静态拉伸法测弹性模量实验报告

合集下载

大一下物理实验【实验报告】 静态拉伸法测弹性模量

大一下物理实验【实验报告】 静态拉伸法测弹性模量

东南大学物理实验报告姓名学号指导老师日期座位号报告成绩实验名称静态拉伸法测弹性模量目录预习报告...................................................2~5 实验目的 (2)实验仪器 (2)实验中的主要工作 (2)预习中遇到的问题及思考 (3)实验原始数据记录 (4)实验报告…………………………………………6~12 实验原理………………………………………………………实验步骤………………………………………………………实验数据处理及分析…………………………………………讨论……………………………………………………………预习报告实验目的:1.熟悉并掌握弹性模量仪和光杠杆镜尺组的构造、工作原理和基本操作方法。

2.了解静态拉伸法是测量金属材料弹性模量的一个传统方法,并运用该方法准确测量出给定材料的弹性模量。

3.正确处理实验数据,并通过计算统计进行误差分析。

实验仪器(包括仪器型号)实验中的主要工作1.调整弹性模量仪:调整底座螺丝使立柱铅直,加2kg砝码在砝码托上把金属丝拉直,检查装置。

2.调节光杠杆镜尺组:安装望远镜尺组,调节望远镜三脚架、目镜与调焦手轮,使标尺在望远镜中成像清晰无视差;调节光杠杆小镜的倾角以及标尺的高度。

3.测量:依次将1kg砝码加到托上,共九次,记录读数Ri;依次将所加砝码取下,记录每次读数Ri。

4.用逐差法处理数据Ri,求N平均值:将数据R0、R1···R9分为前后两组,用逐差法处理数据,得每增减5kg 砝码时,标尺像读数变化平均值。

预习中遇到的问题及思考问:用逐差法处理数据有什么优点?有其它更精确的处理方法吗?答:逐差法的优点是把每一个数据都用上了,在逐差法中先求的是跨度为n/2的数据的平均值(n为数据组数)与相邻两组数据比较而言,随机误差造成的影响较小,结果更精确;最小二乘法比逐差法更精确,但是最小二乘法的计算较繁琐,一般不采用。

拉伸法测弹性模量实验报告

拉伸法测弹性模量实验报告

拉伸法测弹性模量实验报告一、实验目的1、掌握拉伸法测量金属丝弹性模量的基本原理和方法。

2、学会使用光杠杆法测量微小长度变化。

3、学会使用游标卡尺、螺旋测微器等测量工具,提高实验操作技能。

4、学习数据处理和误差分析的方法,培养科学严谨的实验态度。

二、实验原理弹性模量是描述材料抵抗弹性变形能力的物理量。

对于一根长度为$L$、横截面积为$S$ 的金属丝,在受到沿其长度方向的拉力$F$ 作用时,金属丝会伸长$\Delta L$。

根据胡克定律,在弹性限度内,应力与应变成正比,即$F/S = E \cdot \Delta L/L$,其中$E$ 为弹性模量。

将上式变形可得:$E = FL/(S\Delta L)$由于金属丝的横截面积$S =\pi d^2/4$(其中$d$ 为金属丝的直径),且伸长量$\Delta L$ 通常很小,难以直接测量。

本实验采用光杠杆法来测量微小伸长量$\Delta L$。

光杠杆原理:光杠杆是一个带有三个尖足的平面镜,前两尖足放在平台的固定槽内,后尖足置于圆柱体小砝码上。

当金属丝伸长时,光杠杆后尖足随之下降,从而带动平面镜转动一个微小角度$\theta$。

通过望远镜和标尺,可以测量出平面镜转动前后标尺的读数变化$\Delta n$。

根据几何关系,有:$\Delta L = b\Delta n/2D$ (其中$b$ 为光杠杆常数,即前两尖足到后尖足的垂直距离;$D$ 为望远镜到平面镜的距离)将其代入弹性模量的表达式,可得:$E = 8FLD/(\pi d^2b\Delta n)$三、实验仪器1、杨氏模量测定仪:包括立柱、底座、金属丝、砝码托盘等。

2、光杠杆及望远镜尺组:用于测量微小长度变化。

3、游标卡尺:测量金属丝的长度。

4、螺旋测微器:测量金属丝的直径。

5、砝码若干:提供拉力。

四、实验步骤1、调节仪器调节杨氏模量测定仪的底座水平,使立柱垂直于底座。

将光杠杆放置在平台上,使其前两尖足位于固定槽内,后尖足置于圆柱体小砝码上,并调整光杠杆平面镜与平台垂直。

东南大学物理实验 静态拉伸法测弹性模量的误差分析

东南大学物理实验  静态拉伸法测弹性模量的误差分析

2011大学生物理实验研究论文静态拉伸法测弹性模量的误差分析(东南大学 自动化学院,南京 211100 )摘 要: 用Mathematica 处理数据,得到一条拟合线。

对实验过程中存在的系统误差,提出改进方法,减少实验误差。

关键词: 数据处理;系统误差;改进方法Analysis on the Result Error s of Measuring ElasticModulus by Static Stretching Method(College of Automation, nanjing 211100)Abstract: Through using computer software Mathematica to process experimental data, we can get fitting curve.Discusseing thefactors which may influence measurement results in the experiment and raises some improvements in order to obtain a more accurate measurement result.key words: Data processing; System error;Improvement弹性模量是工程材料重要的性能参数,从宏观角度来说,弹性模量是衡量物体抵抗弹性变形能力大小的尺度,从微观角度来说,则是原子、离子或分子之间键合强度的反映。

静态拉伸法测弹性模量是一种传统的测量方法,但是实验过程中,存在金属丝拉伸不均匀的现象,而且由于金属丝拉伸过程变化较小,对于画图存在一定的误差,我考虑用Matlab 画出图像,进行分析。

1 实验原理胡克定律指出,对于有拉伸压缩形变的弹性形作者简介:王丽,女,1993,自动化,yx-wangli@.体,在弹性范围内,应力与应变成正比,即F式中比例系数E 称为材料的弹性模量,它是描写材料自身弹性的物理量.改写上式则有、(1)① 可见,只要测量外力F 、材料(本实验用金属丝)的长度L 和截面积S ,以及金属丝的长度变化弹性 量,就可以计算出弹性模量E 。

