上海市黄浦区2017年高考数学一模试卷(解析版)
2017年上海市黄浦区中学考试数学一模试卷
![2017年上海市黄浦区中学考试数学一模试卷](https://img.taocdn.com/s3/m/c5040035b7360b4c2f3f6419.png)
2017年上海市黄浦区中考数学一模试卷一.选择题(本大题共6题,每题4分,共24分)1.(4分)下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+22.(4分)如图,点D、E位于△ABC的两边上,下列条件能判定DE∥BC的是()A.AD•DB=AE•EC B.AD•AE=BD•EC C.AD•CE=AE•BD D.AD•BC=AB•DE 3.(4分)已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα4.(4分)已知向量和都是单位向量,则下列等式成立的是()A.B.C.D.||﹣||=05.(4分)已知二次函数y=x2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3 6.(4分)Word文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC,已知AB=AC,当它以底边BC水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC以腰AB水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是()A.3.60和2.40 B.2.56和3.00 C.2.56和2.88 D.2.88和3.00二.填空题(本大题共12题,每题4分,共48分)7.(4分)已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c= .8.(4分)化简:= .9.(4分)已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP﹣BP= .10.(4分)已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f (1)f(5)(填“>”或“<”)11.(4分)求值:sin60°•tan30°= .12.(4分)已知G是等腰直角△ABC的重心,若AC=BC=2,则线段CG的长为.13.(4分)两个相似三角形的相似比为2:3,则它们的面积之比为.14.(4分)等边三角形的周长为C,面积为S,则面积S关于周长C的函数解析式为.15.(4分)如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为.16.(4分)如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B 处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是米.17.(4分)如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC上,使得△ADP与△ABC相似,则线段AP的长为.18.(4分)如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND ⊥DA,若四边形BMDN的面积是菱形ABCD面积的,则cosA= .三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.(10分)用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.20.(10分)如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=,=,试用、表示向量.21.(10分)如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l 翻折,恰好使点A与点B重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.22.(10分)如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)23.(12分)如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.24.(12分)平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC (顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.25.(14分)如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.2017年上海市黄浦区中考数学一模试卷参考答案与试题解析一.选择题(本大题共6题,每题4分,共24分)1.(4分)(2017•黄浦区一模)下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+2【分析】根据对称轴方程分别确定各个抛物线的对称轴后即可作出判断.【解答】解:抛物线y=x2﹣2x+4的对称轴为x=1;A、y=4x2+2x+1的对称轴为x=﹣,不符合题意;B、y=2x2﹣4x+1的对称轴为x=1,符合题意;C、y=2x2﹣x+4的对称轴为x=,不符合题意;D、y=x2﹣4x+2的对称轴为x=2,不符合题意,故选B.【点评】此题考查了二次函数的性质,牢记对称轴方程公式是解答本题的关键,难度不大.2.(4分)(2017•黄浦区一模)如图,点D、E位于△ABC的两边上,下列条件能判定DE∥BC的是()A.AD•DB=AE•EC B.AD•AE=BD•EC C.AD•CE=AE•BD D.AD•BC=AB•DE 【分析】根据选项选出能推出对应线段成比例的即可.【解答】解:∵AD•CE=AE•BD,∴,∴DE∥BC,故选C.【点评】本题考查了平行线分线段成比例定理,熟练掌握平行线分线段成比例定理是解题的关键.3.(4分)(2017•黄浦区一模)已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα【分析】根据坡比的定义:斜坡垂直高度与水平宽度的比值,即坡角的正弦值,据此即可判断.【解答】解:i=tanα.故选C.【点评】本题考查了坡比的定义,理解坡比是斜坡垂直高度与水平宽度的比值,即坡角的正弦值,是关键.4.(4分)(2017•黄浦区一模)已知向量和都是单位向量,则下列等式成立的是()A.B.C.D.||﹣||=0【分析】根据向量和都是单位向量,可知||=||=1,由此即可判断.【解答】解:∵已知向量和都是单位向量,∴||=||=1,∴||﹣||=0,故选D.【点评】本题考查平面向量、单位向量,属于概念题目,记住概念是解题的关键.5.(4分)(2017•黄浦区一模)已知二次函数y=x2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【分析】直接根据“上加下减、左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,二次函数y=x2的图象向左平移个单位得到y=(x+2)2,由“上加下减”的原则可知,将二次函数y=(x+2)2的图象向上平移3个单位可得到函数y=(x+2)2+3,故选:A.【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.6.(4分)(2017•黄浦区一模)Word文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC,已知AB=AC,当它以底边BC水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC以腰AB水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是()A.3.60和2.40 B.2.56和3.00 C.2.56和2.88 D.2.88和3.00【分析】根据等腰三角形的性质,勾股定理可求AB,即图⑤绝对宽度,再根据三角形面积公式可求图⑤绝对高度.【解答】解:图④,过A点作AD⊥BC于D,BD=3.60÷2=1.80,在Rt△ABD中,AB==3,图⑤绝对宽度为3;图⑤绝对高度为:2.40×3.60÷2×2÷3=4.32×2÷3=2.88.故选:D.【点评】此题考查了勾股定理,等腰三角形的性质,解题的关键是熟练掌握图形的绝对高度和绝对宽度的定义.二.填空题(本大题共12题,每题4分,共48分)7.(4分)(2017•黄浦区一模)已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c= .【分析】根据比例中项的定义可得b2=ac,从而易求c.【解答】解:∵线段a是线段b、c的比例中项,∴a2=bc,即32=2×c,∴c=.故答案是:.【点评】本题考查了比例线段,解题的关键是理解比例中项的定义.8.(4分)(2017•黄浦区一模)化简:= ﹣﹣7.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解:=2﹣4﹣3﹣3=﹣﹣7.故答案为:.【点评】此题考查了平面向量的运算法则.注意掌握去括号时的符号变化是解此题的关键.9.(4分)(2017•黄浦区一模)已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP﹣BP= 2﹣4 .【分析】根据黄金分割的概念、黄金比值计算即可.【解答】解:∵点P是线段AB的黄金分割点,AP>BP,∴AP=AB=﹣1,则BP=2﹣AP=3﹣,∴AP﹣BP=(﹣1)﹣(3﹣)=2﹣4,故答案为:2﹣4.【点评】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.10.(4分)(2017•黄浦区一模)已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)>f(5)(填“>”或“<”)【分析】根据对称轴及开口方向确定其增减性即可确定答案.【解答】解:∵二次函数y=f(x)的图象开口向上,对称轴为直线x=4,∴当x的取值越靠近4函数值就越小,反之越大,∴f(1)>f(5),故答案为:>.【点评】考查了二次函数的性质,解题的关键是根据对称轴及开口方向确定其增减性,难度不大.11.(4分)(2017•黄浦区一模)求值:sin60°•tan30°= .【分析】先根据特殊角的三角函数值计算出各数,再根据二次根式的乘法进行计算即可.【解答】解:原式=×=.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.12.(4分)(2017•黄浦区一模)已知G是等腰直角△ABC的重心,若AC=BC=2,则线段CG的长为.【分析】根据三角形的重心到顶点的距离等于到对边中点的距离的2倍解答即可.【解答】解:∵G是等腰直角△ABC的重心,AC=BC=2,∴CG=,故答案为:【点评】本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键.13.(4分)(2017•黄浦区一模)两个相似三角形的相似比为2:3,则它们的面积之比为4:9 .【分析】直接根据相似三角形的性质进行解答即可.【解答】解:∵两个相似三角形的相似比为2:3,∴它们的面积之比为4:9.故答案为:4:9【点评】本题考查的是相似三角形的性质,即相似三角形面积的比等于相似比的平方.14.(4分)(2017•黄浦区一模)等边三角形的周长为C,面积为S,则面积S 关于周长C的函数解析式为S=C2.【分析】直接利用等边三角形的性质得出AD的长,再利用三角形面积求法得出答案.【解答】解:如图所示:过点A作AD⊥BC于点D,∵等边三角形的周长为C,∴AB=BC=AC=,∴DC=BD=,∴AD==C,∴S=×C×=C2.故答案为:S=×C×=C2.【点评】此题主要考查了等边三角形的性质以及三角形面积求法,正确表示出三角形的高是解题关键.15.(4分)(2017•黄浦区一模)如图,正方形ABCD的边EF在△ABC的边BC 上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG 的面积为 4 .【分析】由DG∥BC得△ADG∽△ABC,利用相似三角形对应边上高的比等于相似比,列方程求解.【解答】解:作AH⊥BC于H,交DG于P,如图所示:∵△ABC的面积=BC•AH=9,BC=6,∴AH=3,设正方形DEFG的边长为x.由正方形DEFG得,DG∥EF,即DG∥BC,∵AH⊥BC,∴AP⊥DG.由DG∥BC得△ADG∽△ABC∴.∵PH⊥BC,DE⊥BC∴PH=ED,AP=AH﹣PH,即,由BC=6,AH=3,DE=DG=x,得,解得x=2.故正方形DEFG的面积=22=4;故答案为:4.【点评】本题考查了相似三角形的判定与性质、正方形的性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.16.(4分)(2017•黄浦区一模)如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是27 米.【分析】作PE⊥AB于点E,在直角△AEP中,利用三角函数求得AE的长,根据AB=2AE即可求解.【解答】解:作PE⊥AB于点E,在直角△AEP中,∠APE=∠α,则AE=PE•tan∠APE=30×0.45=13.5(米),则AB=2AE=27(米).故答案是:27.【点评】本题考查解直角三角形、仰角、俯角的定义,解题的关键是记住特殊三角形的边之间关系,学会把问题转化为方程解决,属于中考常考题型.17.(4分)(2017•黄浦区一模)如图,在△ABC中,∠C=90°,AC=8,BC=6,D 是边AB的中点,现有一点P位于边AC上,使得△ADP与△ABC相似,则线段AP 的长为4或.【分析】先根据勾股定理求出AB的长,再分△ADP∽△ABC与△ADP∽△ACB两种情况进行讨论即可.【解答】解:∵在△ABC中,∠C=90°,AC=8,BC=6,∴AB==10.∵D是边AB的中点,∴AD=5.当△ADP∽△ABC时,=,即=,解得AP=4;当△ADP∽△ACB时,=,即=,解得AP=.故答案为:4或.【点评】本题考查的是相似三角形的判定,在解答此题时要注意进行分类讨论,不要漏解.18.(4分)(2017•黄浦区一模)如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的,则cosA= .【分析】如图,连接AN、CM,延长BM交AD于H.AN是菱形ABCD的角平分线,同理CM也是菱形ABCD的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB =S△ONB=S△OMD=S△OND=a,因为四边形BMDN的面积是菱形ABCD面积的,所以S△AMB =S△AMD=S△CNB=S△CND=4a,推出AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,由△ABO∽△BNO,推出OB2=OA•ON=5k2,推出OB=k,AB=AD==k,由AD•BH=•BD•AO,推出BH==,再利用勾股定理求出AH即可解决问题.【解答】解:如图,连接AN、CM,延长BM交AD于H.∵AB⊥BN,AD⊥DN,∴∠ABN=∠ADN=90°,在Rt△ANB和Rt△AND中,,∴△ABN≌△ADN,∴∠BAN=∠DAN,∴AN是菱形ABCD的角平分线,同理CM也是菱形ABCD的角平分线,设BD与AC 交于点O,易知四边形BMDN是菱形,设S△OMB =S△ONB=S△OMD=S△OND=a,∵四边形BMDN的面积是菱形ABCD面积的,∴S△AMB =S△AMD=S△CNB=S△CND=4a,∴AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,∵△ABO∽△BNO,∴OB2=OA•ON=5k2,∴OB=k,AB=AD==k,∵AD•BH=•BD•AO,∴BH==,∴AH===k,∴cosA===.故答案为【点评】本题考查菱形的性质、全等三角形的判定和性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会利用参数解决问题,学会利用面积法求线段,所以中考常考题型.三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)(2017•黄浦区一模)用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)19.(10分)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.【分析】利用配方法把一般式化为顶点式,根据二次函数的性质解答即可.【解答】解:y=x2﹣4x+5=(x﹣4)2﹣3,∴抛物线开口向上,对称轴x=4,顶点(4,﹣3).【点评】本题考查的是二次根式的三种形式,正确利用配方法把一般式化为顶点式是解题的关键.20.(10分)(2017•黄浦区一模)如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=,=,试用、表示向量.【分析】(1)作BM∥CD交AD、EF于M、N两点,将问题转化到△ABM中,利用相似三角形的判定与性质求EN,由EF=EN+NF=EN+AD进行求解;(2)由=、=得BC=AD,EB=AB,根据=可得答案.【解答】解:(1)作BM∥CD交AD、EF于M、N两点,又AD∥BC,EF∥AD,∴四边形BCFN与MNFD均为平行四边形.∴BC=NF=MD=2,∴AM=AD﹣MD=1.又=2,∴=,∵EF∥AD,∴△BEN∽△BAM,∴,即,∴EN=,则EF=EN+NF=;(2)∵=,=,∴BC=AD,EB=AB,∴==,==,则==+.【点评】本题主要考查了平行四边形的判定与性质、相似三角形的判定与性质及向量的运算,熟练掌握相似三角形的判定与性质得出对应边的长度之比和向量的基本运算是解题的关键.21.(10分)(2017•黄浦区一模)如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A与点B重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.【分析】(1)根据∠A的正切用BC表示出AC,再利用勾股定理列方程求出BC,再求出AC,然后根据直角三角形的面积公式列式计算即可得解;(2)设CE=x,表示出AE,再根据翻折变换的性质可得BE=AE,然后列方程求出x,再利用锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:(1)∵∠ACB=90°,tanA=,∴=,∴AC=2BC,在Rt△ABC中,BC2+AC2=AB2,即BC2+4BC2=25,解得BC=,所以,AC=2,△ABC的面积=AC•BC=××2=5;(2)设CE=x,则AE=AC﹣CE=2﹣x,∵△ABC沿直线l翻折点A与点B重合,∴BE=AE=2﹣x,在Rt△BCE中,BC2+CE2=BE2,即2+x2=(2﹣x)2,解得x=,所以,CE=,BE=2﹣x=2﹣=,所以,sin∠CBE===.【点评】本题考查了翻折变换的性质,锐角三角函数的定义,此类题目,利用勾股定理列出方程求出相关的线段的长度是解题的关键.22.(10分)(2017•黄浦区一模)如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)【分析】作BE⊥AD于点E,设AB=x米,在直角△ABE中,根据三角函数,利用x表示出AE和BE的长,则在直角△BED中,利用勾股定理表示出BD的长,在直角△ABC中利用勾股定理表示出BC,根据BC=BD即可列方程求解.【解答】解:作BE⊥AD于点E,设AB=x米,在直角△ABE中,∠BAE=90°﹣∠DAH=90°﹣30°=60°,则AE=AB•cos∠BAE=xcos60°=x(米),BE=AB•sin∠BAE=xsin60°=x(米).则DE=AD﹣AE=12﹣x,在直角△BED中,BD2=BE2+DE2=(x)2+(12﹣x)2=144+x2﹣12x,在直角△ABC中,BC2=AC2+AB2=72+x2=49+x2.∵BC=BD,∴144+x2﹣12x=49+x2.解得x=≈7.9答:电线杆AB的高度约是7.9米.【点评】本题考查了解直角三角形的应用,坡度坡角问题,正确作出辅助线,利用AB的长表示抽BD和BC是关键.23.(12分)(2017•黄浦区一模)如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.【分析】(1)证出△ABD∽△ACB,得出对应角相等即可;(2)由相似三角形的性质得出对应边成比例求出AD=,BD=,得出BD=CD,由等腰三角形的性质得出∠DBC=∠ACB,证出∠ABD=∠BDC,再证明点B、E、D、F四点共圆,由圆周角定理得出,即可得出结论.【解答】(1)证明:∵AB是AD与AC的比例中项.∴,又∵∠A=∠A,∴△ABD∽△ACB,∴∠ACB=∠ABD;(2)证明:∵△ABD∽△ACB,∴,即,解得:AD=,BD=,∴CD=AC﹣AD=6﹣=,∴BD=CD,∴∠DBC=∠ACB,∵∠ACB=∠ABD,∴∠ABD=∠BDC,∵∠EDF=∠A+∠C,∠A+∠C=180°﹣∠ABC,∴∠EDF+∠ABC=180°,∴点B、E、D、F四点共圆,∴,∴DE=DF.【点评】本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、四点共圆、圆周角定理等知识;熟练掌握相似三角形的判定与性质,证明四点共圆是解决问题(2)的关键.24.(12分)(2017•黄浦区一模)平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC (顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.【分析】(1)利用待定系数法直接求出抛物线的解析式;(2)设出D,E坐标,根据平移,用k表示出平移后的抛物线解析式,利用坐标轴上点的特点得出m+n=16,mn=63﹣,进而利用相似三角形得出比例式建立方程即可求出k【解答】解:(1)∵抛物线过点A(1,0)、B(3,0),∴设抛物线的解析式为y=a(x﹣1)(x﹣3),∵C(4,6),∴6=a(4﹣1)(4﹣3),∴a=2,∴抛物线的解析式为y=2(x﹣1)(x﹣3)=2x2﹣8x+6;(2)如图,设点D(m,0),E(n,0),∵A(1,0),∴AD=m﹣1,AE=n﹣1由(1)知,抛物线的解析式为y=2x2﹣8x+6=2(x﹣2)2﹣2;∴将此抛物线先沿x轴方向向右平移6个单位,得到抛物线的解析式为y=2(x ﹣8)2﹣2;∴再沿y轴方向平移k个单位,得到的抛物线的解析式为y=2(x﹣8)2﹣2﹣k;令y=0,则2(x﹣8)2﹣2﹣k=0,∴2x2﹣32x+126﹣k=0,根据根与系数的关系得,∴m+n=16,mn=63﹣,∵A(1,0),C(4,6),∴AC2=(4﹣1)2+62=45,∵△ACD∽△AEC,∴,∴AC2=AD•AE,∴45=(m﹣1)(n﹣1)=mn﹣(m+n)+1,∴45=63﹣﹣16+1,∴k=6,即:k=6,向下平移6个单位.【点评】此题是二次函数综合题,主要考查了待定系数法,平移的性质,相似三角形的性质,根与系数的关系,解本题的关键是设出了点D,E的坐标,借助韦达定理直接求出k.25.(14分)(2017•黄浦区一模)如图,△ABC边AB上点D、E(不与点A、B 重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.【分析】(1)先根据∠ACB=90°,AC=3,BC=4,求得AB=5,sinA=,tanB=,再根据△ACD为直角三角形,求得AD,在Rt△CDE中,求得DE,最后根据BE=AB ﹣AD﹣DE进行计算即可;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,进而得出∠CED=∠CDE,再根据∠B=∠DCE,∠CDE=∠BDC,得到∠BCD=∠CED=∠CDE=∠BDC,最后求得AD的长;(3)先作CH⊥AB于H,Rt△ACH中,求得CH和AH的长,在Rt△CDH中,根据勾股定理得出:CD2=x2﹣x+9,再判定△BDC∽△CDE,得出CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),最后求得y关于x的函数解析式,并写出定义域.【解答】(1)在△ABC中,∠ACB=90°,AC=3,BC=4,∴AB=5,sinA=,tanB=,如图,当CD⊥AB时,△ACD为直角三角形,∴CD=AC•sinA=,∴AD==,又∵∠DCE=∠ABC,∴在Rt△CDE中,DE=CD•tan∠DCE=×=,∴BE=AB﹣AD﹣DE=5﹣﹣=;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,∴唯有∠CED=∠CDE,又∵∠B=∠DCE,∠CDE=∠BDC,∴∠BCD=∠CED=∠CDE=∠BDC,∴BD=BC=4,∴AD=5﹣4=1;(3)如图所示,作CH⊥AB于H,∵×BC×AC=AB×CH,∴CH=,∴Rt△ACH中,AH==,∴在Rt△CDH中,CD2=CH2+DH2=()2+(﹣x)2=x2﹣x+9,又∵∠CDE=∠BDC,∠DCE=∠B,∴△BDC∽△CDE,∴CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),解得<<.【点评】本题属于三角形综合题,主要考查了相似三角形的判定与性质,等腰三角形的性质,勾股定理以及解直角三角形的综合应用,解决问题的关键是中辅助线构造直角三角形,根据勾股定理以及面积法进行求解.参与本试卷答题和审题的老师有:sjzx;王学峰;zhjh;弯弯的小河;nhx600;HJJ;zcx;知足长乐;CJX;1987483819;gbl210;家有儿女;ZJX;三界无我;星期八;星月相随;szl(排名不分先后)菁优网2017年3月14日。
2017年上海市黄浦区高考数学一模试卷(解析版)
![2017年上海市黄浦区高考数学一模试卷(解析版)](https://img.taocdn.com/s3/m/801a9d70011ca300a6c39044.png)
