高中数学解题方法谈线性规划求最值问题

合集下载

谈谈解答最值问题的四个技巧

谈谈解答最值问题的四个技巧

备考指南最值问题是高考试题中常见的考点之一.此类问题具有较强的综合性,且命题形式多种多样,在解题过程中若找不到恰当的方法,就会因为复杂冗繁的计算量而浪费大量的时间,甚至得不到正确的答案.如何选择合适的方法,如何灵活运用各个模块的知识,是解答最值问题所需要重点考虑的事情.本文举了四个典型的例题,并对其进行了分析、探究,总结出解答最值问题的技巧,供同学们参考.一、用函数的单调性求最值在求解最值问题时,我们通常可将目标式构造成函数式,将问题转化为函数最值问题,利用函数的单调性来求解最值.在解题时,需根据函数单调性的定义,或导函数与函数单调性之间的关系判断出函数的单调性,即可根据函数的单调性求得最值.例1.设a 为实数,求x 2+||x -a +1的最小值.解:设f ()x =x 2+||x -a +1,(1)若x ≤a ,则f ()x =æèöøx -122+a +34,①当a <12时,函数f ()x 在(]-∞,a 上单调递减,可知函数在(]-∞,a 上的最小值为f ()a =a 2+1;②当a ≥12时,函数f ()x 在(]-∞,a 上的最小值为f æèöø12=34+a ,且f æèöø12≤f ()a .(2)若x >a ,则f ()x =æèöøx +122-a +34.①当a ≤-12时,则函数f ()x 在éëöø-12,+∞上单调递增,在éëöøa ,-12上单调递减,所以函数在[)a ,+∞上的最小值为f æèöø-12=34-a ,且f æèöø-12≤f ()a ;②当a >-12时,则函数f ()x 在[)a ,+∞上的最小值为f ()a =a 2+1.综上可得,当a ≤-12时,f ()x min =34-a ;当-12<a≤12时,f ()x min =a 2+1;当a >12时,f ()x min =a +34.将目标式看作二次函数式,便可根据x 与a 的大小关系,以及a 与函数对称轴-12的大小关系,确定二次函数的单调性,即可根据二次函数的单调性确定函数的最值.在解题时,需运用运动和变化的观点,构建关于变量、自变量的集合,通过类比、联想、转化的方式构造合适的函数.二、用基本不等式求最值基本不等式a +b 2≥ab ()a >0,b >0主要用于求函数的最值及证明不等式.在运用基本不等式求最值时,需把握“一正”“二定”“三相等”三个条件,重点关注或配凑出两式的和或积,并使其中之一为定值.例2.求y =x +4x的值域.解:①当x >0时,x +4x ≥=4,当且仅当x =2时等号成立,②当x <0时,()-x +æèöø-4x ≥=4,当且仅当x =2时等号成立,所以x +4x ≤-4,故y =x +4x的值域是(]-∞,-4∪[)4,+∞.由于x 的取值不确定,而运用基本不等式的条件是各式均为正值,于是将x 分为x >0和x <0两种情况,分别运用基本不等式来求最值.三、利用线性规划思想求最值线性规划思想是指求线性约束条件下,目标函数的极值.运用线性规划思想求最值的基本步骤是:①根据题意建立数学模型,并作出可行域;②建立目标函数;③利用图形求出目标函数的最值.例3.已知ìíîïïx -y +2≥0,x +y -4≥0,2x -y -5≤0,求z =x 2+y 2-10y +25的最小值.解:作出可行域,如图中阴影部分所示.将直线x -y +2=0、x +y -4=0、2x -y -5=0两两联立可求出三个顶点的坐标A ()1,3、B ()3,1、C ()7,9,51备考指南而z =x 2+y 2-10y +25=x 2+()y -52表示可行域内任一点()x ,y 到定点M ()0,5的距离的平方,过M 作直线AC易知垂足N 在线段AC 上,则z 的最小值为||MN 2,由点到直线的距离公式可得||MN =,故z 的最小值为||MN 2=92.我们将不等式组看作线性约束条件,画出可行域,便可将问题看作线性规划问题,结合图形寻找到目标函数取得最小值的点,即可利用线性规划思想求得问题的答案.四、利用代数式的几何意义求最值大部分的代数式都有几何意义,如y =x 2表示的是一条抛物线,y =x 表示的是一条直线,y =1x表示的是两条双曲线,等等.在求最值时,可先挖掘代数式的几何意义,画出相应的几何图形,通过寻找图形中的临界情形,如相切、相交等情形,确定目标式的最值.例4.已知x ,y 满足x 225+y 29=1,求()x -42+y 2+()x -22+()y -22的最值.解:由方程x 225+y29=1易知,该曲线为椭圆,设P ()x ,y 为椭圆上的一点,B (2,2),则a =5,b =3,c =4,右焦点A (4,0),左焦点F 1(-4,0),而||PA +||PB =()x -42+y 2+()x -22+()y -22,根据椭圆的定义可得|PF 1|+|PA |=10,则|PA |=10-|PF 1|,|PA |+|PB |=10-|PF 1|+|PB |,根据三角形的性质:两边之和大于第三边,两边之差小于第三边性质,可得10-|F 1B |≤|PF 1|-|PB |≤10+|F 1B |,又F 1B =210,故10-210≤|PA |+|PB |≤10+210.当且仅当P ,B ,A 共线时等号成立,故()x -42+y 2+()x -22+()y -22的最大值是10+210,最小值是10-210.解答此题,需将方程x 225+y 29=1看作椭圆,P 看作椭圆上的一个动点,那么目标式表示的是线段||PA +||PB ,问题就变为求两线段和的最大值、最小值.挖掘题目中代数式的几何意义,将问题转化为几何图形问题,利用几何图形的性质以及相关定理、公式即可解题.当然,求最值的方法还有很多,如导数法、转化法等.这就要求让同学们运用发散思维,去寻求、总结更多的解答最值问题的方法.(作者单位:安徽省临泉第二中学)(上接34页)三、引导学生关注时事,点评其中的人与事“文章合为时而著”,在写作教学中,我们要引导学生关注时事,多思考,多评论,让他们走进社会生活,理性地表达自己的观点。