杨氏-静态拉伸法测弹性模量

杨氏-静态拉伸法测弹性模量

2.松开螺丝,目试 调节望眼镜光轴和平 面镜等中心等高
8
光杠杆的放置
夹子能自由移动,A,B,C三足 应基本在同一水平面内
松开螺丝,可调K值
金属丝

后足C 后足C不能和金属丝接触
前足A
前足B
9
光杆杆系统的调整
3.微调镜面倾斜角,使 物镜筒的像位于视场 中间
1.从望眼镜视场中 看到平面镜
2.旋转调焦手轮,使物 镜筒经平面镜所成之像清 晰
1.用刚尺测量平面镜到标尺之间的垂直距离D,及测钢丝的长L
2.取下平面镜支架,放在白纸上轻轻压出前后足的痕迹,然 后用细铅笔做前后足AB以及后足C到AB连 线,测出此垂线的长度K.
3.用螺旋测微器不同位置 的直径,一共6次
前足A
前足B
K 后 足 C
12
实验原理
➢ 杨氏弹性模量 ➢ 光杠杆原理
13
弹性模量
14(n5n1)(n6n2)(n7n3)(n8n4)
U n
t
1 n(n 1)
4 i1
(ni
n
)2
2
(标尺 )2
(P=99% n=4, t=4.3)
16
数据处理
5.求出 Y
及其相对不确定度
Ur
总不确定度
U Y
.
Ur
卷 L
2
卷 D
2
卷 b
2
2
U d d
2
U n
n
测 砧
B可动刻度 A固定刻度
转 动 棘 轮
测 微 螺 杆
制 动 器
微 分 筒
4
螺旋测微器的使用
❖ 将待测物放在测砧和测微螺杆之间,轻轻转动棘轮,直到棘轮发 出“喀喀”响声后,将锁紧装置推向左边,便可读数。切不可用 力转动。测微螺杆,这样会影响测量结果,甚至损坏仪器.

静态拉伸法测弹性模量实验报告

静态拉伸法测弹性模量实验报告

静态拉伸法测弹性模量实验报告弹性模量(亦称杨氏模量)是固体材料的一个重要物理参数,它标志着材料对于拉伸或压缩形变的抵抗能力。

作为测定金属材料弹性模量的一个传统方法,静态拉伸法在一起合理配置、误差分析和长度的放大测量等方面有着普遍意义,但这种方法拉伸试验荷载大,加载速度慢,存在弛豫过程,对于脆性材料和不同温度条件下的测量难以实现。

实验原理及仪器胡克定律指出,对于有拉伸压缩形变的弹性形体,在弹性范围内,应力F 与应变L∆成正比,即式中比例系数E 称为材料的弹性模量,它是描写材料自身弹性的物理量.改写上式则有、(1)可见,只要测量外力F 、材料(本实验用金属丝)的长度L 和截面积S ,以及金属丝的长度变化量L ∆,就可以计算出弹性模量E 。

其中,F 、S 和L 都是比较容易测得的,唯有L ∆很小,用一般的量具不易准确测量。

本实验采用光杠杆镜尺组进行长度微小变化量的测量,这是一种非接触式的长度放大测量的方法。

本实验采用的主要实验仪器有: 弹性模量仪(如图1)、光杠杆镜尺组(如图2)、螺旋测微器、米尺、砝码等。

图1 弹性模量测量装置图2 光杠杆 图3 光杠杆放大原理仪器调节好后,金属丝未伸长前,在望远镜中可看到由平面镜反射的标尺的像,将望远镜的细叉丝对准标尺的刻度,读出读数为R 0;将砝码加在砝码托上后,金属丝被拉长,光杠杆镜面向后倾斜了α角.根据光的反射定律可知,此时在望远镜中细叉丝对准的是镜面反射后的标尺上的刻度R 1,其对应的入射光和反射光的夹角为2α。

设N=R 1-R 2,K 为光杠杆的前后足之间的垂直距离,D 为光杠杆镜面到标尺之间的距离,考虑到,角很小,所以有可得∆ (2)将式(2)代入式(1)即得拉伸法测定金属丝弹性模量的计算公式E (3)式中d 为金属丝的直径.实验步骤1.1 调整弹性模量仪① 调节三脚底座上的调节螺丝,使立柱铅直。

② 将光杠杆放在平台上,两前足放在平台前面的横槽内,后足放在夹子B 上,注意后足不要与金属丝相碰。

用拉伸法测金属丝的弹性模量实验报告

用拉伸法测金属丝的弹性模量实验报告

用拉伸法测金属丝的弹性模量实验报告用拉伸法测金属丝的弹性模量实验报告引言:弹性模量是描述材料抵抗形变的能力的物理量,对于金属材料的研究和应用具有重要意义。

本实验旨在通过拉伸法测量金属丝的弹性模量,探究金属丝的力学性质。

实验目的:1. 了解弹性模量的概念和意义;2. 掌握拉伸法测量金属丝弹性模量的实验方法;3. 分析金属丝的力学性质。

实验仪器与材料:1. 弹簧秤:用于测量金属丝的受力;2. 金属丝:选用直径均匀的金属丝,如铜丝、铁丝等;3. 千分尺:用于测量金属丝的长度。

实验原理:拉伸法是一种常用的测量金属丝弹性模量的方法。

当金属丝受到外力拉伸时,会发生形变,即金属丝的长度会发生变化。

根据胡克定律,金属丝的形变与受力之间存在线性关系,即形变量与受力成正比。

通过测量金属丝的形变量和受力,可以计算出金属丝的弹性模量。

实验步骤:1. 准备金属丝和弹簧秤;2. 用千分尺测量金属丝的初始长度,并记录;3. 将金属丝固定在实验台上,并将弹簧秤挂在金属丝上;4. 逐渐增加弹簧秤的负荷,记录每个负荷下金属丝的形变量和弹簧秤的读数;5. 按照一定的负荷间隔重复步骤4,直至金属丝断裂。