2017年上海市黄浦区高考数学一模试卷一、填空题(本大题共有12题,满分54分.其中第1~6题每题满分54分,第7~12题每题满分54分)考生应在答题纸相应编号的空格内直接填写结果.[ 1.若集合A={x||x﹣1|<2,x∈R},则A∩Z=.2.抛物线y2=2x的准线方程是.3.若复数z满足(i为虚数单位),则z=.4.已知sin(α+)=,α∈(﹣,0),则tanα=.5.以点(2,﹣1)为圆心,且与直线x+y=7相切的圆的方程是.6.若二项式的展开式共有6项,则此展开式中含x4的项的系数是.7.已知向量(x,y∈R),,若x2+y2=1,则的最大值为.8.已知函数y=f(x)是奇函数,且当x≥0时,f(x)=log2(x+1).若函数y=g (x)是y=f(x)的反函数,则g(﹣3)=.9.在数列{a n}中,若对一切n∈N*都有a n=﹣3a n,且+1=,则a1的值为.10.甲、乙两人从6门课程中各选修3门.则甲、乙所选的课程中至多有1门相同的选法共有.11.已知点O,A,B,F分别为椭圆的中心、左顶点、上顶点、右焦点,过点F作OB的平行线,它与椭圆C在第一象限部分交于点P,若,则实数λ的值为.12.已知为常数),,且当x1,x2∈[1,4]时,总有f(x1)≤g(x2),则实数a的取值范围是.二、选择题(本大题共有4题,满分20分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.若x ∈R ,则“x >1”是“”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件14.关于直线l ,m 及平面α,β,下列命题中正确的是( )A .若l ∥α,α∩β=m ,则l ∥mB .若l ∥α,m ∥α,则l ∥mC .若l ⊥α,m ∥α,则l ⊥mD .若l ∥α,m ⊥l ,则m ⊥α15.在直角坐标平面内,点A ,B 的坐标分别为(﹣1,0),(1,0),则满足tan ∠PAB•tan ∠PBA=m (m 为非零常数)的点P 的轨迹方程是( )A .B .C .D .16.若函数y=f (x )在区间I 上是增函数,且函数在区间I 上是减函数,则称函数f (x )是区间I 上的“H 函数”.对于命题:①函数是(0,1)上的“H 函数”;②函数是(0,1)上的“H 函数”.下列判断正确的是( )A .①和②均为真命题B .①为真命题,②为假命题C .①为假命题,②为真命题D .①和②均为假命题 三、解答题(本大题共有5题,满分76分.)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.在三棱锥P ﹣ABC 中,底面ABC 是边长为6的正三角形,PA ⊥底面ABC ,且PB 与底面ABC 所成的角为.(1)求三棱锥P ﹣ABC 的体积;(2)若M 是BC 的中点,求异面直线PM 与AB 所成角的大小(结果用反三角函数值表示).18.已知双曲线C以F1(﹣2,0)、F2(2,0)为焦点,且过点P(7,12).(1)求双曲线C与其渐近线的方程;(2)若斜率为1的直线l与双曲线C相交于A,B两点,且(O为坐标原点).求直线l的方程.19.现有半径为R、圆心角(∠AOB)为90°的扇形材料,要裁剪出一个五边形工件OECDF,如图所示.其中E,F分别在OA,OB上,C,D在上,且OE=OF,EC=FD,∠ECD=∠CDF=90°.记∠COD=2θ,五边形OECDF的面积为S.(1)试求S关于θ的函数关系式;(2)求S的最大值.20.已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在实数t,使得f(t+2)=f(t)+f(2).(1)判断f(x)=3x+2是否属于集合M,并说明理由;(2)若属于集合M,求实数a的取值范围;(3)若f(x)=2x+bx2,求证:对任意实数b,都有f(x)∈M.21.已知数列{a n},{b n}满足b n=a n﹣a n(n=1,2,3,…).+1(1)若b n=10﹣n,求a16﹣a5的值;(2)若且a1=1,则数列{a2n+1}中第几项最小?请说明理由;(3)若c n=a n+2a n+1(n=1,2,3,…),求证:“数列{a n}为等差数列”的充分必要(n=1,2,3,…)”.条件是“数列{c n}为等差数列且b n≤b n+12017年上海市黄浦区高考数学一模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分.其中第1~6题每题满分54分,第7~12题每题满分54分)考生应在答题纸相应编号的空格内直接填写结果.[ 1.若集合A={x||x﹣1|<2,x∈R},则A∩Z={0,1,2} .【考点】交集及其运算.【分析】化简集合A,根据交集的定义写出A∩Z即可.【解答】解:集合A={x||x﹣1|<2,x∈R}={x|﹣2<x﹣1<2,x∈R}={x|﹣1<x<3,x∈R},则A∩Z={0,1,2}.故答案为{0,1,2}.2.抛物线y2=2x的准线方程是.【考点】抛物线的简单性质.【分析】先根据抛物线方程求得p,进而根据抛物线的性质,求得答案.【解答】解:抛物线y2=2x,∴p=1,∴准线方程是x=﹣故答案为:﹣3.若复数z满足(i为虚数单位),则z=1+2i.【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简得答案.【解答】解:由,得z=1+2i.故答案为:1+2i.4.已知sin(α+)=,α∈(﹣,0),则tanα=﹣2.【考点】运用诱导公式化简求值;同角三角函数间的基本关系.【分析】由α∈(﹣,0)sin(α+)=,利用诱导公式可求得cosα,从而可求得sinα与tanα.【解答】解:∵sin(α+)=cosα,sin(α+)=,∴cosα=,又α∈(﹣,0),∴sinα=﹣,∴tanα==﹣2.故答案为:﹣2.5.以点(2,﹣1)为圆心,且与直线x+y=7相切的圆的方程是(x﹣2)2+(y+1)2=18.【考点】圆的切线方程.【分析】由点到直线的距离求出半径,从而得到圆的方程.【解答】解:将直线x+y=7化为x+y﹣7=0,圆的半径r==3,所以圆的方程为(x﹣2)2+(y+1)2=18.故答案为(x﹣2)2+(y+1)2=18.6.若二项式的展开式共有6项,则此展开式中含x4的项的系数是10.【考点】二项式定理的应用.【分析】根据题意求得n=5,再在二项展开式的通项公式中,令x的幂指数等于4,求得r的值,可得展开式中含x4的项的系数.【解答】解:∵二项式的展开式共有6项,故n=5,=•(﹣1)r•x10﹣3r,令10﹣3r=4,∴r=2,则此展开式的通项公式为T r+1中含x4的项的系数=10,故答案为:10.7.已知向量(x,y∈R),,若x2+y2=1,则的最大值为+1.【考点】向量的模.【分析】利用≤+r即可得出.【解答】解:设O(0,0),P(1,2).=≤+r=+1=+1.∴的最大值为+1.故答案为:.8.已知函数y=f(x)是奇函数,且当x≥0时,f(x)=log2(x+1).若函数y=g (x)是y=f(x)的反函数,则g(﹣3)=﹣7.【考点】反函数.【分析】根据反函数与原函数的关系,可知反函数的定义域是原函数的值域,即可求解.【解答】解:∵反函数与原函数具有相同的奇偶性.∴g(﹣3)=﹣g(3),∵反函数的定义域是原函数的值域,∴log2(x+1)=3,解得:x=7,即g(3)=7,故得g(﹣3)=﹣7.故答案为:﹣7.9.在数列{a n}中,若对一切n∈N*都有a n=﹣3a n,且+1=,则a1的值为﹣12.【考点】数列的极限.【分析】由题意可得数列{a n}为公比为﹣的等比数列,运用数列极限的运算,解方程即可得到所求.【解答】解:在数列{a n}中,若对一切n∈N*都有a n=﹣3a n+1,可得数列{a n}为公比为﹣的等比数列,=,可得====,可得a1=﹣12.故答案为:﹣12.10.甲、乙两人从6门课程中各选修3门.则甲、乙所选的课程中至多有1门相同的选法共有200.【考点】排列、组合及简单计数问题.【分析】根据题意,甲、乙所选的课程中至多有1门相同,其包含两种情况:①甲乙所选的课程全不相同,②甲乙所选的课程有1门相同;分别计算每种情况下的选法数目,相加可得答案.【解答】解:根据题意,分两种情况讨论:①甲乙所选的课程全不相同,有C63×C33=20种情况,②甲乙所选的课程有1门相同,有C61×C52×C32=180种情况,则甲、乙所选的课程中至多有1门相同的选法共有180+20=200种情况;故答案为:200.11.已知点O,A,B,F分别为椭圆的中心、左顶点、上顶点、右焦点,过点F作OB的平行线,它与椭圆C在第一象限部分交于点P,若,则实数λ的值为.【考点】直线与椭圆的位置关系.【分析】由题意画出图形,求出的坐标,代入,结合隐含条件求得实数λ的值.【解答】解:如图,A(﹣a,0),B(0,b),F(c,0),则P(c,),∴,,由,得,即b=c,∴a2=b2+c2=2b2,.则.故答案为:.12.已知为常数),,且当x1,x2∈[1,4]时,总有f(x1)≤g(x2),则实数a的取值范围是.【考点】函数恒成立问题.【分析】依题意可知,当x1,x2∈[1,4]时,f(x1)max≤g(x2)min,利用对勾函数的单调性质可求g(x2)min=g(1)=3;再对f(x)=2ax2+2x中的二次项系数a分a=0、a>0、a<0三类讨论,利用函数的单调性质可求得f(x)在区间[1,4]上的最大值,解f(x)max≤3即可求得实数a的取值范围.【解答】解:依题意知,当x1,x2∈[1,4]时,f(x1)max≤g(x2)min,由“对勾'函数单调性知,=2x+=2(x+)在区间[1,4]上单调递增,∴g(x2)min=g(1)=3;∵=2ax2+2x,当a=0时,f(x)=2x在区间[1,4]上单调递增,∴f(x)max=f(4)=8≤3不成立,故a≠0;∴f(x)=2ax2+2x为二次函数,其对称轴方程为:x=﹣,当a>0时,f(x)在区间[1,4]上单调递增,f(x)max=f(4)=8≤3不成立,故a>0不成立;当a<0时,1°若﹣≤1,即a≤﹣时,f(x)在区间[1,4]上单调递减,f(x)max=f(1)=2a+2≤3恒成立,即a≤﹣时满足题意;2°若1<﹣<4,即﹣<a<﹣时,f(x)max=f(﹣)=﹣≤3,解得:﹣<a≤﹣;3°若﹣≥4,即﹣≤a<0时,f(x)在区间[1,4]上单调递增,f(x)max=f(4)=32a+8≤3,解得a≤﹣∉(﹣,0),故不成立,综合1°2°3°知,实数a的取值范围是:(﹣∞,﹣].故答案为:.二、选择题(本大题共有4题,满分20分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.若x∈R,则“x>1”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分也非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义判断即可.【解答】解:由x>1,一定能得到得到<1,但当<1时,不能推出x>1 (如x=﹣1时),故x>1是<1 的充分不必要条件,故选:A.14.关于直线l,m及平面α,β,下列命题中正确的是()A.若l∥α,α∩β=m,则l∥m B.若l∥α,m∥α,则l∥mC.若l⊥α,m∥α,则l⊥m D.若l∥α,m⊥l,则m⊥α【考点】空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系.【分析】在A中,l与m平行或异面;在B中,l与m相交、平行或异面;在C 中,由线面垂直的性质定理得l⊥m;在D中,m与α相交、平行或m⊂α.【解答】解:由直线l,m及平面α,β,知:在A中,若l∥α,α∩β=m,则l与m平行或异面,故A错误;在B中,若l∥α,m∥α,则l与m相交、平行或异面,故B错误;在C中,若l⊥α,m∥α,则由线面垂直的性质定理得l⊥m,故C正确;在D中,若l∥α,m⊥l,则m与α相交、平行或m⊂α,故D错误.故选:C.15.在直角坐标平面内,点A,B的坐标分别为(﹣1,0),(1,0),则满足tan ∠PAB•tan∠PBA=m(m为非零常数)的点P的轨迹方程是()A.B.C.D.【考点】轨迹方程.【分析】设P(x,y),则由题意,(m≠0),化简可得结论.【解答】解:设P(x,y),则由题意,(m≠0),化简可得,故选C.16.若函数y=f(x)在区间I上是增函数,且函数在区间I上是减函数,则称函数f(x)是区间I上的“H函数”.对于命题:①函数是(0,1)上的“H函数”;②函数是(0,1)上的“H函数”.下列判断正确的是()A.①和②均为真命题B.①为真命题,②为假命题C.①为假命题,②为真命题D.①和②均为假命题【考点】命题的真假判断与应用.【分析】对函数,G(x)=在(0,1)上的单调性进行判断,得命题①是真命题.对函数=,H(x)=在(0,1)上单调性进行判断,得命题②是假命题.【解答】解:对于命题①:令t=,函数=﹣t2+2t,∵t=在(0,1)上是增函数,函数y=﹣t2+2t在(0,1)上是增函数,∴在(0,1)上是增函数;G(x)=在(0,1)上是减函数,∴函数是(0,1)上的“H函数“,故命题①是真命题.对于命题②,函数=是(0,1)上的增函数,H(x)=是(0,1)上的增函数,故命题②是假命题;故选:B.三、解答题(本大题共有5题,满分76分.)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.在三棱锥P﹣ABC中,底面ABC是边长为6的正三角形,PA⊥底面ABC,且PB与底面ABC所成的角为.(1)求三棱锥P﹣ABC的体积;(2)若M是BC的中点,求异面直线PM与AB所成角的大小(结果用反三角函数值表示).【考点】棱柱、棱锥、棱台的体积;异面直线及其所成的角.【分析】(1)在Rt△PAB中计算PA,再代入棱锥的体积公式计算;(2)取棱AC的中点N,连接MN,NP,分别求出△PMN的三边长,利用余弦定理计算cos∠PMN即可.【解答】解:(1)∵PA⊥平面ABC,∴∠PBA为PB与平面ABC所成的角,即,∵PA⊥平面ABC,∴PA⊥AB,又AB=6,∴,∴.(2)取棱AC的中点N,连接MN,NP,∵M,N分别是棱BC,AC的中点,∴MN∥BA,∴∠PMN为异面直线PM与AB所成的角.∵PA⊥平面ABC,所以PA⊥AM,PA⊥AN,又,AN=AC=3,BM=BC=3,∴AM==3,,,所以,故异面直线PM与AB所成的角为.18.已知双曲线C以F1(﹣2,0)、F2(2,0)为焦点,且过点P(7,12).(1)求双曲线C与其渐近线的方程;(2)若斜率为1的直线l与双曲线C相交于A,B两点,且(O为坐标原点).求直线l的方程.【考点】直线与双曲线的位置关系;双曲线的标准方程.【分析】(1)设出双曲线C方程,利用已知条件求出c,a,解得b,即可求出双曲线方程与渐近线的方程;(2)设直线l的方程为y=x+t,将其代入方程,通过△>0,求出t的范围,设A(x1,y1),B(x2,y2),利用韦达定理,通过x1x2+y1y2=0,求解t即可得到直线方程.【解答】解:(1)设双曲线C的方程为,半焦距为c,则c=2,,a=1,…所以b2=c2﹣a2=3,故双曲线C的方程为.…双曲线C的渐近线方程为.…(2)设直线l的方程为y=x+t,将其代入方程,可得2x2﹣2tx﹣t2﹣3=0(*)…△=4t2+8(t2+3)=12t2+24>0,若设A(x1,y1),B(x2,y2),则x1,x2是方程(*)的两个根,所以,又由,可知x1x2+y1y2=0,…即x1x2+(x1+t)(x2+t)=0,可得,故﹣(t2+3)+t2+t2=0,解得,所以直线l方程为.…19.现有半径为R、圆心角(∠AOB)为90°的扇形材料,要裁剪出一个五边形工件OECDF,如图所示.其中E,F分别在OA,OB上,C,D在上,且OE=OF,EC=FD,∠ECD=∠CDF=90°.记∠COD=2θ,五边形OECDF的面积为S.(1)试求S关于θ的函数关系式;(2)求S的最大值.【考点】函数模型的选择与应用.【分析】(1)设M是CD中点,连OM,推出∠COM=∠DOM=,MD=Rsinθ,利用△CEO≌△DFO,转化求解∠DFO=,在△DFO中,利用正弦定理+S ODF+S OCE=S△COD+2S ODF的解析式即可.,求解S=S△COD(2)利用S的解析式,通过三角函数的最值求解即可.【解答】解:(1)设M是CD中点,连OM,由OC=OD,可知OM⊥CD,∠COM=∠DOM=,,MD=Rsinθ,又OE=OF,EC=FD,OC=OD,可得△CEO≌△DFO,故∠EOC=∠DOF,可知,…又DF⊥CD,OM⊥CD,所以MO∥DF,故∠DFO=,在△DFO中,有,可得…所以S=S+S ODF+S OCE=S△COD+2S ODF=△COD=…(2)…=(其中)…当,即时,sin(2θ+φ)取最大值1.又,所以S的最大值为.…20.已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在实数t,使得f(t+2)=f(t)+f(2).(1)判断f(x)=3x+2是否属于集合M,并说明理由;(2)若属于集合M,求实数a的取值范围;(3)若f(x)=2x+bx2,求证:对任意实数b,都有f(x)∈M.【考点】抽象函数及其应用.【分析】(1)利用f(x)=3x+2,通过f(t+2)=f(t)+f(2)推出方程无解,说明f(x)=3x+2不属于集合M.(2)由属于集合M,推出有实解,即(a﹣6)x2+4ax+6(a﹣2)=0有实解,若a=6时,若a≠6时,利用判断式求解即可.(3)当f(x)=2x+bx2时,方程f(x+2)=f(x)+f(2)⇔3×2x+4bx﹣4=0,令g (x)=3×2x+4bx﹣4,则g(x)在R上的图象是连续的,当b≥0时,当b<0时,判断函数是否有零点,证明对任意实数b,都有f(x)∈M.【解答】解:(1)当f(x)=3x+2时,方程f(t+2)=f(t)+f(2)⇔3t+8=3t+10…此方程无解,所以不存在实数t,使得f(t+2)=f(t)+f(2),故f(x)=3x+2不属于集合M.…(2)由属于集合M,可得方程有实解⇔a[(x+2)2+2]=6(x2+2)有实解⇔(a ﹣6)x2+4ax+6(a﹣2)=0有实解,…若a=6时,上述方程有实解;若a≠6时,有△=16a2﹣24(a﹣6)(a﹣2)≥0,解得,故所求a的取值范围是.…(3)当f(x)=2x+bx2时,方程f(x+2)=f(x)+f(2)⇔2x+2+b(x+2)2=2x+bx2+4+4b ⇔3×2x+4bx﹣4=0,…令g(x)=3×2x+4bx﹣4,则g(x)在R上的图象是连续的,当b≥0时,g(0)=﹣1<0,g(1)=2+4b>0,故g(x)在(0,1)内至少有一个零点;当b<0时,g(0)=﹣1<0,,故g(x)在内至少有一个零点;故对任意的实数b,g(x)在R上都有零点,即方程f(x+2)=f(x)+f(2)总有解,所以对任意实数b,都有f(x)∈M.…21.已知数列{a n},{b n}满足b n=a n+1﹣a n(n=1,2,3,…).(1)若b n=10﹣n,求a16﹣a5的值;(2)若且a1=1,则数列{a2n+1}中第几项最小?请说明理由;(3)若c n=a n+2a n+1(n=1,2,3,…),求证:“数列{a n}为等差数列”的充分必要条件是“数列{c n}为等差数列且b n≤b n+1(n=1,2,3,…)”.【考点】数列与函数的综合;数列的应用;数列递推式.【分析】(1)判断{b n}是等差数列.然后化简a16﹣a5=(a16﹣a15)+(a15﹣a14)+(a14﹣a13)+…+(a6﹣a5)利用等差数列的性质求和即可.(2)利用a2n+3﹣a2n+1=22n+1﹣231﹣2n,判断a2n+3<a2n+1,求出n<7.5,a2n+3>a2n+1求出n>7.5,带带数列{a2n+1}中a17最小,即第8项最小..法二:化简,求出a2n+1=a1+b1+b2+b3+…+b2n=,利用基本不等式求出最小值得到数列{a2n+1}中的第8项最小.(3)若数列{a n}为等差数列,设其公差为d,说明数列{c n}为等差数列.由b n=a n+1﹣a n=d(n=1,2,3,…),推出b n≤b n+1,若数列{c n}为等差数列且b n≤b n+1(n=1,2,3,…),设{c n}的公差为D,转化推出b n+1=b n(n=1,2,3,…),说明数列{a n}为等差数列.得到结果.【解答】解:(1)由b n=10﹣n,可得b n+1﹣b n=(9﹣n)﹣(10﹣n)=﹣1,故{b n}是等差数列.所以a16﹣a5=(a16﹣a15)+(a15﹣a14)+(a14﹣a13)+…+(a6﹣a5)=…(2)a2n+3﹣a2n+1=(a2n+3﹣a2n+2)+(a2n+2﹣a2n+1)=b2n+2+b2n+1=(22n+2+231﹣2n)﹣(22n+1+232﹣2n)=22n+1﹣231﹣2n…由a2n+3<a2n+1⇔22n+1﹣231﹣2n<0⇔n<7.5,a2n+3>a2n+1⇔22n+1﹣231﹣2n>0⇔n>7.5,…故有a3>a5>a7>…>a15>a17<a19<a20<…,所以数列{a2n+1}中a17最小,即第8项最小.…法二:由,…可知a2n+1=a1+b1+b2+b3+…+b2n==…(当且仅当22n+1=233﹣2n,即n=8时取等号)所以数列{a2n+1}中的第8项最小.…(3)若数列{a n}为等差数列,设其公差为d,则c n+1﹣c n=(a n+1﹣a n)+2(a n+2﹣a n+1)=d+2d=3d为常数,所以数列{c n}为等差数列.…由b n=a n+1﹣a n=d(n=1,2,3,…),可知b n≤b n+1(n=1,2,3,…).…若数列{c n}为等差数列且b n≤b n+1(n=1,2,3,…),设{c n}的公差为D,则c n+1﹣c n=(a n+1﹣a n)+2(a n+2﹣a n+1)=b n+2b n+1=D(n=1,2,3,…),…又b n+1+2b n+2=D,故(b n+1﹣b n)+2(b n+2﹣b n+1)=D﹣D=0,又b n+1﹣b n≥0,b n+2﹣b n+1≥0,故b n+1﹣b n=b n+2﹣b n+1=0(n=1,2,3,…),…所以b n+1=b n(n=1,2,3,…),故有b n=b1,所以a n+1﹣a n=b1为常数.故数列{a n}为等差数列.综上可得,“数列{a n}为等差数列”的充分必要条件是“数列{c n}为等差数列且b n ≤b n+1(n=1,2,3,…)”.…2017年2月18日。
2017上海各区数学一模 24、25汇总 - 解析
![2017上海各区数学一模 24、25汇总 - 解析](https://img.taocdn.com/s3/m/1d2118e0ff00bed5b8f31df1.png)
2017年上海市一模压轴题 解析一、(2017徐汇一模)24. 解:(1)∵抛物线32++-=bx x y 与y 轴交于点C ,∴)3,0(C ;又抛物线32++-=bx x y 与x 轴交于点A 和点B (点A 在点B 的左侧),∵OC OB =;∴)0,3(B ;∴0339=++-b ,解得2=b ;∴322++-=x x y ;∴)4,1(D .(2)∵OC OB =,∴︒=∠=∠45OBC OCB ; ∵)3,0(C ,)4,1(D ,∴︒=∠45DCy ;∴︒=︒⨯-︒=∠90452180DCB ;∴3223cot ===∠DC BC DBC . (3)由322++-=x x y ,可得)0,1(-A .在AOC ∆和BCD ∆中,3==CDBCAO CO , ︒=∠=∠90DCB AOC ,∴AOC ∆∽BCD ∆,∴CBD ACO ∠=∠; 又CBD E OCB ACO ACB ∠+∠=∠+∠=∠,∴︒=∠=∠45OCB E ; 当EBM ∆和ABC ∆相似时,已可知CBA E ∠=∠;又点M 在线段CA 延长线上,EBA ACB ∠=∠,∴可得ACB EMB ∠=∠; ∴23==BC MB ;由题意,得直线AC 的表达式为33+=x y ;设)33,(+x x M . ∴18)33()3(22=++-x x ,解得561-=x ,02=x (舍去);∴点M 的坐标是)53,56(--. 25.(本题满分14分)解:(1)过点D 作AC DF //.交BP 于点F .∴21==QE DQ PE DF ;又BC DE //,∴1==ABAC BD EC ; ∴x BD EC ==;y x PE --=3;QPDBAC E F∵AC DF //,∴AB BD AP DF =;即323xy y x =--,∴3239+-=x x y ;定义域为:30<<x .(2)∵BC DE //,∴PEQ ∆∽PBC ∆;∴当PEQ ∆是等腰三角形时,PBC ∆也是等腰三角形;︒1当BC PB =时,ABC ∆∽PBC ∆;∴AC CP BC ⋅=2;即)3(34y -=,解得35=y ,∴353239=+-x x ,解得1912==x BD ; ︒2当2==BC PC 时,1==y AP ;∴13239=+-x x ,56==x BD ;︒3当PB PC =时,点P 与点A 重合,不合题意.(3)∵BC DE //,∴︒=∠+∠180CBD BDQ ;又CQB ∠和CBD ∠互补,∴︒=∠+∠180CBD CQB ;∴BDQ CQB ∠=∠;∵CE BD =,∴四边形BCED 是等腰梯形;∴CED BDE ∠=∠;∴CED CQB ∠=∠; 又CED ECQ CQB DQB ∠+∠=∠+∠,∴ECQ DQB ∠=∠;∴BDQ ∆∽QEC ∆;∴EC DQ QE BD =:即222x DQ =,∴2x DQ =,23x DE =; ∵BC DE //,∴AB AD BC DE =;即33223x x -=; 解得 7324254-=x .二、(2017黄埔一模) 24.(本题满分12分)解:(1)令抛物线的表达式为c bx ax y ++=2,由题意得:⎪⎩⎪⎨⎧=++=++=++64160390c b a c b a c b a ,解得:⎪⎩⎪⎨⎧=-==682c b a ,所以抛物线的表达式为6822+-=x x y . (2)由(1)得平移前抛物线的对称轴为直线x =2,顶点为()2,2-.则平移后抛物线的对称轴为直线x =8,令()0,8a D -,其中0>a ,则()0,8a E +。
2017年上海市高考数学模拟试卷 Word版含解析
![2017年上海市高考数学模拟试卷 Word版含解析](https://img.taocdn.com/s3/m/74601f651711cc7931b71697.png)
