室内气流组织经济性指标一一能量利用系数n :t - tH =—p. _______ oL式中,t、t、t分别为室内工作区空气平均温度、送风温度及排(回)风温度。

通过实测获得能量利用系数n,以评价室内气流组织的经济性。

三、实验方法1.气流组织测量方法(1).烟雾法将棉球蘸上发烟剂(如四氯化钦、四氯化锡等)放在送风口处,烟雾随气流在室内流动。

仔细观察烟雾的流动方向和范围,在记录图上描绘出射流边界线、回漩涡流区和回流区的轮廓,或者采用摄影法直接记录气流形态。

由于从风口射出的烟雾不大而且扩散较快,不易看清楚流动情况,可将蘸上发烟剂的棉花球绑在测杆上,放到需要测定的部位,以观察气流流型。

这种方法比较快,但准确性差,只在粗测时采用。

⑵.逐点描绘法将很细的合成纤维丝线或点燃的香绑在测杆上,放在测定断面各测点位置上,观察丝线或烟的流动方向,并在记录图上逐点描绘出气流流型,或者采用摄影法直接记录气流形态。

这种测试方法比较接近于实际情况。

应注意上述用于记录气流形态的摄影法对拍摄焦距、烟雾与背景的对比度等要求较高。

2.能量利用系数测量方法分别在室内工作区、送回风口处布置温度测点,温度测量仪器采用热电偶测量,工作区温度应采用多点布置取其平均值,计算求得能量利用系数。

用CFD方法对冬季空调房间进行气流组织模拟和优化方案

用CFD方法对冬季空调房间进行气流组织模拟和优化方案

4.1冬季空调房间的温度场和速度场 4.1.1冬季空调房间的温度场
z = 0.1m处温度场
z = 1.1m处温度场
z = 1.6处温度场
z = 2m处温度场
4.1.2冬季空调房间的速度场
z = 0.1m处速度场
z = 1.1m处速度场
z = 1.6m处速度场
z = 2m处速度场
问题
➢ 温度场:温度场也有极大的改善,但改善程度 略次于措施1。
➢ 速度场:比采取措施2前略有改善,但效果不是 很大。
4.4改进后冬季空调房间的温度场和速度场。 4.4.1采取措施3后冬季空调房间不同断面的温度场
z = 0.1m处温度场
z = 1.1m处温度场
z = 1.6m处温度场
z = 2m处温度场
谢谢
❖ 冬季外窗的渗透风对室内温度场影响很大,北向与西向墙及窗的热损失, 也使得温度场在这两个墙壁附近分布不均匀。
Hale Waihona Puke 改进方法➢ 改进方法: ❖ 措施1:采取措施,使北向外窗的
渗透风量减小一半,风口的布置 不变。 ❖ 措施2:风机盘管以及风口布置位 置改变,其中一组风机盘管以及 送风风口移到靠近北外墙布置。 如右图所示,北外窗的渗透风量 不变。 ❖ 措施 3:采取措施使北外窗的渗 透风量减小一半,同时又将送、 回风口移近北外墙(窗)。新风 、送回风的参数不变。
2.3算例选择
本模拟选择本办公楼中最 代表性的房间进行模拟,空 调平面图如右图所示。房间 内安装了两台风机盘管。
3.模型建立 3.1 几何模型
设计对象的物理模型如图所示,房间的尺寸:8.2m×5m×3.3m(长×宽×高),如下图所示。
3.2 数学模型
在本设计中采用k-ε(k为紊流动能,ε为紊流耗散率)模型。它是目前在房间空气流 动中最普遍采用的模型,对暖通空调领域多种流型的计算结果显示,该模型优于其他 模型。