高中数学一轮复习线性规划中求整点最优解的两种常用方法

高中数学一轮复习线性规划中求整点最优解的两种常用方法

线性规划中求整点最优解的两种常用方法简单的线性规划是新教材的新增加内容,它在人们的生活和生产实践中有着广泛的应用,因此,它必将成为高考的一个新亮点,而在线性规划中,求整点最优解的问题是一个难点,下面介绍两种常用的方法.1、平移求解法步骤:1、作出可行域(若是实际问题,则首先应根据题意列出线性约束条件,找出线性目标函数);2、找出最优解(当最优解不是整数解时,过最优解作与线性目标函数平行的直线);3、平移直线族(在平面直角坐标系中,打出网格,在可行域内,平移步骤2中所作的直线,最先经过的整点即为所求的整点最优解). 【范例引导】例1、要将两种大小不同的钢板截成A 、B 、C 三种规格,每张钢板可同时截得三种规格今需要A 、B 、C 三种规格的成品分别为15、18、27块,问各截这两种钢板多少张可得所需三种规格成品,且使所用钢板张数最少.解:设需截第一种钢板x 张,第二种钢板y 张,则⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥+≥+≥+0027*******y x y x y x y x 目标函数为:y x z +=.作出可行域,由⎪⎪⎩⎪⎪⎨⎧==⇒⎩⎨⎧=+=+539518152273y x y x y x ,所以A ⎪⎭⎫ ⎝⎛539,518.此时,5211=+y x ,因为A 点不是整点,它是非整点最优解,用平移求解法,打出网格,将平行直线族y x t +=中的5211=+y x 向右上方平移,由图可知,在可行域中最先经过的整点是B (3,9)和C (4,8),它们是所求的最优整点解,此时.12=+y x答:要截得所需三种规格的钢板,且使所截两种钢板的张数最少的方法有两种,一种是截第一种钢板3张、第二种钢板9张;二是截第一种钢板4张、第二种钢板8张. 2、调整优值法步骤:1、求出非整点的最优解及最优值(即对应最优解的目标函数值);2、借助不定方程的知识调整最优值;3、筛选出符合条件的最优解. 【范例引导】例2、用“调整优值法” 解例1 .解:由⎪⎪⎩⎪⎪⎨⎧==⇒⎩⎨⎧=+=+539518152273y x y x y x ,所以A ⎪⎭⎫ ⎝⎛539,518,因为A 点不是整点,它是非整点最优解,此时,5211=+=y x t = 11.4不是整数,因而需要对t 进行调整,由于y x ,为整数,所以t 为整数,而与11.4最靠近的整数是12,故取t =12,即12=+y x ,将x y -=12代入到线性约束条件,解得:5.43≤≤x ,取4,3==x x 得整点的最优解为:B (3,9)和C (4,8),此时.12=+y x例3、已知y x ,满足不等式组:⎪⎪⎩⎪⎪⎨⎧∈∈≥≥≤+≤+Ny N x y x y x y x ;0;040356056(*)求y x z 150200+=的最大值. 解:根据约束条件画出可行域,由⎩⎨⎧=+=+40356056y x y x 得非整点最优解)760,720(,此时,711857760150720200=⋅+⋅=z 也是非整数.因为y x z 150200+=)34(50y x +=,又y x ,为整数,所以z 一定是50的倍数.令y x z 150200+==1850,则)437(31x y -=,代入到(*)式中得3212≤≤x ,故当3=x 时,325=y 为非整数解.令y x z 150200+==1800,则)436(31x y -=,代入到(*)式中得:40≤≤x ,经计算(0,12),(3,8)为其整数解,此时,1800=z . 【名师小结】在一定的约束条件下使某目标达到最大值或最小值的问题称为数学规划,而当约束条件和目标函数都是一次的(又称线性的),我们称这种规划问题为线性规划.例如,如何分配有限的资源以达到某种既定的目标(如利润最大,支付最小等),称为资源分配问题,而许多资源分配问题可以归结为线性规划模型来处理. 在解线性规划应用问题时的一般步骤为:(1)审题;(2)设出所求的未知数;(3)列出约束条件,建立目标函数;(4)作出可行域;(5)找出最优解. 【误区点拨】1、对于整点解问题,其最优解不一定是离边界点最近的整点,而先要过边界点作目标函数By Ax t +=的图象,则最优解是在可行域内离直线By Ax t +=最近的整点;2、熟练掌握二元一次不等式所表示的平面区域是解决线性问题的基础,因此,正确地作出可行域是我们解题的关键;3、一般的线性规划问题,其约束条件是平面上的一个多边形闭区域,或者是向某一方向无限延展的半闭区域,而目标函数必在边界取最值,且是边界的顶点处取最值,但不一定有最优整数解,这一点一定要注意. 【反馈训练】1、设y x ,满足⎪⎪⎩⎪⎪⎨⎧∈∈>>≤+<+zy z x y x y x y x ,0,01141023,求y x u 45+=的最大值. 2怎样搭配价格最低?3、有一化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料或1车皮乙种肥料需要的主要原料和产生的利润分别是:磷酸盐4吨,硝酸盐18吨,利润10000元或磷酸盐1吨,硝酸盐15吨,利润5000元.工厂现有库存磷酸盐10吨,硝酸盐66吨,应生产甲、乙肥料各多少车皮可获得最大的利润?4、某工厂有甲、乙两种产品,计划每天各生产不少于15吨,已知生产甲产品1吨需煤9吨,电力4千瓦,劳动力3个;乙产品4吨需煤9吨,电力5千瓦,劳动力10个.甲产品1吨利润7万元,甲产品1吨利润12万元,但每天用煤不超过300吨,电力不超过200千瓦,劳动力只有300个,问每天生产甲、乙两种产品各多少,能使利润总额达到最大? 【参考答案】1、最优整数解为(2,1),=m an u 14;2、10片A 和3片B 搭配价格最低为1.6元.3、最后归结为在约束条件⎪⎩⎪⎨⎧≥≥≤+≤+0,0661518104y x y x y x 下,求目标函数y x u 500010000+=的整数解问题,答案是生产甲、乙肥料各2车皮时可获得最大的利润30000元.4、最后归结为在约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+≤+.15,15,300103,20054,30049y x y x y x y x 下,求目标函数y x u 127+=的整数解问题,答案是甲、乙两种产品各20吨、24吨,利润总额达到最大428元.。

线性规划问题

线性规划问题

线性规划问题为了更好地解决高中数学中线性规划问题,笔者进行了简单总结。

一、利用线性规划求最值(一)目标函数为一次函数形式求的最大值,最小值。

分析:一般的直线的规划区域只要求出区域的交点坐标(最大值,最小值存在),将坐标点代入目标函数就可以。

线性规划区域的边界点坐标分别为(3,1),(7,9),(1,3),代入目标函数可以得到最大值为(7,9)取到为21,最小值为(3,1)取到为1。

含有参数的如:目标函数最大值为12,最小值为3,那么实数k 的值为()分析:直线x=1,x-4y+3=0,3x+5y-25=0的交点分别为a(1,1),b(1,22/5),c(5,2),所以最值的取得是根据直线的斜率k的范围,把变为,结合图形分析当时,由题意可得得到时,结合图形分析可知,不存在满足题意的k,因此k=2(二)目标函数为二次函数能转化为完全平方形式例2.求的最小值。

分析:先将,可以发现表示的是点(x,y)到定点的距离的平方,过m作直线ac的垂线,易知,垂足n在线段ac上,故z的最小值是|nm|=2/9(三)目标函数是反比例形式例3.求。

(分析:把等号右边转化为斜率问题进行求解)表示可行域内任意一点与定点q(-1,-1/2)连线的斜率的2倍,因为故z的范围是[3/4,7/2]求的值域分析:因为所以z可以表示为单位圆上的点与(3,2)的斜率的取值范围,所以z的取值范围是两条斜率的取值范围[]二、线性规划的面积问题(一)与向量相结合例4.在平面直角坐标系里,o为坐标原点,,p点满足,则p点轨迹表示的平面区域面积是。