实验数据处理:根据实验记录的金属丝形变量和弹簧秤读数,可以绘制出金属丝的受力-形变曲线。

根据胡克定律的线性关系,可以通过线性拟合得到金属丝的弹性模量。

实验结果:通过实验测量和数据处理,得到金属丝的弹性模量为XXX GPa。

根据实验结果,可以得出金属丝具有较高的强度和抗变形能力,适用于承受大荷载的工程应用。

实验讨论:1. 实验误差分析:在实验过程中,由于实验条件和操作技巧等因素的影响,可能会导致实验结果存在一定误差。

例如,金属丝的初始长度测量可能存在一定误差,弹簧秤读数的精度也会影响实验结果的准确性。

2. 实验改进方案:为了提高实验结果的准确性,可以采取以下改进措施:提高测量仪器的精度、增加数据采集的次数、进行多次重复实验并取平均值等。

3. 实验应用展望:金属丝的弹性模量是材料力学性质的重要指标,对于工程设计和材料选择具有重要意义。

静态拉伸法测材料的弹性模量实验报告

静态拉伸法测材料的弹性模量实验报告

静态拉伸法测材料的弹性模量实验报告
静态拉伸法测材料的弹性模量实验报告实验日期:2012年12月1日—4日,2012年11月24日9点20分
试样编号:12实验者姓名:胡超祥所在班级:08机电2班实验目的:1.学习与掌握静态拉伸法测定钢材弹性模量;2.了解钢材弹性模量的实际意义。

3.巩固理论知识。

实验原理:静态拉伸法测定钢材的弹性模量是将被测试样放入试样夹中并施以拉伸负荷后,通过测定试样开始破坏前单位面积上的变形来确定试样的弹性模量,即为弹性模量。

一般钢铁材料具有良好的塑性和韧性,其弹性模量比较大,因此可采用这种方法测得它们的弹性模量。

主要仪器:1、金属丝线材。

- 1 -。

大学物理实验实验42静态拉伸法测材料的弹性模量

大学物理实验实验42静态拉伸法测材料的弹性模量

数据处理
EXCEL作钢丝伸长与外力的关系 曲线
钢丝伸长与外力的关系曲线
y = 2.0021x + 0.2575
8
7
6
x/cm
5 4
Δ
3
2
1
0
0
0.5
1
1.5
2
2.5
3
3.5
4
M/kg
实验内容
1. 使用EXCEL给出? X-m直线并求出直线斜 率b以及斜率的不确定度Ub。
2. 计算弹性模量E。 3. 计算弹性模量E的相对不确定度,并给出E
± UE。
实验分析
1. 实验数据处理过程中,如果发现数据点距 离拟合直线比较远分析一下原因。
2. 实验中为什么可以使用Excel或者最小二乘 法进行直线拟合。
实验结论
注意事项
? 在镜尺系统调整符合要求后,整个实验过程中都要保证平面 支架前两足和望远镜、标尺的位置不应有任何变动。尤其在 加砝码和减砝码时,应轻放轻取,不应有撞击现象,不能让 砝码挂钩发生扭摆和震动。否则须重新调整。
S
? ? tg? ? ? L
θ
δ
l
ΔL l
θ θ
光杠杆 D
望远镜
S0 竖尺
实验内容
1. 调节镜系统 (1) 调整光杠杆和望远镜系统。要求放置平面镜支架的
平台水平,平面镜垂直于水平面,望远镜水平地对 准平面镜,标尺与望远镜垂直并与地面垂直。 (2) 调节等高。要求望远镜与平面镜在同一水平高度上。 另外,望远镜与标尺的零刻度线在同一水平高度上。 (3) 调节望远镜,使目镜内看到标尺成像清晰。
F可从钢丝下挂的砝码的重量得出,L可从米尺得出,钢丝截面积A可用 千分尺测算出钢丝直径后得出。钢丝伸长量采用光杠杆法来测量

拉伸法测弹性模量实验报告

拉伸法测弹性模量实验报告

2.1拉伸法测弹性模量一、实验目的:(1)学习用拉伸法测量弹性模量的方法(2)掌握螺旋测微计和读数显微镜的使用(3)练习用逐差法处理数据二、实验原理(1)弹性模量及其测量方法长度为L、截面积为S的均匀细金属丝,沿长度方向受外力F后伸长δL。

单位横截面积上的垂直作用力F/S称为正应力,金属丝的相对伸长δL/L称作线应变。

实验得出,在弹性形变范围内,正应力与线应变成正比,即胡克定律:F S =EδLL式中比例系数E=F/S δL/L称作材料的弹性模量,表征材料本身的性质。

弹性模量越大的材料,要使它发生一定的相对型变所需的单位横截面积上的作用力也越大。

E的单位是Pa。

本实验测量钢丝的弹性模量,设钢丝的直径为D,则弹性模量可进一步表示为:E=4FL πD2δL实验中的测量方法是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施力F,测出钢丝相应的伸长量δL,即可求出E。

钢丝长度L用钢尺测量,钢丝直径用螺旋测微计测量,力F由砝码的重力F=mg求出。

δL一般很小,约0.1mm量级,本实验用读数显微镜测量(也可用光杠杆等其它方法测量)。

通过多次测量并用逐差法处理数据达到减少随机误差的目的。

(2)逐差法处理数据本实验中测量10组数据,分成前后两组,对应项相减得到5个l i,l i=5δL,则:δL=15×5y i+5−y i5i=1这种方法称为逐差法。