2017年上海市高考数学模拟试卷一、填空题(本大题满分54分,1-6每小题4分,7-12每小题4分)1.计算:=.2.设函数f(x)=的反函数是f﹣1(x),则f﹣1(4)=.3.已知复数(i为虚数单位),则|z|=.4.函数,若存在锐角θ满足f(θ)=2,则θ=.5.已知球的半径为R,若球面上两点A,B的球面距离为,则这两点A,B 间的距离为.6.若(2+x)n的二项展开式中,所有二项式的系数和为256,则正整数n=.7.设k为常数,且,则用k表示sin2α的式子为sin2α=.8.设椭圆的两个焦点为F1,F2,M是椭圆上任一动点,则的取值范围为.9.在△ABC中,内角A,B,C的对边分别是a,b,c,若,sinC=2 sinB,则A角大小为.10.设f(x)=lgx,若f(1﹣a)﹣f(a)>0,则实数a的取值范围为.11.已知数列{a n}满足:a1=1,a n+a n=()n,n∈N*,则=.+112.已知△ABC的面积为360,点P是三角形所在平面内一点,且,则△PAB的面积为.二、选择题(本大题满分20分)13.已知集合A={x|x>﹣1},则下列选项正确的是()A.0⊆A B.{0}⊆A C.∅∈A D.{0}∈A14.设x,y∈R,则“|x|+|y|>1”的一个充分条件是()A.|x|≥1 B.|x+y|≥1 C.y≤﹣2 D.且15.图中曲线的方程可以是()A.(x+y﹣1)•(x2+y2﹣1)=0 B.C.D.16.已知非空集合M满足:对任意x∈M,总有x2∉M且,若M⊆{0,1,2,3,4,5},则满足条件M的个数是()A.11 B.12 C.15 D.16三、解答题(本大题满分76分)17.已知A是圆锥的顶点,BD是圆锥底面的直径,C是底面圆周上一点,BD=2,BC=1,AC与底面所成角的大小为,过点A作截面ABC,ACD,截去部分后的几何体如图所示.(1)求原来圆锥的侧面积;(2)求该几何体的体积.18.已知双曲线Γ:(a>0,b>0),直线l:x+y﹣2=0,F1,F2为双曲线Γ的两个焦点,l与双曲线Γ的一条渐近线平行且过其中一个焦点.(1)求双曲线Γ的方程;(2)设Γ与l的交点为P,求∠F1PF2的角平分线所在直线的方程.19.某租车公司给出的财务报表如下:1014年(1﹣121015年(1﹣121016年(1﹣11月)月)月)接单量(单)144632724012512550331996油费(元)214301962591305364653214963平均每单油费t(元)14.8214.49平均每单里程k(公里)1515每公里油耗a(元)0.70.70.7有投资者在研究上述报表时,发现租车公司有空驶情况,并给出空驶率的计算公式为.(1)分别计算2014,2015年该公司的空驶率的值(精确到0.01%);(2)2016年该公司加强了流程管理,利用租车软件,降低了空驶率并提高了平均每单里程,核算截止到11月30日,空驶率在2015年的基础上降低了20个百分点,问2016年前11个月的平均每单油费和平均每单里程分别为多少?(分别精确到0.01元和0.01公里)20.已知数列{a n},{b n}与函数f(x),{a n}是首项a1=15,公差d≠0的等差数列,{b n}满足:b n=f(a n).(1)若a4,a7,a8成等比数列,求d的值;(2)若d=2,f(x)=|x﹣21|,求{b n}的前n项和S n;(3)若d=﹣1,f(x)=e x,T n=b1•b2•b3…b n,问n为何值时,T n的值最大?21.对于函数f(x),若存在实数m,使得f(x+m)﹣f(m)为R上的奇函数,则称f(x)是位差值为m的“位差奇函数”.(1)判断函数f(x)=2x+1和g(x)=2x是否为位差奇函数?说明理由;(2)若f(x)=sin(x+φ)是位差值为的位差奇函数,求φ的值;(3)若f(x)=x3+bx2+cx对任意属于区间中的m都不是位差奇函数,求实数b,c满足的条件.2017年上海市高考数学模拟试卷参考答案与试题解析一、填空题(本大题满分54分,1-6每小题4分,7-12每小题4分)1.计算:=﹣2.【考点】二阶矩阵.【分析】利用二阶行列式对角线法则直接求解.【解答】解:=4×1﹣3×2=﹣2.故答案为:﹣2.2.设函数f(x)=的反函数是f﹣1(x),则f﹣1(4)=16.【考点】反函数.【分析】先求出x=y2,y≥0,互换x,y,得f﹣1(x)=x2,x≥0,由此能求出f﹣1(4).【解答】解:∵函数f(x)=y=的反函数是f﹣1(x),∴x=y2,y≥0,互换x,y,得f﹣1(x)=x2,x≥0,∴f﹣1(4)=42=16.故答案为:16.3.已知复数(i为虚数单位),则|z|=2.【考点】复数代数形式的乘除运算.【分析】利用复数模的计算公式即可得出.【解答】解:复数(i为虚数单位),则|z|==2.故答案为:2、4.函数,若存在锐角θ满足f(θ)=2,则θ=.【考点】三角函数的化简求值.【分析】运用两角和的正弦公式和特殊角的正弦函数值,计算即可得到所求值.【解答】解:函数=2(sinx+cosx)=2sin(x+),由若存在锐角θ满足f(θ)=2,即有2sin(θ+)=2,解得θ=﹣=.故答案为:.5.已知球的半径为R,若球面上两点A,B的球面距离为,则这两点A,B 间的距离为R.【考点】球面距离及相关计算.【分析】两点A、B间的球面距离为,可得∠AOB=,即可求出两点A,B 间的距离.【解答】解:两点A、B间的球面距离为,∴∠AOB=.∴两点A,B间的距离为R,故答案为:R.6.若(2+x)n的二项展开式中,所有二项式的系数和为256,则正整数n=8.【考点】二项式系数的性质.【分析】由题意可得:2n=256,解得n.【解答】解:由题意可得:2n=256,解得n=8.故答案为:8.7.设k为常数,且,则用k表示sin2α的式子为sin2α=2k2﹣1.【考点】二倍角的正弦.【分析】利用两角差的余弦函数公式化简已知等式,进而两边平方利用二倍角的正弦函数公式,同角三角函数基本关系式即可求解.【解答】解:∵,∴(cosα+sinα)=k,可得:cosα+sinα=k,∴两边平方可得:cos2α+sin2α+2cosαsinα=2k2,可得:1+sin2α=2k2,∴sin2α=2k2﹣1.故答案为:sin2α=2k2﹣1.8.设椭圆的两个焦点为F1,F2,M是椭圆上任一动点,则的取值范围为[﹣2,1] .【考点】椭圆的简单性质.【分析】由题意可知:焦点坐标为F1(﹣,0),F2(,0),设点M坐标为M(x,y),可得y2=1﹣,=(﹣﹣x,﹣y)•(﹣x,﹣y)=x2﹣3+1﹣=﹣2,则x2∈[0,4],的取值范围为[﹣2,1].【解答】解:如下图所示,在直角坐标系中作出椭圆:由椭圆,a=2,b=1,c=,则焦点坐标为F1(﹣,0),F2(,0),设点M坐标为M(x,y),由,可得y2=1﹣;=(﹣﹣x,﹣y),﹣=(﹣x,﹣y);=(﹣﹣x,﹣y)•(﹣x,﹣y)=x2﹣3+1﹣=﹣2,由题意可知:x∈[﹣2,2],则x2∈[0,4],∴的取值范围为[﹣2,1].故答案为:[﹣2,1].9.在△ABC中,内角A,B,C的对边分别是a,b,c,若,sinC=2 sinB,则A角大小为.【考点】余弦定理;同角三角函数基本关系的运用.【分析】先利用正弦定理化简sinC=2sinB,得到c与b的关系式,代入中得到a2与b2的关系式,然后利用余弦定理表示出cosA,把表示出的关系式分别代入即可求出cosA的值,根据A的范围,利用特殊角的三角函数值即可求出A的值.【解答】解:由sinC=2sinB得:c=2b,所以=•2b2,即a2=7b2,则cosA===,又A∈(0,π),所以A=.故答案为:10.设f(x)=lgx,若f(1﹣a)﹣f(a)>0,则实数a的取值范围为.【考点】对数函数的图象与性质.【分析】由题意,f(x)=lgx在(0,+∞)上单调递增,利用f(﹣a)﹣f(a)>0,可得﹣a>a>0,即可求出实数a的取值范围.【解答】解:由题意,f(x)=lgx在(0,+∞)上单调递增,∵f(1﹣a)﹣f(a)>0,∴1﹣a>a>0,∴a∈,故答案为11.已知数列{a n}满足:a1=1,a n+a n=()n,n∈N*,则=﹣.+1【考点】极限及其运算.【分析】由已知推导出S2n=(1﹣),S2n﹣1=1+,从而a2n=S2n =﹣[1+(1﹣)],由此能求出.﹣S2n﹣1【解答】解:∵数列{a n}满足:a1=1,,n∈N*,∴(a1+a2)+(a3+a4)+…+(a2n﹣1+a2n)===(1﹣)=(1﹣),∴S2n=(1﹣),a1+(a2+a3)+(a4+a5)+…+(a2n+a2n﹣1)﹣2=1+=1+=1+,=1+,∴S2n﹣1∴a2n=S2n﹣S2n﹣1=﹣[1+(1﹣)],∴=﹣[1+(1﹣)]==﹣.故答案为:.12.已知△ABC的面积为360,点P是三角形所在平面内一点,且,则△PAB的面积为90.【考点】平面向量的基本定理及其意义.【分析】取AB的中点D,AC的中点E,则P为DE的中点,利用相似比,可得结论.【解答】解:取AB的中点D,AC的中点E,则P为DE的中点,∵△ABC的面积为360,∴△PAB的面积=△ADE的面积==90.故答案为90.二、选择题(本大题满分20分)13.已知集合A={x|x>﹣1},则下列选项正确的是()A.0⊆A B.{0}⊆A C.∅∈A D.{0}∈A【考点】元素与集合关系的判断.【分析】根据元素与集合的关系,用∈,集合与集合的关系,用⊆,可得结论.【解答】解:根据元素与集合的关系,用∈,集合与集合的关系,用⊆,可知B 正确.故选B.14.设x,y∈R,则“|x|+|y|>1”的一个充分条件是()A.|x|≥1 B.|x+y|≥1 C.y≤﹣2 D.且【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义进行判断即可.【解答】解:A.当x=1,y=0时,满足|x|≥1时,但|x|+|y|=1>1不成立,不满足条件.B.当x=1,y=0时,满足|x+y|≥1时,但|x|+|y|=1>1不成立,不满足条件.C.当y≤﹣2时,|y|≥2,则|x|+|y|>1成立,即充分性成立,满足条件.D.当且,则|x|+|y|≥1,等取等号时,不等式不成立,即充分性不成立,不满足条件.故选:C.15.图中曲线的方程可以是()A.(x+y﹣1)•(x2+y2﹣1)=0 B.C.D.【考点】曲线与方程.【分析】由图象可知曲线的方程可以是x2+y2=1或x+y﹣1=0(x2+y2≥1),即可得出结论.【解答】解:由图象可知曲线的方程可以是x2+y2=1或x+y﹣1=0(x2+y2≥1),故选C.16.已知非空集合M满足:对任意x∈M,总有x2∉M且,若M⊆{0,1,2,3,4,5},则满足条件M的个数是()A.11 B.12 C.15 D.16【考点】集合的包含关系判断及应用.【分析】由题意M是集合{2,3,4,5}的非空子集,且2,4不同时出现,同时出现有4个,即可得出结论.【解答】解:由题意M是集合{2,3,4,5}的非空子集,有15个,且2,4不同时出现,同时出现有4个,故满足题意的M有11个,故选:A.三、解答题(本大题满分76分)17.已知A是圆锥的顶点,BD是圆锥底面的直径,C是底面圆周上一点,BD=2,BC=1,AC与底面所成角的大小为,过点A作截面ABC,ACD,截去部分后的几何体如图所示.(1)求原来圆锥的侧面积;(2)求该几何体的体积.【考点】棱柱、棱锥、棱台的体积;棱柱、棱锥、棱台的侧面积和表面积. 【分析】(1)设BD 的中点为O ,连结OA ,OC ,则OA ⊥平面BCD .由经能求出S 圆锥侧.(2)该几何体的体积V=(S △BCD +S 半圆)•AO ,由此能求出结果. 【解答】解:(1)设BD 的中点为O ,连结OA ,OC , ∵A 是圆锥的顶点,BD 是圆锥底面的直径, ∴OA ⊥平面BCD .∵BD=2,BC=1,AC 与底面所成角的大小为,过点A 作截面ABC ,ACD ,∴在Rt △AOC 中,OC=1,,AC=2,AO=,∴S 圆锥侧=πrl==2π.(2)该几何体为三棱锥与半个圆锥的组合体, ∵AO=,∠BCD=90°,∴CD=,该几何体的体积V=(S △BCD +S 半圆)•AO ==.18.已知双曲线Γ:(a>0,b>0),直线l:x+y﹣2=0,F1,F2为双曲线Γ的两个焦点,l与双曲线Γ的一条渐近线平行且过其中一个焦点.(1)求双曲线Γ的方程;(2)设Γ与l的交点为P,求∠F1PF2的角平分线所在直线的方程.【考点】双曲线的简单性质.【分析】(1)依题意,双曲线的渐近线方程为y=±x,焦点坐标为F1(﹣2,0),F2(2,0),即可求双曲线Γ的方程;(2)设Γ与l的交点为P,求出P的坐标,利用夹角公式,即可求∠F1PF2的角平分线所在直线的方程.【解答】解:(1)依题意,双曲线的渐近线方程为y=±x,焦点坐标为F1(﹣2,0),F2(2,0),∴双曲线方程为x2﹣y2=2;(2),显然∠F1PF2的角平分线所在直线斜率k存在,且k>0,,,于是.∴为所求.19.某租车公司给出的财务报表如下:1014年(1﹣12月)1015年(1﹣12月)1016年(1﹣11月)接单量(单)144632724012512550331996油费(元)214301962591305364653214963平均每单油费t(元)14.8214.49平均每单里程k(公里)1515每公里油耗a(元)0.70.70.7有投资者在研究上述报表时,发现租车公司有空驶情况,并给出空驶率的计算公式为.(1)分别计算2014,2015年该公司的空驶率的值(精确到0.01%);(2)2016年该公司加强了流程管理,利用租车软件,降低了空驶率并提高了平均每单里程,核算截止到11月30日,空驶率在2015年的基础上降低了20个百分点,问2016年前11个月的平均每单油费和平均每单里程分别为多少?(分别精确到0.01元和0.01公里)【考点】函数模型的选择与应用.【分析】(1)根据空驶率的计算公式为,带入计算即可;(2)根据T2016的值,求出k的值,从而求出2016年前11个月的平均每单油费和平均每单里程.【解答】解:(1),,∴2014、2015年,该公司空驶率分别为41.14%和38.00%.(2),T2016=38%﹣20%=18%.由,∴2016年前11个月的平均每单油费为12.98元,平均每单里程为15.71km.20.已知数列{a n},{b n}与函数f(x),{a n}是首项a1=15,公差d≠0的等差数列,{b n}满足:b n=f(a n).(1)若a4,a7,a8成等比数列,求d的值;(2)若d=2,f(x)=|x﹣21|,求{b n}的前n项和S n;(3)若d=﹣1,f(x)=e x,T n=b1•b2•b3…b n,问n为何值时,T n的值最大?【考点】数列的求和;数列递推式.【分析】(1)由a4,a7,a8成等比数列,可得=a4•a8,可得(15+6d)2=(15+3d)(15+7d),化简解出即可得出..(2)依题意,a n=15+2(n﹣1)=2n+13,b n=|2n﹣8|,对n分类讨论,利用等差数列的求和公式即可得出.(3)依题意,a n=15﹣(n﹣1)=16﹣n,,利用指数运算性质、等差数列的求和公式及其二次函数的单调性即可得出.【解答】解:(1)∵a4,a7,a8成等比数列,∴=a4•a8,∴(15+6d)2=(15+3d)(15+7d),化为:d2+2d=0,∵d≠0,∴d=﹣2.(2)依题意,a n=15+2(n﹣1)=2n+13,b n=|2n﹣8|,∴,∴.(3)依题意,a n=15﹣(n﹣1)=16﹣n,,,∴当n=15或16时,T n最大.21.对于函数f(x),若存在实数m,使得f(x+m)﹣f(m)为R上的奇函数,则称f(x)是位差值为m的“位差奇函数”.(1)判断函数f(x)=2x+1和g(x)=2x是否为位差奇函数?说明理由;(2)若f(x)=sin(x+φ)是位差值为的位差奇函数,求φ的值;(3)若f(x)=x3+bx2+cx对任意属于区间中的m都不是位差奇函数,求实数b,c满足的条件.【考点】抽象函数及其应用;函数奇偶性的性质.【分析】(1)根据“位差奇函数”的定义.考查h(x)=g(x+m)﹣g(m)=2x+m ﹣2m=2m(2x﹣1)即可,(2)依题意,是奇函数,求出φ;(3)记h(x)=f(x+m)﹣f(m)=(x+m)3+b(x+m)2+c(x+m)﹣m3﹣bm2﹣cm=x3+(3m+b)x2+(3m2+2bm+c)x.假设h(x)是奇函数,则3m+b=0,此时.故要使h(x)不是奇函数,必须且只需.【解答】解:(1)对于f(x)=2x+1,f(x+m)﹣f(m)=2(x+m)+1﹣(2m+1)=2x,∴对任意实数m,f(x+m)﹣f(m)是奇函数,即f(x)是位差值为任意实数m的“位差奇函数”;对于g(x)=2x,记h(x)=g(x+m)﹣g(m)=2x+m﹣2m=2m(2x﹣1),由h(x)+h(﹣x)=2m(2x﹣1)+2m(2﹣x﹣1)=0,当且仅当x=0等式成立,∴对任意实数m,g(x+m)﹣g(m)都不是奇函数,则g(x)不是“位差奇函数”;(2)依题意,是奇函数,∴(k∈Z).(3)记h(x)=f(x+m)﹣f(m)=(x+m)3+b(x+m)2+c(x+m)﹣m3﹣bm2﹣cm=x3+(3m+b)x2+(3m2+2bm+c)x.依题意,h(x)对任意都不是奇函数,若h(x)是奇函数,则3m+b=0,此时.故要使h(x)不是奇函数,必须且只需,且c∈R.2017年2月1日。
2017年上海高三数学一模客观压轴题解析(上)
![2017年上海高三数学一模客观压轴题解析(上)](https://img.taocdn.com/s3/m/8bb7323a5901020207409c89.png)
ymax
a a, 2 1 2 a a 1, 1 1 2 4 a a, 2 1
a 1 1 a a 1 1 2 或 2 或2 3 a 3 。 问题转化为 2 a 1 3 a 3 a 3 4
4 f ( ) | AP AB | ( R) 的最小值为 m ,当点 P 在单位圆上运动时, m 的最大值为 , 3
则线段 AB 长度为 【答案】
4 2 3
M
【详解】如图,若 AB 长度一定,先假定 P 点确定,取 P 点如图所示, 设 AD= AB ,则 f ( ) | AP AB | = | PA AB | = | PD | ,要使
第 5 页/ 共 13 页
a 、 ab 、 b 成等比数列,则 a 、 b 、
ab 、 ab 不能组成等比数列 2
(2) 、若 a、b 都小于零,不妨设 a b 0 ,则 a 若 a 、b 、
ab b 0 ab , 2
ab ab 、 ab 按一定顺序构成等比数列,则必 a 、 、 b 、 ab 为等差数列, 2 2
1 2 1 2 b 4a b 4a ( )(2a b) 42 48 a b a b a b a b
1 2 ( )min 8 a b
【教法指导】考查 1、“ A 、 B 、 C 三点共线的充要条件”;2、基本不等式中“1 的代换”。
2、 (2017 届长宁嘉定一模 12)如图,已知正三棱柱的底面边长为 2 cm ,高为 5 cm , 一质点自 A 点出发,沿着三棱柱的侧面绕行两周到达 A1 点的最短路线的长为 【答案】 13 【详解】将两个(注意是两个)正三棱柱的侧面展开图(是一个矩形)放在一起如图,
黄浦区2017届高三一模数学卷答案及官方评分标准
![黄浦区2017届高三一模数学卷答案及官方评分标准](https://img.taocdn.com/s3/m/f7efc86b02768e9951e738ff.png)
高 数学参考答案 评分标准一、填空题 1~6题 题4分 7~12题 题5分1.{0 1 2},,2.12x =− 3.1+2i 4.− 5.22(2)(1)18x y −++= 6.107.18.7− 9.12− 10.200 11 12.1(]6−∞−,.二、选择题 题5分 13.A14.C15.C16.B、解答题 共76分17.解 1 因为PA ⊥平面ABC ,所 PBA ∠为PB 平面ABC 所成的角,由PB 平面ABC 所成的角为π6,可得π6PBA ∠=,……………………………2分因为PA ⊥平面ABC ,所 PA AB ⊥,又6AB =,可知PA =故21161833P ABC ABC V S PA −∆=⋅=⋅=.……………………………6分2 设N 为棱AC 的中点,连,MN NP ,由M N , 分别是棱BC AC ,的中点,可得MN ∥BA ,所 PM MN 的夹角为异面直线PM AB 所成的角.………………8分因为PA ⊥平面ABC ,所 PA AM ⊥,PA AN ⊥,又132MN AB ==,PN ==,PM ==,所 222cos 2MP MN PN PMN MP MN −∠==⋅+,……………………………12分故异面直线PM AB 所成的角为.……………………………14分18.解 1 设双曲线C 的方程为22221(0,0)x y a b a b−=>>,半焦距为c ,则2c =,122|||||||2a PF PF =−==,1a =,……………2分所 2223b c a =−=,故双曲线C 的方程为2213y x −=.……………………………4分双曲线C 的渐近线方程为y =.……………………………6分2 设直线l 的方程为y x t =+,将其 入方程2213y x −=,可得222230x tx t −−−= *……………………………8分22248(3)12240t t t ∆=++=+>,若设1122(,),(,)A x y B x y ,则12,x x 是方程 * 的两个根,所 212123,2t x x t x x ++==−,又由OA OB ⊥,可知12120x x y y +=,……………………………令令分即1212()()0x x x t x t +++=,可得212122()0x x t x x t +++=,故222(3)0t t t −++=+,解得t =,所 直线l 方程为y x =. (4)19.解 1 设M 是CD 中点,连OM ,由OC OD =,可知OM CD ⊥,COM DOM ∠=∠=,12COD θ∠=,sin MD R θ=,又OE OF =,EC FD =,OC OD =,可得△CEO ≌△DFO ,故EOC DOF ∠=∠,可知124AOM BOM AOB π∠=∠=∠=,…………2分又DF CD ⊥,OM CD ⊥,所 //MO DF ,故DFO∠34π=,在△DFO 中,有sin sin DF DODOF DFO=∠∠,可得sin()4(cos sin )3sin4R DF R πθθθπ−==− ………5分所 2COD ODF OCE COD ODFS S S S S S ∆∆=++=+21sin 2sin (cos sin )2R R R R θθθθ=+−222sin 2sin (0)4R R πθθθ=−<<………8分 2 2222111sin 2(1cos 2)(sin 2cos 2)222S R R R R θθθθ=−−=+−……………令代分221sin(2)2R θϕ=+−(其中1arctan 2ϕ=)……………………令以分当22πθϕ+=,即42πϕθ=−时,sin(2)θϕ+取最大值1.又42πϕ−π(0,)4∈,所 S2. (4)20.解 1 当()32f x x =+时,方程(2)()(2)38310f t f t f t t +=+⇔+=+……2分此方程无解,所 存在实数t ,使得(2)()(2)f t f t f +=+,故()32f x x =+ 属于集合M .……………………………4分2 由2()lg2af x x =+属于集合M ,可得方程22lg lg lg (2)226a a ax x =++++有实解22[(2)2]6(2)a x x ⇔++=+有实解2(6)46(2)0a x ax a ⇔−++−=有实解,………7分若6a =时, 述方程有实解若6a ≠时,有21624(6)(2)0a a a ∆=−−−≥,解得1212a −≤≤+,故所求a的取值范围是[1212 −+.……………………………令代分3 当2()2x f x bx =+时,方程(2)()(2)f x f x f +=+⇔+2222(2)244x x b x bx b ++=+++⇔32440x bx ×+−=,………………12分()3244x g x bx =×+−,则()g x 在R 的图 是连续的,当0b ≥时,(0)10g =−<,(1)240g b =+>,故()g x 在(0,1)内至少有一个零点当0b <时,(0)10g =−<,11(320bg b =×>,故()g x 在1(,0)b内至少有一个零点故对任意的实数b ,()g x 在R 都有零点,即方程(2)()(2)f x f x f +=+总有解,所 对任意实数b ,都有()f x M ∈.………………………16分21.解 1 由10n b n =−,可得1(9)(10)1n n b b n n +−=−−−=−,故{}n b 是等差数列.所 16516151514141365()()()()a a a a a a a a a a −=−+−+−++−⋯15515141351011()1102b b b b b b b +=++++===⋯……………………………4分2 2+3212+32222212221()()n n n n n n n n a a a a a a b b ++++++−=−+−=+223122132221312(22)(22)22n n n n n n+−+−+−=+−+=−……………………………6分由2+321n n a a +<⇔213122207.5n n n +−−<⇔<,2+321n n a a +>⇔213122207.5n n n +−−>⇔>,……………………………8分故有35715171920a a a a a a a >>>>><<<⋯⋯,所 数列2+1{}n a 中17a 最小,即第8项最小.……………………………令代分法二 由33331(1)(22)(2)2()2n n n n n n b −=−+=−+−,……………………………5分可知1n a =2+11232n a b b b b +++++⋯223211(1(2)21[(2)(2)]1312nn−−−−=+−+−+33213321[12(22)]3n n +−=−++ (8)分331[123≥−+ 当且仅当2133222n n +−=,即8n =时取等号 所 数列2+1{}n a 中的第8项最小.……………………………令代分3 若数列{}n a 为等差数列,设其公差为d ,则1121()2()23n n n n n n c c a a a a d d d ++++−=−+−=+=为常数,所 数列{}n c 为等差数列.……………………………令以分由1n n n b a a d +=−= 1,2,3,n =… ,可知1n n b b +≤ 1,2,3,n =… .………………令3分若数列}{n c 为等差数列且1+≤n n b b n =1,2,3,… ,设}{n c 的公差为D ,则11211()2()2n n n n n n n n c c a a a a b b D +++++−=−+−=+= n =1,2,3,… ,………………令5分又122n n b b D +++=,故121()2()0n n n n b b b b D D +++−+−=−=,又10n n b b +−≥,210n n b b ++−≥,故1210(1,2,3,)n n n n b b b b n +++−=−==⋯,…………令7分所 1n n b b +=(1,2,3,)n =⋯,故有1n b b =,所 11n n a a b +−=为常数.故数列{}n a 为等差数列.综 可得, 数列}{n a 为等差数列 的充分必要条件是 数列}{n c 为等差数列且1+≤n n b b n =1,2,3,… . (8)。