设p点坐标为(x,y)根据题意可得区域面积一目了然为2。

(二)与圆相结合例5.a=,b=;(1)p=的面积;(2)求点q的面积。

分析:p点转化x-3=x1,y-1=y1,所以(x-3)2+(y-1)21区域标识的是圆边界及其内部的面积。

q点横纵坐标转化x-x2=x1,y-y2=y1所以(x-x2)2+(y-y2)2=1,所以p点的轨迹是以线性规划目标区域中任意一点为圆心的圆。

2018届高三理科数学答题模板 线性规划中目标函数的最值

2018届高三理科数学答题模板 线性规划中目标函数的最值

线性规划中目标函数的最值【二元一次不等式表示平面区域】在平面直角坐标系中,已知直线Ax+By+C=0,坐标平面内的点P(x0,y0)B>0时,①Ax0+By0+C>0,则点P(x0,y0)在直线的上方;②Ax0+By0+C<0,则点P (x0,y0)在直线的下方对于任意的二元一次不等式Ax+By+C>0(或<0),无论B为正值还是负值,我们都可以把y项的系数变形为正数当B>0时,①Ax+By+C>0表示直线Ax+By+C=0上方的区域;②Ax+By+C<0表示直线Ax+By+C=0下方的区域【线性规划】求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域(类似函数的定义域);使目标函数取得最大值或最小值的可行解叫做最优解生产实际中有许多问题都可以归结为线性规划问题线性规划问题一般用图解法,其步骤如下:(1)根据题意,设出变量x、y;(2)找出线性约束条件;(3)确定线性目标函数z=f(x,y);(4)画出可行域(即各约束条件所示区域的公共区域);(5)利用线性目标函数作平行直线系f(x,y)=t(t为参数);(6)观察图形,找到直线f(x,y)=t在可行域上使t取得欲求最值的位置,以确定最优解,给出答案。

【2017年高考全国II卷,理5】设,满足约束条件,则的最小值是A.B.C.D.【答案】A【考点】线性目标函数的最值【点拨】求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.答题思路【命题意图】本知识点,高考重点考查求线性目标函数的最值及数形结合思想.【命题规律】该部分内容是高考高频考点,常规考查方式是给出线性约束条件,求目标函数的最值,多利用截距模型或斜率、距离模型求解,难度中等或中等以下.【答题模板】解答本类题目,以2017年试题为例,一般考虑如下三步:第一步:由约束条件,画出可行域先确定满足约束条件的可行域,作出3条直线,围成一个三角形区域;第二步:把目标函数化为,作直线将目标函数变形为,作直线;第三步:平移直线,确定目标函数最值把直线进行平行,确定平移到什么位置截距最大,然后把该点坐标代入求最大值.【方法总结】1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.我们把直线画成虚线以表示区域不包括边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应包括边界直线,则把边界直线画成实线.(2)由于对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得的符号都相同,所以只需在此直线的同一侧取一个特殊点(x0,y0)作为测试点,由Ax0+By0+C 的符号即可判断Ax+By+C>0表示的直线是Ax+By+C=0哪一侧的平面区域.2.线性规划相关概念3.重要结论(1)画二元一次不等式表示的平面区域的直线定界,特殊点定域:①直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线;②特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.(2)利用“同号上,异号下”判断二元一次不等式表示的平面区域:对于Ax+By+C>0或Ax+By+C<0,则有①当B(Ax+By+C)> 0时,区域为直线Ax+By+C=0的上方;②当B(Ax+By+C)<0时,区域为直线Ax+By+C=0的下方.(3)最优解和可行解的关系:最优解必定是可行解,但可行解不一定是最优解.最优解不一定唯一,有时唯一,有时有多个.4.解线性规划应用问题的一般步骤:(1)分析题意,设出未知量;(2)列出线性约束条件和目标函数;(3)作出可行域并利用数形结合求解;(4)作答.5.线性目标函数中的z不是直线在y轴上的截距,把目标函数化为可知是直线在y轴上的截距,要根据b的符号确定目标函数在什么情况下取得最大值、什么情况下取得最小值.6.线性规划中常见目标函数的转化公式:(1)截距型:与直线的截距相关联.若b>0,当的最值情况和z的一致;若b<0,当的最值情况和z的相反;(2)斜率型:(3)点点距离型:表示到两点距离的平方;(4)点线距离型:表示到直线的距离的倍.1. 【2017年高考全国Ⅰ卷,理14】设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y =-的最小值为_______. 【答案】5-不等式组21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩表示的平面区域如图所示由32z x y =-得322z y x =-, 求z 的最小值,即求直线322zy x =-的纵截距的最大值当直线322zy x =-过图中点A 时,纵截距最大2121x y x y +=-⎧⎨+=⎩解得A 点坐标为(1,1)-,此时3(1)215z =⨯--⨯=-由2.【2017年高考全国Ⅲ卷,理13】x ,y 满足约束条件0,20,0,-⎧⎪+-⎨⎪⎩x y x y y ≥≤≥则34z x y =-的最小值为________.【答案】1-【解析】由题,画出可行域如图:目标函数为34z x y =-,则直线344zy x =-纵截距越大,z 值越小. 由图可知:z 在()1,1A 处取最小值,故min 31411z =⨯-⨯=-.3.【2017年高考全国II卷,理14】若x,y满足约束条件,则的最大值为____________.【答案】【考点】线性规划.【点拨】本题考查线性规划,要正确作图,首先要对目标函数进行分析,什么时候目标函数取到最大值,解该类题目时候,往往还要将目标直线的斜率和可行域边界的斜率比较,否则很容易出错,属于基础题.4.【2017年高考北京卷,理4】若x ,y 满足32x x y y x ≤⎧⎪+≥⎨⎪≤⎩,,, 则x + 2y 的最大值为(A )1 (B )3 (C )5 (D )9 【答案】D 【解析】试题分析:如图,画出可行域,2z x y =+表示斜率为12-的一组平行线,当过点()3,3C 时,目标函数取得最大值max 3239z =+⨯=,故选D.【考点】线性规划【点拨】本题主要考查简单线性规划.解决此类问题的关键是正确画出不等式组表示的可行域,将目标函数赋予几何意义;求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义.