空调房间气流组织数值模拟和优化-白杰

空调房间气流组织数值模拟和优化-白杰

图3.异侧上送下回
图4.异侧下送上回
网格的划分:
• 我所建立的模型是规 则的长方体模型,因 此取整个空调房间为 计算区域,在笛卡尔 直角坐标系下使用 0.08m×0.08m×0.08 m的网格,网格数总 计147700个,模型如 下图,数值模拟采用 Fluent软件进行数值 计算。
图5.网格划分的模型图
结论:
• 同侧上送下回是送风口以贴附射流形式进行送风,射流有足够的 射程能够送到对面墙上,工作区处在回流区,气流在整个房间截 面内形成一个大的回旋气流,房间内的有害气体可以随着气流的 挤压流动由回风口排出。由于送风射流在到达工作区之前,已与 房间空气进行了比较充分的混合,速度场和温度场都趋与均匀和 稳定。 • 实际上,对于办公室等类似的空调房间,以上的四种气流组织都 比较适合的。但是同侧上送下回和异侧上送上回的气流组织形式 更优。
摘要
本文以计算流体力学和数值传热学为理论基础,对空调房间的气流 组织形式和室内空气三维湍流流动的数值模拟方法进行分析,使用 Gambit建立夏季空调房间常见的四种气流组织模型,采用FLUENT 软件以直观的方式显示了四种气流组织方案的气流流型,分析讨论 其气流分布规律、特点,并将数值计算结果进行处理,并将各种不 同送气流组织形式下的温度场和速度场进行对比,总结各种气流组 织形式的优缺点。
( u ) ( v) ( w) 0 x y z
(2)动量守恒方程(N-S方程)
( u ) u u u +div( uU) ( ) + ( ) + ( ) Su t x x y y z z x
( v) v v v +div( vU) ( ) + ( ) + ( ) Sv t x x y y z z y

空调房间气流组织的数值模拟研究

空调房间气流组织的数值模拟研究

空调房间气流组织的数值模拟研究摘要:随着社会的进步和经济的发展,人们的生活水平不断提高,对居住和工作的建筑环境有了更高的要求,因而对通风空调技术也提出了更高的要求,空调效果成了人们关心的重点。

空调室内的气流组织直接影响着空调系统的使用效果,是关系着房间工作区的温湿度基数、精度及区域温差、工作区的气流速度及清洁程度和人们舒适感觉的重要因素,是空气调节的一个重要的环节。

本文采用CFD方法,对办公室空调房间内的气流组织进行三维数值模拟计算,并对模拟的结果进行分析讨论。

关键词:气流组织;数值模拟;速度场;温度场1物理模型本文所研究的空调办公室房间尺寸为6.8m×6.0m×4.0m,柜式空调机送风口的尺寸500mm×300mm,送风口中心距地1.55m,回风口的尺寸为500mm×500mm,回风口贴地。

立式空调机斜侧放置在墙角,与墙壁成45°夹角。

空调房间有11台计算机、11个人员、4盏荧光灯等热源。

为了简化计算,计算机为400mm×400mm×400mm的正方体模型,其中心距地1m;人员为坐姿,为一个400mm×400mm×1200mm的长方体模型;荧光灯为50mm×50mm×1200mm的长方体模型,距地2.6m,白天不考虑灯光照明。

坐标原点为房间的几何中心。

简化的物理模型如图1。

图1房间的物理模型2数学模型为了简化问题,作如下的假设:(1)室内气流为不可压缩常物性牛顿流体,稳态湍流流动,且符合Boussinesq假设;(2)不考虑太阳辐射以及房间内部各表面的辐射换热影响,固体壁面上满足无滑移条件,在计算模型中不考虑;(3)门、窗、墙壁密闭性好,不考虑漏风的影响。

根据实际情况采用的计算方法是由Launder和Spalding等提出的k双方程模型。

模型的控制方程为:①连续性方程(1)式中,ui 为xi方向上的时均速度,m/s。

空调房间气流组织数值模拟和优化

空调房间气流组织数值模拟和优化

空调房间气流组织数值模拟和优化摘要:气流组织的形式对装有空调的室内的空气品质有着决定性作用,其直接影响着房间内的温度,气流流动速度,区域温差,区域流速以及空调耗能等方面本文主要研究在一个特定环境内,通过改变其送风口,出风口位置,改变气流组织,从中选中最适合该房间的送风方式。