其优点是充分利用了所测数据,可以减少测量的随机误差,也可以减少测量仪器带来的误差。

三、实验仪器支架:用以悬挂被测钢丝;读数显微镜:用以较准确的测量微小位移。

由物镜和测微目镜构成。

测微目镜鼓轮上有100分格,鼓轮转动一圈,叉丝移动1mm。

故分度值为0.01mm;底座:用以调节钢丝铅直;钢尺、螺旋测微计:测量钢丝的长度和直径。

四、实验步骤(1)调整钢丝竖直:钢丝下夹具上应先挂砝码钩,用以拉直钢丝。

调节底座螺钉使夹具不与周围支架碰蹭。

(2)调节读数显微镜:粗调显微镜高度,使之与钢丝下夹具的标记线同高,再细调读数显微镜。

拉伸法测金属丝杨氏弹性模量

拉伸法测金属丝杨氏弹性模量
(1)调节杨氏模量测定仪的底脚调整螺钉,使立柱铅 直。
(2)调节平台的上下位置,使随金属丝伸长的夹具B 上端与沟槽在同一水平面上(为什么?)。
(3)加1Kg砝码在砝码托盘上,将金属丝拉直,检查 夹具B是否能在平台的孔中上下自由地滑动,金属丝 是否被上下夹子夹紧.
2.光杠杆及望远镜尺组的调节
(1)外观对准——调节光杠杆与望远镜、标尺中部 在同一高度上。 (2)镜外找像——缺口、准星、平面镜中标尺 像.三者在一条水平 线上。 (3)镜内找像 ——先调节目镜使叉丝清晰,再调节 调焦距看清标尺像,直到无视差为准。 (4)细调对零——对准标尺像零刻线附近的任一刻
4 n4 9 n9
n7 n2
5 n5 10 n10
n8 n3
n9 n4
n10 n5
5
2
A t0 .9 55i 1
N iN 5 1
,
B仪,
因 n1N
5
所 以 n5 1N
N
2 2
AB
nnn
返回
实验内容
1.杨氏模量测定仪的调整
i1
31
B 仪
nnn
n 2A2B
杨氏模量 E计 8FL算D
d2bn
不确定度计算:
EEFF2LL2D D24dd2bb2nn2
E
E E
E
用拉伸法测量金属丝杨氏模量
1. 实验简介 2. 实验目的 3. 实验原理 4. 逐差法处理数据 5. 实验内容 6. 注意事项 7. 数据记录与处理 8. 课后思考题
实验简介
材料受外力作用时必然发生形变,杨氏模量(也称弹性模量)是 反映固体材料弹性形变的重要物理量,在一般工程设计中是一个 常用参数, 是选定机械构件材料的重要依据之一。常用金属材

拉伸法测_实验报告

拉伸法测_实验报告

一、实验目的1. 掌握拉伸法测定材料弹性模量的原理和方法。

2. 了解实验过程中误差的来源及处理方法。

3. 培养学生严谨的科学态度和实验操作技能。

二、实验原理弹性模量(E)是衡量材料弹性变形能力的重要物理量。

根据胡克定律,在弹性范围内,应力(σ)与应变(ε)成正比,即σ = Eε。

其中,E为材料的弹性模量,σ为应力,ε为应变。

本实验采用拉伸法测定材料的弹性模量。

实验中,通过测量材料在拉伸过程中受到的拉力(F)和对应的伸长量(ΔL),以及材料的初始长度(L0)和截面积(S0),根据公式 E = (FΔL) / (S0ΔL0) 计算出材料的弹性模量。

三、实验仪器与材料1. 实验仪器:- 拉伸试验机:用于施加拉力,测量材料的伸长量。

- 螺旋测微计:用于测量材料的截面积。

- 米尺:用于测量材料的初始长度。

- 光杠杆:用于放大测量微小伸长量。

- 标尺:用于读取光杠杆放大后的伸长量。

2. 实验材料:- 标准金属丝:用于测定弹性模量。

四、实验步骤1. 将金属丝固定在拉伸试验机的夹具上,确保金属丝与拉伸方向一致。

2. 使用螺旋测微计测量金属丝的初始截面积(S0)。

3. 使用米尺测量金属丝的初始长度(L0)。

4. 将金属丝的一端固定在光杠杆的支架上,另一端固定在标尺上。

5. 调整光杠杆,使光杠杆与标尺垂直。

6. 在金属丝的另一端施加拉力,逐渐增加拉力,同时观察光杠杆的偏转角度。

7. 当光杠杆偏转角度达到一定值时,停止增加拉力,保持拉力不变。

8. 记录光杠杆偏转角度和对应的伸长量。

9. 重复上述步骤,至少进行三次实验,以减小误差。

10. 根据实验数据,计算金属丝的弹性模量。

五、实验数据与处理1. 记录实验数据,包括金属丝的初始截面积(S0)、初始长度(L0)、拉力(F)、伸长量(ΔL)和光杠杆偏转角度。

2. 根据公式 E = (FΔL) / (S0ΔL0) 计算出金属丝的弹性模量。

3. 分析实验数据,判断实验结果的可靠性。

用静态拉伸法测材料的弹性模量

用静态拉伸法测材料的弹性模量

实验目的
1)学习用拉伸法测量材料弹性模量
2)了解光杠杆结构及利用光杠杆测量微小长度变化量的原理,掌握使用方法
3)掌握各种测量长度量具的正确使用方法及仪器误差
4)学习用逐差法处理实验数据
5)学习直接测量量和间接测量量不确定度的计算,学习正确表示测量结果
实验仪器
弹性模量仪(包括实验架、望远镜、数字拉力计等)、千分尺(25mm,0.1mm)、游标卡尺(13cm,0.02mm)、钢卷尺(3m,1mm)、钢丝
实验原理
1.测量原理
物体受力将发生形变,当外力去掉后能恢复原状的物体就是弹性体,相应形变称为弹性形变。

实验结果表明,在弹性限度内,应力和相关应变成正比,这就是胡克定律
对于长度为L的细长物体,其均匀截面积为A,沿长度方向受拉力F作用时伸长为ΔL,根据胡克定律有 ,式中,F/A为作用在单位面积上的力,称为应力;ΔL/L为单位长度上的形变称为应变;比例系数E称为材料的弹性模量,单位是N/m^2。

对钢材而言,拉伸和压缩时弹性模量相同。

由 可得
若施加拉力为F=mg,对于直径为d的钢丝,其弹性模量可写成●
2.用光杠杆方法测量钢丝伸长量ΔL的原理
光杠杆放大原理:利用光的反射放大微小位移
3.常用长度测量量具的原理与使用
实验步骤
1.实验仪器调节
(1)调节实验架
1)将光杠杆动足尖自由地放置在下夹头上表面
2)连接电源
3)旋转施力螺母
(2)调节望远镜
1)粗调望远镜
2)细调望远镜
2.实验测量
1)用钢卷尺测量钢丝原长L
2)用千分尺测量钢丝直径d
3)测量标尺刻度x和拉力m
4)实验完成后,旋松施力螺母,关闭数字拉力计。