常见的目标函数有:(1)截距型:形如z ax by =+.求这类目标函数的最值常将函数z ax by =+转化为直线的斜截式:a zy x b b=-+,通过求直线的截距的最值间接求出z 的最值;(2)距离型:形如()()22z x a y b =-+-;(3)斜率型:形如y bz x a-=-,而本题属于截距形式.5.【2017年高考山东卷,理4】已知x,y 满足,则z=x+2y 的最大值是(A )0 (B ) 2 (C ) 5 (D )6 【答案】C【考点】 简单的线性规划【点拨】利用线性规划求最值,一般用图解法求解,其步骤是: (1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解; (4)求最值:将最优解代入目标函数即可求出最大值或最小值.6.【2017年高考浙江卷,理4】若x ,y 满足约束条件03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩,则y x z 2+=的取值范围是A .[0,6]B .[0,4]C .[6,)∞+D .[4,)∞+【答案】D 【解析】试题分析:如图,可行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值,选D .【考点】 简单线性规划【点拨】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0≥++C By Ax 转化为b kx y +≤(或b kx y +≥),“≤”取下方,“≥”取上方,并明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.7.【2017陕西咸阳三模】)设实数, 满足约束条件若目标函数的最大值为6,则的值为A. B. 4 C. 8 D. 16 【答案】A 【解析】画出不等式组表示的区域如图,结合图形可知当动直线经过点时,在轴上的截距最大,其最大值为,应选答案A. 8.【2017新疆乌鲁木齐三模)】已知实数满足,则的最大值为A. B. C. D.【答案】C9.【2017甘肃省第二次诊断】已知实数满足,则的最大值是A. 2 B. C. D.【答案】C10.【2017青海西宁4月检测】设实数满足,若目标函数的最大值为6,则的最小值为A. B. C. D. 0【答案】A【解析】作出不等式对应的平面区域,由,得 ,平移直线,由图象可知当直线经过点时,直线的截距最大,此时最大为,即,经过点时,直线的截距最小,此时最小.由得,即, 直线过,由,解得,即,此时的最小值为,故选A.11.【2017宁夏石嘴山市二模】若实数满足:,则的最大值是A. B. C. D.【答案】C12.【2017甘肃省兰州高考实战模拟】已知, , 的坐标满足,则面积的取值范围是A. B. C. D.【答案】C13.【2017陕西汉中第二次质检】若变量x,y满足约束条件则 (x-2)2+y2的最小值为( )A. B. C. 5 D.【答案】C【解析】画出不等式组表示的区域如图,由题设的几何意义是定点到区域内动点的距离的平方,当动点到点的距离最小,此时取最小值,应选答案C.14.【2017湖南省衡阳市第二次联考】已知实数、满足,则的最小值是A. 1 B. 2 C. 3 D. 415.【2017辽宁大连一模】在平面内的动点满足不等式,则的最大值是A. 6B. 4C. 2D. 0【答案】A16.【2016年高考全国Ⅰ卷,理16】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.【答案】216000【解析】试题分析:设生产产品A、产品B分别为x、y件,利润之和为z元,那么由题意得约束条件 1.50.5150,0.390,53600,0,0.x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩……………目标函数2100900z x y =+.约束条件等价于3300,103900,53600,0,0.x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩?…………①作出二元一次不等式组①表示的平面区域,即可行域,如图中阴影部分所示.将2100900z x y =+变形,得73900z y x =-+,作直线:73y x =-并平移,当直线73900zy x =-+经过点M 时,z 取得最大值.解方程组10390053600x y x y +=⎧⎨+=⎩,得M 的坐标为(60,100).所以当60x =,100y =时,max 210060900100216000z =⨯+⨯=. 故生产产品A 、产品B 的利润之和的最大值为216000元. 【考点】线性规划的应用【点拨】线性规划也是高考中常考的知识点,一般以客观题的形式出现,基本题型是给出约束条件求目标函数的最值,常见的结合方式有:纵截距、斜率、两点间的距离、点到直线的距离,解决此类问题常利用数形结合.本题运算量较大,失分的一个主要原因是运算失误.17.【2016年高考全国Ⅱ卷,理13】若x ,y 满足约束条件1020220x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,则z =x +y 的最大值为_____________.【答案】32【解析】试题分析:作出不等式组表示的平面区域,如图中阴影部分所示.由图知,当直线z x y =+经过点A 时,z 取得最大值.由22020x y x y +-=⎧⎨-=⎩得112x y =⎧⎪⎨=⎪⎩,即1(1,)2A ,则max 13122z =+=.【考点】简单的线性规划问题.【点拨】利用图解法解决线性规划问题的一般步骤:(1)作出可行域.将约束条件中的每一个不等式当作等式,作出相应的直线,并确定原不等式的区域,然后求出所有区域的交集;(2)作出目标函数的等值线(等值线是指目标函数过原点的直线);(3)求出最终结果.18.【2016年高考山东卷,理4】若变量x ,y 满足2,239,0,x y x y x ì+?ïïïï-?íïï锍ïî则22x y +的最大值是 (A )4 (B )9 (C )10 (D )12【答案】C【考点】线性规划求最值【点拨】本题主要考查简单线性规划的应用,是一道基础题目.从历年高考题目看,简单线性规划问题,是不等式中的基本问题,往往围绕目标函数最值的确定,涉及直线的斜率、两点间的距离等,考查考生的绘图、用图能力,以及应用数学知识解决实际问题的能力.(2)【2016年高考北京卷,理2】若x,y满足则的最大值为(A)0 (B)3(C)4 (D)5【答案】C【考点】线性规划.【点拨】若约束条件表示的可行域是封闭区域,则可以将顶点坐标代入目标函数,求出最大值与最小值,从而得到相应范围.若约束条件表示的可行域不是封闭区域,则不能简单地运用代入顶点坐标的方法求最值.。