关键词:气流组织送风方式空调系统送风口出风口射流1论著1.1 研究的背景和意义据现有调查资料表明,对于一般上班族在室内活动的时间大约为20个小时。

可以看出,室内空气品质的好坏和人们的工作效率,以及健康状况成正比[1]。

随着科技的发达,空调已经不再是过去仅仅提供生产,工作环境需要的工具了,而是成为了调节室内空气质量重要部分。

经研究发现,气流组织的形式对装有空调的室内的空气品质有着决定性作用,其直接影响着房间内的温度,气流流动速度,区域温差,区域流速以及空调耗能等方面[2-3]。

气流组织被空调系统的送风口送入房间里,与房间内的原有气流发生热量交换后,从房间出风口流出[4].我们研究气流组织,就是为了合理的安排室内的气流结构,使室内气流的温度,速度,湿度等方面满足人们的需要[5]。

影响气流组织的因素有很多,包括进风口/送风口的形状和位置,送风气流组织的形式,热源的大小和位置安排,以及房间的几何因素等[6]。

由于影响气流组织的因素有很多,我们现在只能用实验的经验公式来验证[7]。

1.2 国内外的研究成果国内从上世纪四十年代就开始研究此研究气流组织和房间内温度,流速,压力等方面的关系[7]。

在国内方面,20世纪70年代,马文航教授组织并且指导了国内首例专门正对于小空间空调系统气流组织状况,经过多次的试验和比对,获得了一定的研究成果,为以后研究小空间空调系统气流组织研究奠定了一定的基础。

通过文献(1)的研究得出了不同位置的送风口,出风口在相同的送风条件下对空调房间内温度,气流速度的影响。

由文献(4)可以知道通过研究NO的位置,气流组织和换气速度之间的关系。

某工业厂房气流组织优化模拟

某工业厂房气流组织优化模拟

某工业厂房气流组织优化模拟摘要:本文以某工业厂房为研究背景,利用计算流体力学软件模拟该不同空调送风方案,并比较不同方案的空调送风效果。

通过模拟结果表明,优化后方案空调送风温度分布均匀,速度合理,并且满足设计要求,从而为暖通空调节能设计提供依据。

关键词:大空间气流组织厂房建筑前言工业厂房属大空间建筑具有以下特点:1)厂房空间高大,高度高设备多,发热量大;2)厂房内空调一般只要求人们活动区,即满足1.5-2米高范围内满足人员舒适要求;3)厂房内垂直和水平温度分布较难控制,容易造成室内温度分布不均匀现象。

由于厂房的上述特点,在空调设计时往往很难达到预期效果,如果方案不合理会导致建筑能耗高,同时空调效果差。

目前,计算机模拟技术广泛应用于暖通空调设计,可快速通过模拟结果验证空调方案的合理性。

因此,本文通过计算流体力学软件,模拟某工业厂房不同空调方案指导设计。

常见的气流组织方式:1 侧送风方式侧送风方式是厂房常用的最广泛的一种空调送风方式,其中采用喷口送风方式最为常见。

2 上送风方式上送风方式是指将送风口安装在厂房顶棚,回风口设在周边侧墙或顶棚。

由于厂房空间高大,使用的风口主要有喷口和旋流风口旋流风口具有风量大、送风深度广、噪音低、送风流型可调、人员区风速易控制、阻力特性稳定等特点,因此,广泛应用于厂房。