拉伸法测弹性模量实验报告

拉伸法测弹性模量实验报告

拉伸法测弹性模量实验报告摘要:本实验采用拉伸法测定了某种材料在不同应力下的伸长量,计算出相应的本应变和应力值,并绘制应力-应变曲线。

根据曲线拟合得到该材料的弹性模量为81.3GPa。

实验结果表明,拉伸法能够精确测定材料的弹性模量,并且该实验具有一定的可靠性。

引言:弹性模量是材料力学性能的重要参数之一,广泛应用于机械工程、材料科学、建筑工程等领域。

拉伸法是一种常用的测定材料弹性模量的方法,其原理是在一定的拉伸力下观察材料的伸长变化,根据伸长量与拉力的关系计算出材料的弹性模量。

本实验旨在通过拉伸法测定某种材料的弹性模量,以此掌握拉伸法的方法和操作技巧。

实验设计与方法:1. 材料选择:选用某种标准硬度的钢材。

2. 实验器材:拉伸试验机、夹具、电压表。

3. 实验过程:(1)根据实验要求制备标准材料试件。

(2)将试件夹紧在拉伸试验机上,并调整力传感器的位置。

(3)设置试验参数,如拉伸速度、拉伸量等。

(4)逐步施加拉伸力,并记录相应的拉伸量和试件断裂时的拉伸力值。

(5)根据拉伸试验数据计算出材料的应力、应变和弹性模量,并绘制应力-应变曲线。

实验结果及分析:通过本次实验测定,得到钢材的弹性模量为81.3GPa。

具体结果如下:最大拉伸力:10765.37N杨氏模数:81.3GPa本条试件的直径D:5.0mm本条试件的长度L0:50mm本条试件的截面积A0:19.63mm^2最大拉伸长度△L:1.7000mm应变率ε:0.0866mm/mm应力值σ:548.5MPa弹性模量E:81.3GPa此外,我们还通过绘制应力-应变曲线来分析材料的弹性行为。

曲线近似呈现直线段,表明所选材料具有较好的弹性特性。

同时,本实验的结果具有一定的可靠性和准确度。

结论:本实验通过拉伸法测定了某种材料的弹性模量,并得出弹性模量为81.3GPa,表明所选材料具有良好的弹性性能。

此外,应力-应变曲线的绘制也表明该材料具有较好的弹性行为,实验结果具有一定的可靠性和准确度。

(完整版)用静态拉伸法测材料的弹性模量

(完整版)用静态拉伸法测材料的弹性模量

实验目的
1)学习用拉伸法测量材料弹性模量
2)了解光杠杆结构及利用光杠杆测量微小长度变化量的原理,掌握使用方法
3)掌握各种测量长度量具的正确使用方法及仪器误差
4)学习用逐差法处理实验数据
5)学习直接测量量和间接测量量不确定度的计算,学习正确表示测量结果
实验仪器
弹性模量仪(包括实验架、望远镜、数字拉力计等)、千分尺(25mm,0.1mm)、游标卡尺(13cm,0.02mm)、钢卷尺(3m,1mm)、钢丝
实验原理
1.测量原理
物体受力将发生形变,当外力去掉后能恢复原状的物体就是弹性体,相应形变称为弹性形变。

实验结果表明,在弹性限度内,应力和相关应变成正比,这就是胡克定律
对于长度为L的细长物体,其均匀截面积为A,沿长度方向受拉力F作用时伸长为ΔL,根据胡克定律有 ,式中,F/A为作用在单位面积上的力,称为应力;ΔL/L为单位长度上的形变称为应变;比例系数E称为材料的弹性模量,单位是N/m^2。

对钢材而言,拉伸和压缩时弹性模量相同。

由 可得
若施加拉力为F=mg,对于直径为d的钢丝,其弹性模量可写成●
2.用光杠杆方法测量钢丝伸长量ΔL的原理
光杠杆放大原理:利用光的反射放大微小位移
3.常用长度测量量具的原理与使用
实验步骤
1.实验仪器调节
(1)调节实验架
1)将光杠杆动足尖自由地放置在下夹头上表面
2)连接电源
3)旋转施力螺母
(2)调节望远镜
1)粗调望远镜
2)细调望远镜
2.实验测量
1)用钢卷尺测量钢丝原长L
2)用千分尺测量钢丝直径d
3)测量标尺刻度x和拉力m
4)实验完成后,旋松施力螺母,关闭数字拉力计。

202X年拉伸法测弹性模量实验报告

202X年拉伸法测弹性模量实验报告

202X年拉伸法测弹性模量实验报告
实验目的:
通过拉伸法测量金属的弹性模量,了解金属的材料性能及其变化规律。

实验原理:
弹性模量是材料的一种力学性质,表示材料在弹性变形时的应力和应变关系。

弹性模
量越大,表示材料的刚性越高,抗变形能力越强。

而弹性模量的计算方法是在弹性极限内,将材料应力和应变的关系表示为一个线性函数,斜率即为弹性模量。

拉伸实验的原理是将试验材料加以外力,使其受到拉伸,然后测量材料在此过程中的
变形、载荷及相应的应力和应变数据,从而能够确定试材的各种力学参数,并分析试材的
本质物理特性。

实验仪器和材料:
实验仪器:拉伸试验机、引伸计、计算机
实验材料:金属试片
实验步骤:
1. 准备试材,切割样品用于拉伸实验;
2. 将试材装入拉伸试验机中,使其保持一定长度,并加上一定的载荷;
3. 记录载荷和位移数据,并计算出对应的应力和应变;
4. 继续逐步加大负载,测量应变和应力的变化曲线,得出弹性模量。

实验结果与数据分析:
将实验获得的应力和应变数据,绘制应力-应变图,其斜率即为弹性模量。

根据实验
结果,计算得到金属试片的弹性模量如下:
弹性模量 = 斜率 = 2.1 GPa
结论:
通过对金属试样进行拉伸实验,测得其弹性模量约为 2.1 GPa。

实验结果表明,该金
属材料的弹性较好,具备良好的抗变形能力。

此实验结果对今后研究金属材料的材料性能
以及优化设计具有重要参考意义。

弹性模量的测量实验报告

弹性模量的测量实验报告

弹性模量的测量实验报告一、拉伸法测量弹性模量 1、实验目的(1) 学习用拉伸法测量弹性模量的方法; (2) 掌握螺旋测微计和读数显微镜的使用; (3) 学习用逐差法处理数据。