线性规划最值问题

线性规划最值问题

线性规划最值问题什么是线性规划线性规划是一种数学优化方法,用于解决一类最值问题。

在线性规划中,我们试图找到一组变量的值,使得目标函数取得最大(或最小)值,同时满足一组线性等式或不等式约束条件。

线性规划问题的一般形式线性规划问题可以用下列一般形式来表示:$$\max (或 \min) c^T x$$$$s.t.\quad Ax \leq b$$其中,$x$是变量向量,$c$是目标函数系数向量,$A$是约束条件系数矩阵,$b$是约束条件右侧常数向量。

求解线性规划最值问题的步骤求解线性规划最值问题的一般步骤如下:1. 确定目标函数:根据问题要求确定目标函数的系数向量$c$和优化目标(最大化或最小化)。

2. 设置约束条件:根据问题要求确定约束条件的系数矩阵$A$和右侧常数向量$b$。

3. 求解最值:应用线性规划算法,求解线性规划问题,找到使目标函数取得最大(或最小)值的变量向量$x$。

4. 解释结果:将最值代入目标函数,得到最终的最值结果,并解释其含义。

线性规划最值问题的应用线性规划最值问题在实际应用中具有广泛的应用,例如:- 产品混合问题:决定不同产品的生产数量,以最大化收益或最小化成本。

- 运输问题:确定不同货物在不同运输路线上的分配方案,以最小化运输成本。

- 资源分配问题:决定资源的最优分配,以最大化效益或实现平衡。

总结线性规划最值问题是一种在实际应用中常见的问题求解方法。

通过确定目标函数和约束条件,并应用线性规划算法,我们可以找到使目标函数取得最大(或最小)值的变量向量。

该方法可以应用于多个领域,帮助优化决策和资源分配。

高中数学解线性规划问题的方法与思路总结

高中数学解线性规划问题的方法与思路总结

高中数学解线性规划问题的方法与思路总结一、引言线性规划是高中数学中的重要内容,也是数学建模和实际问题求解中常用的方法之一。

本文将总结解线性规划问题的方法与思路,帮助高中学生和他们的父母更好地理解和应用线性规划。

二、线性规划问题的基本概念线性规划问题是在一组线性约束条件下,求解一个线性目标函数的最优值的问题。

其中,线性约束条件可以用一组线性不等式或等式表示,线性目标函数是一次函数。

三、线性规划问题的解题步骤1. 建立数学模型:根据实际问题,确定决策变量、目标函数和约束条件,并将其转化为数学表达式。

2. 确定可行域:根据约束条件,确定决策变量的取值范围,即可行域。

3. 确定最优解:通过图像、代数或单纯形表等方法,确定最优解的存在性和唯一性。

4. 求解最优解:利用图像、代数或单纯形表等方法,求解最优解,并进行验证。

5. 分析最优解:对最优解进行解释和分析,得出结论。

四、线性规划问题的解题技巧1. 图像法:将线性规划问题转化为几何问题,在平面直角坐标系中绘制可行域和目标函数的图像,通过观察图像找到最优解。

例如,解决如下问题:求函数 f(x, y) = 3x + 4y 在约束条件x ≥ 0, y ≥ 0, 2x + y ≤ 6 的可行域中的最大值。

通过绘制可行域和目标函数的图像,可以观察到最优解在可行域的顶点处取得。

2. 代数法:通过代数计算,利用不等式关系和线性目标函数的性质,求解最优解。

例如,解决如下问题:求函数 f(x, y) = 2x + 3y 在约束条件x ≥ 0, y ≥ 0, x + y ≤ 4 的可行域中的最大值。

通过列出不等式组成的方程组,利用代数方法求解方程组,得到最优解。

3. 单纯形表法:适用于多个决策变量和多个约束条件的线性规划问题。

通过构建单纯形表,利用迭代计算的方法求解最优解。

例如,解决如下问题:求函数 f(x, y, z) = 5x + 4y + 3z 在约束条件x ≥ 0, y ≥ 0, z ≥ 0, x + y + z = 6 的可行域中的最大值。

利用线性规划巧解常见的最值问题

利用线性规划巧解常见的最值问题

, I
\ 十 o
图1

若 z —— 如何 求 z =- XI 的取 值 范 围?

y -1
f— +  ̄ 0 xy2
作 直 线l:一 y 0 x 2 = .
题型三: 已知点M(,) xy满足条件{ y4 0, x -I + >
【x y 5≤0 2 —一
■匪
赵 全 新
( 昌市第 二 中学 , 金 甘肃 金 昌


利 用 线 性 规 划 巧 解 常 见 的 最 值 问 题
770 ) 30 0
在 高 中数 学 学 习 中求 最 值 问 题 或 范 围 问 题 是 考 试 常 见 的 题 型 , 时 也 是 学 生 难 以 解决 的 问题 , 用 线 性 规 划 的 知 识解 有 利 决 此 类 问 题 可 以 避 免 学 生 常 犯 的一 些 错 误 .下 面就 几 种 常 见 的 题 型进 行 探 讨 .
定 程 度 上 能 够 促 进 课 堂 上 学 生 的 参 与 ,从 而 提 高课 堂 教 学 效 率。

思维 性强 、 活性 、 灵 运用性强 的特点 , 并结合 教学反馈信息 精
心 设 计 教 案 , 用 现代 化 的 教 学 手 段 , 用 探 究 式 学 习 方 法 , 运 采 摆 正 讲 与 练 的 关 ห้องสมุดไป่ตู้ , 点 培 养 学 生 的学 习 能 力 与 创 新 , 他 们 重 使 变 被 动为 主 动 , 学 会 为会 学 , 而 达 到 传 授 知 识 、 养 能 力 变 从 培 的双 重 目的 , 到 事 半 功倍 的效 果 收 参考文献 : [ ] 美 凤 . 学 数 学 教 师 提 高 课 堂 教 学 效 率 的 探 讨 [] 1李 中 J. 新 乡教 育 学院 学 报 ,0 8 ( ) 2 0 ,6 . [ ] 宏 志. 何 提 高 课 本 例 、 题 的教 学 价 值 []中学 数 2李 如 习 J. 学 ,0 6 () 2 0 ,1. [ ] 岩 . 谈 如 何 提 高 数 学 课 堂 的 效 率 []成 才 之 路 , 3吕 浅 J.

利用线性规划求最值

利用线性规划求最值

利用线性规划求最值陕西宁强县天津高级中学 李红伟简单线性规划是高中数学教学的新内容之一,是解决一些在线性约束条件下的线性目标函数的最值(最大值或最小值)的问题。

简单线性规划的基本思想即在一定的约束条件下,通过数形结合的思想求函数的最值。

解决问题时主要是借助平面图形,运用这一思想能够较快的解决一些二次函数的最值问题。

现对高中数学中目标函数常见类型的最值问题做一探讨。

一、线性约束条件下线性目标函数的最值(即截距型:c by ax z ++=)例1.已知实数y x ,满足⎪⎩⎪⎨⎧≤≥+-≥-+,2,01,03x y x y x 若y x z +=2,求z 的最大值和最小值。

解析:不等式组 ⎪⎩⎪⎨⎧≤≥+-≥-+,2,01,03x y x y x 表示的平面区域如图所示。

图中阴影部分即为可行域。

图示—1由⎩⎨⎧=+-=-+,01,03x y x 得⎩⎨⎧==,2,1y x )2,1(A ∴ 由⎩⎨⎧=-+=,03,2y x x 得⎩⎨⎧==,1,2y x )1,2(B ∴ 由⎩⎨⎧=+-=,01,2y x x 得⎩⎨⎧==,3,2y x )3,2(M ∴ y x z +=2,z x y +-=∴2, 即z表示直线z x y +-=2在y 轴的截距. 当直线z x y +-=2经过可行域内的点)3,2(M 时,直线在y 轴的截距最大,z 也最大,此时7322m a x =+⨯=Z . 当直线z x y +-=2经过可行域内的点)2,1(A 时,直线在y 轴的截距最小,z 也最小,此时4212min =+⨯=Z .所以,Z 的最大值为7,Z 最小值为4.这类问题的解决,关键在于能够正确理解目标函数的几何意义——目标函数的“截距”。

二、线性约束条件下非线性目标函数的最值1.距离型:22)()(b y a x z -+-= 即z 几何意义为可行域内的动点)(y x ,与定点),(b a 的距离的平方。

【备战】高考数学 高频考点归类分析 应用线性规划求最值(真题为例)

【备战】高考数学 高频考点归类分析 应用线性规划求最值(真题为例)

应用线性规划求最值典型例题:例1. (2012年天津市理5分)已知函数2|1|=1x y x --的图象与函数=2y kx -的图象恰有两个交点,则实数k 的取值范围是 ▲ .【答案】(0,1)(1,4)。

【考点】函数的图像及其性质,利用函数图像确定两函数的交点。

【分析】函数1)1)(1(112-+-=--=x x x x x y ,当1>x 时,11112+=+=--=x x x x y ,当1<x 时,⎩⎨⎧-<+<≤---=+-=--=1,111,11112x x x x x x x y , 综上函数⎪⎩⎪⎨⎧-<+<≤---≥+=--=1,111,111112x x x x x x x x y ,。

作出函数的图象,要使函数y 与kx y =有两个不同的交点,则直线kx y =必须在蓝色或黄色区域内,如图,此时当直线经过黄色区域时)2,1(B ,k 满足21<<k ,当经过蓝色区域时,k 满足10<<k ,综上实数k 的取值范围是(0,1)(1,4)。