另一方面,从使用效果讲,上送风方式是比较好的,它能将处理好的空气均匀送到各个部位,以满足不同区域所需的空调参数。

但也有一定缺点,将悬浮于上部的热和污浊空气带入人员去,比其他方式更耗费能源。

3 下送风方式下送风方式是指将送分口安装在地面上,直接向室内人员送风,回风口设在顶棚或侧墙上部。

其优点是:空气直接送至人员区,空气品质好,避免了将灯光和屋面负荷的对流部分带入空调区域,减少了设计负荷和空间设备,节省了能耗;人员区温度和速度场均匀,舒适感强。

其缺点是:风口数量多,地下管道布置较为困难;室内清洁工作较难处理;风口占用地面面积。

空调房间气流组织模拟及优化.doc

空调房间气流组织模拟及优化.doc

空调房间气流组织模拟及优化.doc毕业设计说明书作者:学号:学院:系(专业):热能与动力工程题目:空调房间气流组织数值模拟和优化指导者:讲师(姓名) (专业技术职务)评阅者:(姓名) (专业技术职务)2012 年 6 月 2 日题目空调房间气流组织数值模拟和优化摘要:气流组织对空调室内的空气环境、空气品质有着重要的影响,直接关系着室内的温度、区域流速及空调能耗,是空气调节的一个重要环节。

有效地通风和合理的气流组织对于改善室内空气品质,保证实现健康建筑、健康舒适性空调有着重要的意义。

影响空调房间气流组织的主要因素是入口风速、进风口的位置、进回风口的相对位置等,本文首先使用Gambit软件建立物理模型和网格划分,并用Fluent软件进行数值模拟,以直观的方式表示各不同气流组织方案下的气流的温度场和速度场,分析得出对于办公室等类似的空调房间,侧送侧回、上送下回、上送上回、下送上回等四种气流组织都比较适合的。

但是侧送侧回和上送上回的气流组织形式更优。

关键词:气流组织数值模拟紊流模型温度场速度场Title Numerical simulation of air-conditioned room air distribution and optimizationAbstractAirflow-organizing in air-conditioned indoor air environment, air quality has an important effect is directly related to the indoor temperature, area, flow rate and air-conditioning energyconsumption is an important part of the air-conditioned. Effective ventilation and airflow organization has an important significance for improving indoor air quality, to ensure the realization of healthy buildings, healthy comfort air conditioning.The main factors to affect the flow in room inlet velocity, the location of the air inlet into the return air relative position Firstly, the establishment of a physical model and mesh using Gambit software, and numerical simulations using Fluent software, said in an intuitive way the temperature field and velocity field of airflow under different air distribution program, analyzing the draw for office and other similar air-conditioned room, Side of the send side back, on sending the next time, on to send back, next to send back to the four air distribution are more appropriate. But the better Side of the send side back and on to send back on the air current forms of organization.Keywords:Airflow-organizing;Numerical simulation; Turbulencemodel;Temperature field;Velocity field.目次1引言 (1)1.1 研究的背景及意义 (1)1.2 国内外的研究成果 (1)1.3 本文的主要内容和工作 (2)2空调房间的气流组织形式 (3)2.1气流组织的介绍 (3)2.2常用的气流组织形式 (3)2.2.1侧送侧回 (4)2.2.2上送下回 (4)2.2.3上送上回 (4)2.2.4 下送上回 (5)3 气流组织和室内舒适性的评价指标 (5)3.1 技术指标 (5)3.2 经济性指标 (7)3.3 适性空调室内空气计算参数 (8)4 空调房间的数值模拟过程 (8)4.1 物理模型的建立 (8)4.2网格的划分 (11)4.3数学模型 (11)4.4在Fluent里的参数 (13)4.5解算结果及后处理 (14)5 数值模拟结果分析 (15)5.1侧送侧回的结果及分析 (15)5.2 异侧下送上回的结果及分析 (17)5.3上送上回的结果及分析 (19)5.4上送下回的结果及分析 (20)结论 (22)参考文献 (23)致谢 (25)1 引言1.1 研究的背景及意义随着经济的发展和科技的进步,人们的物质生活水平不断提高,空调的使用越来越普及,人们对居住和工作环境的要求也越来越高,因此对通风空调技术也提出了更高的要求。