2、实验原理(1)、杨氏模量及其测量方法本实验讨论最简单的形变——拉伸形变,即棒状物体(或金属丝)仅受轴向外力作用而发生伸 长的形变(称拉伸形变)。

设有一长度为L ,截面积为S 的均匀金属丝,沿长度方向受一外力F 后金属 丝伸长δL 。

单位横截面积上的垂直作用力F /S 成为正应力,金属丝的相对伸长δL /L 称为线应变。

实 验结果指出,在弹性形变范围内,正应力与线应变成正比,即LL E S F δ= 这个规律称为胡克定律,其中LL SF E //δ=称为材料的弹性模量。

它表征材料本身的性质,E 越大的材料,要使他发生一定的相对形变所需 的单位横截面积上的作用力也越大,E 的单位为Pa(1Pa = 1N/m 2; 1GPa = 109Pa)。

本实验测量的是钢丝的弹性模量,如果测得钢丝的直径为D ,则可以进一步把E 写成:LD FLE δπ24=测量钢丝的弹性模量的方法是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施力F ,测出钢丝相应的伸长量δL ,即可求出E 。

钢丝长度L 用钢尺测量,钢丝直径D 用螺旋测微计测量,力F 由砝 码的重力F = mg 求出。

实验的主要问题是测准δL 。

δL 一般很小,约10−1mm 数量级,在本实验中用 读数显微镜测量(也可利用光杠杆法或其他方法测量)。

为了使测量的δL 更准确些,采用测量多个δL 的 方法以减少测量的随机误差,即在钢丝下端每加一个砝码测一次伸长位置,逐个累加砝码,逐次记 录伸长位置。

通过数据处理求出δL 。

(2)、逐差法处理数据
如果用上述方法测量10 次得到相应的伸长位置y1,y2,...,y10,如何处理数据,算出钢丝的伸长量δL呢?
我们可以由相邻伸长位置的差值求出9 个δL,然后取平均,则从上式可以看出中间各y i都消去了,只剩下y10 −y1 9,用这样的方法处理数据,中间各次测量结果均未起作用。

拉伸法测弹性模量实验报告

拉伸法测弹性模量实验报告

拉伸法测弹性模量实验报告拉伸法测弹性模量实验报告引言弹性模量是材料力学性质的重要参数之一,它描述了材料在受力后恢复原状的能力。

拉伸法是测量弹性模量的常用实验方法之一。

本实验旨在通过拉伸试验,利用拉伸应变和应力之间的线性关系计算材料的弹性模量。

实验装置和步骤实验装置包括拉伸试验机、标准试样、测量仪器等。

首先,将标准试样固定在拉伸试验机上,并根据试样的尺寸和形状调整夹具。

然后,通过调整拉伸试验机的控制参数,如加载速度和加载方式,开始进行拉伸试验。

在试验过程中,通过测量试样的应变和应力,记录下拉伸过程中的数据。

数据处理和分析通过实验得到的数据,可以计算出试样的应变和应力。

应变可以通过测量试样的伸长量和试样的初始长度来计算得到。

应力可以通过加载力和试样的横截面积来计算得到。

根据拉伸应变和应力之间的线性关系,可以绘制应力-应变曲线。

在线性阶段,应力与应变成正比,斜率即为弹性模量。

讨论和结果在实验中,我们选择了不同的材料进行拉伸试验,得到了应力-应变曲线,并计算出了相应的弹性模量。

结果显示,不同材料的弹性模量存在差异。

这是因为材料的组成和结构决定了其力学性质。

例如,金属材料由于具有紧密排列的晶格结构,其弹性模量通常较高。

而聚合物材料由于分子链之间的相互作用较弱,其弹性模量通常较低。

此外,实验中还发现,拉伸速度对材料的弹性模量也有影响。

当拉伸速度较快时,试样的变形速度较大,材料的内部结构可能无法及时调整,导致弹性模量的测量值偏低。

相反,当拉伸速度较慢时,试样的变形速度较小,材料的内部结构有足够的时间进行调整,弹性模量的测量值更加准确。

结论通过拉伸法测量弹性模量的实验,我们得出了以下结论:材料的组成和结构决定了其弹性模量的大小;不同材料的弹性模量存在差异;拉伸速度对弹性模量的测量结果有影响。

实验结果对于材料工程和设计具有重要意义,可以帮助工程师选择合适的材料,并预测材料在实际应用中的性能。

总结拉伸法测弹性模量是一种常用的实验方法,通过测量应变和应力,可以计算出材料的弹性模量。

静态拉伸法测量材料的弹性模量

静态拉伸法测量材料的弹性模量

静态拉伸法测量材料的弹性模量实验日期 2010年11 月 29日实验目的(1)学习拉伸法测材料的弹性模量(2)了解光杠杆的结构原理,掌握使用方法(3)学习使用最小二乘法处理实验数据实验仪器弹性模量仪)(包括尺读望远镜)、千分尺(25mm,0.01mm)、游标卡尺(13cm、0.02mm)、钢卷(3m、1mm)、砝码(500g,8个)、钢丝实验原理:1测量原理在弹性限度内,应力和相关应变成正比对于长度为L的细长物体,其均截面积为A,沿长度方向寿拉力F时伸长为△L,根据胡克定律有F/A=E*△L/LF/A为作用在单位面积上的力,称为应力;△L/L为单位长度上的形变为应变;比例系数E称为裁量的弹性模量,单位是N/2用光杠杆噶测钢丝伸长量△L的装置原理改变砝码,设两夹头之间钢丝长度变化量为△L,放在园挂R上的脚a也有△L的变化,于是光杆杠上的反射镜改变θ角,设钢丝长度变化前,望远镜中叉丝对准尺上的位置为x0;平面反射镜转动后,根据光的反射定律,镜面转动θ,反射线将转动2θ角,此时望远镜中叉丝将对准新位置x设光杠杆M上的反射镜到尺的距离为D,光杠杆前后支脚间的垂直距离为l,因为θ很小,则2θ=tan2θ=x-x0/D,又θ=△L/L 故△L=l(x-x0)/2D测量出l和D,由望远镜中读出x0和x,即可算出△L从而求出E=2DL/Al*F/(x-x0)由于A=/4*(d为金属丝的直径),F=mg(m为金属丝上所加砝码的质量,g为重力加速度,故而上式应为E=*实验内容与测量(1)调整仪器的装置1)调节反射镜使得米尺的反射像在望远镜中2)从望远镜中观察,调节视度圈看清望远镜中的十字叉丝;调节聚焦手轮直至米尺的像清晰为止砝码钩上加4000g砝码,记下望远镜中读书x7,然后依次减少砝码(每次减少500g),并记下相应的读数x6,x5,……3)用米尺测量L、D的长度4)用千分尺测量钢丝的直径d,在不同位置测量,共测量6次,5)取下光杠杆,让它的三支脚在平铺的白纸上扎三个小孔,用游标、卡尺测出l 的长度钢丝伸长与外力的关系序号砝码/g 望远镜中的读数xi/cm △xi=xi-x0(cm)/cm减重加重平均值1234567钢丝的直径数据表千分尺初读数d0= cm测量次数 1 2 3 4 5 6末读数/cm直径d=-d0//cm。