2017届上海市黄浦区高三4月高考模拟数学试卷(精编含解析)
![2017届上海市黄浦区高三4月高考模拟数学试卷(精编含解析)](https://img.taocdn.com/s3/m/08dd365ea300a6c30c229ff2.png)
黄浦区2017年高考模拟考数学试卷(完卷时间:120分钟满分:150分)一、填空题(本大题共有12题,满分54分. 其中第1~6题每题满分4分,第7~12题每题满分5分)考生应在答题纸相应编号的空格内直接填写结果.[1.函数的定义域为.【答案】【解析】试题分析:考点:函数的定义域的求法.2.若关于的方程组有无数多组解,则实数_________.【答案】;【解析】当时,,不合题意;当时,,得,综上:.3.若“”是“”的必要不充分条件,则的最大值为_________.【答案】;【解析】由得:或;若“”是“”的必要不充分条件,则,所以的最大值为.【点睛】从集合的角度看充要条件,若对应集合,对应集合,如果,则是的充分条件;如果,则是的充分不必要条件;如果,则是的必要条件;如果,则是的必要不充分条件;如果,则是的充要条件,如果无上述包含关系,则是的既不充分也不必要条件;4.已知复数,(其中i为虚数单位),且是实数,则实数t等于________.【答案】;【解析】为实数,则.5.若函数(a>0,且a≠1)是R上的减函数,则a的取值范围是________.【答案】;【解析】当时,在上为减函数,而在上为减函数,要使函数在R上为减函数,则a满足,解得.6.设变量满足约束条件,则目标函数的最小值为___________【答案】;【解析】先画出二元一次不等式组所表示的平面区域,目标函数为截距型目标函数,令,作直线,由于,表示直线的截距,平移直线得最优解为,的最小值为.【点睛】线性规划问题要搞清目标函数的几何意义,常见的目标函数线有截距型、距离型(两点间的距离、点到直线的距离)、斜率型等,主要考查最值或范围.另外有时考查线性规划的逆向思维问题,难度稍大一点. 线性规划问题为高考高频考点,属于必得分题.7.已知圆和两点,若圆上至少存在一点,使得,则的取值范围是________.【答案】;【解析】由于两点在以原点为圆心,为半径的圆上,若圆上至少存在一点,使得,则两圆有公共点,设圆心距为,,则,则,则的取值范围是.8.已知向量,,如果∥,那么的值为________.【答案】;【解析】,则,.【点睛】有关三角函数计算问题,“异名化同名,异角化同角”,注意弦切互化,最关键问题是寻找角与角之间的关系,角与角之间是否存在和、差、倍关系,再借助诱导公式,同角三角函数关系,和、差公式,二倍角公式等求值.9.若从正八边形的8个顶点中随机选取3个顶点,则以它们作为顶点的三角形是直角三角形的概率是________.【答案】;【解析】正八边形的八个顶点,无三点在同一直线上,任取3点可连成一个三角形,共可作个三角形,其中4条对角线为其外接圆的直径,根据直径所对的圆周角为直角,每条直径可连接6个直角三角形,共计可作个直角三角形,概率为.10.若将函数的图像向左平移个单位后,所得图像对应的函数为偶函数,则的最小值是________.【答案】;【解析】若将函数的图像向左平移个单位后,所得图像对应的函数为为偶函数,根据正(余)弦函数的奇偶性可知:则,或,则,或,则,即:,当时,取得最小值为.【点睛】11.三棱锥满足:,,,,则该三棱锥的体积V的取值范围是________.【答案】;【解析】由于平面,,在中,,要使面积最大,只需,的最大值为,的最大值为,该三棱锥的体积V的取值范围是.12.对于数列,若存在正整数,对于任意正整数都有成立,则称数列是以为周期的周期数列.设,对任意正整数n都有若数列是以5为周期的周期数列,则的值可以是_________.(只要求填写满足条件的一个m值即可)【答案】(或,或).【解析】数列满足,,,当,时,,,若时,,,当时,,,解得,填写 .继续讨论可求出其他的解(略).二、选择题(本大题共有4题,满分20分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.下列函数中,周期为π,且在上为减函数的是( )A. y=sinB. y=cosC. y=sinD. y=cos【答案】A【解析】试题分析:周期是π的函数只有A,B,因为y=sin=cos2x,其在上为减函数,故选A。
2017年上海市黄浦区高考一模数学试卷【解析版】
![2017年上海市黄浦区高考一模数学试卷【解析版】](https://img.taocdn.com/s3/m/260a646ce45c3b3567ec8b89.png)
2017年上海市黄浦区高考数学一模试卷一、填空题(本大题共有12题,满分54分.其中第1~6题每题满分54分,第7~12题每题满分54分)考生应在答题纸相应编号的空格内直接填写结果.[ 1.(4分)若集合A={x||x﹣1|<2,x∈R},则A∩Z=.2.(4分)抛物线y2=2x的准线方程是.3.(4分)若复数z满足(i为虚数单位),则z=.4.(4分)已知sin(α+)=,α∈(﹣,0),则tanα=.5.(4分)以点(2,﹣1)为圆心,且与直线x+y=7相切的圆的方程是.6.(4分)若二项式的展开式共有6项,则此展开式中含x4的项的系数是.7.(5分)已知向量(x,y∈R),,若x2+y2=1,则的最大值为.8.(5分)已知函数y=f(x)是奇函数,且当x≥0时,f(x)=log2(x+1).若函数y=g(x)是y=f(x)的反函数,则g(﹣3)=.9.(5分)在数列{a n}中,若对一切n∈N*都有a n=﹣3a n+1,且=,则a的值为.10.(5分)甲、乙两人从6门课程中各选修3门.则甲、乙所选的课程中至多有1门相同的选法共有.11.(5分)已知点O,A,B,F分别为椭圆的中心、左顶点、上顶点、右焦点,过点F作OB的平行线,它与椭圆C在第一象限部分交于点P,若,则实数λ的值为.12.(5分)已知(a为常数),,且当x1,x2∈[1,4]时,总有f(x1)≤g(x2),则实数a的取值范围是.二、选择题(本大题共有4题,满分20分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.(5分)若x∈R,则“x>1”是“”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件14.(5分)关于直线l,m及平面α,β,下列命题中正确的是()A.若l∥α,α∩β=m,则l∥m B.若l∥α,m∥α,则l∥mC.若l⊥α,m∥α,则l⊥m D.若l∥α,m⊥l,则m⊥α15.(5分)在直角坐标平面内,点A,B的坐标分别为(﹣1,0),(1,0),则满足tan∠P AB•tan∠PBA=m(m为非零常数)的点P的轨迹方程是()A.B.C.D.16.(5分)若函数y=f(x)在区间I上是增函数,且函数在区间I上是减函数,则称函数f(x)是区间I上的“H函数”.对于命题:①函数是(0,1)上的“H函数”;②函数是(0,1)上的“H函数”.下列判断正确的是()A.①和②均为真命题B.①为真命题,②为假命题C.①为假命题,②为真命题D.①和②均为假命题三、解答题(本大题共有5题,满分76分.)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(14分)在三棱锥P﹣ABC中,底面ABC是边长为6的正三角形,P A⊥底面ABC,且PB与底面ABC所成的角为.(1)求三棱锥P﹣ABC的体积;(2)若M是BC的中点,求异面直线PM与AB所成角的大小(结果用反三角函数值表示).18.(14分)已知双曲线C以F1(﹣2,0)、F2(2,0)为焦点,且过点P(7,12).(1)求双曲线C与其渐近线的方程;(2)若斜率为1的直线l与双曲线C相交于A,B两点,且(O为坐标原点).求直线l的方程.19.(14分)现有半径为R、圆心角(∠AOB)为90°的扇形材料,要裁剪出一个五边形工件OECDF,如图所示.其中E,F分别在OA,OB上,C,D在上,且OE=OF,EC=FD,∠ECD=∠CDF=90°.记∠COD=2θ,五边形OECDF的面积为S.(1)试求S关于θ的函数关系式;(2)求S的最大值.20.(16分)已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在实数t,使得f(t+2)=f(t)+f(2).(1)判断f(x)=3x+2是否属于集合M,并说明理由;(2)若属于集合M,求实数a的取值范围;(3)若f(x)=2x+bx2,求证:对任意实数b,都有f(x)∈M.21.(18分)已知数列{a n},{b n}满足b n=a n+1﹣a n(n=1,2,3,…).(1)若b n=10﹣n,求a16﹣a5的值;(2)若且a1=1,则数列{a2n+1}中第几项最小?请说明理由;(3)若c n=a n+2a n+1(n=1,2,3,…),求证:“数列{a n}为等差数列”的充分必要条件是“数列{c n}为等差数列且b n≤b n+1(n=1,2,3,…)”.2017年上海市黄浦区高考数学一模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分.其中第1~6题每题满分54分,第7~12题每题满分54分)考生应在答题纸相应编号的空格内直接填写结果.[ 1.(4分)若集合A={x||x﹣1|<2,x∈R},则A∩Z={0,1,2}.【解答】解:集合A={x||x﹣1|<2,x∈R}={x|﹣2<x﹣1<2,x∈R}={x|﹣1<x<3,x∈R},则A∩Z={0,1,2}.故答案为{0,1,2}.2.(4分)抛物线y2=2x的准线方程是.【解答】解:抛物线y2=2x,∴p=1,∴准线方程是x=﹣故答案为:x=﹣.3.(4分)若复数z满足(i为虚数单位),则z=1+2i.【解答】解:由,得z=1+2i.故答案为:1+2i.4.(4分)已知sin(α+)=,α∈(﹣,0),则tanα=﹣2.【解答】解:∵sin(α+)=cosα,sin(α+)=,∴cosα=,又α∈(﹣,0),∴sinα=﹣,∴tanα==﹣2.故答案为:﹣2.5.(4分)以点(2,﹣1)为圆心,且与直线x+y=7相切的圆的方程是(x﹣2)2+(y+1)2=18.【解答】解:将直线x+y=7化为x+y﹣7=0,圆的半径r==3,所以圆的方程为(x﹣2)2+(y+1)2=18.故答案为(x﹣2)2+(y+1)2=18.6.(4分)若二项式的展开式共有6项,则此展开式中含x4的项的系数是10.【解答】解:∵二项式的展开式共有6项,故n=5,则此展开式的通项公式为T r+1=•(﹣1)r•x10﹣3r,令10﹣3r=4,∴r=2,中含x4的项的系数=10,故答案为:10.7.(5分)已知向量(x,y∈R),,若x2+y2=1,则的最大值为+1.【解答】解:设O(0,0),P(1,2).=≤+r=+1=+1.∴的最大值为+1.故答案为:.8.(5分)已知函数y=f(x)是奇函数,且当x≥0时,f(x)=log2(x+1).若函数y=g(x)是y=f(x)的反函数,则g(﹣3)=﹣7.【解答】解:∵反函数与原函数具有相同的奇偶性.∴g(﹣3)=﹣g(3),∵反函数的定义域是原函数的值域,∴log2(x+1)=3,解得:x=7,即g(3)=7,故得g(﹣3)=﹣7.故答案为:﹣7.9.(5分)在数列{a n}中,若对一切n∈N*都有a n=﹣3a n+1,且的值为﹣12.=,则a【解答】解:在数列{a n}中,若对一切n∈N*都有a n=﹣3a n+1,可得数列{a n}为公比为﹣的等比数列,=,可得====,可得a1=﹣12.故答案为:﹣12.10.(5分)甲、乙两人从6门课程中各选修3门.则甲、乙所选的课程中至多有1门相同的选法共有200.【解答】解:根据题意,分两种情况讨论:①甲乙所选的课程全不相同,有C63×C33=20种情况,②甲乙所选的课程有1门相同,有C61×C52×C32=180种情况,则甲、乙所选的课程中至多有1门相同的选法共有180+20=200种情况;故答案为:200.11.(5分)已知点O,A,B,F分别为椭圆的中心、左顶点、上顶点、右焦点,过点F作OB的平行线,它与椭圆C在第一象限部分交于点P,若,则实数λ的值为.【解答】解:如图,A(﹣a,0),B(0,b),F(c,0),则P(c,),∴,,由,得,即b=c,∴a2=b2+c2=2b2,.则.故答案为:.12.(5分)已知(a为常数),,且当x1,x2∈[1,4]时,总有f(x1)≤g(x2),则实数a的取值范围是.【解答】解:法1°:依题意知,当x1,x2∈[1,4]时,f(x1)max≤g(x2)min,由“对勾“函数单调性知,=2x+=2(x+)在区间[1,4]上单调递增,∴g(x2)min=g(1)=3;∵=2ax2+2x,当a=0时,f(x)=2x在区间[1,4]上单调递增,∴f(x)max=f(4)=8≤3不成立,故a≠0;∴f(x)=2ax2+2x为二次函数,其对称轴方程为:x=﹣,当a>0时,f(x)在区间[1,4]上单调递增,f(x)max=f(4)=8≤3不成立,故a>0不成立;当a<0时,1°若﹣≤1,即a≤﹣时,f(x)在区间[1,4]上单调递减,f(x)max=f(1)=2a+2≤3恒成立,即a≤﹣时满足题意;2°若1<﹣<4,即﹣<a<﹣时,f(x)max=f(﹣)=﹣≤3,解得:﹣<a≤﹣;3°若﹣≥4,即﹣≤a<0时,f(x)在区间[1,4]上单调递增,f(x)max=f(4)=32a+8≤3,解得a≤﹣∉(﹣,0),故不成立,综合1°2°3°知,实数a的取值范围是:(﹣∞,﹣].法2°:由法1°知g(x2)min=g(1)=3,∵=2ax2+2x,∴当x1∈[1,4]时,f(x1)=2ax2+2x≤3恒成立,∴a≤=(﹣)2﹣,∴当=,即x=3时,=﹣,∴实数a的取值范围是:(﹣∞,﹣].故答案为:.二、选择题(本大题共有4题,满分20分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.(5分)若x∈R,则“x>1”是“”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【解答】解:由x>1,一定能得到得到<1,但当<1时,不能推出x>1 (如x=﹣1时),故x>1是<1 的充分不必要条件,故选:A.14.(5分)关于直线l,m及平面α,β,下列命题中正确的是()A.若l∥α,α∩β=m,则l∥m B.若l∥α,m∥α,则l∥mC.若l⊥α,m∥α,则l⊥m D.若l∥α,m⊥l,则m⊥α【解答】解:由直线l,m及平面α,β,知:在A中,若l∥α,α∩β=m,则l与m平行或异面,故A错误;在B中,若l∥α,m∥α,则l与m相交、平行或异面,故B错误;在C中,若l⊥α,m∥α,则由线面垂直的性质定理得l⊥m,故C正确;在D中,若l∥α,m⊥l,则m与α相交、平行或m⊂α,故D错误.故选:C.15.(5分)在直角坐标平面内,点A,B的坐标分别为(﹣1,0),(1,0),则满足tan∠P AB•tan∠PBA=m(m为非零常数)的点P的轨迹方程是()A.B.C.D.【解答】解:设P(x,y),则由题意,(m≠0),化简可得,故选:C.16.(5分)若函数y=f(x)在区间I上是增函数,且函数在区间I上是减函数,则称函数f(x)是区间I上的“H函数”.对于命题:①函数是(0,1)上的“H函数”;②函数是(0,1)上的“H函数”.下列判断正确的是()A.①和②均为真命题B.①为真命题,②为假命题C.①为假命题,②为真命题D.①和②均为假命题【解答】解:对于命题①:令t=,函数=﹣t2+2t,∵t=在(0,1)上是增函数,函数y=﹣t2+2t在(0,1)上是增函数,∴在(0,1)上是增函数;G(x)=在(0,1)上是减函数,∴函数是(0,1)上的“H函数“,故命题①是真命题.对于命题②,函数=是(0,1)上的增函数,H(x)=是(0,1)上的增函数,故命题②是假命题;故选:B.三、解答题(本大题共有5题,满分76分.)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(14分)在三棱锥P﹣ABC中,底面ABC是边长为6的正三角形,P A⊥底面ABC,且PB与底面ABC所成的角为.(1)求三棱锥P﹣ABC的体积;(2)若M是BC的中点,求异面直线PM与AB所成角的大小(结果用反三角函数值表示).【解答】解:(1)∵P A⊥平面ABC,∴∠PBA为PB与平面ABC所成的角,即,∵P A⊥平面ABC,∴P A⊥AB,又AB=6,∴,∴.(2)取棱AC的中点N,连接MN,NP,∵M,N分别是棱BC,AC的中点,∴MN∥BA,∴∠PMN为异面直线PM与AB所成的角.∵P A⊥平面ABC,所以P A⊥AM,P A⊥AN,又,AN=AC=3,BM=BC=3,∴AM==3,,,所以,故异面直线PM与AB所成的角为.18.(14分)已知双曲线C以F1(﹣2,0)、F2(2,0)为焦点,且过点P(7,12).(1)求双曲线C与其渐近线的方程;(2)若斜率为1的直线l与双曲线C相交于A,B两点,且(O为坐标原点).求直线l的方程.【解答】解:(1)设双曲线C的方程为,半焦距为c,则c=2,,a=1,…(2分)所以b2=c2﹣a2=3,故双曲线C的方程为.…(4分)双曲线C的渐近线方程为.…(6分)(2)设直线l的方程为y=x+t,将其代入方程,可得2x2﹣2tx﹣t2﹣3=0(*)…(8分)△=4t2+8(t2+3)=12t2+24>0,若设A(x1,y1),B(x2,y2),则x1,x2是方程(*)的两个根,所以,又由,可知x1x2+y1y2=0,…(11分)即x1x2+(x1+t)(x2+t)=0,可得,故﹣(t2+3)+t2+t2=0,解得,所以直线l方程为.…(14分)19.(14分)现有半径为R、圆心角(∠AOB)为90°的扇形材料,要裁剪出一个五边形工件OECDF,如图所示.其中E,F分别在OA,OB上,C,D在上,且OE=OF,EC=FD,∠ECD=∠CDF=90°.记∠COD=2θ,五边形OECDF的面积为S.(1)试求S关于θ的函数关系式;(2)求S的最大值.【解答】解:(1)设M是CD中点,连OM,由OC=OD,可知OM⊥CD,∠COM=∠DOM=,,MD=R sinθ,又OE=OF,EC=FD,OC=OD,可得△CEO≌△DFO,故∠EOC=∠DOF,可知,…(2分)又DF⊥CD,OM⊥CD,所以MO∥DF,故∠DFO=,在△DFO中,有,可得…(5分)所以S=S+S ODF+S OCE=S△COD+2S ODF=△COD=…(8分)(2)…(10分)=(其中)…(12分)当,即时,sin(2θ+φ)取最大值1.又,所以S的最大值为.…(14分)20.(16分)已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在实数t,使得f(t+2)=f(t)+f(2).(1)判断f(x)=3x+2是否属于集合M,并说明理由;(2)若属于集合M,求实数a的取值范围;(3)若f(x)=2x+bx2,求证:对任意实数b,都有f(x)∈M.【解答】解:(1)当f(x)=3x+2时,方程f(t+2)=f(t)+f(2)⇔3t+8=3t+10…(2分)此方程无解,所以不存在实数t,使得f(t+2)=f(t)+f(2),故f(x)=3x+2不属于集合M.…(4分)(2)由属于集合M,可得方程有实解⇔a[(x+2)2+2]=6(x2+2)有实解⇔(a ﹣6)x2+4ax+6(a﹣2)=0有实解,…(7分)若a=6时,上述方程有实解;若a≠6时,有△=16a2﹣24(a﹣6)(a﹣2)≥0,解得,故所求a的取值范围是.…(10分)(3)当f(x)=2x+bx2时,方程f(x+2)=f(x)+f(2)⇔2x+2+b(x+2)2=2x+bx2+4+4b⇔3×2x+4bx﹣4=0,…(12分)令g(x)=3×2x+4bx﹣4,则g(x)在R上的图象是连续的,当b≥0时,g(0)=﹣1<0,g(1)=2+4b>0,故g(x)在(0,1)内至少有一个零点;当b<0时,g(0)=﹣1<0,,故g(x)在内至少有一个零点;故对任意的实数b,g(x)在R上都有零点,即方程f(x+2)=f(x)+f(2)总有解,所以对任意实数b,都有f(x)∈M.…(16分)21.(18分)已知数列{a n},{b n}满足b n=a n+1﹣a n(n=1,2,3,…).(1)若b n=10﹣n,求a16﹣a5的值;(2)若且a1=1,则数列{a2n+1}中第几项最小?请说明理由;(3)若c n=a n+2a n+1(n=1,2,3,…),求证:“数列{a n}为等差数列”的充分必要条件是“数列{c n}为等差数列且b n≤b n+1(n=1,2,3,…)”.【解答】解:(1)由b n=10﹣n,可得b n+1﹣b n=(9﹣n)﹣(10﹣n)=﹣1,故{b n}是等差数列.所以a16﹣a5=(a16﹣a15)+(a15﹣a14)+(a14﹣a13)+…+(a6﹣a5)=…(4分)(2)a2n+3﹣a2n+1=(a2n+3﹣a2n+2)+(a2n+2﹣a2n+1)=b2n+2+b2n+1=(22n+2+231﹣2n)﹣(22n+1+232﹣2n)=22n+1﹣231﹣2n…(6分)由a2n+3<a2n+1⇔22n+1﹣231﹣2n<0⇔n<7.5,a2n+3>a2n+1⇔22n+1﹣231﹣2n>0⇔n>7.5,…(8分)故有a3>a5>a7>…>a15>a17<a19<a20<…,所以数列{a2n+1}中a17最小,即第8项最小.…(10分)法二:由,…(5分)可知a2n+1=a1+b1+b2+b3+…+b2n==…(8分)(当且仅当22n+1=233﹣2n,即n=8时取等号)所以数列{a2n+1}中的第8项最小.…(10分)(3)若数列{a n}为等差数列,设其公差为d,则c n+1﹣c n=(a n+1﹣a n)+2(a n+2﹣a n+1)=d+2d=3d为常数,所以数列{c n}为等差数列.…(12分)由b n=a n+1﹣a n=d(n=1,2,3,…),可知b n≤b n+1(n=1,2,3,…).…(13分)若数列{c n}为等差数列且b n≤b n+1(n=1,2,3,…),设{c n}的公差为D,则c n+1﹣c n=(a n+1﹣a n)+2(a n+2﹣a n+1)=b n+2b n+1=D(n=1,2,3,…),…(15分)又b n+1+2b n+2=D,故(b n+1﹣b n)+2(b n+2﹣b n+1)=D﹣D=0,又b n+1﹣b n≥0,b n+2﹣b n+1≥0,故b n+1﹣b n=b n+2﹣b n+1=0(n=1,2,3,…),…(17分)所以b n+1=b n(n=1,2,3,…),故有b n=b1,所以a n+1﹣a n=b1为常数.故数列{a n}为等差数列.综上可得,“数列{a n}为等差数列”的充分必要条件是“数列{c n}为等差数列且b n≤b n+1(n=1,2,3,…)”.…(18分)。
2017年上海各区高三一模填空题难题解析
![2017年上海各区高三一模填空题难题解析](https://img.taocdn.com/s3/m/51084a370066f5335a8121ed.png)