机房空调系统气流组织优化设计研究

机房空调系统气流组织优化设计研究

机房空调系统气流组织优化设计研究摘要:当前,机房空调系统还存在气流组织能力比较弱的问题,导致设备不能连续性运行,影响了机房的环境安全。

基于此,本文分析机房空调系统气流组织优化设计,模拟机房的气流组织环境,对风速进行预处理,为提升机房空调的散热效果提供参考。

关键词:计算机机房;空调系统;气流组织优化引言:当前,机房空调系统存在很多问题,例如,空气的质量比较差,空气洁净度达不到规定的要求,空调系统的气流组织状态也比较差,影响机房空调系统的运行。

对空调系统气流组织进行优化设计,能够改善机房空调气流组织存在的问题,对保证设备运行具有重要的意义。

一、建立机房空调系统模型及预处理风速条件(一)机房空调系统模型本文对计算机机房空调系统气流组织进行优化和设计,使用的是Gambit软件,对机房空调系统进行模拟。

一般来说,大部分的机房通过侧面进行气流送风,在顶部进行气流回风。

空调通常安装在天花板的内部。

空调的送风孔尺寸为850mm*150mm。

回风出口尺寸一般设置为450mm*150mm。

空调的送风量是725m3\h。

结合空调的实际运行情况,可以对额定气流送风量的大小进行相应的调节。

将新风口的大小设置为125mm * 125mm,新风量是105m3\h。

一般来说,计算机机房的高度是3.85m,所以,模型的底部高度为2.75m。

(二)预处理风速条件建立好机房空调系统的模型之后,针对不同的风口尺寸以及风量,进行风速的计算,然后对空调的风速进行预处理。

如果空调的热量释放较多时,空调系统的风速要求也会相应的提升。

通常使用离散的计算方式,得到风速大小之后,设置为不同的网格结构,对不同网格的位置进行加密处理,保证网格的大小,并对网格的质量进行计算,从而得到方程。

该方程可用于获得机房空气元素的质量增量。

屋顶和墙都是绝热边界,用于模拟机房的气流消耗情况,可以调整水平气流的速度矢量。

当机房内的气流从空调的天花板风盘上吹出来时,气流会有一定的影响,所以气流会向下流动。

第六章 空调房间气流组织

第六章 空调房间气流组织
xe
§5 气流组织
(2)热量扩散比动量扩散快
5.2送、回风口气流运动规律
ΔTx /ΔTo=0.73(vx / vo)
4、射流弯曲 (1)判据:阿基米德数
Ar=g do (To-Tn)/(vo2 Tn )
① To>Tn,Ar >0,热射流,射流上弯;
② To<Tn,Ar <0,冷射流,射流下弯; ③ To=Tn, |Ar |<0.001,可忽略射流弯曲,看成等温射流。 (2)射流弯曲轴心轨迹 ① 方程
r2 r1 v2 v1
xe
§6 气流组织
6.3.1 要求
一、温度梯度要求
6.3对室内气流分布的要求与评价
1、ISO 7730标准:工作区内,距地面上方1.1m和0.1m之间 的温差不应大于3℃。 2、ASHRAE 55-92标准:工作区内,距地面上方1.8m和 0.1m之间的温差不应大于3℃。 二、空调区允许风速 1、舒适性空调:冬,≯0.2m/s;夏,≯0.3m/s。
② 计算风口实际出口风速:vo=L/ΨFn
L:房间风量;Ψ:风口有效面积系数,一般取0.72-0.82 F:风口面;n:风口数量。
xe
§6 气流组织
③ 计算射流自由度:Fn0.5/do, 根据公式
6.6 气流组织计算
(vhp / vo ) . (Fn0.5 /do )=0.69
校核工作区风速,不满足则重新确定风口数量或面积。 (6)校核贴附长 ① 计算Ar;
2、工艺性空调:冬,≯0.3m/s;夏,0.2-0.5m/s。
xe
§6 气流组织
6.3.2 评价
6.3对室内气流分布的要求与评价
一、吹风感和空气分布特性指标 1、吹风感(有效吹风温度) θ=(tx-tr)-7.8(vx-0.15) tx、tr:室内某地点的温度与室内平均温度℃;