(精编资料推荐)静态拉伸法测弹性模量实验报告

(精编资料推荐)静态拉伸法测弹性模量实验报告

(精编资料推荐)静态拉伸法测弹性模量实验报告实验目的:1、通过静态拉伸法,了解材料的弹性变形规律。

2、计算得出材料的弹性模量。

3、观察不同材料的弹性特性,并对比分析。

实验原理:静态拉伸法是一种常用的测量材料弹性特性的方法。

在实验中,将材料置于弹簧式试验机的两次夹持下进行拉伸,测得不同应变下的应力值,并通过计算得到材料的弹性模量。

对于弹簧式试验机,其中一次夹持固定,另一次夹持固定的位置随着驱动螺杆的转动而移动,从而实现对材料的拉伸。

实验中需要通过手动控制驱动螺杆的转动速度,控制材料的拉伸速度。

实验流程:1、将试样置于弹簧式试验机的两次夹持之间,确保试样处于水平状态,并使试样的长度与试验机夹持距离相等。

2、打开试验机电源,并将驱动螺杆手动调至初始位置;3、选择初始拉伸速度,并开始拉伸;4、在不同拉伸位移下,记录试样的应变和应力,以及拉伸位移量;5、计算得到试样在不同应变下的应力值和弹性模量,并绘制应力-应变曲线;6、反复进行以上步骤,直至得到稳定的实验数据。

2、将计算得到的数据绘制成应力-应变曲线,并求出曲线的斜率,即为材料的弹性模量。

实验结果:通过实验得到的数据,绘制出不同材料的应力-应变曲线,并计算得到各材料的弹性模量。

经对比分析发现,聚酰亚胺材料具有较高的弹性模量,而橡胶等橡胶类材料则具有较低的弹性模量。

这些结果与预期相符。

结论:本次实验通过静态拉伸法测量了不同材料的弹性模量,得到相应的应力-应变曲线,并对比分析了不同材料的弹性特性。

实验结果表明,不同材料具有不同的弹性特性,这可以为工程设计提供重要的参考。

金属丝杨氏弹性模量的测定及其实验数据

金属丝杨氏弹性模量的测定及其实验数据

金属丝杨氏弹性模量的测定及其实验数据【实验目的】1.学习静态拉伸法测金属丝的杨氏模量。

2.掌握用光杠杆法测量微小长度变化的原理和方法。

3.利用有效的多次测量,及相应处理方法来减小误差。

【实验仪器】杨氏模量测量仪,光杠杆,望远镜尺组,米尺,游标卡尺【实验原理】根据胡克定律,金属丝的杨氏弹性模量, L是一个微小长度变化量,当金属丝直径为0.5毫米时, L约为10-5米。

实验中采用光杠杆镜尺法测量。

利用光杠杆镜尺法由几何原理可得,光杠杆的放大倍数为β=2D/b,一般D=1.5—2.0米,b=7.0厘米,所以放大倍数约为40倍。

通过在增加(减)砝码的同时测出标尺读数Xi和其他的长度量L、D、d、b,就能求得金属丝的杨氏弹性模量Y. 【实验内容】1.调整支架,使金属丝处于铅直位置2.调光杠杆和望远镜,使能在望远镜中看清标尺像,并无视差。

3.通过增减砝码,测出相应的标尺读数Xi′和Xi″(共加五个砝码),由Xi= Xi′/ Xi″,用逐差法求出?Xi。

重复一次。

4.测出L、D、d、b,重复六次,求出杨氏模量,【注意事项】1.仪器一经调好,测量开始,切勿碰撞移动仪器,否则要重新调节,老师检查数据前也不要破坏调节好的状态,否则一旦有错误,将难以查找原因或补作数据。

2.望远镜、光杠杆属精密器具,应细心使用操作。

避免打碎镜片,勿用手或他物触碰镜片。

3.调节旋钮前应先了解其用途,并预见到可能产生的后果或危险,不要盲目乱调,以免损坏仪器,调节旋钮时也不要过分用力,防止滑丝。

4.用螺旋测微计测量钢丝直径时,要端平测微计,避免钢丝弯曲,【数据处理】1.增减重量时钢丝伸缩量的记录数【思考题】1.在本实验中,为什么可以用不同精确度的量具测量多种长度量?为什么有些需要多次测量,有些单次测量就可以?2. 如何用十几个砝码即快又精确地测量出金属丝的平均伸长量,应该用什么方法来计算?3.光杠杆法可测微小长度变化,其主要是采用了光放大原理,放大率为β=2D/b 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

静态拉伸法测弹性模量实验报告
弹性模量(亦称杨氏模量)是固体材料的一个重
要物理参数,它标志着材料对于拉伸或压缩形变的抵
抗能力。

作为测定金属材料弹性模量的一个传统方法,
静态拉伸法在一起合理配置、误差分析和长度的放大
测量等方面有着普遍意义,但这种方法拉伸试验荷载
大,加载速度慢,存在弛豫过程,对于脆性材料和不
同温度条件下的测量难以实现。

1实验原理及仪器
胡克定律指出,对于有拉伸压缩形变的弹性形
体,在弹性范围内,应力
F与应变L ∆成正比,即F式中比例系数E称为材料的弹性模量,它是描写材料自身弹性的物理量.改写上式则有、(1) 可见,只要测量外力F、材料(本实验用金属丝)的长度L和截面积S,以及金属丝的长度变化量,就可以计算出弹性模量E。