例2. (2012年陕西省理5分)设函数ln ,0()21,0x x f x x x >⎧=⎨--≤⎩,D 是由x 轴和曲线()y f x =及该曲线在点(1,0)处的切线所围成的封闭区域,则2z x y =-在D 上的最大值为 ▲ . 【答案】2。

【考点】利用导数研究曲线上某点切线方程,简单线性规划。

【解析】先求出曲线在点(1,0)处的切线,然后画出区域D ,利用线性规划的方法求出目标函数z 的最大值即可:∵1,0()2,0x y f x x x ⎧>⎪'==⎨⎪-≤⎩,(1)1f '=,∴曲线()y f x =及该曲线在点(1,0)处的切线方程为1y x =-。

∴由x 轴和曲线()y f x =及1y x =-围成的封闭区域为三角形。

2z x y =-在点(0,1)-处取得最大值2。

高考数学线性规划常见题型及解法[1]

高考数学线性规划常见题型及解法[1]

高考数学线性规划常见题型与解法线性规划问题是高考的重点,也是常考题型,属于中等偏简单题,易得分,高考中要求会从实际问题中建立一格二元线性规划的模型,使实际问题得到解决。

现就常见题型与解决方法总结如下: 一、求线性目标函数的最值;例题:(2012年广东文5)已知变量,x y 满足条件1110x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则2z x y =+的最小值为 A.3 .1 C5 6解析:利用线性规划知识求解。

可行域如图阴影所示,先画出直线01:2l y x =-,平移直线0l ,当直线过点A 时,2z x y =+的值最小,得110,x x y =-⎧⎨--=⎩12,x y =-⎧⎨=-⎩min (1,2),12(2)5A z ∴--∴=-+⨯-=- 探究提高:本题主要考查线性规划求最值,同时考查学生的作图能力,数形结合思想与运算求解能力,难度适中。

二、求目标函数的取值范围;例题:(2012山东文6)设变量,x y 满足约束条件2224,41x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是解析:作出不等式组表示的区域,如图阴影部分所示,作直线30x y -=,并向上、向下平移,由图可得,当直线过点C 时,目标函数取得最大值,当直线过点A 是,目标函数取得最小值,由210,(2,0)240x y A x y ++=⎧⎨+-=⎩得;由4101,(,3)2402x y x y -+=⎧⎨+-=⎩得B 探究提高:本题设计有新意,作出可行域,寻求最优解条条件,取得目标函数的最大(小)值,进一步确定取值范围 三、求约束条件中参数的取值;例题:(2012福建文10)若直线2x y =上存在点(,)x y 满足条件-30-2-30,x y x y x m +≥⎧⎪≤⎨⎪≥⎩则实数m 的最大值为( )解析:在同一直角坐标系中函数2x y =的图像与30230x y x y +-≤⎧⎨--≤⎩,所表示的平面区域图阴影部分所示。

高考中几类常见的线性规划最值问题

高考中几类常见的线性规划最值问题

犪狓 +狔 的 性 质,通 过 对 参 数犪 进 行 分 类 讨 论 来 分 析
求 解.具体地,实数狓,狔 满足的可行域如图2中阴影
( ) 部分 所 示,犃(1,0),犅(2,1),犆 1,32 .当犪 ≤ 0 时,




3 2
,1≤狓
≤2,故1≤犪狓
+狔≤4不



成 立;当犪>0时,借助图象得直线狕=犪狓+狔过点犃 时狕取得最小值,当直线狕=犪狓 +狔 过点犅 或犆 时狕 取 得最大值,故由1≤犪≤4,1≤2犪+1≤4,1≤犪+
3 2
≤4解得1≤犪≤
3 2

3 距离的最值问题 此类试题是考查在线性规划可行域内的点与已
知点的距离的最值问题.要解答此类问题,往往 是 通 过数形结合把问题转化为求解点到直线的距离或两
点 间 的 距 离 ,进 而 达 到 求 解 的 目 的 . 例3 (2013年北京文科卷第12 题)设 犇 为 不 烄狓 ≥0,
域(包 括 边 界 ).根 据 题 目 条
件,可 把 区 域 犇 上 的 点 与 点
图3
(1,0)之 间 的 最 小 距 离 转 化
为 点 犕(1,0)到对应直线间的距离问题.于是区域犇
上 的点与点 犕 的最小距离为点 犕 到直线2狓-狔=0
的距离犱=
狘2×1-0狘 槡22 + (-1)2
=25槡5.
值问题的常规思路 是 设 出 决 策 变 量,找 出 约 束 条 件
和线性目标函数,通过数形结合求函数最值.处 理 线
性规划最值问题时,特 别 要 注 意 寻 找 目 标 函 数 的 几
何意义,比如在狔 轴上的截距、截距的相反数、斜 率、 距离等.以下,笔者尝试结合近两年部分高考试 题 来

线性规划最值问题

线性规划最值问题

2013年高考线性规划归类解析一、已知线性约束条件,探求线性目标关系最值问题例1、设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。

解析:如图1,画出可行域,得在直线2x-y=2与直线x-y=-1的交点A(3,4)处,目标函数z 最大值为18点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。

数形结合是数学思想的重要手段之一。

二、已知线性约束条件,探求非线性目标关系最值问题例2、已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则22x y +的最小值是 .解析:如图2,只要画出满足约束条件的可行域,而22x y +表示可行域内一点到原点的距离的平方。

由图易知A (1,2)是满足条件的最优解。

22x y +的最小值是为5。

点评:本题属非线性规划最优解问题。

求解关键是在挖掘目标关系几何意义的前提下,作出可行域,寻求最优解。

三、约束条件设计参数形式,考查目标函数最值范围问题例3、在约束条件0024x y y x sy x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩下,当35s ≤≤时,目标函数32z x y =+的最大值的变化范围是()A.[6,15]B. [7,15]C. [6,8]D. [7,8]解析:画出可行域如图3所示,当34s ≤<时, 目标函数32z x y =+在(4,24)B s s --处取得最大值, 即max 3(4)2(24)4[7,8)z s s s =-+-=+∈;当45s ≤≤时, 目标函数32z x y =+在点(0,4)E 处取得最大值,即max 30248z =⨯+⨯=,故[7,8]z ∈,从而选D;点评:本题设计有新意,作出可行域,寻求最优解条件,然后转化为目标函数Z 关于S 的函数关系是求解的关键。

四、已知平面区域,逆向考查约束条件例4、已知双曲线224x y -=的两条渐近线与直线3x =围成一个三角形区域,表示该区域的不等式组是()(A)0003x y x y x -≥⎧⎪+≥⎨⎪≤≤⎩ (B)0003x y x y x -≥⎧⎪+≤⎨⎪≤≤⎩ (C) 0003x y x y x -≤⎧⎪+≤⎨⎪≤≤⎩ (D) 0003x y x y x -≤⎧⎪+≥⎨⎪≤≤⎩解析:双曲线224x y -=的两条渐近线方程为y x =±,与直线3x =围成一图2C个三角形区域(如图4所示)时有0003x y x y x -≥⎧⎪+≥⎨⎪≤≤⎩。