空调房间室内气流组织模拟(fluent)

空调房间室内气流组织模拟(fluent)

模型[1]m s,送风温如图,房间左下角有一个空调,送风和回风方向如图所示。

送风速度为1/度为25℃,壁面温度为30℃。

1.建立模型及网格划分①建立模型及网格划分的步骤在此处暂时省略,以后后机会再补上,这里直接读入网格文件hvac-room.msh。

②读入网格后应检查网格及网格尺寸,通过Mesh下的Check和Scale进行实现,这里不做详细描述。

2.求解模型的设定①启动FLUENT。

启动设置如图,这里着重说说Double Precision(双精度)复选框,对于大多数情况,单精度求解器已能很好的满足精度要求,且计算量小,这里我们选择单精度。

然而对于以下一些特定的问题,使用双精度求解器可能更有利。

[1] 李鹏飞,徐敏义,王飞飞.精通CFD工程仿真与案例实战:FLUENT GAMBIT ICEM CFD Tecplot[M]. 北京,人民邮电出版社,2011:312-317a.几何特征包含某些极端的尺度(如非常长且窄的管道),单精度求解器可能不能足够精确地表达各尺度方向的节点信息。

b.如果几何模型包含多个通过小直径管道相互连接的体,而某一个区域的压力特别大(因为用户只能设定一个总体的参考压力位置),此时,双精度求解器可能更能体现压差带来的流动。

c.对于某些高导热系数比或高宽纵比的网格,使用单精度求解器可能会遇到收敛性不佳或精确度不足不足的问题,此时,使用双精度求解器可能会有所帮助。

②求解器设置。

这里保持默认的求解参数,即基于压力的求解器定常求解。

如图:下面说一说Pressure-based和Density-based的区别:a.Pressure-Based Solver是Fluent的优势,它是基于压力法的求解器,使用的是压力修正算法,求解的控制方程是标量形式的,擅长求解不可压缩流动,对于可压流动也可以求解;Fluent 6.3以前的版本求解器,只有Segregated Solver和Coupled Solver,其实也Pressure-Based Solver的两种处理方法;b.Density-Based Solver是Fluent 6.3新发展出来的,它是基于密度法的求解器,求解的控制方程是矢量形式的,主要离散格式有Roe,AUSM+,该方法的初衷是让Fluent具有比较好的求解可压缩流动能力,但目前格式没有添加任何限制器,因此还不太完善;它只有Coupled的算法;对于低速问题,他们是使用Preconditioning方法来处理,使之也能够计算低速问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业设计说明书作者:学号:学院:系(专业):热能与动力工程题目:空调房间气流组织数值模拟和优化指导者:讲师(姓名) (专业技术职务)评阅者:(姓名) (专业技术职务)2012 年 6 月 2 日题目空调房间气流组织数值模拟和优化摘要:气流组织对空调室内的空气环境、空气品质有着重要的影响,直接关系着室内的温度、区域流速及空调能耗,是空气调节的一个重要环节。

有效地通风和合理的气流组织对于改善室内空气品质,保证实现健康建筑、健康舒适性空调有着重要的意义。

影响空调房间气流组织的主要因素是入口风速、进风口的位置、进回风口的相对位置等,本文首先使用Gambit软件建立物理模型和网格划分,并用Fluent软件进行数值模拟,以直观的方式表示各不同气流组织方案下的气流的温度场和速度场,分析得出对于办公室等类似的空调房间,侧送侧回、上送下回、上送上回、下送上回等四种气流组织都比较适合的。