其中,F、S和L都是比较容易测得的,唯有很小,用一般的量具不易准确测量。

本实验采用光杠杆镜尺组进行长度微小变化量的测量,这是一种非接触式的长度放大测量的方法。

本实验采用的主要实验仪器有:弹性模量仪(如图1)、光杠杆镜尺组(如图2)、螺旋测微器、米尺、砝码等。

图1 弹性模量测量装置图2 光杠杆
图3 光杠杆放大原理
仪器调节好后,金属丝未伸长前,在望远镜中可看到由平面镜反射的标尺的像,将望远镜的细叉丝对准标尺的刻度,读出读数为R 0;将砝码加在砝码托上后,金属丝被拉长
L ∆,光杠杆镜面向后倾
斜了α角.根据光的反射定律可知,此时在望远镜中细叉丝对准的是镜面反射后的标尺上的刻度R 1,其对应的入射光和反射光的夹角为2α。

设N=R 1-R 2,K 为光杠杆的前后足之间的垂直距离,D 为光杠杆镜面到标尺之间的距离,考虑到
L ∆<

α角很小,所以有
可得
(2) 将式(2)代入式(1)即得拉伸法测定金属丝弹性模量的计算公式
(3)
式中d 为金属丝的直径.
2 实验步骤
2.1 调整弹性模量仪
① 调节三脚底座上的调节螺丝,使立柱铅直。

② 将光杠杆放在平台上,两前足放在平台前
面的横槽内,后足放在夹子B 上,注意后
足不要与金属丝相碰。

③ 加2 kg 砝码在砝码托上,把金属丝拉直。

检查夹子B 是否能在平台的孔中上下自由地滑动,金属丝是否被上下夹子夹紧。

2.2 调节光杠杆镜尺组
① 望远镜镜尺组放在离光杠杆镜面约 1.5 m
处,安放时尽量使望远镜和光杠杆的高度相当,望远镜光轴水平,标尺和望远镜光轴垂直。

② 调节望远镜时先从望远镜的外侧沿镜筒方
向观察,看镜筒轴线的延长线是否通过光杠杆的镜面,以及镜面内是否有标尺的像。

若无,则可移动望远镜的三脚架并略微转动望远镜,保持镜筒的轴线对准光杠杆的镜面,直到镜筒上方能看到光杠杆镜内有标尺的像为止。

③ 调节望远镜的目镜,使镜筒内十字叉丝清
晰,再调节望远镜的调焦手轮,使标尺在望远镜中成像清晰无视差。

④ 仔细调节光杠杆小镜的倾角以及标尺的高
度,使尺像的零线(在标尺的中间)尽可能落在望远镜十字叉丝的横线上。

2.3 测量
① 轻轻依次将1 kg 的砝码加到砝码托上,共9次。

记录每次从望远镜中测得的标尺像的读数R i 。

② 将所加的9 kg 砝码轻轻地依次取下,记录每减
少1 kg 砝码时的R i 。

注意加减砝码时勿使砝码托摆动,各砝码缺口交叉放置,以防倒落。

2.4 处理数据实验数据
① 将测量中采集到的数据R 0、R 1……R 9分成前后
两组,用逐差法处理数据,可得增减5kg 砝码时,望远镜中标尺像读数的变化量的平均值。

② 弹性模量E 相对误差的计算
2
16NKd FLD
E π=
Er
U
3 实验数据及测量结果
3.1 各单次测量量 g=9.794m/s 2
D ±U D =84.5±0.5cm L ±U L =32.3±0.2cm K ±U K =45.5±0.5mm
3.2 金属丝直径d 的测量
螺旋测微器的初始读数= -0.056mm 螺旋测微器的仪器误差
in

表1金属丝直径d
测量次数
钢丝直径d/(10-3m)
1
0.742 2
0.745 3 0.732 4 0.738 5 0.740 6 0.740 平均值 0.740 修正初读数后 0.796
d 的标准差S d
3-1040.4⨯
d 的A 类不确定度U A 3-1062.4⨯
d 的B 类不确定度U B
0.004 d 的不确定度U d 0.006
钢丝直径d=d ±Ud
0.796±0.006
3.3 望远镜中标尺像R i 的数据处理
表2望远镜中标尺像的数据处理
3.4 弹性模量E 及其不确定度的计算
由于是新仪器,公式改为:
2
16NKd FLD E π=
代入以上测量数据,得: ()2
2
2
32
210
55.410
22.110
796.0105.84103.32794.9516-----⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=
π原式
211/1094.1m N ⨯≈ 不确定度的计算:
2
22222222222222222222104.506.022.1105.055.41006.0796.045.05.8412.03.32111411-⨯≈⨯+⨯+⨯+⨯+⨯=
++++=N K d D L Er U N
U K U d D U L U U 11
1121010.01094.1104.5⨯≈⨯⨯⨯==-E U U Er E ()211/1010.094.1m N E ⨯±=
次数
荷重/kg
增重 读数Ri/
m 102- 减重 读数Ri/
m 102-
平均读数
Ri/m 102-
N 值/m 102-
0 2.000 0 0
=0R 0
N 1=R 5-R 0 =1.18 1 3.000 0.30 0.20 =1R 0.25
2 4.000 0.45 0.40 =2R 0.42
N 2=R 6-R 1 =1.23 3 5.000 0.70 0.70 =3R 0.70 4 6.000 0.90 0.98 =4R 0.94
N 3=R 7-R 2 =1.29 5 7.000 1.15 1.20 =5R 1.18 6 8.000 1.45 1.50 =6R 1.48 N 4=R 8-R 3 =1.18 7 9.000 1.70 1.72 =7R 1.71 8 10.000 1.80 1.95 =8R 1.88 N 5=R 9-R 4
=1.20 9
11.00
0 2.10
2.18
=9R 2.14
N 的平均值 1.22
N 的标准偏差S N 2-1062.4⨯ N 的A 类不确定度U A 2-1073.5⨯
N 的B 类不确定度U B 0.03 N 的不确定度U N
0.06
N U N N ±= 1.22±0.06。

相关文档
最新文档