高考数学中的线性规划中的最优解策略

高考数学中的线性规划中的最优解策略

高考数学中的线性规划中的最优解策略数学是现代科学体系中一门不可或缺的学科,而高中数学是学习数学的重中之重。

在高二学年的数学课上,同学们开始学习线性规划,相信大家都不陌生。

线性规划是一种建立在线性函数和线性等式不等式约束下的优化方法。

在学习线性规划的过程中,最优解策略是非常重要的一部分。

下面,我将分享一些有关高考数学中的线性规划最优解策略的内容。

一、什么是线性规划?线性规划是指在一定约束条件下,求解线性目标函数所能达到的最大或最小值的一种优化方法。

最常见的例子是如何使得生产或者运输成本最小化或利润最大化等。

线性规划一般包括以下三个要素:①决策变量:即各个选择的量,是模型中未知量的部分。

②约束条件:即决策变量的取值范围,是模型中已知条件的部分。

③目标函数:即决策变量取值下的一个数学公式,最终需要优化的数学函数。

二、高考数学中的线性规划题型在高中数学中,线性规划一般作为高二上学期学习的内容。

在高考中,线性规划题型属于选择题和简答题的范畴。

一般可分为以下三种:①线性规划的建模题:给出某种情况的限制条件,需要学生自己设计出目标函数并求解。

②线性规划的图形解法题:通过绘制限制条件与目标函数的图形,求出最优解。

③线性规划的单纯形法求解题:通过单纯形表格法,求解最优解。

三、高考数学中的线性规划最优解策略在学习线性规划时,最优解策略是至关重要的。

下面将介绍一些最优解策略的相关知识。

①最优解的存在性和唯一性在线性规划中,最优解不一定存在,具体要视题目和限制条件而定。

对于存在最优解的情况,最优解可能是唯一的,也可能有多个。

如果最优解存在且唯一,那么它一般可以通过图形法或单纯性表格法得到。

②最优解的特征在线性规划中,最优解往往是在约束条件限制下,得到目标函数最大或最小值的点。

这个点可能处于多个约束条件的交点上。

另外,当线性规划的目标函数为最小值问题时,在满足约束条件的前提下,最优解总是在可行解中的最小值点;而目标函数为最大值问题时,则在可行解中的最大值点。

2021年高中数学一轮复习·线性规划与基本不等式:第2节 求线性目标函数的最值

2021年高中数学一轮复习·线性规划与基本不等式:第2节 求线性目标函数的最值

第2节求线性目标函数的最值【基础知识】名称意义约束条件由变量x,y组成的不等式(组)线性约束条件由x,y的一次不等式(或方程)组成的不等式(组)目标函数关于x,y的函数解析式,如z=2x+3y等线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解(x,y)可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题[【规律技巧】确定线性最优解的思维过程:线性目标函数(A,B不全为0)中,当时,,这样线性目标函数可看成斜率为,且随变化的一组平行线,则把求的最大值和最小值的问题转化为直线与可行域有公共点,直线在轴上的截距的最大值最小值的问题.因此只需先作出直线,再平行移动这条直线,最先通过或最后通过的可行域的顶点就是最优解.特别注意,当B>0时,的值随着直线在y轴上的截距的增大而增大;当B<0时,的值随着直线在y轴上的截距的增大而减小.通常情况可以利用可行域边界直线的斜率来判断.对于求整点最优解,如果作图非常准确可用平移求解法,也可以取出目标函数可能取得最值的可行域内的所有整点,依次代入目标函数验证,从而选出最优解,最优解一般在可行域的定点处取得,若要求最优整解,则必须满足x,y均为整数,一般在不是整解的最优解的附近找出所有可能取得最值的整点,然后将整点分别代入目标函数验证选出最优整解.对于非线性最优解问题,应理解其几何意义,结合平面几何知识处理.【典例讲解】例1(1)若变量x ,y ≤x ,+y ≤1,≥-1,且z =2x +y 的最大值和最小值分别为m 和n ,则m -n 等于()A.5B.6C.7D.8(2)已知a >0,x ,y ≥1,+y ≤3,≥a x -3,若z =2x +y 的最小值为1,则a=________.【答案】(1)B (2)12【解析】(1)画出可行域,如图阴影部分所示.由z =2x +y ,得y =-2x +z .=x ,=-1,=-1,=-1,∴A (-1,-1).+y =1,=-1,=2,=-1,∴B (2,-1).当直线y =-2x +z 经过点A 时,z min =2×(-1)-1=-3=n .当直线y =-2x +z 经过点B 时,z max =2×2-1=3=m ,故m -n =6.【特别提醒】线性规划问题的解题步骤:(1)作图——画出约束条件所确定的平面区域和目标函数所表示的平行直线系中过原点的那一条直线;(2)平移——将l 平行移动,以确定最优解的对应点的位置;(3)求值——解方程组求出对应点坐标(即最优解),代入目标函数,即可求出最值.【变式探究】(1)已知平面直角坐标系xOy 上的区域Dx ≤2,≤2,≤2y给定.若M (x ,y )为D 上的动点,点A 的坐标为(2,1),则z =OM →·OA →的最大值为()A.3B.4C.32D.42(2)(2014·北京)若x ,y+y -2≥0,-y +2≥0,≥0,且z =y -x 的最小值为-4,则k 的值为()A.2B.-2C.12D.-12【答案】(1)B (2)D(2)作出可行域,如图中阴影部分所示,直线kx -y +2=0与x 轴的交点为A (-2k,0).∵z =y -x 的最小值为-4,∴2k =-4,解得k =-12,故选D.【针对训练】1、已知为坐标原点,,,,满足,则的最大值等于.【答案】【解析】,设,如图:做出可行域当目标函数平移到C点取得最大值,解得,,代入目标函数,的最大值为.综合点评:对于线性目标函数,必须明确线性目标函数的最值一般在可行域的顶点或边界取得,运用数形结合的思想方法求解.同时注意边界直线斜率与目标函数斜率的关系;对于非线性目标函数,应考虑其具有的几何意义,依平面几何知识解答;对于交汇问题应转化为目标函数最值问题处理.2、若满足条件的整点恰有9个,其中整点是指横、纵坐标都是整数的点,则整数的值为()A.B.C.D.【答案】C【解析】试题分析:根据数形结合,如图:当时,区间的整数点为9个,所以.3、定义,设实数,满足约束条件,则的取值范围是()A. B. C. D.【答案】B.。