2017年上海市高三一模数学考试客观题难题解析一. 长宁/嘉定区11. 设向量(1,2)OA =-,(,1)OB a =-,(,0)OC b =-,其中O 为坐标原点,0a >,0b >,若A 、B 、C 三点共线,则12a b+的最小值为 【解析】∵A 、B 、C 三点共线,∴AB ∥AC ,(1,1)AB a =-,(1,2)AC b =--,可 得12(1)b a --=-,即21a b +=,∴122424228a b a b b a a b a b a b+++=+=+++≥,本 题以向量共线的方式转化出a 与b 的关系,然后通过“1的代换”转化为基本不等式求最值 12. 如图,已知正三棱柱的底面边长为2cm ,高为5cm ,一质点自A 点出发,沿着三棱柱 的侧面绕行两周到达1A 点的最短路线的长为 cm【解析】绕行两周,∴侧面展开两次,如右图所示,最短路线即斜线段1AA 的长度13cm , 这类求几何体表面距离最短的问题,都是通过几何体的展开图,化空间为平面来解决的 16. 如果对一切正实数x 、y ,不等式29cos sin 4y x a x y-≥-恒成立,则实数a 的取值范 围是( )A. 4(,]3-∞ B. [3,)+∞ C. [- D. [3,3]-【解析】不等式转化为29sin cos 4y a x x y +≤+,∵934y y +≥,即94y y+的最小值为3, ∴2sin cos 3a x x +≤,即2sin sin 20x a x -+≥恒成立,法一:二次函数分类讨论,① 当12a≤-,即2a ≤-,将sin 1x =-代入,120a ++≥,即3a ≥-,∴32a -≤≤-,② 当112a -<<,即22a -<<,280a ∆=-≤,即a -≤≤22a -<<,③ 当12a≥,即2a ≥,将sin 1x =代入,120a -+≥,即3a ≤,∴23a ≤≤;综上,[3,3]a ∈-,故选D ;法二:分离参数讨论,2sin 2sin a x x ≤+,当0sin 1x <≤,2sin sin a x x ≤+,∴3a ≤,当1sin 0x -≤<,2sin sin a x x≥+,∴3a ≥-,故选D11. 设地球半径为R ,若A 、B 两地均位于北纬45°,且两地所在纬度圈上的弧长为4R ,则A 、B 之间的球面距离是 (结果用含有R 的代数式表示) 【解析】如图所示,OB OA R ==,45OBO ︒'∠=,∴2O B O A R ''==,∵小圆上弧长为4R , 根据弧长公式,可得2AO B π'∠=,∴AB R =,∴3AOB π∠=,∴球面距离3Rl R πθ==;球面上两点会经过无数的小圆和唯一的一个大圆,但两点之间的线段距离是确定的,所以解决球面 距离问题的关键就是求出两点之间的线段距离,“两点的线段距离”就像是一座桥,连接着 “两点的小圆弧长”和“两点的球面距离”12. 已知定义域为R 的函数()y f x =满足(2)()f x f x +=,且11x -≤<时,2()1f x x =-,函数lg ||,0()1,0x x g x x ≠⎧=⎨=⎩,若()()()F x f x g x =-,则[5,10]x ∈-,函数()F x 零点的个数是【解析】这是一道典型的数形结合题,∵(2)()f x f x +=,∴周期为2,由此可得()f x 的图像,()F x 的零点个数,即()f x 与()g x 图像的交点个数,由图可知,有15个,本题 的易错点在于容易漏掉(0,1)这个点,还有(10,1)附近的一个点,即[9,10]上有两个交点, ∵如果在[9,10]上只有一个交点(10,1)的话,(10,1)又是()f x 在[9,10]上的顶点,()g x 必 须要平行于x 轴,而()g x 在[9,10]上明显是递增的,∴在[9,10]上会有两个交点16. 设θ是两个非零向量a 、b 的夹角,若对任意实数t ,||a tb +的最小值为1,则下列判 断正确的是( )A. 若||a 确定,则θ唯一确定B. 若||b 确定,则θ唯一确定C. 若θ确定,则||b 唯一确定D. 若θ确定,则||a 唯一确定【解析】本题需理解“对任意实数t ,||a tb +的最小值” 的几何意义,如图,即线段1AC =,故选D ,||b 是无法 确定的,A 选项错在θ不是唯一确定,还有πθ-12. 已知AB 为单位圆O 的一条弦,P 为单位圆O 上的点,若()||f AP AB λλ=-()R λ∈ 的最小值为m ,当点P 在单位圆上运动时,m 的最大值为43,则线段AB 长度为【解析】本题与普陀区16题类似,m 的几何意义为P 点 到AB 的距离,即PC 的长,当PC 经过圆心O 时取最大,43PC =,13OC =,1OA =,3AC =,3AB =15. 如图,已知椭圆C 的中心为原点O ,(F -为C 的左焦点,P 为C 上一点,满 足||||OP OF =且||4PF =,则椭圆C 的方程为( )A.221255x y += B. 2213010x y += C. 2213616x y += D. 2214525x y += 【解析】本题不难,但比较有意思,体现了“重思维,轻计算”的命题原则,取PF 中点A ,F '为右焦点, 联结AO 、PF ',∵OP OF =,∴AO PF ⊥,法一:2AF =,OF =4AO =,8PF '=, ∴212PF PF a '+==,即6a =,选C法二:21tan481642PFF S b π'∆==⨯⨯=,即216b =,选C16. 实数a 、b 满足0ab >且a b ≠,由a 、b 、2a b+( )A. 可能是等差数列,也可能是等比数列B. 可能是等差数列,但不可能是等比数列C. 不可能是等差数列,但可能是等比数列D. 不可能是等差数列,也不可能是等比数列【解析】0ab >且a b ≠,有两种情况,① 设0a b >>,∴02a ba b +>>>>,∵a 、2a b +、b 成等差,a b 成等比,∴a 、2a b+、b 不可能是等差或等比数列;② 设0a b <<,∴02a ba b +<<<<不可能是等比数列,若为等差数列,必有22a bb +=,即3()()0b a -+-=,0=, ∴9a b =,此时四个数为953b b b b <<<-,为等差数列,综上,选B四. 黄浦区11. 已知点O 、A 、B 、F 分别为椭圆2222:1x y C a b+=(0)a b >>的中心、左顶点、上顶点、右焦点,过点F 作OB 平行线,它与椭圆C 在第一象限部分交于点P ,若AB OP λ=,则实数λ的值为【解析】如图所示,(,0)A a -,(0,)B b ,2(,)b P c a,∵AB OP λ=,∴2b b a ac =,即c b =,acλ==12. 已知()22ax x f x x=-(a 为常数),221()x g x x +=,且当1x 、2[1,4]x ∈时,总有12()()f x g x ≤,则实数a 的取值范围是【解析】2()22f x ax x =+,1()2g x x x=+,[1,4]x ∈,∴min ()(1)3g x g ==, ∵12()()f x g x ≤恒成立,即()3f x ≤在[1,4]x ∈时恒成立,分类讨论,① 当0a ≥,()f x在[1,4]上单调递增,∴(4)3283f a =+≤,不符,舍去;② 当0a <,(1)223f a =+≤,24()348f a a --=≤,(4)3283f a =+≤,综上解得,16a ≤-16. 若函数()y f x =在区间I 上是增函数,且函数()f x y x=在区间I 上是减函数,则称函数()f x 是区间I 上的“H 函数”,对于命题:① 函数()f x x =-+(0,1)上的“H函数”;② 函数22()1xg x x=-是(0,1)上的“H 函数”;下列判断正确的是( ) A. ①和②均为真命题 B. ①为真命题,②为假命题 C. ①为假命题,②为真命题 D. ①和②均为假命题【解析】① ()f x x =-+t =,∴2()2h t t t =-+,(0,1)t ∈,结合图像,()h t 在(0,1)t ∈时是递增的,根据复合函数同增异减,()f x x =-+(0,1)上递增, ()1f x yx ==-+(0,1)上递减,∴是“H 函数”;② 12()g x x x -=-,∵函数 1y x x -=-在(0,1)上递减,∴12()g x x x -=-在(0,1)上递增,2()21g x x x =-,∵函数21y x =-在(0,1)上递减,∴()g x x 在(0,1)上递增,∴不是“H 函数”,综上,选B五. 奉贤区12. 已知函数()sin cos f x x x ωω=+(0)ω>,x R ∈,若函数()f x 在区间(,)ωω-内单 调递增,且函数()f x 的图像关于直线x ω=对称,则ω的值为【解析】())4f x x πω=+,根据题意,24T πωω=≥,22πω≤,且()f ω=∴2sin()14πω+=,∴24πω=,2ω=16. 若正方体12341234A A A A B B B B -的棱长为1,则集合11{|,{1,2,3,4},i j x A B AB i j ⋅∈∈ {1,2,3,4}}中元素的个数为( )A. 1B. 2C. 3D. 4【解析】熟悉向量数量积的几何意义的话,这道题就很简单, ∵i j A B 在11A B 方向上投影始终是1,111i j A B A B ⋅=,选A六. 闵行区11. 已知两个不相等的非零向量a 和b ,向量组1234(,,,)x x x x 和1234(,,,)y y y y 均由2个a 和2个b 排列而成,记11223344S x y x y x y x y =⋅+⋅+⋅+⋅,那么S 的所有可能取值中的最 小值是 (用向量a 、b 表示)【解析】S 的所有可能取值有2222a b +、222a b a b ++⋅、4a b ⋅,∵222a b a b +≥⋅, ∴最小值为4a b ⋅,本题看起来的难度远远大于实际做起来的难度12. 已知无穷数列{}n a ,11a =,22a =,对任意*n N ∈,有2n n a a +=,数列{}n b 满足1n n n b b a +-=(*n N ∈),若数列2{}nb n中的任意一项都在该数列中重复出现无数次,则满 足要求的1b 的值为【解析】根据题意211b b -=、322b b -=、431b b -=、……,累加可得2132n b b n -=-,2132n b n b =-+,2123n b b n n-=+,∴满足要求的12b =15. 函数2()||f x x a =-在区间[1,1]-上的最大值是a ,则实数a 的取值范围是( )A. [0,)+∞B. 1[,1]2 C. 1[,)2+∞ D. [1,)+∞ 【解析】分类讨论,0a ≤时,最大值(1)(1)1f f a =-=-,不符,当0a >时,最大值在(0)f 或(1)f 处取到,要使得最 大值是a ,需满足(0)(1)f f ≥,即|1|a a ≥-,解得12a ≥16. 曲线1:sin C y x =,曲线22221:()2C x y r r ++-=(0r >),它们交点的个数( ) A. 恒为偶数 B. 恒为奇数 C. 不超过2017 D. 可超过2017【解析】数形结合,当r 趋向无穷大,交点会有无穷多,选D七. 虹口区11. 点(20,40)M ,抛物线22y px =(0p >)的焦点为F ,若对于抛物线上的任意点P ,||||PM PF +的最小值为41,则p 的值等于【解析】有两种情况,如图,① 当24040p >,即40p <,作MA x ⊥轴,M 、P 、F 三点一线时,||||PM PF +最小,即41MF =,∵40MA =,∴9FA =,∴(11,0)F 或(29,0)F ,∵40p <,∴(11,0)F ;② 当40p >,∵PA PF =,∴当M 、P 、A 三点一线时,||||PM PF +最小,∴41MA =,(21,40)A -,(21,0)F ,综上,22p =或4212. 当实数x 、y 满足221x y +=时,|2||32|x y a x y +++--的取值与x 、y 均无关, 则实数a 的取值范围是【解析】∵221x y +=,∴320x y -->,∵|2||32|x y a x y +++--的取值与x 、y 均 无关,∴20x y a ++≥,此时满足|2||32|3x y a x y a +++--=+,与x 、y 均无关,即20x y a ++≥恒成立,∴2a x y ≥--,设cos x θ=,sin y θ=,可得a ≥16. 定义(){}f x x =(其中{}x 表示不小于x 的最小整数)为“取上整函数”,例如{2.1}3=,{4}4=,以下关于“取上整函数”性质的描述,正确的是( )①(2)2()f x f x =;② 若12()()f x f x =,则121x x -<;③ 任意1x 、2x R ∈,1212()()()f x x f x f x +≤+;④1()()(2)2f x f x f x ++=; A. ①② B. ①③ C. ②③ D. ②④【解析】取特值法,① 当0.1x =,(2)(0.2){0.2}1f x f ===,(){0.1}1f x ==,(2)2()f x f x ≠,不符;④ 当0.1x =,1()()(0.1)(0.6)1122f x f x f f ++=+=+=,(2)(0.2){0.2}1f x f ===,不符;故选C八. 静安区9. 直角三角形ABC 中,3AB =,4AC =,5BC =,点M 是三角形ABC 外接圆上任意一点,则AB AM ⋅的最大值为【解析】向量数量积几何意义在这次一模考试中出现很多, 如图,max ||||AB AM AB AE ⋅=⋅,3AB =, 1.5OD =,2.5OM =,4DM =,4AE =,∴max 12AB AM ⋅=10. 已知()xf x a b =-(0a >且1a ≠,b R ∈),()1g x x =+,若对任意实数x 均有()()0f x g x ⋅≤,则14a b+的最小值为【解析】对任意实数x 均有()()0f x g x ⋅≤,∴()f x 单调递减,且经过(1,0)-,∴a ∈(0,1),且1ab =,∴14a b +≥,即14a b+的最小值为415. 已知()y g x =与()y h x =都是定义在(,0)(0,)-∞+∞上的奇函数,且当0x >时,2,01()(1),1x x g x g x x ⎧<≤=⎨->⎩,2()log h x k x =(0x >),若()()y g x h x =-恰有4个零点, 则正实数k 的取值范围是( )A. 1[,1]2B. 1(,1]2C. 31(,log 2]2D. 31[,log 2]2【解析】∵都是奇函数,∴当0x >时,()g x 与()h x 有2个交点,∴有两个临界状态,当 恰好有2个交点时,()h x 经过(3,1),解得3log 2k =,当恰好有3个交点时,()h x 经过(4,1),解得12k =,但取不到,∴31(,log 2]2k ∈,选C 九. 浦东新区11. 如图,在正方形ABCD 中,2AB =,M 、N 分别是边BC 、CD 上的两个动点,且MN =AM AN ⋅的取值范围是【解析】()()AM AN AB BM AD DN AB DN BM AD ⋅=+⋅+=⋅+⋅,设NC x =,x ∈,2DN x =-,MC =,2BM =,22AM AN DN BM ⋅=+2(2)2(282(x x =-+=-,根据基本不等式,当0a ≥,0b ≥,22222()2()a b a b a b +≤+≤+,∴22(4x ≤≤,∴[4,8AM AN ⋅∈-12. 已知定义在*N 上的单调递增函数()y f x =,对于任意的*n N ∈,都有*()f n N ∈,且(())3f f n n =恒成立,则(2017)(1999)f f -=【解析】当1n =时,((1))3f f =,∵在*N 上单调递增,∴(1)2f =,∴(2)3f =,∴(3)((2))6f f f ==,(6)((3))9f f f ==,(9)((6))18f f f ==,(18)((9))27f f f ==观察规律可得(3)kf 到(23)kf ⋅之间是连续正整数,∴(4)7f =,(5)8f =,∴(7)f =((4))12f f =,(8)((5))15f f f ==,(10)19f =,(11)20f =,(12)21f =,……,(18)27f =,(19)((10))30f f f ==,(20)((11))33f f f ==,(21)((12))36f f f ==, ……,观察规律可得(23)kf ⋅到1(3)k f +之间是以3为公差的等差数列,∵6231999⋅<<720173<,∴(2017)(1999)3(20171999)54f f -=⨯-=16. 元旦将近,调查鲜花市场价格得知:购买2只玫瑰与1只康乃馨所需费用之和大于8元, 而购买4只玫瑰与5只康乃馨所需费用之和小于22元;设购买2只玫瑰花所需费用为A 元, 购买3只康乃馨所需费用为B 元,则A 、B 的大小关系是( )A. A B >B. A B <C. A B =D. A 、B 的大小关系不确定 【解析】设玫瑰价格x 元,康乃馨价格y 元,∴28x y +>……①,4522x y +<……②,2-⨯①+②得,36y <,5-⨯①+②得,618x -<-,即263x y >>,故选A十. 宝山区12. 如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N , 那么称该数列为N 型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型 标准数列的个数为【解析】设数列首项为a ,项数为n ,可得(1)26682a a n n ++-=,即266812na n -=+, ∵a 为正整数,266829234=⨯⨯,当n 为奇数时,只有29n =或23符合条件,当n 为偶数时,只有8n =符合条件,∴2668型标准数列的个数为316. 在平面直角坐标系中,把位于直线y k =与直线y l =(k 、l 均为常数,且k l <)之 间的点所组成区域(含直线y k =,直线y l =)称为“k l ⊕型带状区域”,设()f x 为二次 函数,三点(2,(2)2)f --+、(0,(0)2)f +、(2,(2)2)f +均位于“04⊕型带状区域”,如 果点(,1)t t +位于“13-⊕型带状区域”,那么,函数|()|y f t =的最大值为( ) A. 72 B. 3 C. 52D. 2【解析】将已知条件转化一下,即(2)2f -+、(0)2f +、(2)2[0,4]f +∈,∴(2)f -、(0)f 、(2)[2,2]f ∈-,且 1[1,3]t +∈-,即[2,2]t ∈-,求|()|y f t =的最大值,如图是取到最大值的一种情况,抛物线过(2,2)--,(0,2),(2,2),21()22f x x x =-++,最大值5(1)2f =,选C十一. 青浦区11. 若定义域均为D 的三个函数()f x 、()g x 、()h x 满足条件:对任意x D ∈,点(,())x g x 与点(,())x h x 都关于点(,())x f x 对称,则称()h x 是()g x 关于()f x 的“对称函数”,已知()g x =()2f x x b =+,()h x 是()g x 关于()f x 的“对称函数”,且()()h x g x ≥ 恒成立,则实数b 的取值范围是【解析】转化已知条件,即()()g x f x ≤要恒成立,[1,1]x ∈-2x b ≤+,参变分离,即2b x ≥,设cos x θ=sin θ=∴sin 2cos b θθ≥-恒成立,即b ≥12. 已知数列{}n a 满足:对任意的*n N ∈均有133n n a ka k +=+-,其中k 为不等于0与1的常数,若{678,78,3,22,222,2222}i a ∈---,2,3,4,5i =,则满足条件的1a 所有可能值 的和为【解析】133n n a ka k +=+-,∴13(3)n n a k a ++=+,① 当3n a ≠-时,即{3}n a +为等比 数列,∴3i a +∈{675,75,0,25,225,2225}--,观察可得,等比数列为25、75-、225、675-或675-、225、75-、25,∴12533a +=-或2025,1343a =-或2022;② 当 3n a =-时,符合题意,∴13a =-;∴3460232022333-+-=16. 已知集合{(,)|()}M x y y f x ==,若对于任意实数对11(,)x y M ∈,存在22(,)x y M ∈, 使12120x x y y +=成立,则称集合M 是“垂直对点集”,给出下列四个集合:①21{(,)|}M x y y x ==; ②2{(,)|log }M x y y x ==; ③{(,)|22}xM x y y ==-; ④{(,)|sin 1}M x y y x ==+;其中是“垂直对点集”的序号是( )A. ①②③B. ①②④C. ①③④D. ②③④ 【解析】②的反例是点(1,0),不符,故选C十二. 杨浦区11.平面直角坐标系中,给出点(1,0)A 、(4,0)B ,若直线10x my +-=上存在点P ,使得||2||PA PB =,则实数m 的取值范围是【解析】设点(1,)P my y -,由已知得224PA PB =,∴222224(3)4m y y my y +=++,整理得22(1)8120m y my +++=,由226448(1)0m m ∆=-+≥,解得23m ≥,∴实数m的取值范围是(,[3,)-∞+∞12. 函数()y f x =是最小正周期为4的偶函数,且在[2,0]x ∈-时,()21f x x =+,若存 在1x 、2x 、⋅⋅⋅、n x 满足120n x x x ≤<<⋅⋅⋅<,且1223|()()||()()|f x f x f x f x -+-+⋅⋅⋅1|()()|2016n n f x f x -+-=,则n n x +最小值为【解析】()f x 的图像如图所示,根据题意,当10x =、22x =、34x =、46x =、……、n n x +最小,此时1|()()|4n n f x f x --=,20164504÷=,∴505n =,此时n x 为等差数列,2(1)n x n =-,∴5051008x =,即min 505()5051513n n x x +=+= 16. 若直线1x ya b+=通过点(cos ,sin )P θθ,则下列不等式正确的是( ) A. 221a b +≤ B. 221a b +≥ C. 22111a b +≤ D. 22111a b+≥【解析】将点(cos ,sin )P θθ代入直线得cos sin 1a bθθ+=)1θϕ+=,∵sin()1θϕ+≤,∴22111a b+≥,故选D ;法二:直线经过单位圆上一点,说明原点到直线的距离1d =≤,∴22111a b +≥十三. 金山区11. 设数列{}n a 是集合{|33,stx x s t =+<且,}s t N ∈中所有 的数从小到大排列成的数列,即14a =,210a =,312a =,428a =,530a =,636a =,⋅⋅⋅,将数列{}n a 中各项按照上小下大,左小右大的原则排成如图的等腰直角三角形数表, 则15a 的值为【解析】观察每一行最右边的数,01433=+,121233=+,233633=+,……,∵15a是第5行最右边的数,∴451533324a =+=12. 曲线C 是平面内到直线1:1l x =-和直线2:1l y =的距离之积等于常数2k (0k >)的41012283036⋅⋅⋅点的轨迹,下列四个结论:① 曲线C 过点(1,1)-;② 曲线C 关于点(1,1)-成中心对称; ③ 若点P 在曲线C 上,点A 、B 分别在直线1l 、2l 上,则||||PA PB +不小于2k ; ④ 设0P 为曲线C 上任意一点,则点0P 关于直线1:1l x =-,点(1,1)-及直线2:1l y =对称 的点分别为1P 、2P 、3P ,则四边形0123P PP P 的面积为定值24k ; 其中,所有正确结论的序号是【解析】曲线方程为2|1||1|k y x -=+,由2k y x=平移对称变换得到,如图所示,∴①错误,②正确, ③PA PB PC PD +≥+≥2k =,正确,④0123P PP P 面积012320044P PP P S PC P D k =⋅=,正确, ∴正确结论序号为②③④16. 已知函数2(43)30()log (1)10a x a x a x f x x x ⎧+-+<=⎨++≥⎩(0a >且1a ≠)在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( )A. 2(0,]3B. 23[,]34C. 123[,]{}334D. 123[,){}334【解析】∵递减,∴01a <<,430a -≤,且31a ≥,∴1334a ≤≤,|()|2f x x =-恰 好有两个不相等的实数解,数形结合,如图所示,可知当0x ≥,|()|y f x =与2y x =-仅有一个交点,∴当0x <时,2(43)32x a x a x +-+=-只有一解,∴32a ≤,或0∆=, 即34a =,综上,1233a ≤≤或34a =,故选C十四. 松江区10. 设(,)P x y是曲线1C =上的点,1(4,0)F -,2(4,0)F ,则12||||PF PF + 的最大值为【解析】如图所示,曲线C 的图像是一个菱形,作出椭圆:221259x y +=,1(4,0)F -、2(4,0)F 为椭圆焦点, 根据题意,P 不在椭圆外,即12||||2PF PF a +≤,∴12||||PF PF +的最大值为1011.已知函数13()28,3xx f x x ≤≤=->⎪⎩,若()()F x f x kx =-在其定义域内有3个零点,则实数k ∈【解析】数形结合,作出()f x 的函数图象,根据题意, 函数()y f x =与y kx =有3个交点,∴0k >,其中在[1,3]x ∈上有2个交点,即直线y kx =与半圆相交,点 (2,0)到直线距离1d =<,综上,(0,3k ∈ 12. 已知数列{}n a 满足11a =,23a =,若1||2n n n a a +-=*()n N ∈,且21{}n a -是递增数列,2{}n a 是递减数列,则212limn n na a -→∞=【解析】由题得,21{}n a -是递增数列,2{}n a 是递减数列,212a a -=,2322a a -=,3432a a -=-,4542a a -=,5652a a -=-,……,212212n n n a a ---=-,累加可得21343n n a -=,∴212646n n a -+=,∴2121lim 2n n na a -→∞=-16. 解不等式11()022x x -+>时,可构造函数1()()2x f x x =-,由()f x 在x R ∈是减函数及()(1)f x f >,可得1x <,用类似的方法可求得不等式263arcsin arcsin 0x x x x +++>的解集为( )A. (0,1]B. (1,1)-C. (1,1]-D. (1,0)-【解析】263arcsin arcsin x x x x +>--,∴2233arcsin()()arcsin()()x x x x +>-+-,设3()arcsin g x x x =+,()g x 为奇函数,且单调递增,定义域为[1,1]-,∴2()()g x g x >-,即2x x >-,解得0x >或1x <-,结合定义域,∴解集为(0,1],选A ,十五. 徐汇区11. 已知数列{}n a 是首项为1,公差为2m 的等差数列,前n 项和为n S ,设2nn nS b n =⋅ *()n N ∈,若数列{}n b 是递减数列,则实数m 的取值范围是【解析】(1)2(1)2n n n m S n n mn n -⋅=+=+-,122n n n n mn m Sb n -+==⋅,∵1n n b b +>, ∴11122nn mn m mn +-++>,化简得(2)1n m ->-,对*n N ∈恒成立,当1n =时,1m <, 当2n =时,m R ∈,当2n >时,12m n ->-,∴0m ≥,综上,[0,1)m ∈12. 若使集合2{|(6)(4)0,}A x kx k x x Z =--->∈中的元素个数最少,则实数k 的取值 范围是【解析】当0k ≥时,集合A 中的元素有无数个,∴0k <,∴6[()](4)0x k x k-+-<,∵60k k +<,∴64k x k +<<,∵0k <,∴64.9k k+≤-≈-,要使集合A 元素个 数最少,65k k+≥-,∴265k k +≤-,解得32k -≤≤-15. 已知函数f (x )为R 上的单调函数,f -1(x )是它的反函数,点A (-1,3)和点B (1,1)均在函数f (x )的图像上,则不等式1|(2)|1x f -<的解集为( )A. (1,1)-B. (1,3)C. 2(0,log 3)D. 2(1,log 3) 【解析】据题意,(1)3f -=,(1)1f =,∴1(3)1f-=-,1(1)1f -=,1()f x -单调递减,∴11|(2)|11(2)1x x f f --<⇒-<<,∴111(3)(2)(1)x f f f ---<<,即123x<<,可解得2(0,log 3)x ∈,故选C(分析整理 谭峰)。
2017上海各区数学一模 24、25汇总 解析
![2017上海各区数学一模 24、25汇总 解析](https://img.taocdn.com/s3/m/06166456ce2f0066f53322a7.png)
∴CD= AC sin A 12 , AD AC 2 CD2 9 .
5
5
又在 Rt△CDE 中, DE CD tan DCE 9 ,∴ BE AB AD DE 7 .
5
5
(2)当△CDE 是等腰三角形时,
可知 CDE A B DCE , CED B DCE ,
所以唯有 CED CDE . 又 B DCE , CDE BDC , ∴ BCD CED CDE BDC ,∴BD=BC=4,∴AD=1.
a b c 0 解:(1)令抛物线的表达式为 y ax2 bx c ,由题意得: 9a 3b c 0 ,解得:
16a 4b c 6 a 2 b 8 ,所以抛物线的表达式为 y 2x2 8x 6 . c 6
(2)由(1)得平移前抛物线的对称轴为直线 x=2,顶点为 2,2. 则平移后抛物线的对称轴为直线 x=8,令 D8 a,0,其中 a 0 ,则 E8 a,0 .
又 DQB CQB ECQ CED ,∴ DQB ECQ ;∴ BDQ ∽
QEC ;∴ BD DQ :即 2DQ2 x2 ,∴ DQ x , DE 3x ;
QE EC
2
2
∵ DE // BC ,∴ DE AD ;即
3x
3
x
;
解得
x 54
2 24
.
BC AB 2 2 3
73
二、(2017 黄埔一模) 24.(本题满分 12 分)
2x 3
5
3 当 PC PB 时,点 P 与点 A 重合,不合题意.