但是侧送侧回和上送上回的气流组织形式更优。

关键词:气流组织数值模拟紊流模型温度场速度场Title Numerical simulation of air-conditioned room air distribution and optimizationAbstractAirflow-organizing in air-conditioned indoor air environment, air quality has an important effect is directly related to the indoor temperature, area, flow rate and air-conditioning energy consumption is an important part of the air-conditioned. Effective ventilation and airflow organization has an important significance for improving indoor air quality, to ensure the realization of healthy buildings, healthy comfort air conditioning.The main factors to affect the flow in room inlet velocity, the location of the air inlet into the return air relative position Firstly, the establishment of a physical model and mesh using Gambit software, and numerical simulations using Fluent software, said in an intuitive way the temperature field and velocity field of airflow under different air distribution program, analyzing the draw for office and other similar air-conditioned room, Side of the send side back, on sending the next time, on to send back, next to send back to the four air distribution are more appropriate. But the better Side of the send side back and on to send back on the air current forms of organization.Keywords:Airflow-organizing;Numerical simulation; Turbulencemodel;Temperature field;Velocity field.目次1引言 (1)1.1 研究的背景及意义 (1)1.2 国内外的研究成果 (1)1.3 本文的主要内容和工作 (2)2空调房间的气流组织形式 (3)2.1气流组织的介绍 (3)2.2常用的气流组织形式 (3)2.2.1侧送侧回 (4)2.2.2上送下回 (4)2.2.3上送上回 (4)2.2.4 下送上回 (5)3 气流组织和室内舒适性的评价指标 (5)3.1 技术指标 (5)3.2 经济性指标 (7)3.3 适性空调室内空气计算参数 (8)4 空调房间的数值模拟过程 (8)4.1 物理模型的建立 (8)4.2网格的划分 (11)4.3数学模型 (11)4.4在Fluent里的参数 (13)4.5解算结果及后处理 (14)5 数值模拟结果分析 (15)5.1侧送侧回的结果及分析 (15)5.2 异侧下送上回的结果及分析 (17)5.3上送上回的结果及分析 (19)5.4上送下回的结果及分析 (20)结论 (22)参考文献 (23)致谢 (25)1 引言1.1 研究的背景及意义随着经济的发展和科技的进步,人们的物质生活水平不断提高,空调的使用越来越普及,人们对居住和工作环境的要求也越来越高,因此对通风空调技术也提出了更高的要求。

在空调房间内,气流组织是通风和空调系统的重要组成部分,气流组织直接影响室内空调效果,是关系着房间工作区的温度、湿度基数、精度及区域温差、工作区的气流速度及清洁程度和人们舒适感的重要因素,是一切空调工程设计中必须考虑和重视的问题。

有效地通风和合理的气流组织对于改善室内空气品质,实现工作环境健康舒适性有着重要的意义。

因此人们希望在建筑规划设计阶段就能详细了解由空调通风所形成的室内空气速度场、温度场、湿度场以及有害物浓度场等的分布情况,从而制定出最佳的气流组织方案[1]。

空调房间内的空气分布与送/回风口的尺寸、形式、数量及位置,送风参数(送风温度,风速),房间的大小及污染源的位置和性质等有关。

这些参数直接影响空调室内调节效果,影响室内的温度,风速和室内人员的舒适度,是空气调节的一个重要环节,也是空调设计过程中要重点考虑的一个环节。

由于影响空气分布的因素较多,加上实际工程中的具体条件的多样性,因此难于用简单的理论或经验表达式来综合上述诸多因素的影响。

目前,在空间气流分布计算方面,较多采用依赖于实验的经验式,由于实验条件的不同,在各种实验结果间存在一定的差异,但在总体规律性方面却基本雷同[2]。

1.2 国内外的研究成果鉴于空调房间的气流组织形式对能源的损耗、室内空气的品质和人体健康舒适性有着至关重要的作用。

国外从20世纪20年代就对此领域展开了研究,如对等温、非等温射流运动规律的研究,送风方式与舒适度关系的研究,各类建筑物不同送/回风方式的研究,室内空气品质的研究等。