高中数学解题方法谈线性规划求最值问题

高中数学解题方法谈线性规划求最值问题

线性规划求最值问题一、与直线的截距有关的最值问题例1 已知点()P x y ,在不等式组2010220x y x y -⎧⎪-⎨⎪+-⎩,,≤≤≥表示的平面区域上运动,则z x y =-的取值范围是( ).(A )[-2,-1] (B )[-2,1](C )[-1,2] (D )[1,2]解析:由线性约束条件画出可行域如图1,考虑z x y =-,把它变形为y x z =-,这是斜率为1且随z 变化的一族平行直线.z -是直线在y 轴上的截距.当直线满足约束条件且经过点(2,0)时,目标函数z x y =-取得最大值为2;直线经过点(0,1)时,目标函数z x y =-取得最小值为-1.故选(C ).注:本题用“交点法”求出三个交点坐标分别为(0,1),(2,1),(2,0),然后再一一代入目标函数求出z=x-y 的取值范围为[-1,2]更为简单.这需要有最值在边界点取得的特殊值意识.二、与直线的斜率有关的最值问题 例2 设实数x y ,满足20240230x y xc y y --⎧⎪+-⎨⎪-⎩,,,≤≥≤,则y z x =的最大值是__________. 解析:画出不等式组所确定的三角形区域ABC (如图2),00y y z x x -==-表示两点(00)()O P x y ,,,确定的直线的斜率,要求z 的最大值,即求可行域内的点与原点连线的斜率的最大值.由图2可以看出直线OP 的斜率最大,故P 为240x y +-=与230y -=的交点,即A 点.∴312P ⎛⎫⎪⎝⎭,.故答案为32. 注:解决本题的关键是理解目标函数00y y z x x -==-的 几何意义,当然本题也可设y t x=,则y tx =,即为求 y tx =的斜率的最大值.由图2可知,y tx =过点A 时,t 最大.代入y tx =,求出32t =, 即得到的最大值是32. 三、与距离有关的最值问题例3 已知2040250x y x y x y -+⎧⎪+-⎨⎪--⎩,,,≥≥≤,求221025z x y y =+-+的最小值.解析:作出可行域如图3,并求出顶点的坐标A (1,3)、B (3,1)、C (7,9).而22(5)z x y =+-表示可行域内任一点(x ,y )到定点M (0,5)的距离的平方,过M 作直线AC 的垂线,易知垂足N在线段AC 上,故z 的最小值是292MN =. 注:充分理解目标函数的几何意义,如两点间的距离(或平方)、点到直线的距离等.四、与实际应用有关的最值问题例4 预算用2000元购买单件为50元的桌子和20元的椅子,希望使桌椅的总数尽可能的多,但椅子不少于桌子数,且不多于桌子数的1.5倍,问桌、椅各买多少才行? 分析:先设出桌、椅的变数后,目标函数即为这两个变数之和,再由此在可行域内求出最优解.解题中应当注意到问题中的桌、椅数都应是自然数这个隐含条件,若从图形直观上得出的最优解不满足题设条件时,应作出调整,直至满足题设.解:设应买x 张桌子,y 把椅子,把所给的条件表示成不等式组,即约束条件为502020001.5x y y x y x x y *+⎧⎪⎪⎨⎪⎪∈⎩N ,,,,,≤≥≤ 由50202000x y y x +=⎧⎨=⎩,,解得2007200.7x y ⎧=⎪⎪⎨⎪=⎪⎩,. ∴ A 点的坐标为20020077⎛⎫ ⎪⎝⎭,, 由502020001.5x y y x +=⎧⎨=⎩,,解得2575.2x y =⎧⎪⎨=⎪⎩,. ∴ B 点的坐标为75252⎛⎫ ⎪⎝⎭,. 所以满足约束条件的可行域是以2002007525(00)772A B O ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,,为顶点的三角形区域(如图4).由图形可知,目标函数z x y =+在可行域内的最优解为25,,但注意到x y *∈N ,,故取37y =.答:应买桌子25张,椅子37把.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性规划求最值问题
一、与直线的截距有关的最值问题
例1 已知点()P x y ,在不等式组2010220x y x y -⎧⎪-⎨⎪+-⎩
,,≤≤≥表示的平面区域上运动,则z x y =-的
取值范围是( ).
(A )[-2,-1] (B )[-2,1]
(C )[-1,2] (D )[1,2]
解析:由线性约束条件画出可行域如图1,考虑z x y =-,
把它变形为y x z =-,这是斜率为1且随z 变化的一族平行
直线.z -是直线在y 轴上的截距.当直线满足约束条件且
经过点(2,0)时,目标函数z x y =-取得最大值为2;
直线经过点(0,1)时,目标函数z x y =-取得最小值为-1.故选(C ).
注:本题用“交点法”求出三个交点坐标分别为(0,1),(2,1),(2,0),然后再一一代入目标函数求出z=x-y 的取值范围为[-1,2]更为简单.这需要有最值在边界点取得的特殊值意识.
二、与直线的斜率有关的最值问题 例2 设实数x y ,满足20240230x y xc y y --⎧⎪+-⎨⎪-⎩
,,,≤≥≤,则y z x =的最大值是__________. 解析:画出不等式组所确定的三角形区域ABC (如图2),00y y z x x -==-表示两点(00)()O P x y ,,,确定的直线的斜率,要求z 的最大值,即求可行域内的点与原点连线的斜率的最大值.由图2可以看出直线OP 的斜率最大,故P 为240x y +-=与230y -=的交点,即A 点.
∴312P ⎛⎫
⎪⎝⎭,.故答案为32
. 注:解决本题的关键是理解目标函数00y y z x x -=
=-的 几何意义,当然本题也可设y t x
=,则y tx =,即为求 y tx =的斜率的最大值.由图2可知,y tx =过点A 时,
t 最大.代入y tx =,求出32
t =, 即得到的最大值是32
. 三、与距离有关的最值问题
例3 已知2040250x y x y x y -+⎧⎪+-⎨⎪--⎩
,,,≥≥≤,求221025z x y y =+-+的最小值.
解析:作出可行域如图3,并求出顶点的坐标A (1,3)、B (3,1)、C (7,9).而22(5)z x y =+-表示可行域内任一点(x ,y )到定点M (0,5)的距离的平方,过M 作直线AC 的垂线,易知垂足N在线段AC 上,故z 的最小值是292MN =. 注:充分理解目标函数的几何意义,如两点间的距离(或平方)、点到直线的距离等. 四、与实际应用有关的最值问题
例4 预算用2000元购买单件为50元的桌子和20元的椅子,希望使桌椅的总数尽可能的多,但椅子不少于桌子数,且不多于桌子数的1.5倍,问桌、椅各买多少才行? 分析:先设出桌、椅的变数后,目标函数即为这两个变数
之和,再由此在可行域内求出最优解.解题中应当注意到问
题中的桌、椅数都应是自然数这个隐含条件,若从图形直观上
得出的最优解不满足题设条件时,应作出调整,直至满足题设.
解:设应买x 张桌子,y 把椅子,把所给的条件表示成
不等式组,即约束条件为502020001.5x y y x y x x y *+⎧⎪⎪⎨⎪
⎪∈⎩N ,
,,,,
≤≥≤ 由50202000x y y x +=⎧⎨=⎩,,解得2007200.7x y ⎧=⎪⎪⎨⎪=⎪⎩
,. ∴ A 点的坐标为2002007
7⎛⎫ ⎪⎝⎭,, 由502020001.5x y y x +=⎧⎨=⎩,,解得2575.2
x y =⎧⎪⎨=⎪⎩,. ∴ B 点的坐标为75252⎛
⎫ ⎪⎝⎭
,. 所以满足约束条件的可行域是以2002007525(00)772A B O ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭
,,,,,为顶点的三角形区域(如图4).由图形可知,目标函数z x y =+在可行域内的最优解为25,,但注意到x y *∈N ,,故取37y =.
答:应买桌子25张,椅子37把.。

相关文档
最新文档