(3)∵ DE // BC ,∴ BDQ CBD 180 ;又 CQB 和 CBD 互补,
∴ CQB CBD 180 ;∴ CQB BDQ ;∵ BD CE ,
2017年上海市浦东区高考数学一模试卷(含答案)(推荐文档)
![2017年上海市浦东区高考数学一模试卷(含答案)(推荐文档)](https://img.taocdn.com/s3/m/907efd675f0e7cd1842536da.png)
上海市浦东新区2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 已知U R =,集合{|421}A x x x =-≥+,则U C A =2. 三阶行列式351236724---中元素5-的代数余子式的值为 3. 8(1)2x -的二项展开式中含2x 项的系数是4. 已知一个球的表面积为16π,则它的体积为5. 一个袋子中共有6个球,其中4个红色球,2个蓝色球,这些球的质地和形状一样,从中 任意抽取2个球,则所抽的球都是红色球的概率是6. 已知直线:0l x y b -+=被圆22:25C x y +=所截得的弦长为6,则b =7. 若复数(1)(2)ai i +-在复平面上所对应的点在直线y x =上,则实数a =8.函数()cos sin )f x x x x x =+-的最小正周期为 9. 过双曲线222:14x y C a -=的右焦点F 作一条垂直于x 轴的垂线交双曲线C 的两条渐近线 于A 、B 两点,O 为坐标原点,则△OAB 的面积的最小值为10. 若关于x 的不等式1|2|02x x m --<在区间[0,1]内恒 成立,则实数m 的范围11. 如图,在正方形ABCD 中,2AB =,M 、N 分别是 边BC 、CD上的两个动点,且MN =AM AN ⋅u u u u r u u u r的取值范围是12. 已知定义在*N 上的单调递增函数()y f x =,对于任意的*n N ∈,都有*()f n N ∈,且 (())3f f n n =恒成立,则(2017)(1999)f f -=二. 选择题(本大题共4题,每题5分,共20分)13. 将cos 2y x =图像向左平移6π个单位,所得的函数为( ) A. cos(2)3y x π=+ B. cos(2)6y x π=+ C. cos(2)3y x π=- D. cos(2)6y x π=-14. 已知函数()y f x =的反函数为1()y f x -=,则()y f x =-与1()y f x -=-图像( )A. 关于y 轴对称B. 关于原点对称C. 关于直线0x y +=对称D. 关于直线0x y -=对称15. 设{}n a 是等差数列,下列命题中正确的是( )A. 若120a a +>,则230a a +>B. 若130a a +<,则120a a +<C. 若120a a <<,则2a >D. 若10a <,则2123()()0a a a a -->16. 元旦将近,调查鲜花市场价格得知:购买2只玫瑰与1只康乃馨所需费用之和大于8元, 而购买4只玫瑰与5只康乃馨所需费用之和小于22元;设购买2只玫瑰花所需费用为A 元, 购买3只康乃馨所需费用为B 元,则A 、B 的大小关系是( )A. A B >B. A B <C. A B =D. A 、B 的大小关系不确定三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 在长方体1111ABCD A B C D -中(如图),11AD AA ==,2AB =,点E 是棱AB 中点;(1)求异面直线1AD 与EC 所成角的大小;(2)《九章算术》中,将四个面都是直角三角形的四面体成为鳖臑,试问四面体1D CDE 是否为鳖臑?并说明理由;18. 已知△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ;(1)若3B π=,b =ABC 的面积2S =,求a c +的值; (2)若22cos ()C BA BC AB AC c ⋅+⋅=u u u r u u u r u u u r u u u r ,求角C ;19. 已知椭圆2222:1x y C a b+=(0)a b >>的左、右焦点分别为1F 、2F ,过2F 的一条直线交 椭圆于P 、Q 两点,若△12PF F的周长为4+;(1)求椭圆C 的方程;(2)若12||||F P F Q PQ +=u u u r u u u u r u u u r ,求直线PQ 的方程;20. 设数列{}n a 满足21241n n a a n n +=+-+,22n n b a n n =+-;(1)若12a =,求证:数列{}n b 为等比数列;(2)在(1)的条件下,对于正整数2、q 、r (2)q r <<,若25b 、q b 、r b 这三项经适当 排序后能构成等差数列,求符合条件的数组(,)q r ;(3)若11a =,n n c b n =+,n d =n M 是n d 的前n 项和,求不超过2016M 的最大整数;21. 已知定义在R 上的函数()x ϕ的图像是一条连续不断的曲线,且在任意区间上()x ϕ都不 是常值函数,设011i i n a t t t t t b -=<<⋅⋅⋅<<<⋅⋅⋅<=,其中分点1t 、2t 、⋅⋅⋅、1n t -将区间[,]a b 划分为n *()n N ∈个小区间1[,]i i t t -,记0112{,,}|()()||()()|M a b n t t t t ϕϕϕϕ=-+- 1|()()|n n t t ϕϕ-+⋅⋅⋅+-,称为()x ϕ关于区间[,]a b 的n 阶划分的“落差总和”;当{,,}M a b n 取得最大值且n 取得最小值0n 时,称()x ϕ存在“最佳划分”0{,,}M a b n ;(1)已知()||x x ϕ=,求{1,2,2}M -的最大值0M ;(2)已知()()a b ϕϕ<,求证:()x ϕ在[,]a b 上存在“最佳划分”{,,1}M a b 的充要条件 是()x ϕ在[,]a b 上单调递增;(3)若()x ϕ是偶函数且存在“最佳划分”0{,,}M a a n -,求证:0n 是偶数,且 00110i i n t t t t t -++⋅⋅⋅+++⋅⋅⋅+=;参考答案一. 填空题1. {|1}x x >2. 34-3. 74. 323π5. 256. ±7. 3 8. π 9. 8 10. 3(,2)2 11. [4,8- 12. 54二. 选择题13. A 14. D 15. C 16. A三. 解答题17.(1)3π;(2)是; 18.(1)5a c +=;(2)3π;19.(1)22184x y +=;(2)2)y x =-; 20.(1)12n n b -=;(2)(3,5);(3)2016;21.(1)03M =;(2)略;(3)略;。
2017年普通高等学校招生全国统一考试(上海卷)数学试题 完整版
![2017年普通高等学校招生全国统一考试(上海卷)数学试题 完整版](https://img.taocdn.com/s3/m/e78df1f8a1c7aa00b42acb2f.png)
2017 年普通高等学校招生全国统一考试上海--数学试卷考生注意1. 本场考试时间120 分钟,试卷共 4 页,满分150 分,答题纸共 2 页.2. 作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置3. 所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位4. 用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题一、填空题(本大题共有12 题,满分54 分,第1-6 题每题 4 分,第7-12 题每题5 分)考生应在答题纸的相应位置直接填写结果 .1.已知集合 A={1 ,2,3,4} ,集合 B={3 , 4, 5} ,则 A∩B=________1,答案:{3,4}【解析】∵集合 A={1 ,2,3,4} ,集合 B={3 ,4,5} ,∴A∩B={3,4} 【知识点难易度】本题考查集合的运算,交集,属于基础题2.若排列数则 m=___________【答案】 3【解析】∵排列数 A 6=6×5× ×(6-m+1) ,∴6-m+1=4,即 m=3. 【知识点难易度】本题考查排列的计算,属于基础题3.不等式的解集为___________【答案】【解析】【知识点难易度】本题考查分式不等式的解法,属于基础题4.已知球的体积为 36π,则该球主视图的面积等于________【答案】9 π【解析】设球的半径为R,则由球的体积为 36π,可得,解得 R=3.该球的主视图是半径为3 的圆,其面积为【知识点难易度】本题考查球的体积公式和三视图的概念5.已知复数 z 满足,则 |z|=________.【答案】【解析】由【知识点难易度】本题考查复数的四则运算和复数的模, 属于基础题6. 设双曲线(b>0)的焦点为 F1,F2, P 为该双曲线上的一点,若,则=______【答案】11【解析】双曲线中,由双曲线的定义,可得 ||PF |-|PF ||=6,又|PF1|=5,解得 |PF2 |=11或﹣ 1(舍去),故 |PF2|=11.【知识点难易度】本题考查双曲线的定义和性质,7. 如图,以长方体的顶点 D 为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,若向量的坐标为( 4,3,2),则向量的坐标是___________【答案】(-4,3,2)【解析】由的坐标为( 4,3, 2),可得A ( 4, 0, 0),C(0,3,2),D1 (0,0,2),则 C1( 0, 3, 2),∴=(﹣ 4,3,2).【知识点难易度】本题考查空间向量,属于基础题8. 定义在(0,+ ∞)上的函数y=f (x)的反函数为, 若为奇函数,则的解为_____【答案】【解析】为奇函数,可得当x>0时,﹣ x< 0,即有,则由可得,即【知识点难易度】本题考查函数基本性质和互为反函数的两个函数之间的关系,属于中档题9.已知四个函数:①y=-x ,② y=,③ y=④ y=,从中任选2 个,则事件“所选 2 个函数的图象有且仅有一个公共点”的概率为_______【答案】【解析】从四个函数中任选2 个,基本事件总数 n==6,“所选2 个函数的图象有且只有一个公共点”包含的基本事件有①③,①④,共2 个,∴事件“所选2 个函数的图象有且只有一个公共点”的概率为p=【知识点难易度】本题考查事件的概率,幂函数的图像画法和特征,属于基础题10.已知数列其中的项是互不相等的正整数,若对于任意 n∈N*,的第项等于则=_____【答案】 2【解析】【知识点难易度】本题考查数列概念的理解,对数的运算,属于中档题11.设α1,α2∈R , 且则 |10π-α1-α2|的最小值等于_________【答案】【解析】由可得 1≤2+sin α1≤3,则同理可得【知识点难易度】考查三角函数的性质和值域,12. 如图,用35 个单位正方形拼成一个矩形,点以及四个标记为“▲”的点在正方形的顶点处,设集合 Ω={ P1,P2,P3,P4 },点P ∈Ω,过 P 作直线 l P ,使得不在 l P 上的 “▲” 的点分布在 l P 的两侧.用 D 1(l P ) 和分别表示一侧和另一侧的“▲”的点到的距离之和. 若过 P的直线中有且只有一条满足,则 Ω 中所有这样的 P 为___________ 【答案】P 1, P 3 , P 4【解析】设记为 “▲”的四个点为 A ,B ,C ,D ,线段 AB ,BC ,CD , DA 的中点分别为 E , F ,G ,H ,易知 EFGH 为平行四边形,如图所示,四边形 ABCD 两组对边中点的连线交于点 P2 ,则经过点 P2的所有直线都是符合条件的直线 .因此经过点 P2 的符合条件的直线 l P 有无数条;经过点 P1,P3,P4 的符合条件的直线 各有 1 条,即直线 P2 P1 ,P2P3,P2P4.故 Ω中所有这样的 P 为 P1,P3.P4.二、选择题(本大题共4 题,每题 5 分,共 20 分)13. 关于x, y的二元一次方程组的系数行列式 D 为( )A. B. C. D.【答案】 C【解析】关于的二元一次方程组的系数行列式故选C14. 在数列中,n∈N,则=()A. 等于B.等于 0C.等于D.不存在【答案】 B【解析】数列中,n∈N,则故选B15. 已知 a,b,c 为实常数,数列的通项=an2+bn+c,n∈N*,则“存在 k∈N*,使得成等差数列”的一个必要条件是()A. 0a b cc= D、20-+=b≤ C. 0a≥ B. 0【答案】 A【解析】存在 k∈N*,使得成等差数列,可得2[a( 200+k)2+b(200+k) +c]=a( 100+k)2+b(100+k) +c+a (300+k)2+b(300+k) +c,化简得 a=0,∴使得成等差数列的必要条件是 a≥0.故选A .16. 在平面直角坐标系 xOy 中,已知椭圆221:1364x y C +=和222:19y C x +=P 为上的动点,Q 为 C2 上的动点,w 是OP OQ ⋅u u u r u u u r的最大值.记Ω={(P ,Q )| P 在 C1 上, Q 在 C2 上且OP OQ ω⋅=u u u r u u u r},则 Ω中的元素有( )A.2 个B.4 个C.8 个D.无穷个【答案】 D【解析】 P 为椭圆 221:1364x y C +=上的动点, Q 为 222:19y C x +=上的动点,可 设 P ( 6cos α, 2sin α), Q ( cos β, 3sin β), α, β∈ [0,2π], 则OP OQ ⋅u u u r u u u r=6cos α cos β +6sin α sin β(=6cos α-β),当 α-β =2k π,k ∈Z 时, OP OQ ⋅u u u r u u u r取得最大值w=6,即使得 OP OQ ⋅u u u r u u u r=w 的点对 (P,Q)有无穷多对, Ω 中的元素有无穷个 .三、解答题(本大题共5 题,共 14+14+14+16+18=76 分)17.如图,直三棱柱111ABC A B C - 的底面为直角三角形,两直角边AB 和 AC 的长分别为 4 和 2,侧棱 1AA 的长为 5. (1)求三棱柱111ABC A B C -的体积;(2)设 M 是 BC 中点,求直线1B M 与平面ABC所成角的大小 .17.【解析】(1)∵直三棱柱111ABC A B C -的底面为直角三角形,两直角边 AB 和 AC 的长分别为 4 和 2,侧棱 AA 1 的长为 5. ∴三棱柱111ABC A B C -的体积2)连接 AM.∵直三棱柱111ABC A B C -,与平面 ABC 所成角 .∵△ ABC 是直角三角形, 两直角边 AB 和 AC 的长分别为 4 和 2,点 M 是 BC 的中点,18.已知函数221()cos sin ,(0,)2f x x x x π=-+∈.(1)求()f x 的单调递增区间;(2)设△ ABC 为锐角三角形,角 A 所对边19a = ,角 B 所对边 b=5,若f (A )=0,求△ ABC 的面积.18.【解析】(1)函数221()cos sin ,(0,)2f x x x x π=-+∈19. 根据预测,某地第n (n ∈N * )个月共享单车的投放量和损失量分别为 an 和 bn (单位:辆),其中 2515,1,2,310470,4n n n a n n ⎧+==⎨-+≥⎩, 5n b n =+,第 n 个月底的共享单车的保有量是前 n 个月的累计投放量与累计损失量的差。
2017年上海市高考数学试卷及解析
![2017年上海市高考数学试卷及解析](https://img.taocdn.com/s3/m/be319e0684254b35effd3412.png)
2017年上海市高考数学试卷一、填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分)1、(4分)已知集合A={1,2,3,4},集合B={3,4,5},则A∩B=、2、(4分)若排列数=6×5×4,则m=、3、(4分)不等式>1的解集为、4、(4分)已知球的体积为36π,则该球主视图的面积等于、5、(4分)已知复数z满足z+=0,则|z|=、6、(4分)设双曲线﹣=1(b>0)的焦点为F1、F2,P为该双曲线上的一点,若|PF1|=5,则|PF2|=、7、(5分)如图,以长方体ABCD﹣A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为(4,3,2),则的坐标是、8、(5分)定义在(0,+∞)上的函数y=f(x)的反函数为y=f﹣1(x),若g(x)=为奇函数,则f﹣1(x)=2的解为、9、(5分)已知四个函数:①y=﹣x,②y=﹣,③y=x3,④y=x,从中任选2个,则事件“所选2个函数的图象有且仅有一个公共点”的概率为、10、(5分)已知数列{a n}和{b n},其中a n=n2,n∈N*,{b n}的项是互不相等的正整数,若对于任意n∈N*,{b n}的第a n项等于{a n}的第b n项,则=、11、(5分)设a1、a2∈R,且,则|10π﹣a1﹣a2|的最小值等于、12、(5分)如图,用35个单位正方形拼成一个矩形,点P1、P2、P3、P4以及四个标记为“▲”的点在正方形的顶点处,设集合Ω={P1,P2,P3,P4},点P∈Ω,过P作直线l P,使得不在l P上的“▲”的点分布在l P的两侧、用D1(l P)和D2(l P)分别表示l P一侧和另一侧的“▲”的点到l P的距离之和、若过P的直线l P中有且只有一条满足D1(l P)=D2(l P),则Ω中所有这样的P为、二、选择题(本大题共4题,每题5分,共20分)13、(5分)关于x、y的二元一次方程组的系数行列式D为()A、B、C、D、14、(5分)在数列{a n}中,a n=(﹣)n,n∈N*,则a n()A、等于B、等于0C、等于D、不存在15、(5分)已知a、b、c为实常数,数列{x n}的通项x n=an2+bn+c,n∈N*,则“存、x200+k、x300+k成等差数列”的一个必要条件是()在k∈N*,使得x100+kA、a≥0B、b≤0C、c=0D、a﹣2b+c=016、(5分)在平面直角坐标系xOy中,已知椭圆C1:=1和C2:x2+=1、P为C1上的动点,Q为C2上的动点,w是的最大值、记Ω={(P,Q)|P 在C1上,Q在C2上,且=w},则Ω中元素个数为()A、2个B、4个C、8个D、无穷个三、解答题(本大题共5题,共14+14+14+16+18=76分)17、(14分)如图,直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB 和AC的长分别为4和2,侧棱AA1的长为5、(1)求三棱柱ABC﹣A1B1C1的体积;(2)设M是BC中点,求直线A1M与平面ABC所成角的大小、18、(14分)已知函数f(x)=cos2x﹣sin2x+,x∈(0,π)、(1)求f(x)的单调递增区间;(2)设△ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,求△ABC的面积、19、(14分)根据预测,某地第n(n∈N*)个月共享单车的投放量和损失量分别为a n和b n(单位:辆),其中a n=,b n=n+5,第n个月底的共享单车的保有量是前n个月的累计投放量与累计损失量的差、(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n个月底的单车容纳量S n=﹣4(n﹣46)2+8800(单位:辆)、设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?20、(16分)在平面直角坐标系xOy中,已知椭圆Γ:=1,A为Γ的上顶点,P为Γ上异于上、下顶点的动点,M为x正半轴上的动点、(1)若P在第一象限,且|OP|=,求P的坐标;(2)设P(),若以A、P、M为顶点的三角形是直角三角形,求M的横坐标;(3)若|MA|=|MP|,直线AQ与Γ交于另一点C,且,,求直线AQ的方程、21、(18分)设定义在R上的函数f(x)满足:对于任意的x1、x2∈R,当x1<x2时,都有f(x1)≤f(x2)、(1)若f(x)=ax3+1,求a的取值范围;(2)若f(x)是周期函数,证明:f(x)是常值函数;(3)设f(x)恒大于零,g(x)是定义在R上的、恒大于零的周期函数,M是g(x)的最大值、函数h(x)=f(x)g(x)、证明:“h(x)是周期函数”的充要条件是“f(x)是常值函数”、参考答案与试题解析一、填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分)1、(4分)已知集合A={1,2,3,4},集合B={3,4,5},则A∩B={3,4} 、题目分析:利用交集定义直接求解、试题解答:解:∵集合A={1,2,3,4},集合B={3,4,5},∴A∩B={3,4}、故答案为:{3,4}、点评:本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用、2、(4分)若排列数=6×5×4,则m=3、题目分析:利用排列数公式直接求解、试题解答:解:∵排列数=6×5×4,∴由排列数公式得,∴m=3、故答案为:m=3、点评:本题考查实数值的求法,是基础题,解题时要认真审题,注意排列数公式的合理运用、3、(4分)不等式>1的解集为(﹣∞,0)、题目分析:根据分式不等式的解法求出不等式的解集即可、试题解答:解:由>1得:,故不等式的解集为:(﹣∞,0),故答案为:(﹣∞,0)、点评:本题考查了解分式不等式,考查转化思想,是一道基础题、4、(4分)已知球的体积为36π,则该球主视图的面积等于9π、题目分析:由球的体积公式,可得半径R=3,再由主视图为圆,可得面积、试题解答:解:球的体积为36π,设球的半径为R,可得πR3=36π,可得R=3,该球主视图为半径为3的圆,可得面积为πR2=9π、故答案为:9π、点评:本题考查球的体积公式,以及主视图的形状和面积求法,考查运算能力,属于基础题、5、(4分)已知复数z满足z+=0,则|z|=、题目分析:设z=a+bi(a,b∈R),代入z2=﹣3,由复数相等的条件列式求得a,b的值得答案、试题解答:解:由z+=0,得z2=﹣3,设z=a+bi(a,b∈R),由z2=﹣3,得(a+bi)2=a2﹣b2+2abi=﹣3,即,解得:、∴、则|z|=、故答案为:、点评:本题考查复数代数形式的乘除运算,考查了复数相等的条件以及复数模的求法,是基础题、6、(4分)设双曲线﹣=1(b>0)的焦点为F1、F2,P为该双曲线上的一点,若|PF1|=5,则|PF2|=11、题目分析:根据题意,由双曲线的方程可得a的值,结合双曲线的定义可得||PF1|﹣|PF2||=6,解可得|PF2|的值,即可得答案、试题解答:解:根据题意,双曲线的方程为:﹣=1,其中a==3,则有||PF1|﹣|PF2||=6,又由|PF1|=5,解可得|PF2|=11或﹣1(舍)故|PF2|=11,故答案为:11、点评:本题考查双曲线的几何性质,关键是掌握双曲线的定义、7、(5分)如图,以长方体ABCD﹣A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为(4,3,2),则的坐标是(﹣4,3,2)、题目分析:由的坐标为(4,3,2),分别求出A和C1的坐标,由此能求出结果、试题解答:解:如图,以长方体ABCD﹣A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,∵的坐标为(4,3,2),∴A(4,0,0),C1(0,3,2),∴、故答案为:(﹣4,3,2)、点评:本题考查空间向量的坐标的求法,考查空间直角坐标系等基础知识,考查运算求解能力,考查数形结合思想,是基础题、8、(5分)定义在(0,+∞)上的函数y=f(x)的反函数为y=f﹣1(x),若g(x)=为奇函数,则f﹣1(x)=2的解为、题目分析:由奇函数的定义,当x>0时,﹣x<0,代入已知解析式,即可得到所求x>0的解析式,再由互为反函数的两函数的自变量和函数值相反,即可得到所求值、试题解答:解:若g(x)=为奇函数,可得当x>0时,﹣x<0,即有g(﹣x)=3﹣x﹣1,由g(x)为奇函数,可得g(﹣x)=﹣g(x),则g(x)=f(x)=1﹣3﹣x,x>0,由定义在(0,+∞)上的函数y=f(x)的反函数为y=f﹣1(x),且f﹣1(x)=2,可由f(2)=1﹣3﹣2=,可得f﹣1(x)=2的解为x=、故答案为:、点评:本题考查函数的奇偶性和运用,考查互为反函数的自变量和函数值的关系,考查运算能力,属于基础题、9、(5分)已知四个函数:①y=﹣x,②y=﹣,③y=x3,④y=x,从中任选2个,则事件“所选2个函数的图象有且仅有一个公共点”的概率为、题目分析:从四个函数中任选2个,基本事件总数n=,再利用列举法求出事件A:“所选2个函数的图象有且只有一个公共点”包含的基本事件的个数,由此能求出事件A:“所选2个函数的图象有且只有一个公共点”的概率、试题解答:解:给出四个函数:①y=﹣x,②y=﹣,③y=x3,④y=x,从四个函数中任选2个,基本事件总数n=,③④有两个公共点(0,0),(1,1)、事件A:“所选2个函数的图象有且只有一个公共点”包含的基本事件有:①③,①④共2个,∴事件A:“所选2个函数的图象有且只有一个公共点”的概率为P(A)==、故答案为:、点评:本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用、10、(5分)已知数列{a n}和{b n},其中a n=n2,n∈N*,{b n}的项是互不相等的正整数,若对于任意n∈N*,{b n}的第a n项等于{a n}的第b n项,则=2、题目分析:a n=n2,n∈N*,若对于一切n∈N*,{b n}中的第a n项恒等于{a n}中的第b n项,可得==、于是b1=a1=1,=b4,=b9,=b16、即可得出、试题解答:解:∵a n=n2,n∈N*,若对于一切n∈N*,{b n}中的第a n项恒等于{a n}中的第b n项,∴==、∴b1=a1=1,=b4,=b9,=b16、∴b1b4b9b16=、∴=2、故答案为:2、点评:本题考查了数列递推关系、对数的运算性质,考查了推理能力与计算能力,属于中档题、11、(5分)设a1、a2∈R,且,则|10π﹣a1﹣a2|的最小值等于、题目分析:由题意,要使+=2,可得sinα1=﹣1,sin2α2=﹣1、求出α1和α2,即可求出|10π﹣α1﹣α2|的最小值试题解答:解:根据三角函数的性质,可知sinα1,sin2α2的范围在[﹣1,1],要使+=2,∴sinα1=﹣1,sin2α2=﹣1、则:,k1∈Z、,即,k2∈Z、那么:α1+α2=(2k1+k2)π,k1、k2∈Z、∴|10π﹣α1﹣α2|=|10π﹣(2k1+k2)π|的最小值为、故答案为:、点评:本题主要考察三角函数性质,有界限的范围的灵活应用,属于基本知识的考查、12、(5分)如图,用35个单位正方形拼成一个矩形,点P1、P2、P3、P4以及四个标记为“▲”的点在正方形的顶点处,设集合Ω={P1,P2,P3,P4},点P∈Ω,过P作直线l P,使得不在l P上的“▲”的点分布在l P的两侧、用D1(l P)和D2(l P)分别表示l P一侧和另一侧的“▲”的点到l P的距离之和、若过P的直线l P中有且只有一条满足D1(l P)=D2(l