在国内,天津大学的马九贤教授于80年代组织建造了国内第一个专门用来对空调房间内气流情况进行研究的实验室,并取得了一定的研究成果,为进一步进行房间气流的研究奠定了基础[3]。

文献[4][5]得出下送风气流组织的送风口形式、送风进口作为示踪与人体距离、送风速度和送风温度对人体热舒适的影响。

文献[6]利用C02气体,研究了空气龄与质点换气效率、房间换气次数之间的关系。

Nielsen等人对空调房间模型内二维流动进行了模拟实验[7]。

Zhang G、Morsing 和Bjerg等人在Nielsen研究的基础上改变模型房间长宽高等比例进行了模型实验[8]。

J.D. Posner等人采用RNG k-ε模型模拟预测模型室的测量[9]。

随着计算机技术的发展,CFD技术开始用于空调房间的气流分析。

1974年,丹麦的Nielsen首次将CFD技术应用于空调工程,数值模拟空调房间室内空气流动情况,利用流函数和涡旋公式求解封闭二维流动方程。

Chen Qingyan则在1988年利用CFD技术对建筑物能耗、室内空气流动情况以及室内空气品质等问题进行了分析和研究。

在2000年Topp、Nielsen和Davidson在全方位通风的房间内,利用CFD方法模拟了在等温壁条件下的空气流动情况[10]。

国内也有众多的研究者利用CFD技术对空调房间气流组织进行优化和研究。

1988年,张建忠分析了数值模拟方法在通风空调领域的应用情况,还对常见的工业敞口槽通风问题作了数值计算分析,把问题简化为二维稳定不可压缩的粘性流动[11]。

文献[12]利用实验和数值模拟方法研究了空洞建筑上送风情况下空调室内的流场分步情况,指出送风温度和风速是对温度分层高度有重要影响。

上述文献虽对空调房间气流组织进行了大量的研究,但只是对工程上某种具体的气流形式的研究没有对不同气流组织形式进行系统、详细地比较。

关于空调室内气流组织下的温度详细分布的文献未见报道。

1.3 本文的主要内容和工作本文以计算流体力学和数值传热学为理论基础,对空调房间的气流组织形式和室内空气三维湍流流动的数值模拟方法进行分析,使用Gambit建立夏季空调房间常见的四种气流组织模型,采用FLUENT软件以直观的方式显示了四种气流组织方案的气流流型,分析讨论其气流分布规律、特点,并将数值计算结果进行处理,并将各种不同送气流组织形式下的温度场和速度场进行对比,总结各种气流组织形式的优缺点。

本文内容安排1、简述气流组织研究的背景及意义,并简单介绍国内外气流组织研究现状。

2、介绍空调房间气流组织及常用的气流组织形式。

3、介绍空调室内舒适性的评价指标和气流组织的评价指标。

4、使用Gambit建立气流组织模拟的物理模型,并对其进行适当简化,对物理模型进行网格划分,确定Fluent软件中的参数设置,应用Fluent软件,对常见的四种气流组织形式进行模拟计算。

5、对模拟结果进行分析,得出结论。

2 空调房间的气流组织形式2.1 气流组织的介绍狭义的气流组织指的是上(下、侧、中)送上(下、侧、中)回或置换送风、个性化送风等具体的送回风形式,即气流组织形式;广义的室内气流组织,是指一定的送风口形式和送风参数所带来的室内气流分布。

经过一定处理过后的空气,经过空调系统进入空调房间,与室内空气进行热湿交换后由回风口排出。

显然,空调房间的速度场、温度场的均匀性和稳定性与室内空气的流动情况密切相关。

气流组织设计的目的就是合理的组织室内空气的流动和分布,使室内工作区空气的温度、湿度、风速和洁净度能更好地满足室内人员的舒适感要求。

只有合理的气流组织才能充分发挥送风的冷却和加热作用,均匀地消除室内的冷(热)、湿负荷,并有效的排除有害物和悬浮在空气中的灰尘,满足室内人员对新鲜空气的需求。

相关文档
最新文档