P),则Ω中所有这样的P为P1、P3、P4、题目分析:根据任意四边形ABCD两组对边中点的连线交于一点,过此点作直线,使四边形的四个顶点不在该直线的同一侧,则该直线两侧的四边形的顶点到直线的距离之和相等;由此得出结论、试题解答:解:设记为“▲”的四个点是A,B,C,D,线段AB,BC,CD,DA的中点分别为E,F,G,H,易知EFGH为平行四边形,如图所示;又平行四边形EFGH的对角线交于点P2,则符合条件的直线l P一定经过点P2,且过点P2的直线有无数条;由过点P1和P2的直线有且仅有1条,过点P3和P2的直线有且仅有1条,过点P4和P2的直线有且仅有1条,所以符合条件的点是P1、P3、P4、故答案为:P1、P3、P4、点评:本题考查了数学理解力与转化力的应用问题,也考查了对基本问题的阅读理解和应用转化能力、二、选择题(本大题共4题,每题5分,共20分)13、(5分)关于x、y的二元一次方程组的系数行列式D为()A、B、C、D、题目分析:利用线性方程组的系数行列式的定义直接求解、试题解答:解:关于x、y的二元一次方程组的系数行列式:D=、故选:C、点评:本题考查线性方程组的系数行列式的求法,是基础题,解题时要认真审题,注意线性方程组的系数行列式的定义的合理运用、14、(5分)在数列{a n}中,a n=(﹣)n,n∈N*,则a n()A、等于B、等于0C、等于D、不存在题目分析:根据极限的定义,求出a n=的值、试题解答:解:数列{a n}中,a n=(﹣)n,n∈N*,则a n==0、故选:B、点评:本题考查了极限的定义与应用问题,是基础题、15、(5分)已知a、b、c为实常数,数列{x n}的通项x n=an2+bn+c,n∈N*,则“存、x200+k、x300+k成等差数列”的一个必要条件是()在k∈N*,使得x100+kA、a≥0B、b≤0C、c=0D、a﹣2b+c=0,x200+k,x300+k成等差数列,可得:2x200+k=x100+k x300+k,代入化题目分析:由x100+k简即可得出、、x200+k、x300+k成等差数列,可得:2[a(200+k)试题解答:解:存在k∈N*,使得x100+k2+b(200+k)+c]=a(100+k)2+b(100+k)+c+a(300+k)2+b(300+k)+c,化为:a=0、,x200+k,x300+k成等差数列的必要条件是a≥0、∴使得x100+k故选:A、点评:本题考查了等差数列的通项公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题、16、(5分)在平面直角坐标系xOy中,已知椭圆C1:=1和C2:x2+=1、P为C1上的动点,Q为C2上的动点,w是的最大值、记Ω={(P,Q)|P 在C1上,Q在C2上,且=w},则Ω中元素个数为()A、2个B、4个C、8个D、无穷个题目分析:设出P(6cosα,2sinα),Q(cosβ,3sinβ),0≤α\β<2π,由向量数量积的坐标表示和两角差的余弦公式和余弦函数的值域,可得最大值及取得的条件,即可判断所求元素的个数、试题解答:解:椭圆C1:=1和C2:x2+=1、P为C1上的动点,Q为C2上的动点,可设P(6cosα,2sinα),Q(cosβ,3sinβ),0≤α\β<2π,则=6cosαcosβ+6sinαsinβ=6cos(α﹣β),当α﹣β=2kπ,k∈Z时,w取得最大值6,则Ω={(P,Q)|P在C1上,Q在C2上,且=w}中的元素有无穷多对、另解:令P(m,n),Q(u,v),则m2+9n2=36,9u2+v2=9,由柯西不等式(m2+9n2)(9u2+v2)=324≥(3mu+3nv)2,当且仅当mv=nu,即O、P、Q共线时,取得最大值6,显然,满足条件的P、Q有无穷多对,D项正确、故选:D、点评:本题考查椭圆的参数方程的运用,以及向量数量积的坐标表示和余弦函数的值域,考查集合的几何意义,属于中档题、三、解答题(本大题共5题,共14+14+14+16+18=76分)17、(14分)如图,直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB 和AC的长分别为4和2,侧棱AA1的长为5、(1)求三棱柱ABC﹣A1B1C1的体积;(2)设M是BC中点,求直线A1M与平面ABC所成角的大小、题目分析:(1)三棱柱ABC﹣A1B1C1的体积V=S△ABC×AA1=,由此能求出结果、(2)连结AM,∠A1MA是直线A1M与平面ABC所成角,由此能求出直线A1M 与平面ABC所成角的大小、试题解答:解:(1)∵直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5、∴三棱柱ABC﹣A1B1C1的体积:V=S△ABC×AA1===20、(2)连结AM,∵直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5,M是BC中点,∴AA1⊥底面ABC,AM==,∴∠A1MA是直线A1M与平面ABC所成角,tan∠A1MA===,∴直线A1M与平面ABC所成角的大小为arctan、点评:本题考查三棱柱的体积的求法,考查线面角的大小的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题、18、(14分)已知函数f(x)=cos2x﹣sin2x+,x∈(0,π)、(1)求f(x)的单调递增区间;(2)设△ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,求△ABC的面积、题目分析:(1)由二倍角的余弦公式和余弦函数的递增区间,解不等式可得所求增区间;(2)由f(A)=0,解得A,再由余弦定理解方程可得c,再由三角形的面积公式,计算即可得到所求值、试题解答:解:(1)函数f(x)=cos2x﹣sin2x+=cos2x+,x∈(0,π),由2kπ﹣π≤2x≤2kπ,解得kπ﹣π≤x≤kπ,k∈Z,k=1时,π≤x≤π,可得f(x)的增区间为[,π);(2)设△ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,即有cos2A+=0,解得2A=π,即A=π,由余弦定理可得a2=b2+c2﹣2bccosA,化为c2﹣5c+6=0,解得c=2或3,若c=2,则cosB=<0,即有B为钝角,c=2不成立,则c=3,△ABC的面积为S=bcsinA=×5×3×=、点评:本题考查二倍角公式和余弦函数的图象和性质,考查解三角形的余弦定理和面积公式的运用,考查运算能力,属于中档题、19、(14分)根据预测,某地第n(n∈N*)个月共享单车的投放量和损失量分别为a n和b n(单位:辆),其中a n=,b n=n+5,第n个月底的共享单车的保有量是前n个月的累计投放量与累计损失量的差、(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n个月底的单车容纳量S n=﹣4(n﹣46)2+8800(单位:辆)、设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?题目分析:(1)计算出{a n}和{b n}的前4项和的差即可得出答案;(2)令a n≥b n得出n≤42,再计算第42个月底的保有量和容纳量即可得出结论、试题解答:解:(1)∵a n=,b n=n+5∴a1=5×14+15=20a2=5×24+15=95a3=5×34+15=420a4=﹣10×4+470=430b1=1+5=6b2=2+5=7b3=3+5=8b4=4+5=9∴前4个月共投放单车为a1+a2+a3+a4=20+95+420+430=965,前4个月共损失单车为b1+b2+b3+b4=6+7+8+9=30,∴该地区第4个月底的共享单车的保有量为965﹣30=935、(2)令a n≥b n,显然n≤3时恒成立,当n≥4时,有﹣10n+470≥n+5,解得n≤,∴第42个月底,保有量达到最大、当n≥4,{a n}为公差为﹣10等差数列,而{b n}为等差为1的等差数列,∴到第42个月底,单车保有量为×39+535﹣×42=×39+535﹣×42=8782、S42=﹣4×16+8800=8736、∵8782>8736,∴第42个月底单车保有量超过了容纳量、点评:本题考查了数列模型的应用,等差数列的求和公式,属于中档题、20、(16分)在平面直角坐标系xOy中,已知椭圆Γ:=1,A为Γ的上顶点,P为Γ上异于上、下顶点的动点,M为x正半轴上的动点、(1)若P在第一象限,且|OP|=,求P的坐标;(2)设P(),若以A、P、M为顶点的三角形是直角三角形,求M的横坐标;(3)若|MA|=|MP|,直线AQ与Γ交于另一点C,且,,求直线AQ的方程、题目分析:(1)设P(x,y)(x>0,y>0),联立,能求出P点坐标、(2)设M(x0,0),A(0,1),P(),由∠P=90°,求出x0=;由∠M=90°,求出x0=1或x0=;由∠A=90°,则M点在x轴负半轴,不合题意、由此能求出点M的横坐标、(3)设C(2cosα,sinα),推导出Q(4cosα,2sinα﹣1),设P(2cosβ,sinβ),M(x0,0)推导出x0=cosβ,从而4cosα﹣2cosβ=﹣5cosβ,且2sinα﹣sinβ﹣1=﹣4sinβ,cosβ=﹣cosα,且sinα=(1﹣2sinα),由此能求出直线AQ、试题解答:解:(1)设P(x,y)(x>0,y>0),∵椭圆Γ:=1,A为Γ的上顶点,P为Γ上异于上、下顶点的动点,P在第一象限,且|OP|=,∴联立,解得P(,)、(2)设M(x0,0),A(0,1),P(),若∠P=90°,则•,即(x0﹣,﹣)•(﹣,)=0,∴(﹣)x0+﹣=0,解得x0=、如图,若∠M=90°,则•=0,即(﹣x0,1)•(﹣x0,)=0,∴=0,解得x0=1或x0=,若∠A=90°,则M点在x轴负半轴,不合题意、∴点M的横坐标为,或1,或、(3)设C(2cosα,sinα),∵,A(0,1),∴Q(4cosα,2sinα﹣1),又设P(2cosβ,sinβ),M(x0,0),∵|MA|=|MP|,∴x02+1=(2cosβ﹣x0)2+(sinβ)2,整理得:x0=cosβ,∵=(4cosα﹣2cosβ,2sinα﹣sinβ﹣1),=(﹣cosβ,﹣sinβ),,∴4cosα﹣2cosβ=﹣5cosβ,且2sinα﹣sinβ﹣1=﹣4sinβ,∴cosβ=﹣cosα,且sinα=(1﹣2sinα),以上两式平方相加,整理得3(sinα)2+sinα﹣2=0,∴sinα=,或sinα=﹣1(舍去),此时,直线AC的斜率k AC=﹣=(负值已舍去),如图、∴直线AQ为y=x+1、点评:本题考查点的坐标的求法,考查直线方程的求法,考查椭圆、直线方程、三角函数等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方思想,是中档题、21、(18分)设定义在R上的函数f(x)满足:对于任意的x1、x2∈R,当x1<x2时,都有f(x1)≤f(x2)、(1)若f(x)=ax3+1,求a的取值范围;(2)若f(x)是周期函数,证明:f(x)是常值函数;(3)设f(x)恒大于零,g(x)是定义在R上的、恒大于零的周期函数,M是g(x)的最大值、函数h(x)=f(x)g(x)、证明:“h(x)是周期函数”的充要条件是“f(x)是常值函数”、题目分析:(1)直接由f(x1)﹣f(x2)≤0求得a的取值范围;(2)若f(x)是周期函数,记其周期为T k,任取x0∈R,则有f(x0)=f(x0+T k),证明对任意x∈[x0,x0+T k],f(x0)≤f(x)≤f(x0+T k),可得f(x0)=f(x0+nT k),n∈Z,再由…∪[x0﹣3T k,x0﹣2T k]∪[x0﹣2T k,x0﹣T k]∪[x0﹣T k,x0]∪[x0,x0+T k]∪[x0+T k,x0+2T k]∪…=R,可得对任意x∈R,f(x)=f(x0)=C,为常数;(3)分充分性及必要性证明、类似(2)证明充分性;再证必要性,然后分类证明试题解答:(1)解:由f(x1)≤f(x2),得f(x1)﹣f(x2)=a(x13﹣x23)≤0,∵x1<x2,∴x13﹣x23<0,得a≥0、故a的范围是[0,+∞);(2)证明:若f(x)是周期函数,记其周期为T k,任取x0∈R,则有f(x0)=f(x0+T k),由题意,对任意x∈[x0,x0+T k],f(x0)≤f(x)≤f(x0+T k),∴f(x0)=f(x)=f(x0+T k)、又∵f(x0)=f(x0+nT k),n∈Z,并且…∪[x0﹣3T k,x0﹣2T k]∪[x0﹣2T k,x0﹣T k]∪[x0﹣T k,x0]∪[x0,x0+T k]∪[x0+T k,x0+2T k]∪…=R,∴对任意x∈R,f(x)=f(x0)=C,为常数;(3)证明:充分性:若f(x)是常值函数,记f(x)=c1,设g(x)的一个周期为T g,则h(x)=c1•g(x),则对任意x0∈R,h(x0+T g)=c1•g(x0+T g)=c1•g(x0)=h(x0),故h(x)是周期函数;必要性:若h(x)是周期函数,记其一个周期为T h、若存在x1,x2,使得f(x1)>0,且f(x2)<0,则由题意可知,x1>x2,那么必然存在正整数N1,使得x2+N1T k>x1,∴f(x2+N1T k)>f(x1)>0,且h(x2+N1T k)=h(x2)、又h(x2)=g(x2)f(x2)<0,而h(x2+N1T k)=g(x2+N1T k)f(x2+N1T k)>0≠h(x2),矛盾、综上,f(x)>0恒成立、由f(x)>0恒成立,任取x0∈A,则必存在N2∈N,使得x0﹣N2T h≤x0﹣T g,即[x0﹣T g,x0]⊆[x0﹣N2T h,x0],∵…∪[x0﹣3T k,x0﹣2T k]∪[x0﹣2T k,x0﹣T k]∪[x0﹣T k,x0]∪[x0,x0+T k]∪[x0+T k,x0+2T k]∪…=R,∴…∪[x0﹣2N2T h,x0﹣N2T h]∪[x0﹣N2T h,x0]∪[x0,x0+N2T h]∪[x0+N2T h,x0+2N2T h]∪…=Rh(x0)=g(x0)•f(x0)=h(x0﹣N2T h)=g(x0﹣N2T h)•f(x0﹣N2T h),∵g(x0)=M≥g(x0﹣N2T h)>0,f(x0)≥f(x0﹣N2T h)>0、因此若h(x0)=h(x0﹣N2T h),必有g(x0)=M=g(x0﹣N2T h),且f(x0)=f(x0﹣N2T h)=c而由(2)证明可知,对任意x∈R,f(x)=f(x0)=C,为常数21/ 21。
2017年高考数学上海卷-答案
![2017年高考数学上海卷-答案](https://img.taocdn.com/s3/m/1b1f407d0912a216147929bb.png)
上海市2017年普通高等学校招生全国统一考试数学答案解析一、填空题1.【答案】{3,4}解析:利用交集定义直接求解。
【考点】交集的求法。
2.【答案】3m =解析:36654P =⨯⨯,故3m =.【考点】实数值的求法。
3.【答案】(,0)-∞【解析】由11x x ->得:11110x x x ->⇒⇒<0<。
【考点】解分式不等式4.【答案】9π【解析】代解:球的体积为36π,设球的半径为R ,可得34π36π3R =,可得3R =,该球主视图为半径为3的圆,可得面积为2π9πR =.故答案为:9π.【考点】球的体积公式,以及主视图的形状和面积求法。
5.【解析】设i(,)z a b a b =+∈R ,代入23z =-,由复数相等的条件列式求得a ,b 的值得答案.【考点】复数代数形式的乘除运算。
6.【答案】11【解析】根据题意,由双曲线的方程可得a 的值,结合双曲线的定义可得12||||||6PF PF -=,解可得2||PF 的值,即可得答案.【考点】双曲线的几何性质。
7.【答案】(4,3,2)-【解析】解:如图,以长方体ABCD ﹣A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,∵1DB 的坐标为(4,3,2),∴(4,0,0)A ,1(0,3,2)C ,∴1(4,3,2)AC =-.故答案为:(4,3,2)-.【考点】空间向量的坐标的求法。
8.【答案】89【解析】由奇函数的定义,当0x >时,0x -<,代入已知解析式,即可得到所求0x >的解析式,再由互为反函数的两函数的自变量和函数值相反,即可得到所求值.【考点】函数的奇偶性和运用。
9.【答案】13【解析】从四个函数中任选2个,基本事件总数246n C ==,再利用列举法求出事件A :“所选2个函数的图象有且只有一个公共点”包含的基本事件的个数,由此能求出事件A :“所选2个函数的图象有且只有一个公共点”的概率.【考点】概率的求法。
2017年上海高考数学
![2017年上海高考数学](https://img.taocdn.com/s3/m/1e00a04c53d380eb6294dd88d0d233d4b14e3f98.png)
2017年上海高考数学试题及解析:一、填空题题目:已知集合A={1,2,3,4},集合B={3,4,5},则A∩B=______。
答案:{3,4}解析:根据集合的交集定义,A∩B即为集合A和集合B中共有的元素,所以A∩B={3,4}。
题目:若排列数Am6=6×5×4,则m=______。
答案:3解析:排列数Am6=6×5×…×(6-m+1),由题意知6-m+1=4,解得m=3。
题目:不等式x-1/x>1的解集为______。
答案:(-∞,0)解析:由不等式x-1/x>1,移项得1-1/x>1,即-1/x>0,解得x<0,所以原不等式的解集为(-∞,0)。
题目:已知球的体积为36π,则该球主视图的面积等于______。
答案:9π解析:设球的半径为R,由球的体积公式4/3πR2=9π。
题目:已知复数z满足z^2+3z=0,则|z|=______。
答案:3解析:由z2=-3z,即z(z+3)=0,解得z=0或z=-3。
由于复数z的模为其实部和虚部的平方和的平方根,而z=0的模为0,z=-3的模为3(因为-3是实数,所以其模就等于其绝对值),但题目要求的是满足z2+3z=0(除非将0视为复数,但其模仍为0,与题目要求的答案不符),所以只考虑z=-3,即|z|=3。
题目:设双曲线x^2/9-y^2/b^2=1(b>0)的焦点为F1,F2,P为该双曲线上的一点,若|PF1|=5,则|PF2|=______。
答案:11解析:双曲线x^2/9-y^2/b^2=1中,a=3(因为x^2的系数是1/9,所以a^2=9,即a=3)。
由双曲线的定义,可得||PF1|-|PF2||=2a=6,又|PF1|=5,解得|PF2|=11或-1(舍去),故|PF2|=11。
7-12题(略,详细解析可参考相关文档或资料)二、解答题(部分)(注意:由于解答题通常包含多个小题和详细的解题步骤,这里只给出部分题目的答案和简要解析,具体解题过程可参考相关文档或资料。
2017上海高考数学试题(完整Word版含解析)
![2017上海高考数学试题(完整Word版含解析)](https://img.taocdn.com/s3/m/34830ba502768e9950e73861.png)
2017上海高考数学试题(完整Word版含解析)2017年上海市高考数学试卷1. 已知集合{1,2,3,4}A =,集合{3,4,5}B =,则A B =2. 若排列数6654mP =⨯⨯,则m =3. 不等式11x x ->的解集为4. 已知球的体积为36π,则该球主视图的面积等于 5. 已知复数z 满足30z z +=,则||z = 6. 设双曲线22219x y b -=(0)b >的焦点为1F 、2F ,P 为该双曲线上的一点,若1||5PF =,则2||PF =7. 如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC 的坐标为8. 定义在(0,)+∞上的函数()y f x =的反函数为1()y f x -=,若31,0()(),0xx g x f x x ⎧-≤⎪=⎨>⎪⎩为 奇函数,则1()2f x -=的解为9. 已知四个函数:① y x =-;② 1y x=-;③ 3y x =;④ 12y x =. 从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为 10. 已知数列{}na 和{}nb ,其中2nan =,*n ∈N ,{}nb 的项是互不相等的正整数,若对于任意*n ∈N ,{}n b 的第n a 项等于{}n a 的第nb 项,则149161234lg()lg()b b b b b b b b = 11. 设1a 、2a ∈R ,且121122sin2sin(2)αα+=++,则12|10|παα--的最小值等于12. 如图,用35个单位正方形拼成一个矩形,点1P 、2P 、3P 、4P 以及四个标记为“ ”的点在正方形的顶点处,设集合1234{,,,}P P P P Ω=,点P ∈Ω,过P 作直线Pl ,使得不在Pl 上的“ ”的点分布在Pl 的两侧. 用1()PD l 和2()PD l 分别表示Pl 一侧 和另一侧的“ ”的点到Pl 的距离之和. 若过P 的直线Pl 中有且只有一条满足12()()PPD l D l =,则Ω中所有这样的P 为二. 选择题(本大题共4题,每题5分,共20分)13. 关于x 、y 的二元一次方程组50234x y x y +=⎧⎨+=⎩的系数行列式D 为( )A.0543B.1024C.1523D.605414. 在数列{}na 中,1()2nna=-,*n ∈N ,则lim nn a →∞( )17. 如图,直三棱柱111ABC A B C -的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5.(1)求三棱柱111ABC A B C -的体积;(2)设M 是BC 中点,求直线1A M与平面ABC 所成角的大小.18. 已知函数221()cossin 2f x x x =-+,(0,)x π∈.(1)求()f x 的单调递增区间; (2)设△ABC 为锐角三角形,角A 所对边a =,角B 所对边5b =,若()0f A =,求△ABC 的面积.19. 根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和nb (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤⎪=⎨-+≥⎪⎩,5nbn =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量; (2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800nSn =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?20. 在平面直角坐标系xOy 中,已知椭圆22:14xy Γ+=,A 为Γ的上顶点,P 为Γ上异于 上、下顶点的动点,M 为x 正半轴上的动点. (1)若P 在第一象限,且||OP =P 的坐标;(2)设83(,)55P ,若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标;(3)若||||MA MP =,直线AQ 与Γ交于另一点C ,且2AQ AC =,4PQ PM =, 求直线AQ 的方程.21. 设定义在R 上的函数()f x 满足:对于任意的1x 、2x ∈R,当12x x <时,都有12()()f x f x ≤.(1)若3()1f x ax=+,求a 的取值范围;(2)若()f x 为周期函数,证明:()f x 是常值函数; (3)设()f x 恒大于零,()g x 是定义在R 上、恒大于零的周期函数,M 是()g x 的最大值.函数()()()h x f x g x =. 证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”.2017年上海市高考数学试卷2017.6一. 填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1. 已知集合{1,2,3,4}A =,集合{3,4,5}B =,则A B =【解析】{3,4}AB =2. 若排列数6654mP =⨯⨯,则m =【解析】3m =3. 不等式11x x ->的解集为 【解析】111100x x x->⇒<⇒<,解集为(,0)-∞ 4. 已知球的体积为36π,则该球主视图的面积等于【解析】3436393rr S πππ=⇒=⇒= 5. 已知复数z 满足30z z +=,则||z = 【解析】23||zz z =-⇒=⇒=6. 设双曲线22219x y b-=(0)b >的焦点为1F 、2F ,P 为该双曲线上的一点,若1||5PF =, 则2||PF =【解析】226||11a PF =⇒=7. 如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC 的坐标为【解析】(4,0,0)A ,1(0,3,2)C ,1(4,3,2)AC =-8. 定义在(0,)+∞上的函数()y f x =的反函数为1()y fx -=,若31,0()(),0xx g x f x x ⎧-≤⎪=⎨>⎪⎩为 奇函数,则1()2fx -=的解为【解析】()31(2)918xf x f =-+⇒=-+=-,∴1()2f x -=的解为8x =-9. 已知四个函数:① y x =-;② 1y x=-;③ 3y x =;④ 12y x =. 从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为 【解析】①③、①④的图像有一个公共点,∴概率为24213C = 10. 已知数列{}na 和{}nb ,其中2nan =,*n ∈N ,{}nb 的项是互不相等的正整数,若对于任意*n ∈N ,{}nb 的第n a 项等于{}n a 的第nb 项,则149161234lg()lg()b b b b b b b b = 【解析】222149161491612341234lg()()2lg()nn a b n n b b b b ba b b b b b b b b b b b b b b =⇒=⇒=⇒=11. 设1a 、2a ∈R ,且121122sin2sin(2)αα+=++,则12|10|παα--的最小值等于【解析】111[,1]2sin 3α∈+,211[,1]2sin(2)3α∈+,∴121112sin 2sin(2)αα==++, 即12sin sin(2)1αα==-,∴122k παπ=-+,24k παπ=-+,12min |10|4ππαα--=12. 如图,用35个单位正方形拼成一个矩形,点1P 、2P 、3P 、4P 以及四个标记为“ ”的点在正方形的顶点处,设集合1234{,,,}P P P P Ω=,点P ∈Ω,过P 作直线Pl ,使得不在Pl 上的“ ”的点分布在Pl 的两侧. 用1()PD l 和2()PD l 分别表示Pl 一侧和另一侧的“ ”的点到Pl 的距离之和. 若过P 的直线Pl 中有且只有一条满足12()()PPD l D l =,则Ω中所有这样的P 为 【解析】1P 、3P二. 选择题(本大题共4题,每题5分,共20分)13. 关于x 、y 的二元一次方程组50234x y x y +=⎧⎨+=⎩的系数行列式D 为( )A. 0543B.1024C.1523D.6054【解析】C14. 在数列{}na 中,1()2nna=-,*n ∈N ,则lim nn a →∞( )A. 等于12-B. 等于0C. 等于12D. 不存在 【解析】B15. 已知a 、b 、c 为实常数,数列{}nx 的通项2n x an bn c=++,*n ∈N ,则“存在*k ∈N ,使得100kx +、200kx+、300kx +成等差数列”的一个必要条件是( ) A. 0a ≥ B. 0b ≤ C.c =D.20a b c -+=【解析】A16. 在平面直角坐标系xOy 中,已知椭圆221:1364x y C +=和222:19y C x +=. P 为1C 上的动点,Q 为2C 上的动点,w 是OP OQ ⋅的最大值. 记{(,)|P Q PΩ=在1C 上,Q 在2C 上,且}OP OQ w ⋅=,则Ω中元素个数为( )A. 2个B. 4个C. 8个D. 无穷个 【解析】D三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,直三棱柱111ABC A B C -的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5.(1)求三棱柱111ABC A B C -的体积;(2)设M 是BC 中点,求直线1A M与平面ABC 所成角的大小. 【解析】(1)20V S h =⋅= (2)tanθ==18. 已知函数221()cossin 2f x x x =-+,(0,)x π∈.(1)求()f x 的单调递增区间; (2)设△ABC 为锐角三角形,角A 所对边a =,角B 所对边5b =,若()0f A =,求△ABC 的面积. 【解析】(1)1()cos22f x x =+,(0,)x π∈,单调递增区间为[,)2ππ (2)1cos223A A π=-⇒=,∴225191cos 2252c A c c +-==⇒=⋅⋅或3c =,根据锐角三角形,cos 0B >,∴3c =,1sin 2S bc A ==19. 根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和nb (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤⎪=⎨-+≥⎪⎩,5nbn =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量; (2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800nSn =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量? 【解析】(1)12341234()()96530935a aa ab b b b +++-+++=-=(2)10470542n n n -+>+⇒≤,即第42个月底,保有量达到最大12341234(42050)38(647)42()()[965]878222a a a ab b b b +⨯+⨯+++⋅⋅⋅+-+++⋅⋅⋅+=+-=2424(4246)88008736S =--+=,∴此时保有量超过了容纳量.20. 在平面直角坐标系xOy 中,已知椭圆22:14xy Γ+=,A 为Γ的上顶点,P 为Γ上异于 上、下顶点的动点,M 为x 正半轴上的动点. (1)若P 在第一象限,且||OP =P 的坐标;(2)设83(,)55P ,若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标;(3)若||||MA MP =,直线AQ 与Γ交于另一点C ,且2AQ AC =,4PQ PM =, 求直线AQ 的方程. 【解析】(1)联立22:14x yΓ+=与222xy +=,可得P(2)设(,0)M m ,283833(,1)(,)055555MA MP m m m m m ⋅=-⋅-=-+=⇒=或1m =8283864629(,)(,)0555********PA MP m m m ⋅=-⋅-=-+=⇒=(3)设0(,)P x y ,线段AP 的中垂线与x 轴的交点即03(,0)8M x ,∵4PQ PM =, ∴03(,3)2Q x y --,∵2AQ AC =,∴0133(,)42y C x --,代入并联立椭圆方程,解得9x =,019y =-,∴1()3Q ,∴直线AQ 的方程为110y x =+21. 设定义在R 上的函数()f x 满足:对于任意的1x 、2x ∈R,当12x x <时,都有12()()f x f x ≤.(1)若3()1f x ax=+,求a 的取值范围;(2)若()f x 为周期函数,证明:()f x 是常值函数; (3)设()f x 恒大于零,()g x 是定义在R 上、恒大于零的周期函数,M 是()g x 的最大值.函数()()()h x f x g x =. 证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”.【解析】(1)0a ≥;(2)略;(3)略.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市黄浦区2017年高考数学一模试卷(解析版)一、填空题(本大题共有12题,满分54分.其中第1~6题每题满分54分,第7~12题每题满分54分)考生应在答题纸相应编号的空格内直接填写结果.[ 1.若集合A={x||x﹣1|<2,x∈R},则A∩Z=.2.抛物线y2=2x的准线方程是.3.若复数z满足(i为虚数单位),则z=.4.已知sin(α+)=,α∈(﹣,0),则tanα=.5.以点(2,﹣1)为圆心,且与直线x+y=7相切的圆的方程是.6.若二项式的展开式共有6项,则此展开式中含x4的项的系数是.7.已知向量(x,y∈R),,若x2+y2=1,则的最大值为.8.已知函数y=f(x)是奇函数,且当x≥0时,f(x)=log2(x+1).若函数y=g (x)是y=f(x)的反函数,则g(﹣3)=.9.在数列{a n}中,若对一切n∈N*都有a n=﹣3a n,且+1=,则a1的值为.10.甲、乙两人从6门课程中各选修3门.则甲、乙所选的课程中至多有1门相同的选法共有.11.已知点O,A,B,F分别为椭圆的中心、左顶点、上顶点、右焦点,过点F作OB的平行线,它与椭圆C在第一象限部分交于点P,若,则实数λ的值为.12.已知为常数),,且当x1,x2∈[1,4]时,总有f(x1)≤g(x2),则实数a的取值范围是.二、选择题(本大题共有4题,满分20分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.若x∈R,则“x>1”是“”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件14.关于直线l,m及平面α,β,下列命题中正确的是()A.若l∥α,α∩β=m,则l∥m B.若l∥α,m∥α,则l∥mC.若l⊥α,m∥α,则l⊥m D.若l∥α,m⊥l,则m⊥α15.在直角坐标平面内,点A,B的坐标分别为(﹣1,0),(1,0),则满足tan ∠PAB•tan∠PBA=m(m为非零常数)的点P的轨迹方程是()A.B.C.D.16.若函数y=f(x)在区间I上是增函数,且函数在区间I上是减函数,则称函数f(x)是区间I上的“H函数”.对于命题:①函数是(0,1)上的“H函数”;②函数是(0,1)上的“H函数”.下列判断正确的是()A.①和②均为真命题B.①为真命题,②为假命题C.①为假命题,②为真命题D.①和②均为假命题三、解答题(本大题共有5题,满分76分.)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.在三棱锥P﹣ABC中,底面ABC是边长为6的正三角形,PA⊥底面ABC,且PB与底面ABC所成的角为.(1)求三棱锥P﹣ABC的体积;(2)若M是BC的中点,求异面直线PM与AB所成角的大小(结果用反三角函数值表示).18.已知双曲线C以F1(﹣2,0)、F2(2,0)为焦点,且过点P(7,12).(1)求双曲线C与其渐近线的方程;(2)若斜率为1的直线l与双曲线C相交于A,B两点,且(O为坐标原点).求直线l的方程.19.现有半径为R、圆心角(∠AOB)为90°的扇形材料,要裁剪出一个五边形工件OECDF,如图所示.其中E,F分别在OA,OB上,C,D在上,且OE=OF,EC=FD,∠ECD=∠CDF=90°.记∠COD=2θ,五边形OECDF的面积为S.(1)试求S关于θ的函数关系式;(2)求S的最大值.20.已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在实数t,使得f(t+2)=f(t)+f(2).(1)判断f(x)=3x+2是否属于集合M,并说明理由;(2)若属于集合M,求实数a的取值范围;(3)若f(x)=2x+bx2,求证:对任意实数b,都有f(x)∈M.21.已知数列{a n},{b n}满足b n=a n﹣a n(n=1,2,3,…).+1(1)若b n=10﹣n,求a16﹣a5的值;}中第几项最小?请说明理(2)若且a1=1,则数列{a2n+1由;(n=1,2,3,…),求证:“数列{a n}为等差数列”的充分必要(3)若c n=a n+2a n+1(n=1,2,3,…)”.条件是“数列{c n}为等差数列且b n≤b n+12017年上海市黄浦区高考数学一模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分.其中第1~6题每题满分54分,第7~12题每题满分54分)考生应在答题纸相应编号的空格内直接填写结果.[ 1.若集合A={x||x﹣1|<2,x∈R},则A∩Z={0,1,2} .【考点】交集及其运算.【分析】化简集合A,根据交集的定义写出A∩Z即可.【解答】解:集合A={x||x﹣1|<2,x∈R}={x|﹣2<x﹣1<2,x∈R}={x|﹣1<x<3,x∈R},则A∩Z={0,1,2}.故答案为{0,1,2}.2.抛物线y2=2x的准线方程是.【考点】抛物线的简单性质.【分析】先根据抛物线方程求得p,进而根据抛物线的性质,求得答案.【解答】解:抛物线y2=2x,∴p=1,∴准线方程是x=﹣故答案为:﹣3.若复数z满足(i为虚数单位),则z=1+2i.【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简得答案.【解答】解:由,得z=1+2i.故答案为:1+2i.4.已知sin(α+)=,α∈(﹣,0),则tanα=﹣2.【考点】运用诱导公式化简求值;同角三角函数间的基本关系.【分析】由α∈(﹣,0)sin(α+)=,利用诱导公式可求得cosα,从而可求得sinα与tanα.【解答】解:∵sin(α+)=cosα,sin(α+)=,∴cosα=,又α∈(﹣,0),∴sinα=﹣,∴tanα==﹣2.故答案为:﹣2.5.以点(2,﹣1)为圆心,且与直线x+y=7相切的圆的方程是(x﹣2)2+(y+1)2=18.【考点】圆的切线方程.【分析】由点到直线的距离求出半径,从而得到圆的方程.【解答】解:将直线x+y=7化为x+y﹣7=0,圆的半径r==3,所以圆的方程为(x﹣2)2+(y+1)2=18.故答案为(x﹣2)2+(y+1)2=18.6.若二项式的展开式共有6项,则此展开式中含x4的项的系数是10.【考点】二项式定理的应用.【分析】根据题意求得n=5,再在二项展开式的通项公式中,令x的幂指数等于4,求得r的值,可得展开式中含x4的项的系数.【解答】解:∵二项式的展开式共有6项,故n=5,=•(﹣1)r•x10﹣3r,令10﹣3r=4,∴r=2,则此展开式的通项公式为T r+1中含x4的项的系数=10,故答案为:10.7.已知向量(x,y∈R),,若x2+y2=1,则的最大值为+1.【考点】向量的模.【分析】利用≤+r即可得出.【解答】解:设O(0,0),P(1,2).=≤+r=+1=+1.∴的最大值为+1.故答案为:.8.已知函数y=f(x)是奇函数,且当x≥0时,f(x)=log2(x+1).若函数y=g (x)是y=f(x)的反函数,则g(﹣3)=﹣7.【考点】反函数.【分析】根据反函数与原函数的关系,可知反函数的定义域是原函数的值域,即可求解.【解答】解:∵反函数与原函数具有相同的奇偶性.∴g(﹣3)=﹣g(3),∵反函数的定义域是原函数的值域,∴log2(x+1)=3,解得:x=7,即g(3)=7,故得g(﹣3)=﹣7.故答案为:﹣7.9.在数列{a n}中,若对一切n∈N*都有a n=﹣3a n,且+1=,则a1的值为﹣12.【考点】数列的极限.【分析】由题意可得数列{a n}为公比为﹣的等比数列,运用数列极限的运算,解方程即可得到所求.,【解答】解:在数列{a n}中,若对一切n∈N*都有a n=﹣3a n+1可得数列{a n}为公比为﹣的等比数列,=,可得====,可得a1=﹣12.故答案为:﹣12.10.甲、乙两人从6门课程中各选修3门.则甲、乙所选的课程中至多有1门相同的选法共有200.【考点】排列、组合及简单计数问题.【分析】根据题意,甲、乙所选的课程中至多有1门相同,其包含两种情况:①甲乙所选的课程全不相同,②甲乙所选的课程有1门相同;分别计算每种情况下的选法数目,相加可得答案.【解答】解:根据题意,分两种情况讨论:①甲乙所选的课程全不相同,有C63×C33=20种情况,②甲乙所选的课程有1门相同,有C61×C52×C32=180种情况,则甲、乙所选的课程中至多有1门相同的选法共有180+20=200种情况;故答案为:200.11.已知点O,A,B,F分别为椭圆的中心、左顶点、上顶点、右焦点,过点F作OB的平行线,它与椭圆C在第一象限部分交于点P,若,则实数λ的值为.【考点】直线与椭圆的位置关系.【分析】由题意画出图形,求出的坐标,代入,结合隐含条件求得实数λ的值.【解答】解:如图,A(﹣a,0),B(0,b),F(c,0),则P(c,),∴,,由,得,即b=c,∴a2=b2+c2=2b2,.则.故答案为:.12.已知为常数),,且当x1,x2∈[1,4]时,总有f(x1)≤g(x2),则实数a的取值范围是.【考点】函数恒成立问题.【分析】依题意可知,当x1,x2∈[1,4]时,f(x1)max≤g(x2)min,利用对勾函数的单调性质可求g(x2)min=g(1)=3;再对f(x)=2ax2+2x中的二次项系数a分a=0、a>0、a<0三类讨论,利用函数的单调性质可求得f(x)在区间[1,4]上的最大值,解f(x)max≤3即可求得实数a的取值范围.【解答】解:依题意知,当x1,x2∈[1,4]时,f(x1)max≤g(x2)min,由“对勾'函数单调性知,=2x+=2(x+)在区间[1,4]上单调递增,∴g(x2)min=g(1)=3;∵=2ax2+2x,当a=0时,f(x)=2x在区间[1,4]上单调递增,∴f(x)max=f(4)=8≤3不成立,故a≠0;∴f(x)=2ax2+2x为二次函数,其对称轴方程为:x=﹣,当a>0时,f(x)在区间[1,4]上单调递增,f(x)max=f(4)=8≤3不成立,故a>0不成立;当a<0时,1°若﹣≤1,即a≤﹣时,f(x)在区间[1,4]上单调递减,f(x)max=f(1)=2a+2≤3恒成立,即a≤﹣时满足题意;2°若1<﹣<4,即﹣<a<﹣时,f(x)max=f(﹣)=﹣≤3,解得:﹣<a≤﹣;3°若﹣≥4,即﹣≤a<0时,f(x)在区间[1,4]上单调递增,f(x)max=f(4)=32a+8≤3,解得a≤﹣∉(﹣,0),故不成立,综合1°2°3°知,实数a的取值范围是:(﹣∞,﹣].故答案为:.二、选择题(本大题共有4题,满分20分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.若x∈R,则“x>1”是“”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义判断即可.【解答】解:由x>1,一定能得到得到<1,但当<1时,不能推出x>1 (如x=﹣1时),故x>1是<1 的充分不必要条件,故选:A.14.关于直线l,m及平面α,β,下列命题中正确的是()A.若l∥α,α∩β=m,则l∥m B.若l∥α,m∥α,则l∥mC.若l⊥α,m∥α,则l⊥m D.若l∥α,m⊥l,则m⊥α【考点】空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系.【分析】在A中,l与m平行或异面;在B中,l与m相交、平行或异面;在C 中,由线面垂直的性质定理得l⊥m;在D中,m与α相交、平行或m⊂α.【解答】解:由直线l,m及平面α,β,知:在A中,若l∥α,α∩β=m,则l与m平行或异面,故A错误;在B中,若l∥α,m∥α,则l与m相交、平行或异面,故B错误;在C中,若l⊥α,m∥α,则由线面垂直的性质定理得l⊥m,故C正确;在D中,若l∥α,m⊥l,则m与α相交、平行或m⊂α,故D错误.故选:C.15.在直角坐标平面内,点A,B的坐标分别为(﹣1,0),(1,0),则满足tan ∠PAB•tan∠PBA=m(m为非零常数)的点P的轨迹方程是()A.B.C .D .【考点】轨迹方程.【分析】设P (x ,y ),则由题意,(m ≠0),化简可得结论.【解答】解:设P (x ,y ),则由题意,(m ≠0),化简可得,故选C .16.若函数y=f (x )在区间I 上是增函数,且函数在区间I 上是减函数,则称函数f (x )是区间I 上的“H 函数”.对于命题:①函数是(0,1)上的“H 函数”;②函数是(0,1)上的“H 函数”.下列判断正确的是( )A .①和②均为真命题B .①为真命题,②为假命题C .①为假命题,②为真命题D .①和②均为假命题【考点】命题的真假判断与应用.【分析】对函数,G (x )=在(0,1)上的单调性进行判断,得命题①是真命题.对函数=,H (x )=在(0,1)上单调性进行判断,得命题②是假命题.【解答】解:对于命题①:令t=,函数=﹣t 2+2t ,∵t=在(0,1)上是增函数,函数y=﹣t 2+2t 在(0,1)上是增函数,∴在(0,1)上是增函数;G (x )=在(0,1)上是减函数,∴函数是(0,1)上的“H 函数“,故命题①是真命题.对于命题②,函数=是(0,1)上的增函数,H(x)=是(0,1)上的增函数,故命题②是假命题;故选:B.三、解答题(本大题共有5题,满分76分.)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.在三棱锥P﹣ABC中,底面ABC是边长为6的正三角形,PA⊥底面ABC,且PB与底面ABC所成的角为.(1)求三棱锥P﹣ABC的体积;(2)若M是BC的中点,求异面直线PM与AB所成角的大小(结果用反三角函数值表示).【考点】棱柱、棱锥、棱台的体积;异面直线及其所成的角.【分析】(1)在Rt△PAB中计算PA,再代入棱锥的体积公式计算;(2)取棱AC的中点N,连接MN,NP,分别求出△PMN的三边长,利用余弦定理计算cos∠PMN即可.【解答】解:(1)∵PA⊥平面ABC,∴∠PBA为PB与平面ABC所成的角,即,∵PA⊥平面ABC,∴PA⊥AB,又AB=6,∴,∴.(2)取棱AC的中点N,连接MN,NP,∵M,N分别是棱BC,AC的中点,∴MN∥BA,∴∠PMN为异面直线PM与AB所成的角.∵PA⊥平面ABC,所以PA⊥AM,PA⊥AN,又,AN=AC=3,BM=BC=3,∴AM==3,,,所以,故异面直线PM与AB所成的角为.18.已知双曲线C以F1(﹣2,0)、F2(2,0)为焦点,且过点P(7,12).(1)求双曲线C与其渐近线的方程;(2)若斜率为1的直线l与双曲线C相交于A,B两点,且(O为坐标原点).求直线l的方程.【考点】直线与双曲线的位置关系;双曲线的标准方程.【分析】(1)设出双曲线C方程,利用已知条件求出c,a,解得b,即可求出双曲线方程与渐近线的方程;(2)设直线l的方程为y=x+t,将其代入方程,通过△>0,求出t的范围,设A(x1,y1),B(x2,y2),利用韦达定理,通过x1x2+y1y2=0,求解t 即可得到直线方程.【解答】解:(1)设双曲线C的方程为,半焦距为c,则c=2,,a=1,…所以b2=c2﹣a2=3,故双曲线C的方程为.…双曲线C的渐近线方程为.…(2)设直线l的方程为y=x+t,将其代入方程,可得2x2﹣2tx﹣t2﹣3=0(*)…△=4t2+8(t2+3)=12t2+24>0,若设A(x1,y1),B(x2,y2),则x1,x2是方程(*)的两个根,所以,又由,可知x1x2+y1y2=0,…即x1x2+(x1+t)(x2+t)=0,可得,故﹣(t2+3)+t2+t2=0,解得,所以直线l方程为.…19.现有半径为R、圆心角(∠AOB)为90°的扇形材料,要裁剪出一个五边形工件OECDF,如图所示.其中E,F分别在OA,OB上,C,D在上,且OE=OF,EC=FD,∠ECD=∠CDF=90°.记∠COD=2θ,五边形OECDF的面积为S.(1)试求S关于θ的函数关系式;(2)求S的最大值.【考点】函数模型的选择与应用.【分析】(1)设M是CD中点,连OM,推出∠COM=∠DOM=,MD=Rsinθ,利用△CEO≌△DFO,转化求解∠DFO=,在△DFO中,利用正弦定理,求解S=S+S ODF+S OCE=S△COD+2S ODF的解析式即△COD可.(2)利用S的解析式,通过三角函数的最值求解即可.【解答】解:(1)设M是CD中点,连OM,由OC=OD,可知OM⊥CD,∠COM=∠DOM=,,MD=Rsinθ,又OE=OF,EC=FD,OC=OD,可得△CEO≌△DFO,故∠EOC=∠DOF,可知,…又DF⊥CD,OM⊥CD,所以MO∥DF,故∠DFO=,在△DFO中,有,可得…+S ODF+S OCE=S△COD+2S ODF=所以S=S△COD=…(2)…=(其中)…当,即时,sin(2θ+φ)取最大值1.又,所以S的最大值为.…20.已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在实数t,使得f(t+2)=f(t)+f(2).(1)判断f(x)=3x+2是否属于集合M,并说明理由;(2)若属于集合M,求实数a的取值范围;(3)若f(x)=2x+bx2,求证:对任意实数b,都有f(x)∈M.【考点】抽象函数及其应用.【分析】(1)利用f(x)=3x+2,通过f(t+2)=f(t)+f(2)推出方程无解,说明f(x)=3x+2不属于集合M.(2)由属于集合M,推出有实解,即(a﹣6)x2+4ax+6(a﹣2)=0有实解,若a=6时,若a≠6时,利用判断式求解即可.(3)当f(x)=2x+bx2时,方程f(x+2)=f(x)+f(2)⇔3×2x+4bx﹣4=0,令g(x)=3×2x+4bx﹣4,则g(x)在R上的图象是连续的,当b≥0时,当b<0时,判断函数是否有零点,证明对任意实数b,都有f(x)∈M.【解答】解:(1)当f(x)=3x+2时,方程f(t+2)=f(t)+f(2)⇔3t+8=3t+10…此方程无解,所以不存在实数t,使得f(t+2)=f(t)+f(2),故f(x)=3x+2不属于集合M.…(2)由属于集合M,可得方程有实解⇔a[(x+2)2+2]=6(x2+2)有实解⇔(a ﹣6)x2+4ax+6(a﹣2)=0有实解,…若a=6时,上述方程有实解;若a≠6时,有△=16a2﹣24(a﹣6)(a﹣2)≥0,解得,故所求a的取值范围是.…(3)当f(x)=2x+bx2时,方程f(x+2)=f(x)+f(2)⇔2x+2+b(x+2)2=2x+bx2+4+4b ⇔3×2x+4bx﹣4=0,…令g(x)=3×2x+4bx﹣4,则g(x)在R上的图象是连续的,当b≥0时,g(0)=﹣1<0,g(1)=2+4b>0,故g(x)在(0,1)内至少有一个零点;当b<0时,g(0)=﹣1<0,,故g(x)在内至少有一个零点;故对任意的实数b,g(x)在R上都有零点,即方程f(x+2)=f(x)+f(2)总有解,所以对任意实数b,都有f(x)∈M.…21.已知数列{a n},{b n}满足b n=a n+1﹣a n(n=1,2,3,…).(1)若b n=10﹣n,求a16﹣a5的值;(2)若且a1=1,则数列{a2n+1}中第几项最小?请说明理由;(3)若c n=a n+2a n+1(n=1,2,3,…),求证:“数列{a n}为等差数列”的充分必要条件是“数列{c n}为等差数列且b n≤b n+1(n=1,2,3,…)”.【考点】数列与函数的综合;数列的应用;数列递推式.【分析】(1)判断{b n}是等差数列.然后化简a16﹣a5=(a16﹣a15)+(a15﹣a14)+(a14﹣a13)+…+(a6﹣a5)利用等差数列的性质求和即可.(2)利用a2n+3﹣a2n+1=22n+1﹣231﹣2n,判断a2n+3<a2n+1,求出n<7.5,a2n+3>a2n+1求出n>7.5,带带数列{a2n+1}中a17最小,即第8项最小..法二:化简,求出a2n+1=a1+b1+b2+b3+…+b2n=,利用基本不等式求出最小值得到数列{a2n+1}中的第8项最小.(3)若数列{a n}为等差数列,设其公差为d,说明数列{c n}为等差数列.由b n=a n+1﹣a n=d(n=1,2,3,…),推出b n≤b n+1,若数列{c n}为等差数列且b n≤b n+1(n=1,2,3,…),设{c n}的公差为D,转化推出b n+1=b n(n=1,2,3,…),说明数列{a n}为等差数列.得到结果.【解答】解:(1)由b n=10﹣n,可得b n+1﹣b n=(9﹣n)﹣(10﹣n)=﹣1,故{b n}是等差数列.所以a16﹣a5=(a16﹣a15)+(a15﹣a14)+(a14﹣a13)+…+(a6﹣a5)=…(2)a2n+3﹣a2n+1=(a2n+3﹣a2n+2)+(a2n+2﹣a2n+1)=b2n+2+b2n+1=(22n+2+231﹣2n)﹣(22n+1+232﹣2n)=22n+1﹣231﹣2n…由a2n+3<a2n+1⇔22n+1﹣231﹣2n<0⇔n<7.5,a2n+3>a2n+1⇔22n+1﹣231﹣2n>0⇔n>7.5,…故有a3>a5>a7>…>a15>a17<a19<a20<…,所以数列{a2n+1}中a17最小,即第8项最小.…法二:由,…可知a2n+1=a1+b1+b2+b3+…+b2n==…(当且仅当22n+1=233﹣2n,即n=8时取等号)所以数列{a2n+1}中的第8项最小.…(3)若数列{a n}为等差数列,设其公差为d,则c n+1﹣c n=(a n+1﹣a n)+2(a n+2﹣a n+1)=d+2d=3d为常数,所以数列{c n}为等差数列.…由b n=a n+1﹣a n=d(n=1,2,3,…),可知b n≤b n+1(n=1,2,3,…).…若数列{c n}为等差数列且b n≤b n+1(n=1,2,3,…),设{c n}的公差为D,则c n+1﹣c n=(a n+1﹣a n)+2(a n+2﹣a n+1)=b n+2b n+1=D(n=1,2,3,…),…又b n+1+2b n+2=D,故(b n+1﹣b n)+2(b n+2﹣b n+1)=D﹣D=0,又b n+1﹣b n≥0,b n+2﹣b n+1≥0,故b n+1﹣b n=b n+2﹣b n+1=0(n=1,2,3,…),…所以b n+1=b n(n=1,2,3,…),故有b n=b1,所以a n+1﹣a n=b1为常数.故数列{a n}为等差数列.综上可得,“数列{a n}为等差数列”的充分必要条件是“数列{c n}为等差数列且b n ≤b n+1(n=1,2,3,…)”.…。